|
@@ -0,0 +1,722 @@
|
|
|
+/*
|
|
|
+ * Copyright 2009-2011 Freescale Semiconductor, Inc.
|
|
|
+ * Author: Srikanth Srinivasan <srikanth.srinivasan@freescale.com>
|
|
|
+ *
|
|
|
+ * See file CREDITS for list of people who contributed to this
|
|
|
+ * project.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
+ * modify it under the terms of the GNU General Public License as
|
|
|
+ * published by the Free Software Foundation; either version 2 of
|
|
|
+ * the License, or (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
+ * MA 02111-1307 USA
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * This file handles the board muxing between the Fman Ethernet MACs and
|
|
|
+ * the RGMII/SGMII/XGMII PHYs on a Freescale P5040 "Super Hydra" reference
|
|
|
+ * board. The RGMII PHYs are the two on-board 1Gb ports. The SGMII PHYs are
|
|
|
+ * provided by the standard Freescale four-port SGMII riser card. The 10Gb
|
|
|
+ * XGMII PHYs are provided via the XAUI riser card. The P5040 has 2 FMans
|
|
|
+ * and 5 1G interfaces and 10G interface per FMan. Based on the options in
|
|
|
+ * the RCW, we could have upto 3 SGMII cards and 1 XAUI card at a time.
|
|
|
+ *
|
|
|
+ * Muxing is handled via the PIXIS BRDCFG1 register. The EMI1 bits control
|
|
|
+ * muxing among the RGMII PHYs and the SGMII PHYs. The value for RGMII is
|
|
|
+ * always the same (0). The value for SGMII depends on which slot the riser is
|
|
|
+ * inserted in. The EMI2 bits control muxing for the the XGMII. Like SGMII,
|
|
|
+ * the value is based on which slot the XAUI is inserted in.
|
|
|
+ *
|
|
|
+ * The SERDES configuration is used to determine where the SGMII and XAUI cards
|
|
|
+ * exist, and also which Fman's MACs are routed to which PHYs. So for a given
|
|
|
+ * Fman MAC, there is one and only PHY it connects to. MACs cannot be routed
|
|
|
+ * to PHYs dynamically.
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * This file also updates the device tree in three ways:
|
|
|
+ *
|
|
|
+ * 1) The status of each virtual MDIO node that is referenced by an Ethernet
|
|
|
+ * node is set to "okay".
|
|
|
+ *
|
|
|
+ * 2) The phy-handle property of each active Ethernet MAC node is set to the
|
|
|
+ * appropriate PHY node.
|
|
|
+ *
|
|
|
+ * 3) The "mux value" for each virtual MDIO node is set to the correct value,
|
|
|
+ * if necessary. Some virtual MDIO nodes do not have configurable mux
|
|
|
+ * values, so those values are hard-coded in the DTS. On the HYDRA board,
|
|
|
+ * the virtual MDIO node for the SGMII card needs to be updated.
|
|
|
+ *
|
|
|
+ * For all this to work, the device tree needs to have the following:
|
|
|
+ *
|
|
|
+ * 1) An alias for each PHY node that an Ethernet node could be routed to.
|
|
|
+ *
|
|
|
+ * 2) An alias for each real and virtual MDIO node that is disabled by default
|
|
|
+ * and might need to be enabled, and also might need to have its mux-value
|
|
|
+ * updated.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <common.h>
|
|
|
+#include <netdev.h>
|
|
|
+#include <asm/fsl_serdes.h>
|
|
|
+#include <fm_eth.h>
|
|
|
+#include <fsl_mdio.h>
|
|
|
+#include <malloc.h>
|
|
|
+#include <fdt_support.h>
|
|
|
+#include <asm/fsl_dtsec.h>
|
|
|
+
|
|
|
+#include "../common/ngpixis.h"
|
|
|
+#include "../common/fman.h"
|
|
|
+
|
|
|
+#ifdef CONFIG_FMAN_ENET
|
|
|
+
|
|
|
+#define BRDCFG1_EMI1_SEL_MASK 0x70
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT1 0x10
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT2 0x20
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT5 0x30
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT6 0x40
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT7 0x50
|
|
|
+#define BRDCFG1_EMI1_SEL_SLOT3 0x60
|
|
|
+#define BRDCFG1_EMI1_SEL_RGMII 0x00
|
|
|
+#define BRDCFG1_EMI1_EN 0x08
|
|
|
+#define BRDCFG1_EMI2_SEL_MASK 0x06
|
|
|
+#define BRDCFG1_EMI2_SEL_SLOT1 0x00
|
|
|
+#define BRDCFG1_EMI2_SEL_SLOT2 0x02
|
|
|
+
|
|
|
+#define BRDCFG2_REG_GPIO_SEL 0x20
|
|
|
+
|
|
|
+/*
|
|
|
+ * BRDCFG1 mask and value for each MAC
|
|
|
+ *
|
|
|
+ * This array contains the BRDCFG1 values (in mask/val format) that route the
|
|
|
+ * MDIO bus to a particular RGMII or SGMII PHY.
