omap_hsmmc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * (C) Copyright 2008
  3. * Texas Instruments, <www.ti.com>
  4. * Sukumar Ghorai <s-ghorai@ti.com>
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation's version 2 of
  12. * the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <config.h>
  25. #include <common.h>
  26. #include <mmc.h>
  27. #include <part.h>
  28. #include <i2c.h>
  29. #include <twl4030.h>
  30. #include <twl6030.h>
  31. #include <twl6035.h>
  32. #include <asm/gpio.h>
  33. #include <asm/io.h>
  34. #include <asm/arch/mmc_host_def.h>
  35. #include <asm/arch/sys_proto.h>
  36. /* common definitions for all OMAPs */
  37. #define SYSCTL_SRC (1 << 25)
  38. #define SYSCTL_SRD (1 << 26)
  39. struct omap_hsmmc_data {
  40. struct hsmmc *base_addr;
  41. int cd_gpio;
  42. int wp_gpio;
  43. };
  44. /* If we fail after 1 second wait, something is really bad */
  45. #define MAX_RETRY_MS 1000
  46. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
  47. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  48. unsigned int siz);
  49. static struct mmc hsmmc_dev[3];
  50. static struct omap_hsmmc_data hsmmc_dev_data[3];
  51. #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
  52. (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
  53. static int omap_mmc_setup_gpio_in(int gpio, const char *label)
  54. {
  55. if (!gpio_is_valid(gpio))
  56. return -1;
  57. if (gpio_request(gpio, label) < 0)
  58. return -1;
  59. if (gpio_direction_input(gpio) < 0)
  60. return -1;
  61. return gpio;
  62. }
  63. static int omap_mmc_getcd(struct mmc *mmc)
  64. {
  65. int cd_gpio = ((struct omap_hsmmc_data *)mmc->priv)->cd_gpio;
  66. return gpio_get_value(cd_gpio);
  67. }
  68. static int omap_mmc_getwp(struct mmc *mmc)
  69. {
  70. int wp_gpio = ((struct omap_hsmmc_data *)mmc->priv)->wp_gpio;
  71. return gpio_get_value(wp_gpio);
  72. }
  73. #else
  74. static inline int omap_mmc_setup_gpio_in(int gpio, const char *label)
  75. {
  76. return -1;
  77. }
  78. #define omap_mmc_getcd NULL
  79. #define omap_mmc_getwp NULL
  80. #endif
  81. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  82. static void omap4_vmmc_pbias_config(struct mmc *mmc)
  83. {
  84. u32 value = 0;
  85. value = readl((*ctrl)->control_pbiaslite);
  86. value &= ~(MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ);
  87. writel(value, (*ctrl)->control_pbiaslite);
  88. /* set VMMC to 3V */
  89. twl6030_power_mmc_init();
  90. value = readl((*ctrl)->control_pbiaslite);
  91. value |= MMC1_PBIASLITE_VMODE | MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ;
  92. writel(value, (*ctrl)->control_pbiaslite);
  93. }
  94. #endif
  95. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_TWL6035_POWER)
  96. static void omap5_pbias_config(struct mmc *mmc)
  97. {
  98. u32 value = 0;
  99. value = readl((*ctrl)->control_pbias);
  100. value &= ~(SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ);
  101. value |= SDCARD_BIAS_HIZ_MODE;
  102. writel(value, (*ctrl)->control_pbias);
  103. twl6035_mmc1_poweron_ldo();
  104. value = readl((*ctrl)->control_pbias);
  105. value &= ~SDCARD_BIAS_HIZ_MODE;
  106. value |= SDCARD_PBIASLITE_VMODE | SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ;
  107. writel(value, (*ctrl)->control_pbias);
  108. value = readl((*ctrl)->control_pbias);
  109. if (value & (1 << 23)) {
  110. value &= ~(SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ);
  111. value |= SDCARD_BIAS_HIZ_MODE;
  112. writel(value, (*ctrl)->control_pbias);
  113. }
  114. }
  115. #endif
  116. unsigned char mmc_board_init(struct mmc *mmc)
  117. {
  118. #if defined(CONFIG_OMAP34XX)
  119. t2_t *t2_base = (t2_t *)T2_BASE;
  120. struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
