|
@@ -9,6 +9,387 @@
|
|
|
*/
|
|
|
|
|
|
#include <common.h>
|
|
|
+
|
|
|
+
|
|
|
+#ifndef CFG_NAND_LEGACY
|
|
|
+/*
|
|
|
+ *
|
|
|
+ * New NAND support
|
|
|
+ *
|
|
|
+ */
|
|
|
+#include <common.h>
|
|
|
+
|
|
|
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
|
|
|
+
|
|
|
+#include <command.h>
|
|
|
+#include <watchdog.h>
|
|
|
+#include <malloc.h>
|
|
|
+#include <asm/byteorder.h>
|
|
|
+
|
|
|
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
|
+# include <status_led.h>
|
|
|
+# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
|
|
|
+#else
|
|
|
+# define SHOW_BOOT_PROGRESS(arg)
|
|
|
+#endif
|
|
|
+
|
|
|
+#include <jffs2/jffs2.h>
|
|
|
+#include <nand.h>
|
|
|
+
|
|
|
+extern nand_info_t nand_info[]; /* info for NAND chips */
|
|
|
+
|
|
|
+static int nand_dump_oob(nand_info_t *nand, ulong off)
|
|
|
+{
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int nand_dump(nand_info_t *nand, ulong off)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ u_char *buf, *p;
|
|
|
+
|
|
|
+ buf = malloc(nand->oobblock + nand->oobsize);
|
|
|
+ if (!buf) {
|
|
|
+ puts("No memory for page buffer\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ off &= ~(nand->oobblock - 1);
|
|
|
+ i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
|
|
|
+ if (i < 0) {
|
|
|
+ printf("Error (%d) reading page %08x\n", i, off);
|
|
|
+ free(buf);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ printf("Page %08x dump:\n", off);
|
|
|
+ i = nand->oobblock >> 4; p = buf;
|
|
|
+ while (i--) {
|
|
|
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
|
|
|
+ " %02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
|
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
|
|
|
+ p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
|
|
|
+ p += 16;
|
|
|
+ }
|
|
|
+ puts("OOB:\n");
|
|
|
+ i = nand->oobsize >> 3;
|
|
|
+ while (i--) {
|
|
|
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
|
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
|
|
|
+ p += 8;
|
|
|
+ }
|
|
|
+ free(buf);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* ------------------------------------------------------------------------- */
|
|
|
+
|
|
|
+static void
|
|
|
+arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
|
|
|
+{
|
|
|
+ *off = 0;
|
|
|
+ *size = 0;
|
|
|
+
|
|
|
+#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
|
|
|
+ if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
|
|
|
+ int part_num;
|
|
|
+ struct part_info *part;
|
|
|
+ const char *partstr;
|
|
|
+
|
|
|
+ if (argc >= 2)
|
|
|
+ partstr = argv[1];
|
|
|
+ else
|
|
|
+ partstr = getenv("partition");
|
|
|
+
|
|
|
+ if (partstr)
|
|
|
+ part_num = (int)simple_strtoul(partstr, NULL, 10);
|
|
|
+ else
|
|
|
+ part_num = 0;
|
|
|
+
|
|
|
+ part = jffs2_part_info(part_num);
|
|
|
+ if (part == NULL) {
|
|
|
+ printf("\nInvalid partition %d\n", part_num);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ *size = part->size;
|
|
|
+ *off = (ulong)part->offset;
|
|
|
+ } else
|
|
|
+#endif
|
|
|
+ {
|
|
|
+ if (argc >= 1)
|
|
|
+ *off = (ulong)simple_strtoul(argv[0], NULL, 16);
|
|
|
+ else
|
|
|
+ *off = 0;
|
|
|
+
|
|
|
+ if (argc >= 2)
|
|
|
+ *size = (ulong)simple_strtoul(argv[1], NULL, 16);
|
|
|
+ else
|
|
|
+ *size = totsize - *off;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
|
|
|
+{
|
|
|
+ int i, dev, ret;
|
|
|
+ ulong addr, off, size;
|
|
|
+ char *cmd, *s;
|
|
|
+ nand_info_t *nand;
|
|
|
+
|
|
|
+ /* at least two arguments please */
|
|
|
+ if (argc < 2)
|
|
|
+ goto usage;
|
|
|
+
|
|
|
+ cmd = argv[1];
|
|
|
+
|
|
|
+ if (strcmp(cmd, "info") == 0) {
|
|
|
+
|
|
|
+ putc('\n');
|
|
|
+ for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
|
|
|
+ if (nand_info[i].name)
|
|
|
+ printf("Device %d: %s, sector size %lu KiB\n",
|
|
|
+ i, nand_info[i].name,
|
|
|
+ nand_info[i].erasesize >> 10);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (strcmp(cmd, "device") == 0) {
|
|
|
+
|
|
|
+ if (argc < 3) {
|
|
|
+ if ((nand_curr_device < 0) ||
|
|
|
+ (nand_curr_device >= CFG_MAX_NAND_DEVICE))
|
|
|
+ puts("\nno devices available\n");
|
|
|
+ else
|
|
|
+ printf("\nDevice %d: %s\n", nand_curr_device,
|
|
|
+ nand_info[nand_curr_device].name);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ dev = (int)simple_strtoul(argv[2], NULL, 10);
|
|
|
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
|
|
|
+ puts("No such device\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ printf("Device %d: %s", dev, nand_info[dev].name);
|
|
|
+ puts("... is now current device\n");
|
|
|
+ nand_curr_device = dev;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
|
|
|
+ strncmp(cmd, "dump", 4) != 0 &&
|
|
|
+ strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0)
|
|
|
+ goto usage;
|
|
|
+
|
|
|
+ /* the following commands operate on the current device */
|
|
|
+ if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
|
|
|
+ !nand_info[nand_curr_device].name) {
|
|
|
+ puts("\nno devices available\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ nand = &nand_info[nand_curr_device];
|
|
|
+
|
|
|
+ if (strcmp(cmd, "bad") == 0) {
|
|
|
+ printf("\nDevice %d bad blocks:\n", nand_curr_device);
|
|
|
+ for (off = 0; off < nand->size; off += nand->erasesize)
|
|
|
+ if (nand_block_isbad(nand, off))
|
|
|
+ printf(" %08x\n", off);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (strcmp(cmd, "erase") == 0) {
|
|
|
+ arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
|
|
|
+ if (off == 0 && size == 0)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ printf("\nNAND erase: device %d offset 0x%x, size 0x%x ",
|
|
|
+ nand_curr_device, off, size);
|
|
|
+ ret = nand_erase(nand, off, size);
|
|
|
+ printf("%s\n", ret ? "ERROR" : "OK");
|
|
|
+
|
|
|
+ return ret == 0 ? 0 : 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (strncmp(cmd, "dump", 4) == 0) {
|
|
|
+ if (argc < 3)
|
|
|
+ goto usage;
|
|
|
+
|
|
|
+ s = strchr(cmd, '.');
|
|
|
+ off = (int)simple_strtoul(argv[2], NULL, 16);
|
|
|
+
|
|
|
+ if (s != NULL && strcmp(s, ".oob") == 0)
|
|
|
+ ret = nand_dump_oob(nand, off);
|
|
|
+ else
|
|
|
+ ret = nand_dump(nand, off);
|
|
|
+
|
|
|
+ return ret == 0 ? 1 : 0;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /* read write */
|
|
|
+ if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
|
|
|
+ if (argc < 4)
|
|
|
+ goto usage;
|
|
|
+/*
|
|
|
+ s = strchr(cmd, '.');
|
|
|
+ clean = CLEAN_NONE;
|
|
|
+ if (s != NULL) {
|
|
|
+ if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
|
|
|
+ || strcmp(s, ".i"))
|
|
|
+ clean = CLEAN_JFFS2;
|
|
|
+ }
|
|
|
+*/
|
|
|
+ addr = (ulong)simple_strtoul(argv[2], NULL, 16);
|
|
|
+
|
|
|
+ arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
|
|
|
+ if (off == 0 && size == 0)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ i = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
|
|
|
+ printf("\nNAND %s: device %d offset %u, size %u ... ",
|
|
|
+ i ? "read" : "write", nand_curr_device, off, size);
|
|
|
+
|
|
|
+ if (i)
|
|
|
+ ret = nand_read(nand, off, &size, (u_char *)addr);
|
|
|
+ else
|
|
|
+ ret = nand_write(nand, off, &size, (u_char *)addr);
|
|
|
+
|
|
|
+ printf(" %d bytes %s: %s\n", size,
|
|
|
+ i ? "read" : "written", ret ? "ERROR" : "OK");
|
|
|
+
|
|
|
+ return ret == 0 ? 0 : 1;
|
|
|
+ }
|
|
|
+usage:
|
|
|
+ printf("Usage:\n%s\n", cmdtp->usage);
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+U_BOOT_CMD(nand, 5, 1, do_nand,
|
|
|
+ "nand - NAND sub-system\n",
|
|
|
+ "info - show available NAND devices\n"
|
|
|
+ "nand device [dev] - show or set current device\n"
|
|
|
+ "nand read[.jffs2] - addr off size\n"
|
|
|
+ "nand write[.jffs2] - addr off size - read/write `size' bytes starting\n"
|
|
|