|
|
|
+ */
|
|
|
+static struct {
|
|
|
+ u8 mask;
|
|
|
+ u8 val;
|
|
|
+} mdio_mux[NUM_FM_PORTS];
|
|
|
+
|
|
|
+/*
|
|
|
+ * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
|
|
|
+ * that the mapping must be determined dynamically, or that the lane maps to
|
|
|
+ * something other than a board slot
|
|
|
+ */
|
|
|
+static u8 lane_to_slot[] = {
|
|
|
+ 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Set the board muxing for a given MAC
|
|
|
+ *
|
|
|
+ * The MDIO layer calls this function every time it wants to talk to a PHY.
|
|
|
+ */
|
|
|
+void super_hydra_mux_mdio(u8 mask, u8 val)
|
|
|
+{
|
|
|
+ clrsetbits_8(&pixis->brdcfg1, mask, val);
|
|
|
+}
|
|
|
+
|
|
|
+struct super_hydra_mdio {
|
|
|
+ u8 mask;
|
|
|
+ u8 val;
|
|
|
+ struct mii_dev *realbus;
|
|
|
+};
|
|
|
+
|
|
|
+static int super_hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
|
|
|
+ int regnum)
|
|
|
+{
|
|
|
+ struct super_hydra_mdio *priv = bus->priv;
|
|
|
+
|
|
|
+ super_hydra_mux_mdio(priv->mask, priv->val);
|
|
|
+
|
|
|
+ return priv->realbus->read(priv->realbus, addr, devad, regnum);
|
|
|
+}
|
|
|
+
|
|
|
+static int super_hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
|
|
|
+ int regnum, u16 value)
|
|
|
+{
|
|
|
+ struct super_hydra_mdio *priv = bus->priv;
|
|
|
+
|
|
|
+ super_hydra_mux_mdio(priv->mask, priv->val);
|
|
|
+
|
|
|
+ return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
|
|
|
+}
|
|
|
+
|
|
|
+static int super_hydra_mdio_reset(struct mii_dev *bus)
|
|
|
+{
|
|
|
+ struct super_hydra_mdio *priv = bus->priv;
|
|
|
+
|
|
|
+ return priv->realbus->reset(priv->realbus);
|
|
|
+}
|
|
|
+
|
|
|
+static void super_hydra_mdio_set_mux(char *name, u8 mask, u8 val)
|
|
|
+{
|
|
|
+ struct mii_dev *bus = miiphy_get_dev_by_name(name);
|
|
|
+ struct super_hydra_mdio *priv = bus->priv;
|
|
|
+
|
|
|
+ priv->mask = mask;
|
|
|
+ priv->val = val;
|
|
|
+}
|
|
|
+
|
|
|
+static int super_hydra_mdio_init(char *realbusname, char *fakebusname)
|
|
|
+{
|
|
|
+ struct super_hydra_mdio *hmdio;
|
|
|
+ struct mii_dev *bus = mdio_alloc();
|
|
|
+
|
|
|
+ if (!bus) {
|
|
|
+ printf("Failed to allocate Hydra MDIO bus\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ hmdio = malloc(sizeof(*hmdio));
|
|
|
+ if (!hmdio) {
|
|
|
+ printf("Failed to allocate Hydra private data\n");
|
|
|
+ free(bus);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ bus->read = super_hydra_mdio_read;
|
|
|
+ bus->write = super_hydra_mdio_write;
|
|
|
+ bus->reset = super_hydra_mdio_reset;
|
|
|
+ sprintf(bus->name, fakebusname);
|
|
|
+
|
|
|
+ hmdio->realbus = miiphy_get_dev_by_name(realbusname);
|
|
|
+
|
|
|
+ if (!hmdio->realbus) {
|
|
|
+ printf("No bus with name %s\n", realbusname);
|
|
|
+ free(bus);
|
|
|
+ free(hmdio);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ bus->priv = hmdio;
|
|
|
+
|
|
|
+ return mdio_register(bus);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Given the following ...