  121. u32 pbias_lite;
  122. pbias_lite = readl(&t2_base->pbias_lite);
  123. pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
  124. writel(pbias_lite, &t2_base->pbias_lite);
  125. #endif
  126. #if defined(CONFIG_TWL4030_POWER)
  127. twl4030_power_mmc_init();
  128. mdelay(100); /* ramp-up delay from Linux code */
  129. #endif
  130. #if defined(CONFIG_OMAP34XX)
  131. writel(pbias_lite | PBIASLITEPWRDNZ1 |
  132. PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
  133. &t2_base->pbias_lite);
  134. writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
  135. &t2_base->devconf0);
  136. writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
  137. &t2_base->devconf1);
  138. /* Change from default of 52MHz to 26MHz if necessary */
  139. if (!(mmc->host_caps & MMC_MODE_HS_52MHz))
  140. writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
  141. &t2_base->ctl_prog_io1);
  142. writel(readl(&prcm_base->fclken1_core) |
  143. EN_MMC1 | EN_MMC2 | EN_MMC3,
  144. &prcm_base->fclken1_core);
  145. writel(readl(&prcm_base->iclken1_core) |
  146. EN_MMC1 | EN_MMC2 | EN_MMC3,
  147. &prcm_base->iclken1_core);
  148. #endif
  149. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  150. /* PBIAS config needed for MMC1 only */
  151. if (mmc->block_dev.dev == 0)
  152. omap4_vmmc_pbias_config(mmc);
  153. #endif
  154. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_TWL6035_POWER)
  155. if (mmc->block_dev.dev == 0)
  156. omap5_pbias_config(mmc);
  157. #endif
  158. return 0;
  159. }
  160. void mmc_init_stream(struct hsmmc *mmc_base)
  161. {
  162. ulong start;
  163. writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
  164. writel(MMC_CMD0, &mmc_base->cmd);
  165. start = get_timer(0);
  166. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  167. if (get_timer(0) - start > MAX_RETRY_MS) {
  168. printf("%s: timedout waiting for cc!\n", __func__);
  169. return;
  170. }
  171. }
  172. writel(CC_MASK, &mmc_base->stat)
  173. ;
  174. writel(MMC_CMD0, &mmc_base->cmd)
  175. ;
  176. start = get_timer(0);
  177. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  178. if (get_timer(0) - start > MAX_RETRY_MS) {
  179. printf("%s: timedout waiting for cc2!\n", __func__);
  180. return;
  181. }
  182. }
  183. writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
  184. }
  185. static int mmc_init_setup(struct mmc *mmc)
  186. {
  187. struct hsmmc *mmc_base;
  188. unsigned int reg_val;
  189. unsigned int dsor;
  190. ulong start;
  191. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  192. mmc_board_init(mmc);
  193. writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
  194. &mmc_base->sysconfig);
  195. start = get_timer(0);
  196. while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
  197. if (get_timer(0) - start > MAX_RETRY_MS) {
  198. printf("%s: timedout waiting for cc2!\n", __func__);
  199. return TIMEOUT;
  200. }
  201. }
  202. writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
  203. start = get_timer(0);
  204. while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
  205. if (get_timer(0) - start > MAX_RETRY_MS) {
  206. printf("%s: timedout waiting for softresetall!\n",
  207. __func__);
  208. return TIMEOUT;
  209. }
  210. }
  211. writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
  212. writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
  213. &mmc_base->capa);
  214. reg_val = readl(&mmc_base->con) & RESERVED_MASK;
  215. writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
  216. MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
  217. HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
  218. dsor = 240;
