Browse Source

Rewrite of NAND code based on what is in 2.6.12 Linux kernel
Patch by Ladislav Michl, 29 Jun 2005

Wolfgang Denk 19 năm trước cách đây
mục cha
commit
932394ac43

+ 7 - 0
CHANGELOG

@@ -1,3 +1,10 @@
+======================================================================
+Changes for U-Boot 1.1.4:
+======================================================================
+
+* Rewrite of NAND code based on what is in 2.6.12 Linux kernel
+  Patch by Ladislav Michl, 29 Jun 2005
+
 ======================================================================
 Changes for U-Boot 1.1.3:
 ======================================================================

+ 277 - 1762
common/cmd_nand.c

@@ -1,18 +1,15 @@
 /*
- * Driver for NAND support, Rick Bronson
- * borrowed heavily from:
- * (c) 1999 Machine Vision Holdings, Inc.
- * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
- *
- * Added 16-bit nand support
- * (C) 2004 Texas Instruments
+ * Rick Bronson and Pantelis Antoniou
  */
 
 #include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
 #include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
 #include <watchdog.h>
+#include <malloc.h>
+#include <asm/byteorder.h>
 
 #ifdef CONFIG_SHOW_BOOT_PROGRESS
 # include <status_led.h>
@@ -21,289 +18,311 @@
 # define SHOW_BOOT_PROGRESS(arg)
 #endif
 
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ids.h>
 #include <jffs2/jffs2.h>
+#include <nand.h>
 
-#ifdef CONFIG_OMAP1510
-void archflashwp(void *archdata, int wp);
-#endif
+extern nand_info_t nand_info[];       /* info for NAND chips */
 
-#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))
+static int nand_dump_oob(nand_info_t *nand, ulong off)
+{
+	return 0;
+}
 
-/*
- * Definition of the out of band configuration structure
- */
-struct nand_oob_config {
-	int ecc_pos[6];		/* position of ECC bytes inside oob */
-	int badblock_pos;	/* position of bad block flag inside oob -1 = inactive */
-	int eccvalid_pos;	/* position of ECC valid flag inside oob -1 = inactive */
-} oob_config = { {0}, 0, 0};
-
-#undef	NAND_DEBUG
-#undef	PSYCHO_DEBUG
-
-/* ****************** WARNING *********************
- * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
- * erase (or at least attempt to erase) blocks that are marked
- * bad. This can be very handy if you are _sure_ that the block
- * is OK, say because you marked a good block bad to test bad
- * block handling and you are done testing, or if you have
- * accidentally marked blocks bad.
- *
- * Erasing factory marked bad blocks is a _bad_ idea. If the
- * erase succeeds there is no reliable way to find them again,
- * and attempting to program or erase bad blocks can affect
- * the data in _other_ (good) blocks.
- */
-#define	 ALLOW_ERASE_BAD_DEBUG 0
+static int nand_dump(nand_info_t *nand, ulong off)
+{
+	int i;
+	u_char *buf, *p;
+
+	buf = malloc(nand->oobblock + nand->oobsize);
+	if (!buf) {
+		puts("No memory for page buffer\n");
+		return 1;
+	}
+	off &= ~(nand->oobblock - 1);
+	i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
+	if (i < 0) {
+		printf("Error (%d) reading page %08x\n", i, off);
+		free(buf);
+		return 1;
+	}
+	printf("Page %08x dump:\n", off);
+	i = nand->oobblock >> 4; p = buf;
+	while (i--) {
+		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
+			"  %02x %02x %02x %02x %02x %02x %02x %02x\n",
+			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
+			p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
+		p += 16;
+	}
+	puts("OOB:\n");
+	i = nand->oobsize >> 3;
+	while (i--) {
+		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
+			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+		p += 8;
+	}
+	free(buf);
 
-#define CONFIG_MTD_NAND_ECC  /* enable ECC */
-#define CONFIG_MTD_NAND_ECC_JFFS2
+	return 0;
+}
 
-/* bits for nand_rw() `cmd'; or together as needed */
-#define NANDRW_READ	0x01
-#define NANDRW_WRITE	0x00
-#define NANDRW_JFFS2	0x02
-#define NANDRW_JFFS2_SKIP	0x04
+/* ------------------------------------------------------------------------- */
 
-/*
- * Function Prototypes
- */
-static void nand_print(struct nand_chip *nand);
-int nand_rw (struct nand_chip* nand, int cmd,
-	    size_t start, size_t len,
-	    size_t * retlen, u_char * buf);
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
-		 size_t * retlen, u_char *buf, u_char *ecc_code);
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
-			   size_t * retlen, const u_char * buf, u_char * ecc_code);
-static void nand_print_bad(struct nand_chip *nand);
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
-		 size_t * retlen, u_char * buf);
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
-		 size_t * retlen, const u_char * buf);
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
-#ifdef CONFIG_MTD_NAND_ECC
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+static void
+arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
+{
+	*off = 0;
+	*size = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
+	if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
+		int part_num;
+		struct part_info *part;
+		const char *partstr;
+
+		if (argc >= 2)
+			partstr = argv[1];
+		else
+			partstr = getenv("partition");
+
+		if (partstr)
+			part_num = (int)simple_strtoul(partstr, NULL, 10);
+		else
+			part_num = 0;
+
+		part = jffs2_part_info(part_num);
+		if (part == NULL) {
+			printf("\nInvalid partition %d\n", part_num);
+			return;
+		}
+		*size = part->size;
+		*off = (ulong)part->offset;
+	} else
 #endif
+	{
+		if (argc >= 1)
+			*off = (ulong)simple_strtoul(argv[0], NULL, 16);
+		else
+			*off = 0;
 
-struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+		if (argc >= 2)
+			*size = (ulong)simple_strtoul(argv[1], NULL, 16);
+		else
+			*size = totsize - *off;
 
-/* Current NAND Device	*/
-static int curr_device = -1;
+	}
 
-/* ------------------------------------------------------------------------- */
+}
 
-int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
 {
-    int rcode = 0;
+	int i, dev, ret;
+	ulong addr, off, size;
+	char *cmd, *s;
+	nand_info_t *nand;
 
-    switch (argc) {
-    case 0:
-    case 1:
-	printf ("Usage:\n%s\n", cmdtp->usage);
-	return 1;
-    case 2:
-	if (strcmp(argv[1],"info") == 0) {
-		int i;
+	/* at least two arguments please */
+	if (argc < 2)
+		goto usage;
 
-		putc ('\n');
+	cmd = argv[1];
 
-		for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
-			if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
-				continue; /* list only known devices */
-			printf ("Device %d: ", i);
-			nand_print(&nand_dev_desc[i]);
-		}
-		return 0;
+	if (strcmp(cmd, "info") == 0) {
 
-	} else if (strcmp(argv[1],"device") == 0) {
-		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
-			puts ("\nno devices available\n");
-			return 1;
+		putc('\n');
+		for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+			if (nand_info[i].name)
+				printf("Device %d: %s\n", i, nand_info[i].name);
 		}
-		printf ("\nDevice %d: ", curr_device);
-		nand_print(&nand_dev_desc[curr_device]);
 		return 0;
+	}
 
-	} else if (strcmp(argv[1],"bad") == 0) {
-		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
-			puts ("\nno devices available\n");
+	if (strcmp(cmd, "device") == 0) {
+
+		if (argc < 3) {
+			if ((nand_curr_device < 0) ||
+			    (nand_curr_device >= CFG_MAX_NAND_DEVICE))
+				puts("\nno devices available\n");
+			else
+				printf("\nDevice %d: %s\n", nand_curr_device,
+					nand_info[nand_curr_device].name);
+			return 0;
+		}
+		dev = (int)simple_strtoul(argv[2], NULL, 10);
+		if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+			puts("No such device\n");
 			return 1;
 		}
-		printf ("\nDevice %d bad blocks:\n", curr_device);
-		nand_print_bad(&nand_dev_desc[curr_device]);
+		printf("Device %d: %s", dev, nand_info[dev].name);
+		puts("... is now current device\n");
+		nand_curr_device = dev;
 		return 0;
+	}
+
+	if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
+	    strncmp(cmd, "dump", 4) != 0 &&
+	    strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+	    && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
+	    && strcmp(cmd, "markbad") != 0
+#endif
+	    )
+		goto usage;
 
+	/* the following commands operate on the current device */
+	if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
+	    !nand_info[nand_curr_device].name) {
+		puts("\nno devices available\n");
+		return 1;
 	}
-	printf ("Usage:\n%s\n", cmdtp->usage);
-	return 1;
-    case 3:
-	if (strcmp(argv[1],"device") == 0) {
-		int dev = (int)simple_strtoul(argv[2], NULL, 10);
+	nand = &nand_info[nand_curr_device];
 
-		printf ("\nDevice %d: ", dev);
-		if (dev >= CFG_MAX_NAND_DEVICE) {
-			puts ("unknown device\n");
-			return 1;
-		}
-		nand_print(&nand_dev_desc[dev]);
-		/*nand_print (dev);*/
+	if (strcmp(cmd, "bad") == 0) {
+		printf("\nDevice %d bad blocks:\n", nand_curr_device);
+		for (off = 0; off < nand->size; off += nand->erasesize)
+			if (nand_block_isbad(nand, off))
+				printf("  %08x\n", off);
+		return 0;
+	}
+
+	if (strcmp(cmd, "erase") == 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+	    || strcmp(cmd, "scrub") == 0
+#endif
+	    ) {
 
-		if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+#ifdef CONFIG_MTD_NAND_UNSAFE
+		i = strcmp(cmd, "scrub") == 0;	/* 1 scrub, 0 = erase */
+#endif
+
+		arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
+		if (off == 0 && size == 0)
 			return 1;
-		}
 
-		curr_device = dev;
+		printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
+#ifdef CONFIG_MTD_NAND_UNSAFE
+		       i ? "scrub" :
+#endif
+		       "erase",
+		       nand_curr_device, off, size);
 