+ " at offset `off' to/from memory address `addr'\n"
|
|
|
+ "nand erase [clean] [off size] - erase `size' bytes from\n"
|
|
|
+ " offset `off' (entire device if not specified)\n"
|
|
|
+ "nand bad - show bad blocks\n"
|
|
|
+ "nand dump[.oob] off - dump page\n"
|
|
|
+ "nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
|
|
|
+ "nand markbad off - mark bad block at offset (UNSAFE)\n"
|
|
|
+ "nand biterr off - make a bit error at offset (UNSAFE)\n");
|
|
|
+
|
|
|
+int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
|
|
|
+{
|
|
|
+ char *boot_device = NULL;
|
|
|
+ char *ep;
|
|
|
+ int dev;
|
|
|
+ int r;
|
|
|
+ ulong addr, cnt, offset = 0;
|
|
|
+ image_header_t *hdr;
|
|
|
+ nand_info_t *nand;
|
|
|
+
|
|
|
+ switch (argc) {
|
|
|
+ case 1:
|
|
|
+ addr = CFG_LOAD_ADDR;
|
|
|
+ boot_device = getenv("bootdevice");
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ addr = simple_strtoul(argv[1], NULL, 16);
|
|
|
+ boot_device = getenv("bootdevice");
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ addr = simple_strtoul(argv[1], NULL, 16);
|
|
|
+ boot_device = argv[2];
|
|
|
+ break;
|
|
|
+ case 4:
|
|
|
+ addr = simple_strtoul(argv[1], NULL, 16);
|
|
|
+ boot_device = argv[2];
|
|
|
+ offset = simple_strtoul(argv[3], NULL, 16);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ printf("Usage:\n%s\n", cmdtp->usage);
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!boot_device) {
|
|
|
+ puts("\n** No boot device **\n");
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ dev = simple_strtoul(boot_device, &ep, 16);
|
|
|
+
|
|
|
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
|
|
|
+ printf("\n** Device %d not available\n", dev);
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ nand = &nand_info[dev];
|
|
|
+ printf("\nLoading from device %d: %s (offset 0x%lx)\n",
|
|
|
+ dev, nand->name, offset);
|
|
|
+
|
|
|
+ cnt = nand->oobblock;
|
|
|
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
|
|
|
+ if (r) {
|
|
|
+ printf("** Read error on %d\n", dev);
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ hdr = (image_header_t *) addr;
|
|
|
+
|
|
|
+ if (ntohl(hdr->ih_magic) != IH_MAGIC) {
|
|
|
+ printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ print_image_hdr(hdr);
|
|
|
+
|
|
|
+ cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
|
|
|
+
|
|
|
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
|
|
|
+ if (r) {
|
|
|
+ printf("** Read error on %d\n", dev);
|
|
|
+ SHOW_BOOT_PROGRESS(-1);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Loading ok, update default load address */
|
|
|
+
|
|
|
+ load_addr = addr;
|
|
|
+
|
|
|
+ /* Check if we should attempt an auto-start */
|
|
|
+ if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
|
|
|
+ char *local_args[2];
|
|
|
+ extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
|
|
|
+
|
|
|
+ local_args[0] = argv[0];
|
|
|
+ local_args[1] = NULL;
|
|
|
+
|
|
|
+ printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
|
|
|
+
|
|
|
+ do_bootm(cmdtp, 0, 1, local_args);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+U_BOOT_CMD(nboot, 4, 1, do_nandboot,
|
|
|
+ "nboot - boot from NAND device\n", "loadAddr dev\n");
|
|
|
+
|
|
|
+
|
|
|
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
|
|
|
+
|
|
|
+#else /* CFG_NAND_LEGACY */
|
|
|
+/*
|
|
|
+ *
|
|
|
+ * Legacy NAND support - to be phased out
|
|
|
+ *
|
|
|
+ */
|
|
|
#include <command.h>
|
|
|
#include <malloc.h>
|
|
|
#include <asm/io.h>
|
|
@@ -21,11 +402,12 @@
|
|
|
# define SHOW_BOOT_PROGRESS(arg)
|
|
|
#endif
|
|
|
|
|
|
-#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CONFIG_NEW_NAND_CODE)
|
|
|
-
|
|
|
-#include <linux/mtd/nand.h>
|
|
|
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
|
|
|
+#include <linux/mtd/nand_legacy.h>
|
|
|
+#if 0
|
|
|
#include <linux/mtd/nand_ids.h>
|
|
|
#include <jffs2/jffs2.h>
|
|
|
+#endif
|
|
|
|
|
|
#ifdef CONFIG_OMAP1510
|
|
|
void archflashwp(void *archdata, int wp);
|
|
@@ -33,15 +415,6 @@ void archflashwp(void *archdata, int wp);
|
|
|
|
|
|
#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
|
|
|
|
|
|
-/*
|
|
|
- * Definition of the out of band configuration structure
|
|
|
- */
|
|
|
-struct nand_oob_config {
|
|
|
- int ecc_pos[6]; /* position of ECC bytes inside oob */
|
|
|
- int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
|
|
|
- int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
|
|
|
-} oob_config = { {0}, 0, 0};
|
|
|
-
|
|
|
#undef NAND_DEBUG
|
|
|
#undef PSYCHO_DEBUG
|
|
|
|
|
@@ -63,41 +436,30 @@ struct nand_oob_config {
|
|
|
#define CONFIG_MTD_NAND_ECC /* enable ECC */
|
|
|
#define CONFIG_MTD_NAND_ECC_JFFS2
|
|
|
|
|
|
-/* bits for nand_rw() `cmd'; or together as needed */
|
|
|
+/* bits for nand_legacy_rw() `cmd'; or together as needed */
|
|
|
#define NANDRW_READ 0x01
|
|
|
#define NANDRW_WRITE 0x00
|
|
|
#define NANDRW_JFFS2 0x02
|
|
|
#define NANDRW_JFFS2_SKIP 0x04
|
|
|
|
|
|
-/*
|
|
|
- * Function Prototypes
|
|
|
- */
|
|
|
-static void nand_print(struct nand_chip *nand);
|
|
|
-int nand_rw (struct nand_chip* nand, int cmd,
|
|
|
- size_t start, size_t len,
|
|
|
- size_t * retlen, u_char * buf);
|
|
|
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
|
|
|
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
|
|
|
- size_t * retlen, u_char *buf, u_char *ecc_code);
|
|
|
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
|
|
|
- size_t * retlen, const u_char * buf, u_char * ecc_code);
|
|
|
-static void nand_print_bad(struct nand_chip *nand);
|
|
|
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
|
- size_t * retlen, u_char * buf);
|
|
|
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
|
- size_t * retlen, const u_char * buf);
|
|
|
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
|
|
|
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
|
|
|
-#endif
|
|
|
|
|
|
-struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
|
|
|
|
|
|
-/* Current NAND Device */
|
|
|
-static int curr_device = -1;
|
|
|
+/*
|
|
|
+ * Imports from nand_legacy.c
|
|
|
+ */
|
|
|
+extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
|
|
|
+extern int curr_device;
|
|
|
+extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs,
|
|
|
+ size_t len, int clean);
|
|
|
+extern int nand_legacy_rw(struct nand_chip *nand, int cmd, size_t start,
|
|
|
+ size_t len, size_t *retlen, u_char *buf);
|
|
|
+extern void nand_print(struct nand_chip *nand);
|
|
|
+extern void nand_print_bad(struct nand_chip *nand);
|
|
|
+extern int nand_read_oob(struct nand_chip *nand, size_t ofs,
|
|
|
+ size_t len, size_t *retlen, u_char *buf);
|
|
|
+extern int nand_write_oob(struct nand_chip *nand, size_t ofs,
|
|
|
+ size_t len, size_t *retlen, const u_char *buf);
|
|
|
|
|
|
-/* ------------------------------------------------------------------------- */
|
|
|
|
|
|
int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
{
|
|
@@ -174,7 +536,7 @@ int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
|
|
|
curr_device, off, size);
|
|
|
|
|
|
- ret = nand_erase (nand, off, size, 1);
|
|
|
+ ret = nand_legacy_erase (nand, off, size, 1);
|
|
|
|
|
|
printf("%s\n", ret ? "ERROR" : "OK");
|
|
|
|
|
@@ -240,7 +602,7 @@ int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
(cmd & NANDRW_READ) ? "read" : "write",
|
|
|
curr_device, off, size);
|
|
|
|
|
|
- ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
|
|
|
+ ret = nand_legacy_rw(nand_dev_desc + curr_device, cmd, off, size,
|
|
|
(size_t *)&total, (u_char*)addr);
|
|
|
|
|
|
printf (" %d bytes %s: %s\n", total,
|
|
@@ -258,7 +620,8 @@ int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
|
|
|
curr_device, off, size);
|
|
|
|
|
|
- ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
|
|
|