  219. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  220. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  221. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  222. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  223. start = get_timer(0);
  224. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  225. if (get_timer(0) - start > MAX_RETRY_MS) {
  226. printf("%s: timedout waiting for ics!\n", __func__);
  227. return TIMEOUT;
  228. }
  229. }
  230. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  231. writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
  232. writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
  233. IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC,
  234. &mmc_base->ie);
  235. mmc_init_stream(mmc_base);
  236. return 0;
  237. }
  238. /*
  239. * MMC controller internal finite state machine reset
  240. *
  241. * Used to reset command or data internal state machines, using respectively
  242. * SRC or SRD bit of SYSCTL register
  243. */
  244. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
  245. {
  246. ulong start;
  247. mmc_reg_out(&mmc_base->sysctl, bit, bit);
  248. start = get_timer(0);
  249. while ((readl(&mmc_base->sysctl) & bit) != 0) {
  250. if (get_timer(0) - start > MAX_RETRY_MS) {
  251. printf("%s: timedout waiting for sysctl %x to clear\n",
  252. __func__, bit);
  253. return;
  254. }
  255. }
  256. }
  257. static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
  258. struct mmc_data *data)
  259. {
  260. struct hsmmc *mmc_base;
  261. unsigned int flags, mmc_stat;
  262. ulong start;
  263. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  264. start = get_timer(0);
  265. while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
  266. if (get_timer(0) - start > MAX_RETRY_MS) {
  267. printf("%s: timedout waiting on cmd inhibit to clear\n",
  268. __func__);
  269. return TIMEOUT;
  270. }
  271. }
  272. writel(0xFFFFFFFF, &mmc_base->stat);
  273. start = get_timer(0);
  274. while (readl(&mmc_base->stat)) {
  275. if (get_timer(0) - start > MAX_RETRY_MS) {
  276. printf("%s: timedout waiting for STAT (%x) to clear\n",
  277. __func__, readl(&mmc_base->stat));
  278. return TIMEOUT;
  279. }
  280. }
  281. /*
  282. * CMDREG
  283. * CMDIDX[13:8] : Command index
  284. * DATAPRNT[5] : Data Present Select
  285. * ENCMDIDX[4] : Command Index Check Enable
  286. * ENCMDCRC[3] : Command CRC Check Enable
  287. * RSPTYP[1:0]
  288. * 00 = No Response
  289. * 01 = Length 136
  290. * 10 = Length 48
  291. * 11 = Length 48 Check busy after response
  292. */
  293. /* Delay added before checking the status of frq change
  294. * retry not supported by mmc.c(core file)
  295. */
  296. if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
  297. udelay(50000); /* wait 50 ms */
  298. if (!(cmd->resp_type & MMC_RSP_PRESENT))
  299. flags = 0;
  300. else if (cmd->resp_type & MMC_RSP_136)
  301. flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
  302. else if (cmd->resp_type & MMC_RSP_BUSY)
  303. flags = RSP_TYPE_LGHT48B;
  304. else
  305. flags = RSP_TYPE_LGHT48;
  306. /* enable default flags */
  307. flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
  308. MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE);
  309. if (cmd->resp_type & MMC_RSP_CRC)
  310. flags |= CCCE_CHECK;
  311. if (cmd->resp_type & MMC_RSP_OPCODE)
  312. flags |= CICE_CHECK;
  313. if (data) {
  314. if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
  315. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
  316. flags |= (MSBS_MULTIBLK | BCE_ENABLE);
  317. data->blocksize = 512;
  318. writel(data->blocksize | (data->blocks << 16),
  319. &mmc_base->blk);
  320. } else
  321. writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
  322. if (data->flags & MMC_DATA_READ)
  323. flags |= (DP_DATA | DDIR_READ);
  324. else
