cpu.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. /*
  2. * Copyright (C) 2004-2007 Freescale Semiconductor, Inc.
  3. *
  4. * See file CREDITS for list of people who contributed to this
  5. * project.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 of
  10. * the License, or (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  20. * MA 02111-1307 USA
  21. */
  22. /*
  23. * CPU specific code for the MPC83xx family.
  24. *
  25. * Derived from the MPC8260 and MPC85xx.
  26. */
  27. #include <common.h>
  28. #include <watchdog.h>
  29. #include <command.h>
  30. #include <mpc83xx.h>
  31. #include <asm/processor.h>
  32. #include <libfdt.h>
  33. DECLARE_GLOBAL_DATA_PTR;
  34. int checkcpu(void)
  35. {
  36. volatile immap_t *immr;
  37. ulong clock = gd->cpu_clk;
  38. u32 pvr = get_pvr();
  39. u32 spridr;
  40. char buf[32];
  41. int i;
  42. const struct cpu_type {
  43. char name[15];
  44. u32 partid;
  45. } cpu_type_list [] = {
  46. CPU_TYPE_ENTRY(8311),
  47. CPU_TYPE_ENTRY(8313),
  48. CPU_TYPE_ENTRY(8314),
  49. CPU_TYPE_ENTRY(8315),
  50. CPU_TYPE_ENTRY(8321),
  51. CPU_TYPE_ENTRY(8323),
  52. CPU_TYPE_ENTRY(8343),
  53. CPU_TYPE_ENTRY(8347_TBGA_),
  54. CPU_TYPE_ENTRY(8347_PBGA_),
  55. CPU_TYPE_ENTRY(8349),
  56. CPU_TYPE_ENTRY(8358_TBGA_),
  57. CPU_TYPE_ENTRY(8358_PBGA_),
  58. CPU_TYPE_ENTRY(8360),
  59. CPU_TYPE_ENTRY(8377),
  60. CPU_TYPE_ENTRY(8378),
  61. CPU_TYPE_ENTRY(8379),
  62. };
  63. immr = (immap_t *)CFG_IMMR;
  64. puts("CPU: ");
  65. switch (pvr & 0xffff0000) {
  66. case PVR_E300C1:
  67. printf("e300c1, ");
  68. break;
  69. case PVR_E300C2:
  70. printf("e300c2, ");
  71. break;
  72. case PVR_E300C3:
  73. printf("e300c3, ");
  74. break;
  75. case PVR_E300C4:
  76. printf("e300c4, ");
  77. break;
  78. default:
  79. printf("Unknown core, ");
  80. }
  81. spridr = immr->sysconf.spridr;
  82. for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
  83. if (cpu_type_list[i].partid == PARTID_NO_E(spridr)) {
  84. puts("MPC");
  85. puts(cpu_type_list[i].name);
  86. if (IS_E_PROCESSOR(spridr))
  87. puts("E");
  88. if (REVID_MAJOR(spridr) >= 2)
  89. puts("A");
  90. printf(", Rev: %d.%d", REVID_MAJOR(spridr),
  91. REVID_MINOR(spridr));
  92. break;
  93. }
  94. if (i == ARRAY_SIZE(cpu_type_list))
  95. printf("(SPRIDR %08x unknown), ", spridr);
  96. printf(" at %s MHz, ", strmhz(buf, clock));
  97. printf("CSB: %s MHz\n", strmhz(buf, gd->csb_clk));
  98. return 0;
  99. }
  100. /*
  101. * Program a UPM with the code supplied in the table.
  102. *
  103. * The 'dummy' variable is used to increment the MAD. 'dummy' is
  104. * supposed to be a pointer to the memory of the device being
  105. * programmed by the UPM. The data in the MDR is written into
  106. * memory and the MAD is incremented every time there's a read
  107. * from 'dummy'. Unfortunately, the current prototype for this
  108. * function doesn't allow for passing the address of this
  109. * device, and changing the prototype will break a number lots
  110. * of other code, so we need to use a round-about way of finding
  111. * the value for 'dummy'.
  112. *
  113. * The value can be extracted from the base address bits of the
  114. * Base Register (BR) associated with the specific UPM. To find
  115. * that BR, we need to scan all 8 BRs until we find the one that
  116. * has its MSEL bits matching the UPM we want. Once we know the
  117. * right BR, we can extract the base address bits from it.