+ ret = nand_legacy_erase (nand_dev_desc + curr_device,
|
|
|
+ off, size, clean);
|
|
|
|
|
|
printf("%s\n", ret ? "ERROR" : "OK");
|
|
|
|
|
@@ -340,8 +703,8 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
|
|
|
offset);
|
|
|
|
|
|
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
|
|
|
- SECTORSIZE, NULL, (u_char *)addr)) {
|
|
|
+ if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, offset,
|
|
|
+ SECTORSIZE, NULL, (u_char *)addr)) {
|
|
|
printf ("** Read error on %d\n", dev);
|
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
|
return 1;
|
|
@@ -361,8 +724,9 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
|
|
|
- NULL, (u_char *)(addr+SECTORSIZE))) {
|
|
|
+ if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ,
|
|
|
+ offset + SECTORSIZE, cnt, NULL,
|
|
|
+ (u_char *)(addr+SECTORSIZE))) {
|
|
|
printf ("** Read error on %d\n", dev);
|
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
|
return 1;
|
|
@@ -394,1505 +758,6 @@ U_BOOT_CMD(
|
|
|
"loadAddr dev\n"
|
|
|
);
|
|
|
|
|
|
-/* returns 0 if block containing pos is OK:
|
|
|
- * valid erase block and
|
|
|
- * not marked bad, or no bad mark position is specified
|
|
|
- * returns 1 if marked bad or otherwise invalid
|
|
|
- */
|
|
|
-int check_block (struct nand_chip *nand, unsigned long pos)
|
|
|
-{
|
|
|
- size_t retlen;
|
|
|
- uint8_t oob_data;
|
|
|
- uint16_t oob_data16[6];
|
|
|
- int page0 = pos & (-nand->erasesize);
|
|
|
- int page1 = page0 + nand->oobblock;
|
|
|
- int badpos = oob_config.badblock_pos;
|
|
|
-
|
|
|
- if (pos >= nand->totlen)
|
|
|
- return 1;
|
|
|
-
|
|
|
- if (badpos < 0)
|
|
|
- return 0; /* no way to check, assume OK */
|
|
|
-
|
|
|
- if (nand->bus16) {
|
|
|
- if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
|
|
|
- || (oob_data16[2] & 0xff00) != 0xff00)
|
|
|
- return 1;
|
|
|
- if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
|
|
|
- || (oob_data16[2] & 0xff00) != 0xff00)
|
|
|
- return 1;
|
|
|
- } else {
|
|
|
- /* Note - bad block marker can be on first or second page */
|
|
|
- if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
|
|
|
- || oob_data != 0xff
|
|
|
- || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
|
|
|
- || oob_data != 0xff)
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* print bad blocks in NAND flash */
|
|
|
-static void nand_print_bad(struct nand_chip* nand)
|
|
|
-{
|
|
|
- unsigned long pos;
|
|
|
-
|
|
|
- for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
|
|
|
- if (check_block(nand, pos))
|
|
|
- printf(" 0x%8.8lx\n", pos);
|
|
|
- }
|
|
|
- puts("\n");
|
|
|
-}
|
|
|
-
|
|
|
-/* cmd: 0: NANDRW_WRITE write, fail on bad block
|
|
|
- * 1: NANDRW_READ read, fail on bad block
|
|
|
- * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
|
|
|
- * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
|
|
|
- * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
|
|
|
- */
|
|
|
-int nand_rw (struct nand_chip* nand, int cmd,
|
|
|
- size_t start, size_t len,
|
|
|
- size_t * retlen, u_char * buf)
|
|
|
-{
|
|
|
- int ret = 0, n, total = 0;
|
|
|
- char eccbuf[6];
|
|
|
- /* eblk (once set) is the start of the erase block containing the
|
|
|
- * data being processed.
|
|
|
- */
|
|
|
- unsigned long eblk = ~0; /* force mismatch on first pass */
|
|
|
- unsigned long erasesize = nand->erasesize;
|
|
|
-
|
|
|
- while (len) {
|
|
|
- if ((start & (-erasesize)) != eblk) {
|
|
|
- /* have crossed into new erase block, deal with
|
|
|
- * it if it is sure marked bad.
|
|
|
- */
|
|
|
- eblk = start & (-erasesize); /* start of block */
|
|
|
- if (check_block(nand, eblk)) {
|
|
|
- if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
|
|
|
- while (len > 0 &&
|
|
|
- start - eblk < erasesize) {
|
|
|
- *(buf++) = 0xff;
|
|
|
- ++start;
|
|
|
- ++total;
|
|
|
- --len;
|
|
|
- }
|
|
|
- continue;
|
|
|
- } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
|
|
|
- start += erasesize;
|
|
|
- continue;
|
|
|
- } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
|
|
|
- /* skip bad block */
|
|
|
- start += erasesize;
|
|
|
- continue;
|
|
|
- } else {
|
|
|
- ret = 1;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- /* The ECC will not be calculated correctly if
|
|
|
- less than 512 is written or read */
|
|
|
- /* Is request at least 512 bytes AND it starts on a proper boundry */
|
|
|
- if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
|
|
|
- printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
|
|
|
-
|
|
|
- if (cmd & NANDRW_READ) {
|
|
|
- ret = nand_read_ecc(nand, start,
|
|
|
- min(len, eblk + erasesize - start),
|
|
|
- (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
|
|
|
- } else {
|
|
|
- ret = nand_write_ecc(nand, start,
|
|
|
- min(len, eblk + erasesize - start),
|
|
|
- (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
|
|
|
- }
|
|
|
-
|
|
|
- if (ret)
|
|
|
- break;
|
|
|
-
|
|
|
- start += n;
|
|
|
- buf += n;
|
|
|
- total += n;
|
|
|
- len -= n;
|
|
|
- }
|
|
|
- if (retlen)
|
|
|
- *retlen = total;
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static void nand_print(struct nand_chip *nand)
|
|
|
-{
|
|
|
- if (nand->numchips > 1) {
|
|
|
- printf("%s at 0x%lx,\n"
|
|
|
- "\t %d chips %s, size %d MB, \n"
|
|
|
- "\t total size %ld MB, sector size %ld kB\n",
|
|
|
- nand->name, nand->IO_ADDR, nand->numchips,
|
|
|
- nand->chips_name, 1 << (nand->chipshift - 20),
|
|
|
- nand->totlen >> 20, nand->erasesize >> 10);
|
|
|
- }
|
|
|
- else {
|
|
|
- printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
|
|
|
- print_size(nand->totlen, ", ");
|
|
|
- print_size(nand->erasesize, " sector)\n");
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* ------------------------------------------------------------------------- */
|
|
|
-
|
|
|
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
|
|
|
-{
|
|
|
- /* This is inline, to optimise the common case, where it's ready instantly */
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
-#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
|
|
|
- if(ale_wait)
|
|
|
- NAND_WAIT_READY(nand); /* do the worst case 25us wait */
|
|
|
- else
|
|
|
- udelay(10);
|
|
|
-#else /* has functional r/b signal */
|
|
|
- NAND_WAIT_READY(nand);
|
|
|
-#endif
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/* NanD_Command: Send a flash command to the flash chip */
|
|
|
-
|
|
|
-static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
|
|
|
-{
|
|
|
- unsigned long nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
- /* Assert the CLE (Command Latch Enable) line to the flash chip */
|
|
|
- NAND_CTL_SETCLE(nandptr);
|
|
|
-
|
|
|
- /* Send the command */
|
|
|
- WRITE_NAND_COMMAND(command, nandptr);
|
|
|
-
|
|
|
- /* Lower the CLE line */
|
|
|
- NAND_CTL_CLRCLE(nandptr);
|
|
|
-
|
|
|
-#ifdef NAND_NO_RB
|
|
|
- if(command == NAND_CMD_RESET){
|
|
|
- u_char ret_val;
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
- do {
|
|
|
- ret_val = READ_NAND(nandptr);/* wait till ready */
|
|
|
- } while((ret_val & 0x40) != 0x40);
|
|
|
- }
|
|
|
-#endif
|
|
|
- return NanD_WaitReady(nand, 0);
|
|
|
-}
|
|
|
-
|
|
|
-/* NanD_Address: Set the current address for the flash chip */
|
|
|
-
|
|
|
-static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
|
|
|
-{
|
|
|
- unsigned long nandptr;
|
|
|
- int i;
|
|
|
-
|
|
|
- nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
- /* Assert the ALE (Address Latch Enable) line to the flash chip */
|
|
|
- NAND_CTL_SETALE(nandptr);
|
|
|
-
|
|
|
- /* Send the address */
|
|
|
- /* Devices with 256-byte page are addressed as:
|
|
|
- * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
|
|
|
- * there is no device on the market with page256
|
|
|
- * and more than 24 bits.
