|
@@ -0,0 +1,1256 @@
|
|
|
+/*
|
|
|
+ * Copyright (c) International Business Machines Corp., 2006
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
|
+ * the GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
+ *
|
|
|
+ * Author: Artem Bityutskiy (Битюцкий Артём)
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * The UBI Eraseblock Association (EBA) unit.
|
|
|
+ *
|
|
|
+ * This unit is responsible for I/O to/from logical eraseblock.
|
|
|
+ *
|
|
|
+ * Although in this implementation the EBA table is fully kept and managed in
|
|
|
+ * RAM, which assumes poor scalability, it might be (partially) maintained on
|
|
|
+ * flash in future implementations.
|
|
|
+ *
|
|
|
+ * The EBA unit implements per-logical eraseblock locking. Before accessing a
|
|
|
+ * logical eraseblock it is locked for reading or writing. The per-logical
|
|
|
+ * eraseblock locking is implemented by means of the lock tree. The lock tree
|
|
|
+ * is an RB-tree which refers all the currently locked logical eraseblocks. The
|
|
|
+ * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
|
|
|
+ * (@vol_id, @lnum) pairs.
|
|
|
+ *
|
|
|
+ * EBA also maintains the global sequence counter which is incremented each
|
|
|
+ * time a logical eraseblock is mapped to a physical eraseblock and it is
|
|
|
+ * stored in the volume identifier header. This means that each VID header has
|
|
|
+ * a unique sequence number. The sequence number is only increased an we assume
|
|
|
+ * 64 bits is enough to never overflow.
|
|
|
+ */
|
|
|
+
|
|
|
+#ifdef UBI_LINUX
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/crc32.h>
|
|
|
+#include <linux/err.h>
|
|
|
+#endif
|
|
|
+
|
|
|
+#include <ubi_uboot.h>
|
|
|
+#include "ubi.h"
|
|
|
+
|
|
|
+/* Number of physical eraseblocks reserved for atomic LEB change operation */
|
|
|
+#define EBA_RESERVED_PEBS 1
|
|
|
+
|
|
|
+/**
|
|
|
+ * next_sqnum - get next sequence number.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ *
|
|
|
+ * This function returns next sequence number to use, which is just the current
|
|
|
+ * global sequence counter value. It also increases the global sequence
|
|
|
+ * counter.
|
|
|
+ */
|
|
|
+static unsigned long long next_sqnum(struct ubi_device *ubi)
|
|
|
+{
|
|
|
+ unsigned long long sqnum;
|
|
|
+
|
|
|
+ spin_lock(&ubi->ltree_lock);
|
|
|
+ sqnum = ubi->global_sqnum++;
|
|
|
+ spin_unlock(&ubi->ltree_lock);
|
|
|
+
|
|
|
+ return sqnum;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_get_compat - get compatibility flags of a volume.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ *
|
|
|
+ * This function returns compatibility flags for an internal volume. User
|
|
|
+ * volumes have no compatibility flags, so %0 is returned.
|
|
|
+ */
|
|
|
+static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
|
|
|
+{
|
|
|
+ if (vol_id == UBI_LAYOUT_VOLUME_ID)
|
|
|
+ return UBI_LAYOUT_VOLUME_COMPAT;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ltree_lookup - look up the lock tree.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function returns a pointer to the corresponding &struct ubi_ltree_entry
|
|
|
+ * object if the logical eraseblock is locked and %NULL if it is not.
|
|
|
+ * @ubi->ltree_lock has to be locked.
|
|
|
+ */
|
|
|
+static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
|
|
|
+ int lnum)
|
|
|
+{
|
|
|
+ struct rb_node *p;
|
|
|
+
|
|
|
+ p = ubi->ltree.rb_node;
|
|
|
+ while (p) {
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ le = rb_entry(p, struct ubi_ltree_entry, rb);
|
|
|
+
|
|
|
+ if (vol_id < le->vol_id)
|
|
|
+ p = p->rb_left;
|
|
|
+ else if (vol_id > le->vol_id)
|
|
|
+ p = p->rb_right;
|
|
|
+ else {
|
|
|
+ if (lnum < le->lnum)
|
|
|
+ p = p->rb_left;
|
|
|
+ else if (lnum > le->lnum)
|
|
|
+ p = p->rb_right;
|
|
|
+ else
|
|
|
+ return le;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ltree_add_entry - add new entry to the lock tree.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
|
|
|
+ * lock tree. If such entry is already there, its usage counter is increased.
|
|
|
+ * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
|
|
|
+ * failed.
|
|
|
+ */
|
|
|
+static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
|
|
|
+ int vol_id, int lnum)
|
|
|
+{
|
|
|
+ struct ubi_ltree_entry *le, *le1, *le_free;
|
|
|
+
|
|
|
+ le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
|
|
|
+ if (!le)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+
|
|
|
+ le->users = 0;
|
|
|
+ init_rwsem(&le->mutex);
|
|
|
+ le->vol_id = vol_id;
|
|
|
+ le->lnum = lnum;
|
|
|
+
|
|
|
+ spin_lock(&ubi->ltree_lock);
|
|
|
+ le1 = ltree_lookup(ubi, vol_id, lnum);
|
|
|
+
|
|
|
+ if (le1) {
|
|
|
+ /*
|
|
|
+ * This logical eraseblock is already locked. The newly
|
|
|
+ * allocated lock entry is not needed.