  118. *
  119. * The MxMR and the BR and OR of the chosen bank should all be
  120. * configured before calling this function.
  121. *
  122. * Parameters:
  123. * upm: 0=UPMA, 1=UPMB, 2=UPMC
  124. * table: Pointer to an array of values to program
  125. * size: Number of elements in the array. Must be 64 or less.
  126. */
  127. void upmconfig (uint upm, uint *table, uint size)
  128. {
  129. #if defined(CONFIG_MPC834X)
  130. volatile immap_t *immap = (immap_t *) CFG_IMMR;
  131. volatile lbus83xx_t *lbus = &immap->lbus;
  132. volatile uchar *dummy = NULL;
  133. const u32 msel = (upm + 4) << BR_MSEL_SHIFT; /* What the MSEL field in BRn should be */
  134. volatile u32 *mxmr = &lbus->mamr + upm; /* Pointer to mamr, mbmr, or mcmr */
  135. uint i;
  136. /* Scan all the banks to determine the base address of the device */
  137. for (i = 0; i < 8; i++) {
  138. if ((lbus->bank[i].br & BR_MSEL) == msel) {
  139. dummy = (uchar *) (lbus->bank[i].br & BR_BA);
  140. break;
  141. }
  142. }
  143. if (!dummy) {
  144. printf("Error: %s() could not find matching BR\n", __FUNCTION__);
  145. hang();
  146. }
  147. /* Set the OP field in the MxMR to "write" and the MAD field to 000000 */
  148. *mxmr = (*mxmr & 0xCFFFFFC0) | 0x10000000;
  149. for (i = 0; i < size; i++) {
  150. lbus->mdr = table[i];
  151. __asm__ __volatile__ ("sync");
  152. *dummy; /* Write the value to memory and increment MAD */
  153. __asm__ __volatile__ ("sync");
  154. }
  155. /* Set the OP field in the MxMR to "normal" and the MAD field to 000000 */
  156. *mxmr &= 0xCFFFFFC0;
  157. #else
  158. printf("Error: %s() not defined for this configuration.\n", __FUNCTION__);
  159. hang();
  160. #endif
  161. }
  162. int
  163. do_reset (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
  164. {
  165. ulong msr;
  166. #ifndef MPC83xx_RESET
  167. ulong addr;
  168. #endif
  169. volatile immap_t *immap = (immap_t *) CFG_IMMR;
  170. #ifdef MPC83xx_RESET
  171. /* Interrupts and MMU off */
  172. __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
  173. msr &= ~( MSR_EE | MSR_IR | MSR_DR);
  174. __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
  175. /* enable Reset Control Reg */
  176. immap->reset.rpr = 0x52535445;
  177. __asm__ __volatile__ ("sync");
  178. __asm__ __volatile__ ("isync");
  179. /* confirm Reset Control Reg is enabled */
  180. while(!((immap->reset.rcer) & RCER_CRE));
  181. printf("Resetting the board.");
  182. printf("\n");
  183. udelay(200);
  184. /* perform reset, only one bit */
  185. immap->reset.rcr = RCR_SWHR;
  186. #else /* ! MPC83xx_RESET */
  187. immap->reset.rmr = RMR_CSRE; /* Checkstop Reset enable */
  188. /* Interrupts and MMU off */
  189. __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
  190. msr &= ~(MSR_ME | MSR_EE | MSR_IR | MSR_DR);
  191. __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
  192. /*
  193. * Trying to execute the next instruction at a non-existing address
  194. * should cause a machine check, resulting in reset
  195. */
  196. addr = CFG_RESET_ADDRESS;
  197. printf("resetting the board.");
  198. printf("\n");
  199. ((void (*)(void)) addr) ();
  200. #endif /* MPC83xx_RESET */
  201. return 1;
  202. }
  203. /*
  204. * Get timebase clock frequency (like cpu_clk in Hz)
  205. */
  206. unsigned long get_tbclk(void)
  207. {
  208. ulong tbclk;