|
|
|
- * Devices with 512-byte page are addressed as:
|
|
|
- * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
|
|
|
- * 25-31 is sent only if the chip support it.
|
|
|
- * bit 8 changes the read command to be sent
|
|
|
- * (NAND_CMD_READ0 or NAND_CMD_READ1).
|
|
|
- */
|
|
|
-
|
|
|
- if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
|
|
|
- WRITE_NAND_ADDRESS(ofs, nandptr);
|
|
|
-
|
|
|
- ofs = ofs >> nand->page_shift;
|
|
|
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
|
|
|
|
|
|
- if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
|
|
|
- for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
|
|
|
- WRITE_NAND_ADDRESS(ofs, nandptr);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Lower the ALE line */
|
|
|
- NAND_CTL_CLRALE(nandptr);
|
|
|
-
|
|
|
- /* Wait for the chip to respond */
|
|
|
- return NanD_WaitReady(nand, 1);
|
|
|
-}
|
|
|
-
|
|
|
-/* NanD_SelectChip: Select a given flash chip within the current floor */
|
|
|
-
|
|
|
-static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
|
|
|
-{
|
|
|
- /* Wait for it to be ready */
|
|
|
- return NanD_WaitReady(nand, 0);
|
|
|
-}
|
|
|
-
|
|
|
-/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
|
|
|
-
|
|
|
-static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
|
|
|
-{
|
|
|
- int mfr, id, i;
|
|
|
-
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
- /* Reset the chip */
|
|
|
- if (NanD_Command(nand, NAND_CMD_RESET)) {
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- printf("NanD_Command (reset) for %d,%d returned true\n",
|
|
|
- floor, chip);
|
|
|
-#endif
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Read the NAND chip ID: 1. Send ReadID command */
|
|
|
- if (NanD_Command(nand, NAND_CMD_READID)) {
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- printf("NanD_Command (ReadID) for %d,%d returned true\n",
|
|
|
- floor, chip);
|
|
|
-#endif
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Read the NAND chip ID: 2. Send address byte zero */
|
|
|
- NanD_Address(nand, ADDR_COLUMN, 0);
|
|
|
-
|
|
|
- /* Read the manufacturer and device id codes from the device */
|
|
|
-
|
|
|
- mfr = READ_NAND(nand->IO_ADDR);
|
|
|
-
|
|
|
- id = READ_NAND(nand->IO_ADDR);
|
|
|
-
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
-
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
|
|
|
-#endif
|
|
|
- if (mfr == 0xff || mfr == 0) {
|
|
|
- /* No response - return failure */
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* Check it's the same as the first chip we identified.
|
|
|
- * M-Systems say that any given nand_chip device should only
|
|
|
- * contain _one_ type of flash part, although that's not a
|
|
|
- * hardware restriction. */
|
|
|
- if (nand->mfr) {
|
|
|
- if (nand->mfr == mfr && nand->id == id) {
|
|
|
- return 1; /* This is another the same the first */
|
|
|
- } else {
|
|
|
- printf("Flash chip at floor %d, chip %d is different:\n",
|
|
|
- floor, chip);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Print and store the manufacturer and ID codes. */
|
|
|
- for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
|
- if (mfr == nand_flash_ids[i].manufacture_id &&
|
|
|
- id == nand_flash_ids[i].model_id) {
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
|
|
|
- "Chip ID: 0x%2.2X (%s)\n", mfr, id,
|
|
|
- nand_flash_ids[i].name);
|
|
|
-#endif
|
|
|
- if (!nand->mfr) {
|
|
|
- nand->mfr = mfr;
|
|
|
- nand->id = id;
|
|
|
- nand->chipshift =
|
|
|
- nand_flash_ids[i].chipshift;
|
|
|
- nand->page256 = nand_flash_ids[i].page256;
|
|
|
- nand->eccsize = 256;
|
|
|
- if (nand->page256) {
|
|
|
- nand->oobblock = 256;
|
|
|
- nand->oobsize = 8;
|
|
|
- nand->page_shift = 8;
|
|
|
- } else {
|
|
|
- nand->oobblock = 512;
|
|
|
- nand->oobsize = 16;
|
|
|
- nand->page_shift = 9;
|
|
|
- }
|
|
|
- nand->pageadrlen = nand_flash_ids[i].pageadrlen;
|
|
|
- nand->erasesize = nand_flash_ids[i].erasesize;
|
|
|
- nand->chips_name = nand_flash_ids[i].name;
|
|
|
- nand->bus16 = nand_flash_ids[i].bus16;
|
|
|
- return 1;
|
|
|
- }
|
|
|
- return 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- /* We haven't fully identified the chip. Print as much as we know. */
|
|
|
- printf("Unknown flash chip found: %2.2X %2.2X\n",
|
|
|
- id, mfr);
|
|
|
-#endif
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
|
|
|
-
|
|
|
-static void NanD_ScanChips(struct nand_chip *nand)
|
|
|
-{
|
|
|
- int floor, chip;
|
|
|
- int numchips[NAND_MAX_FLOORS];
|
|
|
- int maxchips = NAND_MAX_CHIPS;
|
|
|
- int ret = 1;
|
|
|
-
|
|
|
- nand->numchips = 0;
|
|
|
- nand->mfr = 0;
|
|
|
- nand->id = 0;
|
|
|
-
|
|
|
-
|
|
|
- /* For each floor, find the number of valid chips it contains */
|
|
|
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
|
|
|
- ret = 1;
|
|
|
- numchips[floor] = 0;
|
|
|
- for (chip = 0; chip < maxchips && ret != 0; chip++) {
|
|
|
-
|
|
|
- ret = NanD_IdentChip(nand, floor, chip);
|
|
|
- if (ret) {
|
|
|
- numchips[floor]++;
|
|
|
- nand->numchips++;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* If there are none at all that we recognise, bail */
|
|
|
- if (!nand->numchips) {
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- puts ("No NAND flash chips recognised.\n");
|
|
|
-#endif
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* Allocate an array to hold the information for each chip */
|
|
|
- nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
|
|
|
- if (!nand->chips) {
|
|
|
- puts ("No memory for allocating chip info structures\n");
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- ret = 0;
|
|
|
-
|
|
|
- /* Fill out the chip array with {floor, chipno} for each
|
|
|
- * detected chip in the device. */
|
|
|
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
|
|
|
- for (chip = 0; chip < numchips[floor]; chip++) {
|
|
|
- nand->chips[ret].floor = floor;
|
|
|
- nand->chips[ret].chip = chip;
|
|
|
- nand->chips[ret].curadr = 0;
|
|
|
- nand->chips[ret].curmode = 0x50;
|
|
|
- ret++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate and print the total size of the device */
|
|
|
- nand->totlen = nand->numchips * (1 << nand->chipshift);
|
|
|
-
|
|
|
-#ifdef NAND_DEBUG
|
|
|
- printf("%d flash chips found. Total nand_chip size: %ld MB\n",
|
|
|
- nand->numchips, nand->totlen >> 20);
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-/* we need to be fast here, 1 us per read translates to 1 second per meg */
|
|
|
-static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
|
|
|
-{
|
|
|
- unsigned long nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
- NanD_Command (nand, NAND_CMD_READ0);
|
|
|
-
|
|
|
- if (nand->bus16) {
|
|
|
- u16 val;
|
|
|
-
|
|
|
- while (cntr >= 16) {
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- cntr -= 16;
|
|
|
- }
|
|
|
-
|
|
|
- while (cntr > 0) {
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- *data_buf++ = val & 0xff;
|
|
|
- *data_buf++ = val >> 8;
|
|
|
- cntr -= 2;
|
|
|
- }
|
|
|
- } else {
|
|
|
- while (cntr >= 16) {
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- cntr -= 16;
|
|
|
- }
|
|
|
-
|
|
|
- while (cntr > 0) {
|
|
|
- *data_buf++ = READ_NAND (nandptr);
|
|
|
- cntr--;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * NAND read with ECC
|
|
|
- */
|
|
|
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
|
|
|
- size_t * retlen, u_char *buf, u_char *ecc_code)
|
|
|
-{
|
|
|
- int col, page;
|
|
|
- int ecc_status = 0;
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
- int j;
|
|
|
- int ecc_failed = 0;
|
|
|
- u_char *data_poi;
|
|
|
- u_char ecc_calc[6];
|
|
|
-#endif
|
|
|
-
|
|
|
- /* Do not allow reads past end of device */
|
|
|
- if ((start + len) > nand->totlen) {
|
|
|
- printf ("%s: Attempt read beyond end of device %x %x %x\n",
|
|
|
- __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
|
|
|
- *retlen = 0;
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- /* First we calculate the starting page */
|
|
|
- /*page = shr(start, nand->page_shift);*/
|
|
|
- page = start >> nand->page_shift;
|
|
|
-
|
|
|
- /* Get raw starting column */
|
|
|
- col = start & (nand->oobblock - 1);