|
|
|
+ *
|
|
|
+ * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
|
|
|
+ * compatible string and 'addr' physical address)
|
|
|
+ *
|
|
|
+ * 2) An Fman port
|
|
|
+ *
|
|
|
+ * ... update the phy-handle property of the Ethernet node to point to the
|
|
|
+ * right PHY. This assumes that we already know the PHY for each port. That
|
|
|
+ * information is stored in mdio_mux[].
|
|
|
+ *
|
|
|
+ * The offset of the Fman Ethernet node is also passed in for convenience, but
|
|
|
+ * it is not used.
|
|
|
+ *
|
|
|
+ * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
|
|
|
+ * Inside the Fman, "ports" are things that connect to MACs. We only call them
|
|
|
+ * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
|
|
|
+ * and ports are the same thing.
|
|
|
+ */
|
|
|
+void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
|
|
|
+ enum fm_port port, int offset)
|
|
|
+{
|
|
|
+ enum srds_prtcl device;
|
|
|
+ int lane, slot, phy;
|
|
|
+ char alias[32];
|
|
|
+
|
|
|
+ /* RGMII and XGMII are already mapped correctly in the DTS */
|
|
|
+
|
|
|
+ if (fm_info_get_enet_if(port) == PHY_INTERFACE_MODE_SGMII) {
|
|
|
+ device = serdes_device_from_fm_port(port);
|
|
|
+ lane = serdes_get_first_lane(device);
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ phy = fm_info_get_phy_address(port);
|
|
|
+
|
|
|
+ sprintf(alias, "phy_sgmii_slot%u_%x", slot, phy);
|
|
|
+ fdt_set_phy_handle(fdt, compat, addr, alias);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#define PIXIS_SW2_LANE_23_SEL 0x80
|
|
|
+#define PIXIS_SW2_LANE_45_SEL 0x40
|
|
|
+#define PIXIS_SW2_LANE_67_SEL_MASK 0x30
|
|
|
+#define PIXIS_SW2_LANE_67_SEL_5 0x00
|
|
|
+#define PIXIS_SW2_LANE_67_SEL_6 0x20
|
|
|
+#define PIXIS_SW2_LANE_67_SEL_7 0x10
|
|
|
+#define PIXIS_SW2_LANE_8_SEL 0x08
|
|
|
+#define PIXIS_SW2_LANE_1617_SEL 0x04
|
|
|
+#define PIXIS_SW11_LANE_9_SEL 0x04
|
|
|
+/*
|
|
|
+ * Initialize the lane_to_slot[] array.
|
|
|
+ *
|
|
|
+ * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
|
|
|
+ * slots is hard-coded. On the Hydra board, however, the mapping is controlled
|
|
|
+ * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
|
|
|
+ * initialized.