  325. flags |= (DP_DATA | DDIR_WRITE);
  326. }
  327. writel(cmd->cmdarg, &mmc_base->arg);
  328. writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
  329. start = get_timer(0);
  330. do {
  331. mmc_stat = readl(&mmc_base->stat);
  332. if (get_timer(0) - start > MAX_RETRY_MS) {
  333. printf("%s : timeout: No status update\n", __func__);
  334. return TIMEOUT;
  335. }
  336. } while (!mmc_stat);
  337. if ((mmc_stat & IE_CTO) != 0) {
  338. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  339. return TIMEOUT;
  340. } else if ((mmc_stat & ERRI_MASK) != 0)
  341. return -1;
  342. if (mmc_stat & CC_MASK) {
  343. writel(CC_MASK, &mmc_base->stat);
  344. if (cmd->resp_type & MMC_RSP_PRESENT) {
  345. if (cmd->resp_type & MMC_RSP_136) {
  346. /* response type 2 */
  347. cmd->response[3] = readl(&mmc_base->rsp10);
  348. cmd->response[2] = readl(&mmc_base->rsp32);
  349. cmd->response[1] = readl(&mmc_base->rsp54);
  350. cmd->response[0] = readl(&mmc_base->rsp76);
  351. } else
  352. /* response types 1, 1b, 3, 4, 5, 6 */
  353. cmd->response[0] = readl(&mmc_base->rsp10);
  354. }
  355. }
  356. if (data && (data->flags & MMC_DATA_READ)) {
  357. mmc_read_data(mmc_base, data->dest,
  358. data->blocksize * data->blocks);
  359. } else if (data && (data->flags & MMC_DATA_WRITE)) {
  360. mmc_write_data(mmc_base, data->src,
  361. data->blocksize * data->blocks);
  362. }
  363. return 0;
  364. }
  365. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
  366. {
  367. unsigned int *output_buf = (unsigned int *)buf;
  368. unsigned int mmc_stat;
  369. unsigned int count;
  370. /*
  371. * Start Polled Read
  372. */
  373. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  374. count /= 4;
  375. while (size) {
  376. ulong start = get_timer(0);
  377. do {
  378. mmc_stat = readl(&mmc_base->stat);
  379. if (get_timer(0) - start > MAX_RETRY_MS) {
  380. printf("%s: timedout waiting for status!\n",
  381. __func__);
  382. return TIMEOUT;
  383. }
  384. } while (mmc_stat == 0);
  385. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  386. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  387. if ((mmc_stat & ERRI_MASK) != 0)
  388. return 1;
  389. if (mmc_stat & BRR_MASK) {
  390. unsigned int k;
  391. writel(readl(&mmc_base->stat) | BRR_MASK,
  392. &mmc_base->stat);
  393. for (k = 0; k < count; k++) {
  394. *output_buf = readl(&mmc_base->data);
  395. output_buf++;
  396. }
  397. size -= (count*4);
  398. }
  399. if (mmc_stat & BWR_MASK)
  400. writel(readl(&mmc_base->stat) | BWR_MASK,
  401. &mmc_base->stat);
  402. if (mmc_stat & TC_MASK) {
  403. writel(readl(&mmc_base->stat) | TC_MASK,
  404. &mmc_base->stat);
  405. break;
  406. }
  407. }
  408. return 0;
  409. }
  410. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  411. unsigned int size)
  412. {
  413. unsigned int *input_buf = (unsigned int *)buf;
  414. unsigned int mmc_stat;
  415. unsigned int count;
  416. /*
  417. * Start Polled Read
  418. */
  419. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  420. count /= 4;
  421. while (size) {
  422. ulong start = get_timer(0);
  423. do {
  424. mmc_stat = readl(&mmc_base->stat);
  425. if (get_timer(0) - start > MAX_RETRY_MS) {
  426. printf("%s: timedout waiting for status!\n",
  427. __func__);
  428. return TIMEOUT;
  429. }
  430. } while (mmc_stat == 0);
  431. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  432. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  433. if ((mmc_stat & ERRI_MASK) != 0)
  434. return 1;
  435. if (mmc_stat & BWR_MASK) {
  436. unsigned int k;
  437. writel(readl(&mmc_base->stat) | BWR_MASK,
  438. &mmc_base->stat);
  439. for (k = 0; k < count; k++) {
  440. writel(*input_buf, &mmc_base->data);
  441. input_buf++;
  442. }
  443. size -= (count*4);