|
|
|
-
|
|
|
- /* Initialize return value */
|
|
|
- *retlen = 0;
|
|
|
-
|
|
|
- /* Select the NAND device */
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
-
|
|
|
- /* Loop until all data read */
|
|
|
- while (*retlen < len) {
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
- /* Do we have this page in cache ? */
|
|
|
- if (nand->cache_page == page)
|
|
|
- goto readdata;
|
|
|
- /* Send the read command */
|
|
|
- NanD_Command(nand, NAND_CMD_READ0);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
-
|
|
|
- /* Read in a page + oob data */
|
|
|
- NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
|
|
|
-
|
|
|
- /* copy data into cache, for read out of cache and if ecc fails */
|
|
|
- if (nand->data_cache) {
|
|
|
- memcpy (nand->data_cache, nand->data_buf,
|
|
|
- nand->oobblock + nand->oobsize);
|
|
|
- }
|
|
|
-
|
|
|
- /* Pick the ECC bytes out of the oob data */
|
|
|
- for (j = 0; j < 6; j++) {
|
|
|
- ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate the ECC and verify it */
|
|
|
- /* If block was not written with ECC, skip ECC */
|
|
|
- if (oob_config.eccvalid_pos != -1 &&
|
|
|
- (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
|
|
|
-
|
|
|
- nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
|
|
|
- switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
|
|
|
- case -1:
|
|
|
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
|
|
|
- ecc_failed++;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- case 2: /* transfer ECC corrected data to cache */
|
|
|
- if (nand->data_cache)
|
|
|
- memcpy (nand->data_cache, nand->data_buf, 256);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (oob_config.eccvalid_pos != -1 &&
|
|
|
- nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
|
|
|
-
|
|
|
- nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
|
|
|
- switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
|
|
|
- case -1:
|
|
|
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
|
|
|
- ecc_failed++;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- case 2: /* transfer ECC corrected data to cache */
|
|
|
- if (nand->data_cache)
|
|
|
- memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-readdata:
|
|
|
- /* Read the data from ECC data buffer into return buffer */
|
|
|
- data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
|
|
|
- data_poi += col;
|
|
|
- if ((*retlen + (nand->oobblock - col)) >= len) {
|
|
|
- memcpy (buf + *retlen, data_poi, len - *retlen);
|
|
|
- *retlen = len;
|
|
|
- } else {
|
|
|
- memcpy (buf + *retlen, data_poi, nand->oobblock - col);
|
|
|
- *retlen += nand->oobblock - col;
|
|
|
- }
|
|
|
- /* Set cache page address, invalidate, if ecc_failed */
|
|
|
- nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
|
|
|
-
|
|
|
- ecc_status += ecc_failed;
|
|
|
- ecc_failed = 0;
|
|
|
-
|
|
|
-#else
|
|
|
- /* Send the read command */
|
|
|
- NanD_Command(nand, NAND_CMD_READ0);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
-
|
|
|
- /* Read the data directly into the return buffer */
|
|
|
- if ((*retlen + (nand->oobblock - col)) >= len) {
|
|
|
- NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
|
|
|
- *retlen = len;
|
|
|
- /* We're done */
|
|
|
- continue;
|
|
|
- } else {
|
|
|
- NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
|
|
|
- *retlen += nand->oobblock - col;
|
|
|
- }
|
|
|
-#endif
|
|
|
- /* For subsequent reads align to page boundary. */
|
|
|
- col = 0;
|
|
|
- /* Increment page address */
|
|
|
- page++;
|
|
|
- }
|
|
|
-
|
|
|
- /* De-select the NAND device */
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
-
|
|
|
- /*
|
|
|
- * Return success, if no ECC failures, else -EIO
|
|
|
- * fs driver will take care of that, because
|
|
|
- * retlen == desired len and result == -EIO
|
|
|
- */
|
|
|
- return ecc_status ? -1 : 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Nand_page_program function is used for write and writev !
|
|
|
- */
|
|
|
-static int nand_write_page (struct nand_chip *nand,
|
|
|
- int page, int col, int last, u_char * ecc_code)
|
|
|
-{
|
|
|
-
|
|
|
- int i;
|
|
|
- unsigned long nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
|
- int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
|
|
|
-#endif
|
|
|
-#endif
|
|
|
- /* pad oob area */
|
|
|
- for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
|
|
|
- nand->data_buf[i] = 0xff;
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
- /* Zero out the ECC array */
|
|
|
- for (i = 0; i < 6; i++)
|
|
|
- ecc_code[i] = 0x00;
|
|
|
-
|
|
|
- /* Read back previous written data, if col > 0 */
|
|
|
- if (col) {
|
|
|
- NanD_Command (nand, NAND_CMD_READ0);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
-
|
|
|
- if (nand->bus16) {
|
|
|
- u16 val;
|
|
|
-
|
|
|
- for (i = 0; i < col; i += 2) {
|
|
|
- val = READ_NAND (nandptr);
|
|
|
- nand->data_buf[i] = val & 0xff;
|
|
|
- nand->data_buf[i + 1] = val >> 8;
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = 0; i < col; i++)
|
|
|
- nand->data_buf[i] = READ_NAND (nandptr);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate and write the ECC if we have enough data */
|
|
|
- if ((col < nand->eccsize) && (last >= nand->eccsize)) {
|
|
|
- nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- nand->data_buf[(nand->oobblock +
|
|
|
- oob_config.ecc_pos[i])] = ecc_code[i];
|
|
|
- }
|
|
|
- if (oob_config.eccvalid_pos != -1) {
|
|
|
- nand->data_buf[nand->oobblock +
|
|
|
- oob_config.eccvalid_pos] = 0xf0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate and write the second ECC if we have enough data */
|
|
|
- if ((nand->oobblock == 512) && (last == nand->oobblock)) {
|
|
|
- nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
|
|
|
- for (i = 3; i < 6; i++) {
|
|
|
- nand->data_buf[(nand->oobblock +
|
|
|
- oob_config.ecc_pos[i])] = ecc_code[i];
|
|
|
- }
|
|
|
- if (oob_config.eccvalid_pos != -1) {
|
|
|
- nand->data_buf[nand->oobblock +
|
|
|
- oob_config.eccvalid_pos] &= 0x0f;
|
|
|
- }
|
|
|
- }
|
|
|
-#endif
|
|
|
- /* Prepad for partial page programming !!! */
|
|
|
- for (i = 0; i < col; i++)
|
|
|
- nand->data_buf[i] = 0xff;
|
|
|
-
|
|
|
- /* Postpad for partial page programming !!! oob is already padded */
|
|
|
- for (i = last; i < nand->oobblock; i++)
|
|
|
- nand->data_buf[i] = 0xff;
|
|
|
-
|
|
|
- /* Send command to begin auto page programming */
|
|
|
- NanD_Command (nand, NAND_CMD_READ0);
|
|
|
- NanD_Command (nand, NAND_CMD_SEQIN);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
-
|
|
|
- /* Write out complete page of data */
|
|
|
- if (nand->bus16) {
|
|
|
- for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
|
|
|
- WRITE_NAND (nand->data_buf[i] +
|
|
|
- (nand->data_buf[i + 1] << 8),
|
|
|
- nand->IO_ADDR);
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
|
|
|
- WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
|
|
|
- }
|
|
|
-
|
|
|
- /* Send command to actually program the data */
|
|
|
- NanD_Command (nand, NAND_CMD_PAGEPROG);
|
|
|
- NanD_Command (nand, NAND_CMD_STATUS);
|
|
|
-#ifdef NAND_NO_RB
|
|
|
- {
|
|
|
- u_char ret_val;
|
|
|
-
|
|
|
- do {
|
|
|
- ret_val = READ_NAND (nandptr); /* wait till ready */
|
|
|
- } while ((ret_val & 0x40) != 0x40);
|
|
|
- }
|
|
|
-#endif
|
|
|
- /* See if device thinks it succeeded */
|
|
|
- if (READ_NAND (nand->IO_ADDR) & 0x01) {
|
|
|
- printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
|
|
|
- page);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
|
- /*
|
|
|
- * The NAND device assumes that it is always writing to
|
|
|
- * a cleanly erased page. Hence, it performs its internal
|
|
|
- * write verification only on bits that transitioned from
|
|
|
- * 1 to 0. The device does NOT verify the whole page on a
|
|
|
- * byte by byte basis. It is possible that the page was
|
|
|
- * not completely erased or the page is becoming unusable
|
|
|
- * due to wear. The read with ECC would catch the error
|
|
|
- * later when the ECC page check fails, but we would rather
|
|
|
- * catch it early in the page write stage. Better to write
|
|
|
- * no data than invalid data.