|
|
|
+ */
|
|
|
+static void initialize_lane_to_slot(void)
|
|
|
+{
|
|
|
+ u8 sw2 = in_8(&PIXIS_SW(2));
|
|
|
+ /* SW11 appears in the programming model as SW9 */
|
|
|
+ u8 sw11 = in_8(&PIXIS_SW(9));
|
|
|
+
|
|
|
+ lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
|
|
|
+ lane_to_slot[3] = lane_to_slot[2];
|
|
|
+
|
|
|
+ lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
|
|
|
+ lane_to_slot[5] = lane_to_slot[4];
|
|
|
+
|
|
|
+ switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
|
|
|
+ case PIXIS_SW2_LANE_67_SEL_5:
|
|
|
+ lane_to_slot[6] = 5;
|
|
|
+ break;
|
|
|
+ case PIXIS_SW2_LANE_67_SEL_6:
|
|
|
+ lane_to_slot[6] = 6;
|
|
|
+ break;
|
|
|
+ case PIXIS_SW2_LANE_67_SEL_7:
|
|
|
+ lane_to_slot[6] = 7;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ lane_to_slot[7] = lane_to_slot[6];
|
|
|
+
|
|
|
+ lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
|
|
|
+ lane_to_slot[9] = (sw11 & PIXIS_SW11_LANE_9_SEL) ? 0 : 3;
|
|
|
+
|
|
|
+ lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
|
|
|
+ lane_to_slot[17] = lane_to_slot[16];
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* #ifdef CONFIG_FMAN_ENET */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Configure the status for the virtual MDIO nodes
|
|
|
+ *
|
|
|
+ * Rather than create the virtual MDIO nodes from scratch for each active
|
|
|
+ * virtual MDIO, we expect the DTS to have the nodes defined already, and we
|
|
|
+ * only enable the ones that are actually active.
|
|
|
+ *
|
|
|
+ * We assume that the DTS already hard-codes the status for all the
|
|
|
+ * virtual MDIO nodes to "disabled", so all we need to do is enable the
|
|
|
+ * active ones.
|
|
|
+ */
|
|
|
+void fdt_fixup_board_enet(void *fdt)
|
|
|
+{
|
|
|
+#ifdef CONFIG_FMAN_ENET
|
|
|
+ enum fm_port i;
|
|
|
+ int lane, slot;
|
|
|
+
|
|
|
+ for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
|
|
|
+ int idx = i - FM1_DTSEC1;
|
|
|
+
|
|
|
+ switch (fm_info_get_enet_if(i)) {
|
|
|
+ case PHY_INTERFACE_MODE_SGMII:
|
|
|
+ lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
|
|
|
+ if (lane >= 0) {
|
|
|
+ char alias[32];
|
|
|
+
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ sprintf(alias, "hydra_sg_slot%u", slot);
|
|
|
+ fdt_status_okay_by_alias(fdt, alias);
|
|
|
+ debug("Enabled MDIO node %s (slot %i)\n",
|
|
|
+ alias, slot);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_RGMII:
|
|
|
+ fdt_status_okay_by_alias(fdt, "hydra_rg");
|
|
|
+ debug("Enabled MDIO node hydra_rg\n");
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ lane = serdes_get_first_lane(XAUI_FM1);
|
|
|
+ if (lane >= 0) {
|
|
|
+ char alias[32];
|
|
|
+
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ sprintf(alias, "hydra_xg_slot%u", slot);
|
|
|
+ fdt_status_okay_by_alias(fdt, alias);
|
|
|
+ debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
|
|
|
+ }
|
|
|
+
|
|
|
+#if CONFIG_SYS_NUM_FMAN == 2
|
|
|
+ for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
|
|
|
+ int idx = i - FM2_DTSEC1;
|
|
|
+
|
|
|
+ switch (fm_info_get_enet_if(i)) {
|
|
|
+ case PHY_INTERFACE_MODE_SGMII:
|
|
|
+ lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
|
|
|
+ if (lane >= 0) {
|
|
|
+ char alias[32];
|
|
|
+
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ sprintf(alias, "hydra_sg_slot%u", slot);
|
|
|
+ fdt_status_okay_by_alias(fdt, alias);
|
|
|
+ debug("Enabled MDIO node %s (slot %i)\n",
|
|
|
+ alias, slot);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_RGMII:
|
|
|
+ fdt_status_okay_by_alias(fdt, "hydra_rg");
|
|
|
+ debug("Enabled MDIO node hydra_rg\n");
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ lane = serdes_get_first_lane(XAUI_FM2);
|
|
|
+ if (lane >= 0) {
|
|
|
+ char alias[32];
|
|
|
+
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ sprintf(alias, "hydra_xg_slot%u", slot);
|
|
|
+ fdt_status_okay_by_alias(fdt, alias);
|
|
|
+ debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
|
|
|
+ }
|
|
|
+#endif /* CONFIG_SYS_NUM_FMAN == 2 */
|
|
|
+#endif /* CONFIG_FMAN_ENET */
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Mapping of SerDes Protocol to MDIO MUX value and PHY address.