  444. }
  445. if (mmc_stat & BRR_MASK)
  446. writel(readl(&mmc_base->stat) | BRR_MASK,
  447. &mmc_base->stat);
  448. if (mmc_stat & TC_MASK) {
  449. writel(readl(&mmc_base->stat) | TC_MASK,
  450. &mmc_base->stat);
  451. break;
  452. }
  453. }
  454. return 0;
  455. }
  456. static void mmc_set_ios(struct mmc *mmc)
  457. {
  458. struct hsmmc *mmc_base;
  459. unsigned int dsor = 0;
  460. ulong start;
  461. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  462. /* configue bus width */
  463. switch (mmc->bus_width) {
  464. case 8:
  465. writel(readl(&mmc_base->con) | DTW_8_BITMODE,
  466. &mmc_base->con);
  467. break;
  468. case 4:
  469. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  470. &mmc_base->con);
  471. writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
  472. &mmc_base->hctl);
  473. break;
  474. case 1:
  475. default:
  476. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  477. &mmc_base->con);
  478. writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
  479. &mmc_base->hctl);
  480. break;
  481. }
  482. /* configure clock with 96Mhz system clock.
  483. */
  484. if (mmc->clock != 0) {
  485. dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
  486. if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
  487. dsor++;
  488. }
  489. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  490. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  491. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  492. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  493. start = get_timer(0);
  494. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  495. if (get_timer(0) - start > MAX_RETRY_MS) {
  496. printf("%s: timedout waiting for ics!\n", __func__);
  497. return;
  498. }
  499. }
  500. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  501. }
  502. int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
  503. int wp_gpio)
  504. {
  505. struct mmc *mmc = &hsmmc_dev[dev_index];
  506. struct omap_hsmmc_data *priv_data = &hsmmc_dev_data[dev_index];
  507. sprintf(mmc->name, "OMAP SD/MMC");
  508. mmc->send_cmd = mmc_send_cmd;
  509. mmc->set_ios = mmc_set_ios;
  510. mmc->init = mmc_init_setup;
  511. mmc->priv = priv_data;
  512. switch (dev_index) {
  513. case 0:
  514. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  515. break;
  516. #ifdef OMAP_HSMMC2_BASE
  517. case 1:
  518. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
  519. break;
  520. #endif
  521. #ifdef OMAP_HSMMC3_BASE
  522. case 2:
  523. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
  524. break;
  525. #endif
  526. default:
  527. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  528. return 1;
  529. }
  530. priv_data->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
  531. if (priv_data->cd_gpio != -1)
  532. mmc->getcd = omap_mmc_getcd;
  533. priv_data->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
  534. if (priv_data->wp_gpio != -1)
  535. mmc->getwp = omap_mmc_getwp;
  536. mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  537. mmc->host_caps = (MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS |
  538. MMC_MODE_HC) & ~host_caps_mask;
  539. mmc->f_min = 400000;
  540. if (f_max != 0)
  541. mmc->f_max = f_max;
  542. else {
  543. if (mmc->host_caps & MMC_MODE_HS) {
  544. if (mmc->host_caps & MMC_MODE_HS_52MHz)
  545. mmc->f_max = 52000000;
  546. else
  547. mmc->f_max = 26000000;
  548. } else
  549. mmc->f_max = 20000000;
  550. }
  551. mmc->b_max = 0;
  552. #if defined(CONFIG_OMAP34XX)
  553. /*
  554. * Silicon revs 2.1 and older do not support multiblock transfers.
  555. */
  556. if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
  557. mmc->b_max = 1;
  558. #endif
  559. mmc_register(mmc);
  560. return 0;
  561. }