|
|
|
+ */
|
|
|
+ le_free = le;
|
|
|
+ le = le1;
|
|
|
+ } else {
|
|
|
+ struct rb_node **p, *parent = NULL;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * No lock entry, add the newly allocated one to the
|
|
|
+ * @ubi->ltree RB-tree.
|
|
|
+ */
|
|
|
+ le_free = NULL;
|
|
|
+
|
|
|
+ p = &ubi->ltree.rb_node;
|
|
|
+ while (*p) {
|
|
|
+ parent = *p;
|
|
|
+ le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
|
|
|
+
|
|
|
+ if (vol_id < le1->vol_id)
|
|
|
+ p = &(*p)->rb_left;
|
|
|
+ else if (vol_id > le1->vol_id)
|
|
|
+ p = &(*p)->rb_right;
|
|
|
+ else {
|
|
|
+ ubi_assert(lnum != le1->lnum);
|
|
|
+ if (lnum < le1->lnum)
|
|
|
+ p = &(*p)->rb_left;
|
|
|
+ else
|
|
|
+ p = &(*p)->rb_right;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ rb_link_node(&le->rb, parent, p);
|
|
|
+ rb_insert_color(&le->rb, &ubi->ltree);
|
|
|
+ }
|
|
|
+ le->users += 1;
|
|
|
+ spin_unlock(&ubi->ltree_lock);
|
|
|
+
|
|
|
+ if (le_free)
|
|
|
+ kfree(le_free);
|
|
|
+
|
|
|
+ return le;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * leb_read_lock - lock logical eraseblock for reading.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function locks a logical eraseblock for reading. Returns zero in case
|
|
|
+ * of success and a negative error code in case of failure.
|
|
|
+ */
|
|
|
+static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
|
+{
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ le = ltree_add_entry(ubi, vol_id, lnum);
|
|
|
+ if (IS_ERR(le))
|
|
|
+ return PTR_ERR(le);
|
|
|
+ down_read(&le->mutex);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * leb_read_unlock - unlock logical eraseblock.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ */
|
|
|
+static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
|
+{
|
|
|
+ int _free = 0;
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ spin_lock(&ubi->ltree_lock);
|
|
|
+ le = ltree_lookup(ubi, vol_id, lnum);
|
|
|
+ le->users -= 1;
|
|
|
+ ubi_assert(le->users >= 0);
|
|
|
+ if (le->users == 0) {
|
|
|
+ rb_erase(&le->rb, &ubi->ltree);
|
|
|
+ _free = 1;
|
|
|
+ }
|
|
|
+ spin_unlock(&ubi->ltree_lock);
|
|
|
+
|
|
|
+ up_read(&le->mutex);
|
|
|
+ if (_free)
|
|
|
+ kfree(le);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * leb_write_lock - lock logical eraseblock for writing.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function locks a logical eraseblock for writing. Returns zero in case
|
|
|
+ * of success and a negative error code in case of failure.
|
|
|
+ */
|
|
|
+static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
|
+{
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ le = ltree_add_entry(ubi, vol_id, lnum);
|
|
|
+ if (IS_ERR(le))
|
|
|
+ return PTR_ERR(le);
|
|
|
+ down_write(&le->mutex);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * leb_write_lock - lock logical eraseblock for writing.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function locks a logical eraseblock for writing if there is no
|
|
|
+ * contention and does nothing if there is contention. Returns %0 in case of
|
|
|
+ * success, %1 in case of contention, and and a negative error code in case of
|
|
|
+ * failure.
|
|
|
+ */
|
|
|
+static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
|
+{
|
|
|
+ int _free;
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ le = ltree_add_entry(ubi, vol_id, lnum);
|
|
|
+ if (IS_ERR(le))
|
|
|
+ return PTR_ERR(le);
|
|
|
+ if (down_write_trylock(&le->mutex))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* Contention, cancel */
|
|
|
+ spin_lock(&ubi->ltree_lock);
|
|
|
+ le->users -= 1;
|
|
|
+ ubi_assert(le->users >= 0);
|
|
|
+ if (le->users == 0) {
|
|
|
+ rb_erase(&le->rb, &ubi->ltree);
|
|
|
+ _free = 1;
|
|
|
+ } else
|
|
|
+ _free = 0;
|
|
|
+ spin_unlock(&ubi->ltree_lock);
|
|
|
+ if (_free)
|
|
|
+ kfree(le);
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * leb_write_unlock - unlock logical eraseblock.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ */
|
|
|
+static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
|
|
|
+{
|
|
|
+ int _free;
|
|
|
+ struct ubi_ltree_entry *le;
|
|
|
+
|
|
|
+ spin_lock(&ubi->ltree_lock);
|
|
|
+ le = ltree_lookup(ubi, vol_id, lnum);
|
|
|
+ le->users -= 1;
|
|
|
+ ubi_assert(le->users >= 0);
|
|
|
+ if (le->users == 0) {
|
|
|
+ rb_erase(&le->rb, &ubi->ltree);
|
|
|
+ _free = 1;
|
|
|
+ } else
|
|
|
+ _free = 0;
|
|
|
+ spin_unlock(&ubi->ltree_lock);
|
|
|
+
|
|
|
+ up_write(&le->mutex);
|
|
|
+ if (_free)
|
|
|
+ kfree(le);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_unmap_leb - un-map logical eraseblock.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol: volume description object
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ *
|
|
|
+ * This function un-maps logical eraseblock @lnum and schedules corresponding
|
|
|
+ * physical eraseblock for erasure. Returns zero in case of success and a
|
|
|
+ * negative error code in case of failure.