|
|
|
+ *
|
|
|
+ * Fman 1:
|
|
|
+ * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4
|
|
|
+ * Mux Phy | Mux Phy | Mux Phy | Mux Phy
|
|
|
+ * Value Addr | Value Addr | Value Addr | Value Addr
|
|
|
+ * 0x00 2 1c | 2 1d | 2 1e | 2 1f
|
|
|
+ * 0x01 | | 6 1c |
|
|
|
+ * 0x02 | | 3 1c | 3 1d
|
|
|
+ * 0x03 2 1c | 2 1d | 2 1e | 2 1f
|
|
|
+ * 0x04 2 1c | 2 1d | 2 1e | 2 1f
|
|
|
+ * 0x05 | | 3 1c | 3 1d
|
|
|
+ * 0x06 2 1c | 2 1d | 2 1e | 2 1f
|
|
|
+ * 0x07 | | 6 1c |
|
|
|
+ * 0x11 2 1c | 2 1d | 2 1e | 2 1f
|
|
|
+ * 0x2a 2 | | 2 1e | 2 1f
|
|
|
+ * 0x34 6 1c | 6 1d | 4 1e | 4 1f
|
|
|
+ * 0x35 | | 3 1c | 3 1d
|
|
|
+ * 0x36 6 1c | 6 1d | 4 1e | 4 1f
|
|
|
+ * | | |
|
|
|
+ * Fman 2: | | |
|
|
|
+ * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4
|
|
|
+ * EMI1 | EMI1 | EMI1 | EMI1
|
|
|
+ * Mux Phy | Mux Phy | Mux Phy | Mux Phy
|
|
|
+ * Value Addr | Value Addr | Value Addr | Value Addr
|
|
|
+ * 0x00 | | 6 1c | 6 1d
|
|
|
+ * 0x01 | | |
|
|
|
+ * 0x02 | | 6 1c | 6 1d
|
|
|
+ * 0x03 3 1c | 3 1d | 6 1c | 6 1d
|
|
|
+ * 0x04 3 1c | 3 1d | 6 1c | 6 1d
|
|
|
+ * 0x05 | | 6 1c | 6 1d
|
|
|
+ * 0x06 | | 6 1c | 6 1d
|
|
|
+ * 0x07 | | |
|
|
|
+ * 0x11 | | |
|
|
|
+ * 0x2a | | |
|
|
|
+ * 0x34 | | |
|
|
|
+ * 0x35 | | |
|
|
|
+ * 0x36 | | |
|
|
|
+ */
|
|
|
+
|
|
|
+int board_eth_init(bd_t *bis)
|
|
|
+{
|
|
|
+#ifdef CONFIG_FMAN_ENET
|
|
|
+ struct fsl_pq_mdio_info dtsec_mdio_info;
|
|
|
+ struct tgec_mdio_info tgec_mdio_info;
|
|
|
+ unsigned int i, slot;
|
|
|
+ int lane;
|
|
|
+ ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
|
|
|
+ int srds_prtcl = (in_be32(&gur->rcwsr[4]) &
|
|
|
+ FSL_CORENET_RCWSR4_SRDS_PRTCL) >> 26;
|
|
|
+
|
|
|
+ printf("Initializing Fman\n");
|
|
|
+
|
|
|
+ initialize_lane_to_slot();
|
|
|
+
|
|
|
+ /* We want to use the PIXIS to configure MUX routing, not GPIOs. */
|
|
|
+ setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
|
|
|
+
|
|
|
+ memset(mdio_mux, 0, sizeof(mdio_mux));
|
|
|
+
|
|
|
+ dtsec_mdio_info.regs =
|
|
|
+ (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
|
|
|
+ dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
|
|
|
+
|
|
|
+ /* Register the real 1G MDIO bus */
|
|
|
+ fsl_pq_mdio_init(bis, &dtsec_mdio_info);
|
|
|
+
|
|
|
+ tgec_mdio_info.regs =
|
|
|
+ (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
|
|
|
+ tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
|
|
|
+
|
|
|
+ /* Register the real 10G MDIO bus */
|
|
|
+ fm_tgec_mdio_init(bis, &tgec_mdio_info);
|
|
|
+
|
|
|
+ /* Register the three virtual MDIO front-ends */
|
|
|
+ super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
|
|
|
+ "SUPER_HYDRA_RGMII_MDIO");
|
|
|
+ super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
|
|
|
+ "SUPER_HYDRA_FM1_SGMII_MDIO");
|
|
|
+ super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
|
|
|
+ "SUPER_HYDRA_FM2_SGMII_MDIO");
|
|
|
+ super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
|
|
|
+ "SUPER_HYDRA_FM1_TGEC_MDIO");
|
|
|
+ super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
|
|
|
+ "SUPER_HYDRA_FM2_TGEC_MDIO");
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Program the DTSEC PHY addresses assuming that they are all SGMII.
