|
@@ -64,18 +64,18 @@ static __inline__ void set_msr(unsigned long msr)
|
|
|
* These strange values for the timing interval and prescaling are used
|
|
|
* because the formula for the CPU clock is:
|
|
|
*
|
|
|
- * CPU clock = count * (177 * (8192 / 58))
|
|
|
+ * CPU clock = count * (177 * (8192 / 58))
|
|
|
*
|
|
|
- * = count * 24999.7241
|
|
|
+ * = count * 24999.7241
|
|
|
*
|
|
|
- * which is very close to
|
|
|
+ * which is very close to
|
|
|
*
|
|
|
- * = count * 25000
|
|
|
+ * = count * 25000
|
|
|
*
|
|
|
* Since the count gives the CPU clock divided by 25000, we can get
|
|
|
* the CPU clock rounded to the nearest 0.1 MHz by
|
|
|
*
|
|
|
- * CPU clock = ((count + 2) / 4) * 100000;
|
|
|
+ * CPU clock = ((count + 2) / 4) * 100000;
|
|
|
*
|
|
|
* The rounding is important since the measurement is sometimes going
|
|
|
* to be high or low by 0.025 MHz, depending on exactly how the clocks
|
|
@@ -112,8 +112,8 @@ unsigned long measure_gclk(void)
|
|
|
*/
|
|
|
timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN;
|
|
|
|
|
|
- timerp->cpmt_tcn2 = 0; /* reset state */
|
|
|
- timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
|
|
|
+ timerp->cpmt_tcn2 = 0; /* reset state */
|
|
|
+ timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
|
|
|
|
|
|
/*
|
|
|
* PIT setup:
|
|
@@ -148,9 +148,9 @@ unsigned long measure_gclk(void)
|
|
|
/* spin until get exact count when we want to start */
|
|
|
while (immr->im_sit.sit_pitr > SPEED_PITC);
|
|
|
|
|
|
- timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
|
|
|
+ timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
|
|
|
while ((immr->im_sit.sit_piscr & PISCR_PS) == 0);
|
|
|
- timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
|
|
|
+ timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
|
|
|
|
|
|
/* re-enable external interrupts if they were on */
|
|
|
set_msr (msr_val);
|
|
@@ -166,7 +166,7 @@ unsigned long measure_gclk(void)
|
|
|
/* not using OSCM, using XIN, so scale appropriately */
|
|
|
return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L;
|
|
|
#else
|
|
|
- return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
|
|
|
+ return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -224,8 +224,9 @@ int get_clocks_866 (void)
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
volatile immap_t *immr = (immap_t *) CFG_IMMR;
|
|
|
- char tmp[64];
|
|
|
- long cpuclk = 0;
|
|
|
+ char tmp[64];
|
|
|
+ long cpuclk = 0;
|
|
|
+ long sccr_reg;
|
|
|
|
|
|
if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0)
|
|
|
cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000;
|
|
@@ -238,10 +239,19 @@ int get_clocks_866 (void)
|
|
|
gd->cpu_clk = measure_gclk ();
|
|
|
#endif
|
|
|
|
|
|
- if ((immr->im_clkrst.car_sccr & SCCR_EBDF11) == 0)
|
|
|
+ /* if cpu clock <= 66 MHz then set bus division factor to 1,
|
|
|
+ * otherwise set it to 2
|
|
|
+ */
|
|
|
+ sccr_reg = immr->im_clkrst.car_sccr;
|
|
|
+ sccr_reg &= ~SCCR_EBDF11;
|
|
|
+ if (gd->cpu_clk <= 66000000) {
|
|
|
+ sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */
|
|
|
gd->bus_clk = gd->cpu_clk;
|
|
|
- else
|
|
|
+ } else {
|
|
|
+ sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */
|
|
|
gd->bus_clk = gd->cpu_clk / 2;
|
|
|
+ }
|
|
|
+ immr->im_clkrst.car_sccr = sccr_reg;
|
|
|
|
|
|
return (0);
|
|
|
}
|
|
@@ -253,7 +263,7 @@ int sdram_adjust_866 (void)
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
volatile immap_t *immr = (immap_t *) CFG_IMMR;
|
|
|
- long mamr;
|
|
|
+ long mamr;
|
|
|
|
|
|
mamr = immr->im_memctl.memc_mamr;
|
|
|
mamr &= ~MAMR_PTA_MSK;
|
|
@@ -272,9 +282,9 @@ static long init_pll_866 (long clk)
|
|
|
extern void plprcr_write_866 (long);
|
|
|
|
|
|
volatile immap_t *immr = (immap_t *) CFG_IMMR;
|
|
|
- long n, plprcr;
|
|
|
- char mfi, mfn, mfd, s, pdf;
|
|
|
- long step_mfi, step_mfn;
|
|
|
+ long n, plprcr;
|
|
|
+ char mfi, mfn, mfd, s, pdf;
|
|
|
+ long step_mfi, step_mfn;
|
|
|
|
|
|
if (clk < 20000000) {
|
|
|
clk *= 2;
|