|
|
|
+ */
|
|
|
+int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
|
+ int lnum)
|
|
|
+{
|
|
|
+ int err, pnum, vol_id = vol->vol_id;
|
|
|
+
|
|
|
+ if (ubi->ro_mode)
|
|
|
+ return -EROFS;
|
|
|
+
|
|
|
+ err = leb_write_lock(ubi, vol_id, lnum);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+
|
|
|
+ pnum = vol->eba_tbl[lnum];
|
|
|
+ if (pnum < 0)
|
|
|
+ /* This logical eraseblock is already unmapped */
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
|
|
|
+
|
|
|
+ vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
|
|
|
+ err = ubi_wl_put_peb(ubi, pnum, 0);
|
|
|
+
|
|
|
+out_unlock:
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_read_leb - read data.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol: volume description object
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ * @buf: buffer to store the read data
|
|
|
+ * @offset: offset from where to read
|
|
|
+ * @len: how many bytes to read
|
|
|
+ * @check: data CRC check flag
|
|
|
+ *
|
|
|
+ * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
|
|
|
+ * bytes. The @check flag only makes sense for static volumes and forces
|
|
|
+ * eraseblock data CRC checking.
|
|
|
+ *
|
|
|
+ * In case of success this function returns zero. In case of a static volume,
|
|
|
+ * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
|
|
|
+ * returned for any volume type if an ECC error was detected by the MTD device
|
|
|
+ * driver. Other negative error cored may be returned in case of other errors.
|
|
|
+ */
|
|
|
+int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
|
+ void *buf, int offset, int len, int check)
|
|
|
+{
|
|
|
+ int err, pnum, scrub = 0, vol_id = vol->vol_id;
|
|
|
+ struct ubi_vid_hdr *vid_hdr;
|
|
|
+ uint32_t uninitialized_var(crc);
|
|
|
+
|
|
|
+ err = leb_read_lock(ubi, vol_id, lnum);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+
|
|
|
+ pnum = vol->eba_tbl[lnum];
|
|
|
+ if (pnum < 0) {
|
|
|
+ /*
|
|
|
+ * The logical eraseblock is not mapped, fill the whole buffer
|
|
|
+ * with 0xFF bytes. The exception is static volumes for which
|
|
|
+ * it is an error to read unmapped logical eraseblocks.
|
|
|
+ */
|
|
|
+ dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
|
|
|
+ len, offset, vol_id, lnum);
|
|
|
+ leb_read_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
|
|
|
+ memset(buf, 0xFF, len);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
|
|
|
+ len, offset, vol_id, lnum, pnum);
|
|
|
+
|
|
|
+ if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
|
+ check = 0;
|
|
|
+
|
|
|
+retry:
|
|
|
+ if (check) {
|
|
|
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
|
+ if (!vid_hdr) {
|
|
|
+ err = -ENOMEM;
|
|
|
+ goto out_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
|
|
|
+ if (err && err != UBI_IO_BITFLIPS) {
|
|
|
+ if (err > 0) {
|
|
|
+ /*
|
|
|
+ * The header is either absent or corrupted.
|
|
|
+ * The former case means there is a bug -
|
|
|
+ * switch to read-only mode just in case.
|
|
|
+ * The latter case means a real corruption - we
|
|
|
+ * may try to recover data. FIXME: but this is
|
|
|
+ * not implemented.
|
|
|
+ */
|
|
|
+ if (err == UBI_IO_BAD_VID_HDR) {
|
|
|
+ ubi_warn("bad VID header at PEB %d, LEB"
|
|
|
+ "%d:%d", pnum, vol_id, lnum);
|
|
|
+ err = -EBADMSG;
|
|
|
+ } else
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ }
|
|
|
+ goto out_free;
|
|
|
+ } else if (err == UBI_IO_BITFLIPS)
|
|
|
+ scrub = 1;
|
|
|
+
|
|
|
+ ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
|
|
|
+ ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
|
|
|
+
|
|
|
+ crc = be32_to_cpu(vid_hdr->data_crc);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_io_read_data(ubi, buf, pnum, offset, len);
|
|
|
+ if (err) {
|
|
|
+ if (err == UBI_IO_BITFLIPS) {
|
|
|
+ scrub = 1;
|
|
|
+ err = 0;
|
|
|
+ } else if (err == -EBADMSG) {
|
|
|
+ if (vol->vol_type == UBI_DYNAMIC_VOLUME)
|
|
|
+ goto out_unlock;
|
|
|
+ scrub = 1;
|
|
|
+ if (!check) {
|
|
|
+ ubi_msg("force data checking");
|
|
|
+ check = 1;
|
|
|
+ goto retry;
|
|
|
+ }
|
|
|
+ } else
|
|
|
+ goto out_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (check) {
|
|
|
+ uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
|
|
|
+ if (crc1 != crc) {
|
|
|
+ ubi_warn("CRC error: calculated %#08x, must be %#08x",
|
|
|
+ crc1, crc);
|
|
|
+ err = -EBADMSG;
|
|
|
+ goto out_unlock;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (scrub)
|
|
|
+ err = ubi_wl_scrub_peb(ubi, pnum);
|
|
|
+
|
|
|
+ leb_read_unlock(ubi, vol_id, lnum);
|
|
|
+ return err;
|
|
|
+
|
|
|
+out_free:
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+out_unlock:
|
|
|
+ leb_read_unlock(ubi, vol_id, lnum);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * recover_peb - recover from write failure.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @pnum: the physical eraseblock to recover
|
|
|
+ * @vol_id: volume ID
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ * @buf: data which was not written because of the write failure
|
|
|
+ * @offset: offset of the failed write
|
|
|
+ * @len: how many bytes should have been written
|
|
|
+ *
|
|
|
+ * This function is called in case of a write failure and moves all good data
|
|
|
+ * from the potentially bad physical eraseblock to a good physical eraseblock.