  209. tbclk = (gd->bus_clk + 3L) / 4L;
  210. return tbclk;
  211. }
  212. #if defined(CONFIG_WATCHDOG)
  213. void watchdog_reset (void)
  214. {
  215. int re_enable = disable_interrupts();
  216. /* Reset the 83xx watchdog */
  217. volatile immap_t *immr = (immap_t *) CFG_IMMR;
  218. immr->wdt.swsrr = 0x556c;
  219. immr->wdt.swsrr = 0xaa39;
  220. if (re_enable)
  221. enable_interrupts ();
  222. }
  223. #endif
  224. #if defined(CONFIG_DDR_ECC)
  225. void dma_init(void)
  226. {
  227. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  228. volatile dma83xx_t *dma = &immap->dma;
  229. volatile u32 status = swab32(dma->dmasr0);
  230. volatile u32 dmamr0 = swab32(dma->dmamr0);
  231. debug("DMA-init\n");
  232. /* initialize DMASARn, DMADAR and DMAABCRn */
  233. dma->dmadar0 = (u32)0;
  234. dma->dmasar0 = (u32)0;
  235. dma->dmabcr0 = 0;
  236. __asm__ __volatile__ ("sync");
  237. __asm__ __volatile__ ("isync");
  238. /* clear CS bit */
  239. dmamr0 &= ~DMA_CHANNEL_START;
  240. dma->dmamr0 = swab32(dmamr0);
  241. __asm__ __volatile__ ("sync");
  242. __asm__ __volatile__ ("isync");
  243. /* while the channel is busy, spin */
  244. while(status & DMA_CHANNEL_BUSY) {
  245. status = swab32(dma->dmasr0);
  246. }
  247. debug("DMA-init end\n");
  248. }
  249. uint dma_check(void)
  250. {
  251. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  252. volatile dma83xx_t *dma = &immap->dma;
  253. volatile u32 status = swab32(dma->dmasr0);
  254. volatile u32 byte_count = swab32(dma->dmabcr0);
  255. /* while the channel is busy, spin */
  256. while (status & DMA_CHANNEL_BUSY) {
  257. status = swab32(dma->dmasr0);
  258. }
  259. if (status & DMA_CHANNEL_TRANSFER_ERROR) {
  260. printf ("DMA Error: status = %x @ %d\n", status, byte_count);
  261. }
  262. return status;
  263. }
  264. int dma_xfer(void *dest, u32 count, void *src)
  265. {
  266. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  267. volatile dma83xx_t *dma = &immap->dma;
  268. volatile u32 dmamr0;
  269. /* initialize DMASARn, DMADAR and DMAABCRn */
  270. dma->dmadar0 = swab32((u32)dest);
  271. dma->dmasar0 = swab32((u32)src);
  272. dma->dmabcr0 = swab32(count);
  273. __asm__ __volatile__ ("sync");
  274. __asm__ __volatile__ ("isync");
  275. /* init direct transfer, clear CS bit */
  276. dmamr0 = (DMA_CHANNEL_TRANSFER_MODE_DIRECT |
  277. DMA_CHANNEL_SOURCE_ADDRESS_HOLD_8B |
  278. DMA_CHANNEL_SOURCE_ADRESSS_HOLD_EN);
  279. dma->dmamr0 = swab32(dmamr0);
  280. __asm__ __volatile__ ("sync");
  281. __asm__ __volatile__ ("isync");
  282. /* set CS to start DMA transfer */
  283. dmamr0 |= DMA_CHANNEL_START;
  284. dma->dmamr0 = swab32(dmamr0);
  285. __asm__ __volatile__ ("sync");
  286. __asm__ __volatile__ ("isync");
  287. return ((int)dma_check());
  288. }
  289. #endif /*CONFIG_DDR_ECC*/
  290. #ifdef CONFIG_TSEC_ENET
  291. /* Default initializations for TSEC controllers. To override,
  292. * create a board-specific function called:
  293. * int board_eth_init(bd_t *bis)
  294. */
  295. extern int tsec_initialize(bd_t * bis, int index, char *devname);
  296. int cpu_eth_init(bd_t *bis)
  297. {
  298. #if defined(CONFIG_TSEC1)
  299. tsec_initialize(bis, 0, CONFIG_TSEC1_NAME);
  300. #endif
  301. #if defined(CONFIG_TSEC2)
  302. tsec_initialize(bis, 1, CONFIG_TSEC2_NAME);
  303. #endif
  304. return 0;
  305. }
  306. #endif