|
|
|
- */
|
|
|
-
|
|
|
- /* Send command to read back the page */
|
|
|
- if (col < nand->eccsize)
|
|
|
- NanD_Command (nand, NAND_CMD_READ0);
|
|
|
- else
|
|
|
- NanD_Command (nand, NAND_CMD_READ1);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
-
|
|
|
- /* Loop through and verify the data */
|
|
|
- if (nand->bus16) {
|
|
|
- for (i = col; i < last; i = +2) {
|
|
|
- if ((nand->data_buf[i] +
|
|
|
- (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
|
|
|
- printf ("%s: Failed write verify, page 0x%08x ",
|
|
|
- __FUNCTION__, page);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = col; i < last; i++) {
|
|
|
- if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
|
|
|
- printf ("%s: Failed write verify, page 0x%08x ",
|
|
|
- __FUNCTION__, page);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
- /*
|
|
|
- * We also want to check that the ECC bytes wrote
|
|
|
- * correctly for the same reasons stated above.
|
|
|
- */
|
|
|
- NanD_Command (nand, NAND_CMD_READOOB);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + (col >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
|
- (page << nand->page_shift) + col);
|
|
|
- }
|
|
|
- if (nand->bus16) {
|
|
|
- for (i = 0; i < nand->oobsize; i += 2) {
|
|
|
- u16 val;
|
|
|
-
|
|
|
- val = READ_NAND (nand->IO_ADDR);
|
|
|
- nand->data_buf[i] = val & 0xff;
|
|
|
- nand->data_buf[i + 1] = val >> 8;
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = 0; i < nand->oobsize; i++) {
|
|
|
- nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
|
|
|
- }
|
|
|
- }
|
|
|
- for (i = 0; i < ecc_bytes; i++) {
|
|
|
- if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
|
|
|
- printf ("%s: Failed ECC write "
|
|
|
- "verify, page 0x%08x, "
|
|
|
- "%6i bytes were succesful\n",
|
|
|
- __FUNCTION__, page, i);
|
|
|
- return -1;
|
|
|
- }
|
|
|
- }
|
|
|
-#endif /* CONFIG_MTD_NAND_ECC */
|
|
|
-#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
|
|
|
- size_t * retlen, const u_char * buf, u_char * ecc_code)
|
|
|
-{
|
|
|
- int i, page, col, cnt, ret = 0;
|
|
|
-
|
|
|
- /* Do not allow write past end of device */
|
|
|
- if ((to + len) > nand->totlen) {
|
|
|
- printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Shift to get page */
|
|
|
- page = ((int) to) >> nand->page_shift;
|
|
|
-
|
|
|
- /* Get the starting column */
|
|
|
- col = to & (nand->oobblock - 1);
|
|
|
-
|
|
|
- /* Initialize return length value */
|
|
|
- *retlen = 0;
|
|
|
-
|
|
|
- /* Select the NAND device */
|
|
|
-#ifdef CONFIG_OMAP1510
|
|
|
- archflashwp(0,0);
|
|
|
-#endif
|
|
|
-#ifdef CFG_NAND_WP
|
|
|
- NAND_WP_OFF();
|
|
|
-#endif
|
|
|
-
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
-
|
|
|
- /* Check the WP bit */
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
|
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
|
|
|
- ret = -1;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- /* Loop until all data is written */
|
|
|
- while (*retlen < len) {
|
|
|
- /* Invalidate cache, if we write to this page */
|
|
|
- if (nand->cache_page == page)
|
|
|
- nand->cache_page = -1;
|
|
|
-
|
|
|
- /* Write data into buffer */
|
|
|
- if ((col + len) >= nand->oobblock) {
|
|
|
- for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
|
|
|
- nand->data_buf[i] = buf[(*retlen + cnt)];
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
|
|
|
- nand->data_buf[i] = buf[(*retlen + cnt)];
|
|
|
- }
|
|
|
- }
|
|
|
- /* We use the same function for write and writev !) */
|
|
|
- ret = nand_write_page (nand, page, col, i, ecc_code);
|
|
|
- if (ret)
|
|
|
- goto out;
|
|
|
-
|
|
|
- /* Next data start at page boundary */
|
|
|
- col = 0;
|
|
|
-
|
|
|
- /* Update written bytes count */
|
|
|
- *retlen += cnt;
|
|
|
-
|
|
|
- /* Increment page address */
|
|
|
- page++;
|
|
|
- }
|
|
|
-
|
|
|
- /* Return happy */
|
|
|
- *retlen = len;
|
|
|
-
|
|
|
-out:
|
|
|
- /* De-select the NAND device */
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
-#ifdef CONFIG_OMAP1510
|
|
|
- archflashwp(0,1);
|
|
|
-#endif
|
|
|
-#ifdef CFG_NAND_WP
|
|
|
- NAND_WP_ON();
|
|
|
-#endif
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/* read from the 16 bytes of oob data that correspond to a 512 byte
|
|
|
- * page or 2 256-byte pages.
|
|
|
- */
|
|
|
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
|
- size_t * retlen, u_char * buf)
|
|
|
-{
|
|
|
- int len256 = 0;
|
|
|
- struct Nand *mychip;
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- mychip = &nand->chips[ofs >> nand->chipshift];
|
|
|
-
|
|
|
- /* update address for 2M x 8bit devices. OOB starts on the second */
|
|
|
- /* page to maintain compatibility with nand_read_ecc. */
|
|
|
- if (nand->page256) {
|
|
|
- if (!(ofs & 0x8))
|
|
|
- ofs += 0x100;
|
|
|
- else
|
|
|
- ofs -= 0x8;
|
|
|
- }
|
|
|
-
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
- NanD_Command(nand, NAND_CMD_READOOB);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- ((ofs >> nand->page_shift) << nand->page_shift) +
|
|
|
- ((ofs & (nand->oobblock - 1)) >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
|
- }
|
|
|
-
|
|
|
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
|
- /* Note: datasheet says it should automaticaly wrap to the */
|
|
|
- /* next OOB block, but it didn't work here. mf. */
|
|
|
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
|
- len256 = (ofs | 0x7) + 1 - ofs;
|
|
|
- NanD_ReadBuf(nand, buf, len256);
|
|
|
-
|
|
|
- NanD_Command(nand, NAND_CMD_READOOB);
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
|
|
|
- }
|
|
|
-
|
|
|
- NanD_ReadBuf(nand, &buf[len256], len - len256);
|
|
|
-
|
|
|
- *retlen = len;
|
|
|
- /* Reading the full OOB data drops us off of the end of the page,
|
|
|
- * causing the flash device to go into busy mode, so we need
|
|
|
- * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
|
|
|
-
|
|
|
- ret = NanD_WaitReady(nand, 1);
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
-
|
|
|
- return ret;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-/* write to the 16 bytes of oob data that correspond to a 512 byte
|
|
|
- * page or 2 256-byte pages.