|
|
|
+ * This function also writes the data which was not written due to the failure.
|
|
|
+ * Returns new physical eraseblock number in case of success, and a negative
|
|
|
+ * error code in case of failure.
|
|
|
+ */
|
|
|
+static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
|
|
|
+ const void *buf, int offset, int len)
|
|
|
+{
|
|
|
+ int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
|
|
|
+ struct ubi_volume *vol = ubi->volumes[idx];
|
|
|
+ struct ubi_vid_hdr *vid_hdr;
|
|
|
+
|
|
|
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
|
+ if (!vid_hdr) {
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ mutex_lock(&ubi->buf_mutex);
|
|
|
+
|
|
|
+retry:
|
|
|
+ new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
|
|
|
+ if (new_pnum < 0) {
|
|
|
+ mutex_unlock(&ubi->buf_mutex);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return new_pnum;
|
|
|
+ }
|
|
|
+
|
|
|
+ ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
|
|
|
+
|
|
|
+ err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
|
|
|
+ if (err && err != UBI_IO_BITFLIPS) {
|
|
|
+ if (err > 0)
|
|
|
+ err = -EIO;
|
|
|
+ goto out_put;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
|
|
|
+ if (err)
|
|
|
+ goto write_error;
|
|
|
+
|
|
|
+ data_size = offset + len;
|
|
|
+ memset(ubi->peb_buf1 + offset, 0xFF, len);
|
|
|
+
|
|
|
+ /* Read everything before the area where the write failure happened */
|
|
|
+ if (offset > 0) {
|
|
|
+ err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
|
|
|
+ if (err && err != UBI_IO_BITFLIPS)
|
|
|
+ goto out_put;
|
|
|
+ }
|
|
|
+
|
|
|
+ memcpy(ubi->peb_buf1 + offset, buf, len);
|
|
|
+
|
|
|
+ err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
|
|
|
+ if (err)
|
|
|
+ goto write_error;
|
|
|
+
|
|
|
+ mutex_unlock(&ubi->buf_mutex);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+
|
|
|
+ vol->eba_tbl[lnum] = new_pnum;
|
|
|
+ ubi_wl_put_peb(ubi, pnum, 1);
|
|
|
+
|
|
|
+ ubi_msg("data was successfully recovered");
|
|
|
+ return 0;
|
|
|
+
|
|
|
+out_put:
|
|
|
+ mutex_unlock(&ubi->buf_mutex);
|
|
|
+ ubi_wl_put_peb(ubi, new_pnum, 1);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+
|
|
|
+write_error:
|
|
|
+ /*
|
|
|
+ * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
|
|
|
+ * get another one.
|
|
|
+ */
|
|
|
+ ubi_warn("failed to write to PEB %d", new_pnum);
|
|
|
+ ubi_wl_put_peb(ubi, new_pnum, 1);
|
|
|
+ if (++tries > UBI_IO_RETRIES) {
|
|
|
+ mutex_unlock(&ubi->buf_mutex);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+ ubi_msg("try again");
|
|
|
+ goto retry;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_write_leb - write data to dynamic volume.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol: volume description object
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ * @buf: the data to write
|
|
|
+ * @offset: offset within the logical eraseblock where to write
|
|
|
+ * @len: how many bytes to write
|
|
|
+ * @dtype: data type
|
|
|
+ *
|
|
|
+ * This function writes data to logical eraseblock @lnum of a dynamic volume
|
|
|
+ * @vol. Returns zero in case of success and a negative error code in case
|
|
|
+ * of failure. In case of error, it is possible that something was still
|
|
|
+ * written to the flash media, but may be some garbage.
|
|
|
+ */
|
|
|
+int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
|
|
|
+ const void *buf, int offset, int len, int dtype)
|
|
|
+{
|
|
|
+ int err, pnum, tries = 0, vol_id = vol->vol_id;
|
|
|
+ struct ubi_vid_hdr *vid_hdr;
|
|
|
+
|
|
|
+ if (ubi->ro_mode)
|
|
|
+ return -EROFS;
|
|
|
+
|
|
|
+ err = leb_write_lock(ubi, vol_id, lnum);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+
|
|
|
+ pnum = vol->eba_tbl[lnum];
|
|
|
+ if (pnum >= 0) {
|
|
|
+ dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
|
+ len, offset, vol_id, lnum, pnum);
|
|
|
+
|
|
|
+ err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write data to PEB %d", pnum);
|
|
|
+ if (err == -EIO && ubi->bad_allowed)
|
|
|
+ err = recover_peb(ubi, pnum, vol_id, lnum, buf,
|
|
|
+ offset, len);
|
|
|
+ if (err)
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ }
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The logical eraseblock is not mapped. We have to get a free physical
|
|
|
+ * eraseblock and write the volume identifier header there first.