|
|
|
+ * For any DTSEC that's RGMII, we'll override its PHY address later.
|
|
|
+ * We assume that DTSEC5 is only used for RGMII.
|
|
|
+ */
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
|
|
|
+
|
|
|
+#if (CONFIG_SYS_NUM_FMAN == 2)
|
|
|
+ fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
|
|
|
+#endif
|
|
|
+
|
|
|
+ switch (srds_prtcl) {
|
|
|
+ case 0:
|
|
|
+ case 3:
|
|
|
+ case 4:
|
|
|
+ case 6:
|
|
|
+ case 0x11:
|
|
|
+ case 0x2a:
|
|
|
+ case 0x34:
|
|
|
+ case 0x36:
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC3,
|
|
|
+ CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC4,
|
|
|
+ CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ case 2:
|
|
|
+ case 5:
|
|
|
+ case 7:
|
|
|
+ case 0x35:
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC3,
|
|
|
+ CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
|
|
|
+ fm_info_set_phy_address(FM1_DTSEC4,
|
|
|
+ CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ printf("Fman: Unsupport SerDes Protocol 0x%02x\n", srds_prtcl);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
|
|
|
+ int idx = i - FM1_DTSEC1;
|
|
|
+
|
|
|
+ switch (fm_info_get_enet_if(i)) {
|
|
|
+ case PHY_INTERFACE_MODE_SGMII:
|
|
|
+ lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
|
|
|
+ if (lane < 0)
|
|
|
+ break;
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
|
+ debug("FM1@DTSEC%u expects SGMII in slot %u\n",
|
|
|
+ idx + 1, slot);
|
|
|
+ switch (slot) {
|
|
|
+ case 1:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 5:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ };
|
|
|
+
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_SGMII_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ fm_info_set_mdio(i,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO"));
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_RGMII:
|
|
|
+ /*
|
|
|
+ * FM1 DTSEC5 is routed via EC1 to the first on-board
|
|
|
+ * RGMII port. FM2 DTSEC5 is routed via EC2 to the
|
|
|
+ * second on-board RGMII port. The other DTSECs cannot
|
|
|
+ * be routed to RGMII.
|
|
|
+ */
|
|
|
+ debug("FM1@DTSEC%u is RGMII at address %u\n",
|
|
|
+ idx + 1, 0);
|
|
|
+ fm_info_set_phy_address(i, 0);
|
|
|
+ mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ fm_info_set_mdio(i,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_NONE:
|
|
|
+ fm_info_set_phy_address(i, 0);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ printf("Fman1: DTSEC%u set to unknown interface %i\n",
|
|
|
+ idx + 1, fm_info_get_enet_if(i));
|
|
|
+ fm_info_set_phy_address(i, 0);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * For 10G, we only support one XAUI card per Fman. If present, then we
|
|
|
+ * force its routing and never touch those bits again, which removes the
|
|
|
+ * need for Linux to do any muxing. This works because of the way
|
|
|
+ * BRDCFG1 is defined, but it's a bit hackish.
|
|
|
+ *
|
|
|
+ * The PHY address for the XAUI card depends on which slot it's in. The
|
|
|
+ * macros we use imply that the PHY address is based on which FM, but
|
|
|
+ * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5,
|
|
|
+ * and FM2 could only use a XAUI in slot 4. On the Hydra board, we
|
|
|
+ * check the actual slot and just use the macros as-is, even though
|
|
|
+ * the P3041 and P5020 only have one Fman.