|
|
|
- */
|
|
|
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
|
- size_t * retlen, const u_char * buf)
|
|
|
-{
|
|
|
- int len256 = 0;
|
|
|
- int i;
|
|
|
- unsigned long nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
-#ifdef PSYCHO_DEBUG
|
|
|
- printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
|
|
|
- (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
|
|
|
- buf[8], buf[9], buf[14],buf[15]);
|
|
|
-#endif
|
|
|
-
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low to enable chip */
|
|
|
-
|
|
|
- /* Reset the chip */
|
|
|
- NanD_Command(nand, NAND_CMD_RESET);
|
|
|
-
|
|
|
- /* issue the Read2 command to set the pointer to the Spare Data Area. */
|
|
|
- NanD_Command(nand, NAND_CMD_READOOB);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- ((ofs >> nand->page_shift) << nand->page_shift) +
|
|
|
- ((ofs & (nand->oobblock - 1)) >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
|
- }
|
|
|
-
|
|
|
- /* update address for 2M x 8bit devices. OOB starts on the second */
|
|
|
- /* page to maintain compatibility with nand_read_ecc. */
|
|
|
- if (nand->page256) {
|
|
|
- if (!(ofs & 0x8))
|
|
|
- ofs += 0x100;
|
|
|
- else
|
|
|
- ofs -= 0x8;
|
|
|
- }
|
|
|
-
|
|
|
- /* issue the Serial Data In command to initial the Page Program process */
|
|
|
- NanD_Command(nand, NAND_CMD_SEQIN);
|
|
|
- if (nand->bus16) {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
|
- ((ofs >> nand->page_shift) << nand->page_shift) +
|
|
|
- ((ofs & (nand->oobblock - 1)) >> 1));
|
|
|
- } else {
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
|
- }
|
|
|
-
|
|
|
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
|
- /* Note: datasheet says it should automaticaly wrap to the */
|
|
|
- /* next OOB block, but it didn't work here. mf. */
|
|
|
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
|
- len256 = (ofs | 0x7) + 1 - ofs;
|
|
|
- for (i = 0; i < len256; i++)
|
|
|
- WRITE_NAND(buf[i], nandptr);
|
|
|
-
|
|
|
- NanD_Command(nand, NAND_CMD_PAGEPROG);
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
-#ifdef NAND_NO_RB
|
|
|
- { u_char ret_val;
|
|
|
- do {
|
|
|
- ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
|
- } while ((ret_val & 0x40) != 0x40);
|
|
|
- }
|
|
|
-#endif
|
|
|
- if (READ_NAND(nandptr) & 1) {
|
|
|
- puts ("Error programming oob data\n");
|
|
|
- /* There was an error */
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
- *retlen = 0;
|
|
|
- return -1;
|
|
|
- }
|
|
|
- NanD_Command(nand, NAND_CMD_SEQIN);
|
|
|
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
|
|
|
- }
|
|
|
-
|
|
|
- if (nand->bus16) {
|
|
|
- for (i = len256; i < len; i += 2) {
|
|
|
- WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
|
|
|
- }
|
|
|
- } else {
|
|
|
- for (i = len256; i < len; i++)
|
|
|
- WRITE_NAND(buf[i], nandptr);
|
|
|
- }
|
|
|
-
|
|
|
- NanD_Command(nand, NAND_CMD_PAGEPROG);
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
-#ifdef NAND_NO_RB
|
|
|
- { u_char ret_val;
|
|
|
- do {
|
|
|
- ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
|
- } while ((ret_val & 0x40) != 0x40);
|
|
|
- }
|
|
|
-#endif
|
|
|
- if (READ_NAND(nandptr) & 1) {
|
|
|
- puts ("Error programming oob data\n");
|
|
|
- /* There was an error */
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
- *retlen = 0;
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
- *retlen = len;
|
|
|
- return 0;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
|
|
|
-{
|
|
|
- /* This is defined as a structure so it will work on any system
|
|
|
- * using native endian jffs2 (the default).
|
|
|
- */
|
|
|
- static struct jffs2_unknown_node clean_marker = {
|
|
|
- JFFS2_MAGIC_BITMASK,
|
|
|
- JFFS2_NODETYPE_CLEANMARKER,
|
|
|
- 8 /* 8 bytes in this node */
|
|
|
- };
|
|
|
- unsigned long nandptr;
|
|
|
- struct Nand *mychip;
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
|
|
|
- printf ("Offset and size must be sector aligned, erasesize = %d\n",
|
|
|
- (int) nand->erasesize);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- nandptr = nand->IO_ADDR;
|
|
|
-
|
|
|
- /* Select the NAND device */
|
|
|
-#ifdef CONFIG_OMAP1510
|
|
|
- archflashwp(0,0);
|
|
|
-#endif
|
|
|
-#ifdef CFG_NAND_WP
|
|
|
- NAND_WP_OFF();
|
|
|
-#endif
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
-
|
|
|
- /* Check the WP bit */
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
|
- printf ("nand_write_ecc: Device is write protected!!!\n");
|
|
|
- ret = -1;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- /* Check the WP bit */
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
|
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
|
|
|
- ret = -1;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- /* FIXME: Do nand in the background. Use timers or schedule_task() */
|
|
|
- while(len) {
|
|
|
- /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
|
|
|
- mychip = &nand->chips[ofs >> nand->chipshift];
|
|
|
-
|
|
|
- /* always check for bad block first, genuine bad blocks
|
|
|
- * should _never_ be erased.
|
|
|
- */
|
|
|
- if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
|
|
|
- /* Select the NAND device */
|
|
|
- NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
-
|
|
|
- NanD_Command(nand, NAND_CMD_ERASE1);
|
|
|
- NanD_Address(nand, ADDR_PAGE, ofs);
|
|
|
- NanD_Command(nand, NAND_CMD_ERASE2);
|
|
|
-
|
|
|
- NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
-
|
|
|
-#ifdef NAND_NO_RB
|
|
|
- { u_char ret_val;
|
|
|
- do {
|
|
|
- ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
|
- } while ((ret_val & 0x40) != 0x40);
|
|
|
- }
|
|
|
-#endif
|
|
|
- if (READ_NAND(nandptr) & 1) {
|
|
|
- printf ("%s: Error erasing at 0x%lx\n",
|
|
|
- __FUNCTION__, (long)ofs);
|
|
|
- /* There was an error */
|
|
|
- ret = -1;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- if (clean) {
|
|
|
- int n; /* return value not used */
|
|
|
- int p, l;
|
|
|
-
|
|
|
- /* clean marker position and size depend
|
|
|
- * on the page size, since 256 byte pages
|
|
|
- * only have 8 bytes of oob data
|
|
|
- */
|
|
|
- if (nand->page256) {
|
|
|
- p = NAND_JFFS2_OOB8_FSDAPOS;
|
|
|
- l = NAND_JFFS2_OOB8_FSDALEN;
|
|
|
- } else {
|
|
|
- p = NAND_JFFS2_OOB16_FSDAPOS;
|
|
|
- l = NAND_JFFS2_OOB16_FSDALEN;
|
|
|
- }
|
|
|
-
|
|
|
- ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
|
|
|
- (u_char *)&clean_marker);
|
|
|
- /* quit here if write failed */
|
|
|
- if (ret)
|
|
|
- goto out;
|
|
|
- }
|
|
|
- }
|
|
|
- ofs += nand->erasesize;
|
|
|
- len -= nand->erasesize;
|
|
|
- }
|
|
|
-
|
|
|
-out:
|
|
|
- /* De-select the NAND device */
|
|
|
- NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
-#ifdef CONFIG_OMAP1510
|
|
|
- archflashwp(0,1);
|
|
|
-#endif
|
|
|
-#ifdef CFG_NAND_WP
|
|
|
- NAND_WP_ON();
|
|
|
-#endif
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int nandcheck(unsigned long potential, unsigned long physadr)
|
|
|
-{
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-unsigned long nand_probe(unsigned long physadr)
|
|
|
-{
|
|
|
- struct nand_chip *nand = NULL;
|
|
|
- int i = 0, ChipID = 1;
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC_JFFS2
|
|
|
- oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
|
|
|
- oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
|
|
|
- oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
|
|
|
- oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
|
|
|
- oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
|
|
|
- oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
|
|
|
- oob_config.eccvalid_pos = 4;
|
|
|
-#else
|
|
|
- oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
|
|
|
- oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
|
|
|
- oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
|
|
|
- oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