|
|
|
+ */
|
|
|
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
|
+ if (!vid_hdr) {
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->vol_type = UBI_VID_DYNAMIC;
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
|
+ vid_hdr->lnum = cpu_to_be32(lnum);
|
|
|
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
|
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
+
|
|
|
+retry:
|
|
|
+ pnum = ubi_wl_get_peb(ubi, dtype);
|
|
|
+ if (pnum < 0) {
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return pnum;
|
|
|
+ }
|
|
|
+
|
|
|
+ dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
|
|
|
+ len, offset, vol_id, lnum, pnum);
|
|
|
+
|
|
|
+ err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
|
+ vol_id, lnum, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (len) {
|
|
|
+ err = ubi_io_write_data(ubi, buf, pnum, offset, len);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write %d bytes at offset %d of "
|
|
|
+ "LEB %d:%d, PEB %d", len, offset, vol_id,
|
|
|
+ lnum, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ vol->eba_tbl[lnum] = pnum;
|
|
|
+
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return 0;
|
|
|
+
|
|
|
+write_error:
|
|
|
+ if (err != -EIO || !ubi->bad_allowed) {
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Fortunately, this is the first write operation to this physical
|
|
|
+ * eraseblock, so just put it and request a new one. We assume that if
|
|
|
+ * this physical eraseblock went bad, the erase code will handle that.
|
|
|
+ */
|
|
|
+ err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
|
+ if (err || ++tries > UBI_IO_RETRIES) {
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ ubi_msg("try another PEB");
|
|
|
+ goto retry;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_write_leb_st - write data to static volume.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol: volume description object
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ * @buf: data to write
|
|
|
+ * @len: how many bytes to write
|
|
|
+ * @dtype: data type
|
|
|
+ * @used_ebs: how many logical eraseblocks will this volume contain
|
|
|
+ *
|
|
|
+ * This function writes data to logical eraseblock @lnum of static volume
|
|
|
+ * @vol. The @used_ebs argument should contain total number of logical
|
|
|
+ * eraseblock in this static volume.
|
|
|
+ *
|
|
|
+ * When writing to the last logical eraseblock, the @len argument doesn't have
|
|
|
+ * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
|
|
|
+ * to the real data size, although the @buf buffer has to contain the
|
|
|
+ * alignment. In all other cases, @len has to be aligned.
|
|
|
+ *
|
|
|
+ * It is prohibited to write more then once to logical eraseblocks of static
|
|
|
+ * volumes. This function returns zero in case of success and a negative error
|
|
|
+ * code in case of failure.
|
|
|
+ */
|
|
|
+int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
|
+ int lnum, const void *buf, int len, int dtype,
|
|
|
+ int used_ebs)
|
|
|
+{
|
|
|
+ int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
|
|
|
+ struct ubi_vid_hdr *vid_hdr;
|
|
|
+ uint32_t crc;
|
|
|
+
|
|
|
+ if (ubi->ro_mode)
|
|
|
+ return -EROFS;
|
|
|
+
|
|
|
+ if (lnum == used_ebs - 1)
|
|
|
+ /* If this is the last LEB @len may be unaligned */
|
|
|
+ len = ALIGN(data_size, ubi->min_io_size);
|
|
|
+ else
|
|
|
+ ubi_assert(!(len & (ubi->min_io_size - 1)));
|
|
|
+
|
|
|
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
|
+ if (!vid_hdr)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ err = leb_write_lock(ubi, vol_id, lnum);
|
|
|
+ if (err) {
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
|
+ vid_hdr->lnum = cpu_to_be32(lnum);
|
|
|
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
|
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
+
|
|
|
+ crc = crc32(UBI_CRC32_INIT, buf, data_size);
|
|
|
+ vid_hdr->vol_type = UBI_VID_STATIC;
|
|
|
+ vid_hdr->data_size = cpu_to_be32(data_size);
|
|
|
+ vid_hdr->used_ebs = cpu_to_be32(used_ebs);
|
|
|
+ vid_hdr->data_crc = cpu_to_be32(crc);
|
|
|
+
|
|
|
+retry:
|
|
|
+ pnum = ubi_wl_get_peb(ubi, dtype);
|
|
|
+ if (pnum < 0) {
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return pnum;
|
|
|
+ }
|
|
|
+
|
|
|
+ dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
|
|
|
+ len, vol_id, lnum, pnum, used_ebs);
|
|
|
+
|
|
|
+ err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
|
+ vol_id, lnum, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_io_write_data(ubi, buf, pnum, 0, len);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write %d bytes of data to PEB %d",
|
|
|
+ len, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+
|
|
|
+ ubi_assert(vol->eba_tbl[lnum] < 0);
|
|
|
+ vol->eba_tbl[lnum] = pnum;
|
|
|
+
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return 0;
|
|
|
+
|
|
|
+write_error:
|
|
|
+ if (err != -EIO || !ubi->bad_allowed) {
|
|
|
+ /*
|
|
|
+ * This flash device does not admit of bad eraseblocks or
|
|
|
+ * something nasty and unexpected happened. Switch to read-only
|
|
|
+ * mode just in case.