|
|
|
+ */
|
|
|
+ lane = serdes_get_first_lane(XAUI_FM1);
|
|
|
+ if (lane >= 0) {
|
|
|
+ debug("FM1@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
|
|
|
+ mdio_mux[FM1_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
|
|
|
+ mdio_mux[FM1_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT2;
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_TGEC_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ }
|
|
|
+
|
|
|
+ fm_info_set_mdio(FM1_10GEC1,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_FM1_TGEC_MDIO"));
|
|
|
+
|
|
|
+#if (CONFIG_SYS_NUM_FMAN == 2)
|
|
|
+ for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
|
|
|
+ int idx = i - FM2_DTSEC1;
|
|
|
+
|
|
|
+ switch (fm_info_get_enet_if(i)) {
|
|
|
+ case PHY_INTERFACE_MODE_SGMII:
|
|
|
+ lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
|
|
|
+ if (lane < 0)
|
|
|
+ break;
|
|
|
+ slot = lane_to_slot[lane];
|
|
|
+ mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
|
+ debug("FM2@DTSEC%u expects SGMII in slot %u\n",
|
|
|
+ idx + 1, slot);
|
|
|
+ switch (slot) {
|
|
|
+ case 1:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 5:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 6:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ case 7:
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ break;
|
|
|
+ };
|
|
|
+
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_SGMII_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ fm_info_set_mdio(i,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_FM2_SGMII_MDIO"));
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_RGMII:
|
|
|
+ /*
|
|
|
+ * FM1 DTSEC5 is routed via EC1 to the first on-board
|
|
|
+ * RGMII port. FM2 DTSEC5 is routed via EC2 to the
|
|
|
+ * second on-board RGMII port. The other DTSECs cannot
|
|
|
+ * be routed to RGMII.
|
|
|
+ */
|
|
|
+ debug("FM2@DTSEC%u is RGMII at address %u\n",
|
|
|
+ idx + 1, 1);
|
|
|
+ fm_info_set_phy_address(i, 1);
|
|
|
+ mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
|
+ mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII |
|
|
|
+ BRDCFG1_EMI1_EN;
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ fm_info_set_mdio(i,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
|
|
|
+ break;
|
|
|
+ case PHY_INTERFACE_MODE_NONE:
|
|
|
+ fm_info_set_phy_address(i, 0);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ printf("Fman2: DTSEC%u set to unknown interface %i\n",
|
|
|
+ idx + 1, fm_info_get_enet_if(i));
|
|
|
+ fm_info_set_phy_address(i, 0);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * For 10G, we only support one XAUI card per Fman. If present, then we
|
|
|
+ * force its routing and never touch those bits again, which removes the
|
|
|
+ * need for Linux to do any muxing. This works because of the way
|
|
|
+ * BRDCFG1 is defined, but it's a bit hackish.
|
|
|
+ *
|
|
|
+ * The PHY address for the XAUI card depends on which slot it's in. The
|
|
|
+ * macros we use imply that the PHY address is based on which FM, but
|
|
|
+ * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5,
|
|
|
+ * and FM2 could only use a XAUI in slot 4. On the Hydra board, we
|
|
|
+ * check the actual slot and just use the macros as-is, even though
|
|
|
+ * the P3041 and P5020 only have one Fman.
|
|
|
+ */
|
|
|
+ lane = serdes_get_first_lane(XAUI_FM2);
|
|
|
+ if (lane >= 0) {
|
|
|
+ debug("FM2@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
|
|
|
+ mdio_mux[FM2_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
|
|
|
+ mdio_mux[FM2_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT1;
|
|
|
+ super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_TGEC_MDIO",
|
|
|
+ mdio_mux[i].mask, mdio_mux[i].val);
|
|
|
+ }
|
|
|
+
|
|
|
+ fm_info_set_mdio(FM2_10GEC1,
|
|
|
+ miiphy_get_dev_by_name("SUPER_HYDRA_FM2_TGEC_MDIO"));
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+ cpu_eth_init(bis);
|
|
|
+#endif
|
|
|
+
|
|
|
+ return pci_eth_init(bis);
|
|
|
+}
|