|
|
|
- oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
|
|
|
- oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
|
|
|
- oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
|
|
|
-#endif
|
|
|
- oob_config.badblock_pos = 5;
|
|
|
-
|
|
|
- for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
|
|
|
- if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
|
|
|
- nand = &nand_dev_desc[i];
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- if (!nand)
|
|
|
- return (0);
|
|
|
-
|
|
|
- memset((char *)nand, 0, sizeof(struct nand_chip));
|
|
|
-
|
|
|
- nand->IO_ADDR = physadr;
|
|
|
- nand->cache_page = -1; /* init the cache page */
|
|
|
- NanD_ScanChips(nand);
|
|
|
-
|
|
|
- if (nand->totlen == 0) {
|
|
|
- /* no chips found, clean up and quit */
|
|
|
- memset((char *)nand, 0, sizeof(struct nand_chip));
|
|
|
- nand->ChipID = NAND_ChipID_UNKNOWN;
|
|
|
- return (0);
|
|
|
- }
|
|
|
-
|
|
|
- nand->ChipID = ChipID;
|
|
|
- if (curr_device == -1)
|
|
|
- curr_device = i;
|
|
|
-
|
|
|
- nand->data_buf = malloc (nand->oobblock + nand->oobsize);
|
|
|
- if (!nand->data_buf) {
|
|
|
- puts ("Cannot allocate memory for data structures.\n");
|
|
|
- return (0);
|
|
|
- }
|
|
|
-
|
|
|
- return (nand->totlen);
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_MTD_NAND_ECC
|
|
|
-/*
|
|
|
- * Pre-calculated 256-way 1 byte column parity
|
|
|
- */
|
|
|
-static const u_char nand_ecc_precalc_table[] = {
|
|
|
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
|
|
|
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
|
|
|
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
|
|
|
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
|
|
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
|
|
|
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
|
|
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
|
|
|
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
|
|
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
|
|
|
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
|
|
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
|
|
|
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
|
|
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
|
|
|
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
|
|
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
|
|
|
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
|
|
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
|
|
|
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
|
|
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
|
|
|
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
|
|
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
|
|
|
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
|
|
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
|
|
|
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
|
|
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
|
|
|
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
|
|
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
|
|
|
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
|
|
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
|
|
|
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
|
|
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
|
|
|
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
|
|
|
-};
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * Creates non-inverted ECC code from line parity
|
|
|
- */
|
|
|
-static void nand_trans_result(u_char reg2, u_char reg3,
|
|
|
- u_char *ecc_code)
|
|
|
-{
|
|
|
- u_char a, b, i, tmp1, tmp2;
|
|
|
-
|
|
|
- /* Initialize variables */
|
|
|
- a = b = 0x80;
|
|
|
- tmp1 = tmp2 = 0;
|
|
|
-
|
|
|
- /* Calculate first ECC byte */
|
|
|
- for (i = 0; i < 4; i++) {
|
|
|
- if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
|
|
|
- tmp1 |= b;
|
|
|
- b >>= 1;
|
|
|
- if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
|
|
|
- tmp1 |= b;
|
|
|
- b >>= 1;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate second ECC byte */
|
|
|
- b = 0x80;
|
|
|
- for (i = 0; i < 4; i++) {
|
|
|
- if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
|
|
|
- tmp2 |= b;
|
|
|
- b >>= 1;
|
|
|
- if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
|
|
|
- tmp2 |= b;
|
|
|
- b >>= 1;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Store two of the ECC bytes */
|
|
|
- ecc_code[0] = tmp1;
|
|
|
- ecc_code[1] = tmp2;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Calculate 3 byte ECC code for 256 byte block
|
|
|
- */
|
|
|
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
|
|
|
-{
|
|
|
- u_char idx, reg1, reg3;
|
|
|
- int j;
|
|
|
-
|
|
|
- /* Initialize variables */
|
|
|
- reg1 = reg3 = 0;
|
|
|
- ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
|
|
|
-
|
|
|
- /* Build up column parity */
|
|
|
- for(j = 0; j < 256; j++) {
|
|
|
-
|
|
|
- /* Get CP0 - CP5 from table */
|
|
|
- idx = nand_ecc_precalc_table[dat[j]];
|
|
|
- reg1 ^= idx;
|
|
|
-
|
|
|
- /* All bit XOR = 1 ? */
|
|
|
- if (idx & 0x40) {
|
|
|
- reg3 ^= (u_char) j;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Create non-inverted ECC code from line parity */
|
|
|
- nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
|
|
|
-
|
|
|
- /* Calculate final ECC code */
|
|
|
- ecc_code[0] = ~ecc_code[0];
|
|
|
- ecc_code[1] = ~ecc_code[1];
|
|
|
- ecc_code[2] = ((~reg1) << 2) | 0x03;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Detect and correct a 1 bit error for 256 byte block
|
|
|
- */
|
|
|
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
|
|
|
-{
|
|
|
- u_char a, b, c, d1, d2, d3, add, bit, i;
|
|
|
-
|
|
|
- /* Do error detection */
|
|
|
- d1 = calc_ecc[0] ^ read_ecc[0];
|
|
|
- d2 = calc_ecc[1] ^ read_ecc[1];
|
|
|
- d3 = calc_ecc[2] ^ read_ecc[2];
|
|
|
-
|
|
|
- if ((d1 | d2 | d3) == 0) {
|
|
|
- /* No errors */
|
|
|
- return 0;
|
|
|
- } else {
|
|
|
- a = (d1 ^ (d1 >> 1)) & 0x55;
|
|
|
- b = (d2 ^ (d2 >> 1)) & 0x55;
|
|
|
- c = (d3 ^ (d3 >> 1)) & 0x54;
|
|
|
-
|
|
|
- /* Found and will correct single bit error in the data */
|
|
|
- if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
|
|
|
- c = 0x80;
|
|
|
- add = 0;
|
|
|
- a = 0x80;
|
|
|
- for (i=0; i<4; i++) {
|
|
|
- if (d1 & c)
|
|
|
- add |= a;
|
|
|
- c >>= 2;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
- c = 0x80;
|
|
|
- for (i=0; i<4; i++) {
|
|
|
- if (d2 & c)
|
|
|
- add |= a;
|
|
|
- c >>= 2;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
- bit = 0;
|
|
|
- b = 0x04;
|
|
|
- c = 0x80;
|
|
|
- for (i=0; i<3; i++) {
|
|
|
- if (d3 & c)
|
|
|
- bit |= b;
|
|
|
- c >>= 2;
|
|
|
- b >>= 1;
|
|
|
- }
|
|
|
- b = 0x01;
|
|
|
- a = dat[add];
|
|
|
- a ^= (b << bit);
|
|
|
- dat[add] = a;
|
|
|
- return 1;
|
|
|
- }
|
|
|
- else {
|
|
|
- i = 0;
|
|
|
- while (d1) {
|
|
|
- if (d1 & 0x01)
|
|
|
- ++i;
|
|
|
- d1 >>= 1;
|
|
|
- }
|
|
|
- while (d2) {
|
|
|
- if (d2 & 0x01)
|
|
|
- ++i;
|
|
|
- d2 >>= 1;
|
|
|
- }
|
|
|
- while (d3) {
|
|
|
- if (d3 & 0x01)
|
|
|
- ++i;
|
|
|
- d3 >>= 1;
|
|
|
- }
|
|
|
- if (i == 1) {
|
|
|
- /* ECC Code Error Correction */
|
|
|
- read_ecc[0] = calc_ecc[0];
|
|
|
- read_ecc[1] = calc_ecc[1];
|
|
|
- read_ecc[2] = calc_ecc[2];
|
|
|
- return 2;
|
|
|
- }
|
|
|
- else {
|
|
|
- /* Uncorrectable Error */
|
|
|
- return -1;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Should never happen */
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CONFIG_JFFS2_NAND
|
|
|
-
|
|
|
-int read_jffs2_nand(size_t start, size_t len,
|
|
|
- size_t * retlen, u_char * buf, int nanddev)
|
|
|
-{
|
|
|
- return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
|
|
|
- start, len, retlen, buf);
|
|
|
-}
|
|
|
-
|
|
|
-#endif /* CONFIG_JFFS2_NAND */
|
|
|
-
|
|
|
-
|
|
|
-#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
|
|
|
+#endif /* CFG_NAND_LEGACY */
|