|
|
|
+ */
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
|
+ if (err || ++tries > UBI_IO_RETRIES) {
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ ubi_msg("try another PEB");
|
|
|
+ goto retry;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @vol: volume description object
|
|
|
+ * @lnum: logical eraseblock number
|
|
|
+ * @buf: data to write
|
|
|
+ * @len: how many bytes to write
|
|
|
+ * @dtype: data type
|
|
|
+ *
|
|
|
+ * This function changes the contents of a logical eraseblock atomically. @buf
|
|
|
+ * has to contain new logical eraseblock data, and @len - the length of the
|
|
|
+ * data, which has to be aligned. This function guarantees that in case of an
|
|
|
+ * unclean reboot the old contents is preserved. Returns zero in case of
|
|
|
+ * success and a negative error code in case of failure.
|
|
|
+ *
|
|
|
+ * UBI reserves one LEB for the "atomic LEB change" operation, so only one
|
|
|
+ * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
|
|
|
+ */
|
|
|
+int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
|
|
|
+ int lnum, const void *buf, int len, int dtype)
|
|
|
+{
|
|
|
+ int err, pnum, tries = 0, vol_id = vol->vol_id;
|
|
|
+ struct ubi_vid_hdr *vid_hdr;
|
|
|
+ uint32_t crc;
|
|
|
+
|
|
|
+ if (ubi->ro_mode)
|
|
|
+ return -EROFS;
|
|
|
+
|
|
|
+ if (len == 0) {
|
|
|
+ /*
|
|
|
+ * Special case when data length is zero. In this case the LEB
|
|
|
+ * has to be unmapped and mapped somewhere else.
|
|
|
+ */
|
|
|
+ err = ubi_eba_unmap_leb(ubi, vol, lnum);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+ return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
|
+ if (!vid_hdr)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ mutex_lock(&ubi->alc_mutex);
|
|
|
+ err = leb_write_lock(ubi, vol_id, lnum);
|
|
|
+ if (err)
|
|
|
+ goto out_mutex;
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
|
|
|
+ vid_hdr->lnum = cpu_to_be32(lnum);
|
|
|
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
|
|
|
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
|
|
|
+
|
|
|
+ crc = crc32(UBI_CRC32_INIT, buf, len);
|
|
|
+ vid_hdr->vol_type = UBI_VID_DYNAMIC;
|
|
|
+ vid_hdr->data_size = cpu_to_be32(len);
|
|
|
+ vid_hdr->copy_flag = 1;
|
|
|
+ vid_hdr->data_crc = cpu_to_be32(crc);
|
|
|
+
|
|
|
+retry:
|
|
|
+ pnum = ubi_wl_get_peb(ubi, dtype);
|
|
|
+ if (pnum < 0) {
|
|
|
+ err = pnum;
|
|
|
+ goto out_leb_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
|
|
|
+ vol_id, lnum, vol->eba_tbl[lnum], pnum);
|
|
|
+
|
|
|
+ err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
|
|
|
+ vol_id, lnum, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_io_write_data(ubi, buf, pnum, 0, len);
|
|
|
+ if (err) {
|
|
|
+ ubi_warn("failed to write %d bytes of data to PEB %d",
|
|
|
+ len, pnum);
|
|
|
+ goto write_error;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (vol->eba_tbl[lnum] >= 0) {
|
|
|
+ err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
|
|
|
+ if (err)
|
|
|
+ goto out_leb_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ vol->eba_tbl[lnum] = pnum;
|
|
|
+
|
|
|
+out_leb_unlock:
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+out_mutex:
|
|
|
+ mutex_unlock(&ubi->alc_mutex);
|
|
|
+ ubi_free_vid_hdr(ubi, vid_hdr);
|
|
|
+ return err;
|
|
|
+
|
|
|
+write_error:
|
|
|
+ if (err != -EIO || !ubi->bad_allowed) {
|
|
|
+ /*
|
|
|
+ * This flash device does not admit of bad eraseblocks or
|
|
|
+ * something nasty and unexpected happened. Switch to read-only
|
|
|
+ * mode just in case.
|
|
|
+ */
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ goto out_leb_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ err = ubi_wl_put_peb(ubi, pnum, 1);
|
|
|
+ if (err || ++tries > UBI_IO_RETRIES) {
|
|
|
+ ubi_ro_mode(ubi);
|
|
|
+ goto out_leb_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+ ubi_msg("try another PEB");
|
|
|
+ goto retry;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_copy_leb - copy logical eraseblock.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @from: physical eraseblock number from where to copy
|
|
|
+ * @to: physical eraseblock number where to copy
|
|
|
+ * @vid_hdr: VID header of the @from physical eraseblock
|
|
|
+ *
|
|
|
+ * This function copies logical eraseblock from physical eraseblock @from to
|
|
|
+ * physical eraseblock @to. The @vid_hdr buffer may be changed by this
|
|
|
+ * function. Returns:
|
|
|
+ * o %0 in case of success;
|
|
|
+ * o %1 if the operation was canceled and should be tried later (e.g.,
|
|
|
+ * because a bit-flip was detected at the target PEB);
|
|
|
+ * o %2 if the volume is being deleted and this LEB should not be moved.
|
|
|
+ */
|
|
|
+int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
|
|
|
+ struct ubi_vid_hdr *vid_hdr)
|
|
|
+{
|
|
|
+ int err, vol_id, lnum, data_size, aldata_size, idx;
|
|
|
+ struct ubi_volume *vol;
|
|
|
+ uint32_t crc;
|
|
|
+
|
|
|
+ vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
|
+ lnum = be32_to_cpu(vid_hdr->lnum);
|
|
|
+
|
|
|
+ dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
|
|
|
+
|
|
|
+ if (vid_hdr->vol_type == UBI_VID_STATIC) {
|
|
|
+ data_size = be32_to_cpu(vid_hdr->data_size);
|
|
|
+ aldata_size = ALIGN(data_size, ubi->min_io_size);
|
|
|
+ } else
|
|
|
+ data_size = aldata_size =
|
|
|
+ ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
|
|
|
+
|
|
|
+ idx = vol_id2idx(ubi, vol_id);
|
|
|
+ spin_lock(&ubi->volumes_lock);
|
|
|
+ /*
|
|
|
+ * Note, we may race with volume deletion, which means that the volume
|
|
|
+ * this logical eraseblock belongs to might be being deleted. Since the
|
|
|
+ * volume deletion unmaps all the volume's logical eraseblocks, it will
|
|
|
+ * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
|
|
|
+ */
|
|
|
+ vol = ubi->volumes[idx];
|
|
|
+ if (!vol) {
|
|
|
+ /* No need to do further work, cancel */
|
|
|
+ dbg_eba("volume %d is being removed, cancel", vol_id);
|
|
|
+ spin_unlock(&ubi->volumes_lock);
|
|
|
+ return 2;
|
|
|
+ }
|
|
|
+ spin_unlock(&ubi->volumes_lock);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We do not want anybody to write to this logical eraseblock while we
|
|
|
+ * are moving it, so lock it.
|
|
|
+ *
|
|
|
+ * Note, we are using non-waiting locking here, because we cannot sleep
|
|
|
+ * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
|
|
|
+ * unmapping the LEB which is mapped to the PEB we are going to move
|
|
|
+ * (@from). This task locks the LEB and goes sleep in the
|
|
|
+ * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
|
|
|
+ * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
|
|
|
+ * LEB is already locked, we just do not move it and return %1.
|
|
|
+ */
|
|
|
+ err = leb_write_trylock(ubi, vol_id, lnum);
|
|
|
+ if (err) {
|
|
|
+ dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The LEB might have been put meanwhile, and the task which put it is
|
|
|
+ * probably waiting on @ubi->move_mutex. No need to continue the work,
|
|
|
+ * cancel it.
|
|
|
+ */
|
|
|
+ if (vol->eba_tbl[lnum] != from) {
|
|
|
+ dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
|
|
|
+ "PEB %d, cancel", vol_id, lnum, from,
|
|
|
+ vol->eba_tbl[lnum]);
|
|
|
+ err = 1;
|
|
|
+ goto out_unlock_leb;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * OK, now the LEB is locked and we can safely start moving iy. Since
|
|
|
+ * this function utilizes thie @ubi->peb1_buf buffer which is shared
|
|
|
+ * with some other functions, so lock the buffer by taking the
|
|
|
+ * @ubi->buf_mutex.
|
|
|
+ */
|
|
|
+ mutex_lock(&ubi->buf_mutex);
|
|
|
+ dbg_eba("read %d bytes of data", aldata_size);
|
|
|
+ err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
|
|
|
+ if (err && err != UBI_IO_BITFLIPS) {
|
|
|
+ ubi_warn("error %d while reading data from PEB %d",
|
|
|
+ err, from);
|
|
|
+ goto out_unlock_buf;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Now we have got to calculate how much data we have to to copy. In
|
|
|
+ * case of a static volume it is fairly easy - the VID header contains
|
|
|
+ * the data size. In case of a dynamic volume it is more difficult - we
|
|
|
+ * have to read the contents, cut 0xFF bytes from the end and copy only
|
|
|
+ * the first part. We must do this to avoid writing 0xFF bytes as it
|
|
|
+ * may have some side-effects. And not only this. It is important not
|
|
|
+ * to include those 0xFFs to CRC because later the they may be filled
|
|
|
+ * by data.
|
|
|
+ */
|
|
|
+ if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
|
|
|
+ aldata_size = data_size =
|
|
|
+ ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
|
|
|
+
|
|
|
+ cond_resched();
|
|
|
+ crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ /*
|
|
|
+ * It may turn out to me that the whole @from physical eraseblock
|
|
|
+ * contains only 0xFF bytes. Then we have to only write the VID header
|
|
|
+ * and do not write any data. This also means we should not set
|
|
|
+ * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
|
|
|
+ */
|
|
|
+ if (data_size > 0) {
|
|
|
+ vid_hdr->copy_flag = 1;
|
|
|
+ vid_hdr->data_size = cpu_to_be32(data_size);
|
|
|
+ vid_hdr->data_crc = cpu_to_be32(crc);
|
|
|
+ }
|
|
|
+ vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
|
|
|
+
|
|
|
+ err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
|
|
|
+ if (err)
|
|
|
+ goto out_unlock_buf;
|
|
|
+
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ /* Read the VID header back and check if it was written correctly */
|
|
|
+ err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
|
|
|
+ if (err) {
|
|
|
+ if (err != UBI_IO_BITFLIPS)
|
|
|
+ ubi_warn("cannot read VID header back from PEB %d", to);
|
|
|
+ else
|
|
|
+ err = 1;
|
|
|
+ goto out_unlock_buf;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (data_size > 0) {
|
|
|
+ err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
|
|
|
+ if (err)
|
|
|
+ goto out_unlock_buf;
|
|
|
+
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We've written the data and are going to read it back to make
|
|
|
+ * sure it was written correctly.
|
|
|
+ */
|
|
|
+
|
|
|
+ err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
|
|
|
+ if (err) {
|
|
|
+ if (err != UBI_IO_BITFLIPS)
|
|
|
+ ubi_warn("cannot read data back from PEB %d",
|
|
|
+ to);
|
|
|
+ else
|
|
|
+ err = 1;
|
|
|
+ goto out_unlock_buf;
|
|
|
+ }
|
|
|
+
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
|
|
|
+ ubi_warn("read data back from PEB %d - it is different",
|
|
|
+ to);
|
|
|
+ goto out_unlock_buf;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ubi_assert(vol->eba_tbl[lnum] == from);
|
|
|
+ vol->eba_tbl[lnum] = to;
|
|
|
+
|
|
|
+out_unlock_buf:
|
|
|
+ mutex_unlock(&ubi->buf_mutex);
|
|
|
+out_unlock_leb:
|
|
|
+ leb_write_unlock(ubi, vol_id, lnum);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_init_scan - initialize the EBA unit using scanning information.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ * @si: scanning information
|
|
|
+ *
|
|
|
+ * This function returns zero in case of success and a negative error code in
|
|
|
+ * case of failure.
|
|
|
+ */
|
|
|
+int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
|
|
|
+{
|
|
|
+ int i, j, err, num_volumes;
|
|
|
+ struct ubi_scan_volume *sv;
|
|
|
+ struct ubi_volume *vol;
|
|
|
+ struct ubi_scan_leb *seb;
|
|
|
+ struct rb_node *rb;
|
|
|
+
|
|
|
+ dbg_eba("initialize EBA unit");
|
|
|
+
|
|
|
+ spin_lock_init(&ubi->ltree_lock);
|
|
|
+ mutex_init(&ubi->alc_mutex);
|
|
|
+ ubi->ltree = RB_ROOT;
|
|
|
+
|
|
|
+ ubi->global_sqnum = si->max_sqnum + 1;
|
|
|
+ num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
+
|
|
|
+ for (i = 0; i < num_volumes; i++) {
|
|
|
+ vol = ubi->volumes[i];
|
|
|
+ if (!vol)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!vol->eba_tbl) {
|
|
|
+ err = -ENOMEM;
|
|
|
+ goto out_free;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (j = 0; j < vol->reserved_pebs; j++)
|
|
|
+ vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
|
|
|
+
|
|
|
+ sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
|
|
|
+ if (!sv)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
|
|
|
+ if (seb->lnum >= vol->reserved_pebs)
|
|
|
+ /*
|
|
|
+ * This may happen in case of an unclean reboot
|
|
|
+ * during re-size.
|
|
|
+ */
|
|
|
+ ubi_scan_move_to_list(sv, seb, &si->erase);
|
|
|
+ vol->eba_tbl[seb->lnum] = seb->pnum;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
|
|
|
+ ubi_err("no enough physical eraseblocks (%d, need %d)",
|
|
|
+ ubi->avail_pebs, EBA_RESERVED_PEBS);
|
|
|
+ err = -ENOSPC;
|
|
|
+ goto out_free;
|
|
|
+ }
|
|
|
+ ubi->avail_pebs -= EBA_RESERVED_PEBS;
|
|
|
+ ubi->rsvd_pebs += EBA_RESERVED_PEBS;
|
|
|
+
|
|
|
+ if (ubi->bad_allowed) {
|
|
|
+ ubi_calculate_reserved(ubi);
|
|
|
+
|
|
|
+ if (ubi->avail_pebs < ubi->beb_rsvd_level) {
|
|
|
+ /* No enough free physical eraseblocks */
|
|
|
+ ubi->beb_rsvd_pebs = ubi->avail_pebs;
|
|
|
+ ubi_warn("cannot reserve enough PEBs for bad PEB "
|
|
|
+ "handling, reserved %d, need %d",
|
|
|
+ ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
|
|
|
+ } else
|
|
|
+ ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
|
|
|
+
|
|
|
+ ubi->avail_pebs -= ubi->beb_rsvd_pebs;
|
|
|
+ ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
|
|
|
+ }
|
|
|
+
|
|
|
+ dbg_eba("EBA unit is initialized");
|
|
|
+ return 0;
|
|
|
+
|
|
|
+out_free:
|
|
|
+ for (i = 0; i < num_volumes; i++) {
|
|
|
+ if (!ubi->volumes[i])
|
|
|
+ continue;
|
|
|
+ kfree(ubi->volumes[i]->eba_tbl);
|
|
|
+ }
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ubi_eba_close - close EBA unit.
|
|
|
+ * @ubi: UBI device description object
|
|
|
+ */
|
|
|
+void ubi_eba_close(const struct ubi_device *ubi)
|
|
|
+{
|
|
|
+ int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
|
|
|
+
|
|
|
+ dbg_eba("close EBA unit");
|
|
|
+
|
|
|
+ for (i = 0; i < num_volumes; i++) {
|
|
|
+ if (!ubi->volumes[i])
|
|
|
+ continue;
|
|
|
+ kfree(ubi->volumes[i]->eba_tbl);
|
|
|
+ }
|
|
|
+}
|