-		puts ("... is now current device\n");
+#ifdef CONFIG_MTD_NAND_UNSAFE
+		if (i)
+			ret = nand_scrub(nand, off, size);
+		else
+#endif
+			ret = nand_erase(nand, off, size);
 
-		return 0;
+		printf("%s\n", ret ? "ERROR" : "OK");
+
+		return ret == 0 ? 0 : 1;
 	}
-	else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
-		struct nand_chip* nand = &nand_dev_desc[curr_device];
-		ulong off = 0;
-		ulong size = nand->totlen;
-		int ret;
 
-		printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
-			curr_device, off, size);
+	if (strncmp(cmd, "dump", 4) == 0) {
+		if (argc < 3)
+			goto usage;
 
-		ret = nand_erase (nand, off, size, 1);
+		s = strchr(cmd, '.');
+		off = (int)simple_strtoul(argv[2], NULL, 16);
 
-		printf("%s\n", ret ? "ERROR" : "OK");
+		if (s != NULL && strcmp(s, ".oob") == 0)
+			ret = nand_dump_oob(nand, off);
+		else
+			ret = nand_dump(nand, off);
+
+		return ret == 0 ? 1 : 0;
 
-		return ret;
 	}
 
-	printf ("Usage:\n%s\n", cmdtp->usage);
-	return 1;
-    default:
-	/* at least 4 args */
-
-	if (strncmp(argv[1], "read", 4) == 0 ||
-	    strncmp(argv[1], "write", 5) == 0) {
-		ulong addr = simple_strtoul(argv[2], NULL, 16);
-		ulong off  = simple_strtoul(argv[3], NULL, 16);
-		ulong size = simple_strtoul(argv[4], NULL, 16);
-		int cmd    = (strncmp(argv[1], "read", 4) == 0) ?
-				NANDRW_READ : NANDRW_WRITE;
-		int ret, total;
-		char* cmdtail = strchr(argv[1], '.');
-
-		if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
-			/* read out-of-band data */
-			if (cmd & NANDRW_READ) {
-				ret = nand_read_oob(nand_dev_desc + curr_device,
-						    off, size, &total,
-						    (u_char*)addr);
-			}
-			else {
-				ret = nand_write_oob(nand_dev_desc + curr_device,
-						     off, size, &total,
-						     (u_char*)addr);
-			}
-			return ret;
-		}
-		else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
-			cmd |= NANDRW_JFFS2;	/* skip bad blocks */
-		else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
-			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */
-			if (cmd & NANDRW_READ)
-				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */
-		}
-#ifdef SXNI855T
-		/* need ".e" same as ".j" for compatibility with older units */
-		else if (cmdtail && !strcmp(cmdtail, ".e"))
-			cmd |= NANDRW_JFFS2;	/* skip bad blocks */
-#endif
-#ifdef CFG_NAND_SKIP_BAD_DOT_I
-		/* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
-		/* ".i" for image -> read skips bad block (no 0xff) */
-		else if (cmdtail && !strcmp(cmdtail, ".i"))
-			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */
-			if (cmd & NANDRW_READ)
-				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */
-#endif /* CFG_NAND_SKIP_BAD_DOT_I */
-		else if (cmdtail) {
-			printf ("Usage:\n%s\n", cmdtp->usage);
+	/* read write */
+	if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
+		if (argc < 4)
+			goto usage;
+/*
+		s = strchr(cmd, '.');
+		clean = CLEAN_NONE;
+		if (s != NULL) {
+			if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
+			    || strcmp(s, ".i"))
+				clean = CLEAN_JFFS2;
+		}
+*/
+		addr = (ulong)simple_strtoul(argv[2], NULL, 16);
+
+		arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
+		if (off == 0 && size == 0)
 			return 1;
-		}
 
-		printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
-			(cmd & NANDRW_READ) ? "read" : "write",
-			curr_device, off, size);
+		i = strncmp(cmd, "read", 4) == 0;	/* 1 = read, 0 = write */
+		printf("\nNAND %s: device %d offset %u, size %u ... ",
+		       i ? "read" : "write", nand_curr_device, off, size);
 
-		ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
-			     &total, (u_char*)addr);
+		if (i)
+			ret = nand_read(nand, off, &size, (u_char *)addr);
+		else
+			ret = nand_write(nand, off, &size, (u_char *)addr);
 
-		printf (" %d bytes %s: %s\n", total,
-			(cmd & NANDRW_READ) ? "read" : "written",
-			ret ? "ERROR" : "OK");
+		printf(" %d bytes %s: %s\n", size,
+		       i ? "read" : "written", ret ? "ERROR" : "OK");
 
-		return ret;
-	} else if (strcmp(argv[1],"erase") == 0 &&
-		   (argc == 4 || strcmp("clean", argv[2]) == 0)) {
-		int clean = argc == 5;
-		ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
-		ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
-		int ret;
+		return ret == 0 ? 0 : 1;
+	}
+#ifdef CONFIG_MTD_NAND_UNSAFE
+	if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
+		if (argc < 3)
+			goto usage;
 
-		printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
-			curr_device, off, size);
+		i = strcmp(cmd, "biterr") == 0;
 
-		ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
+		off = (int)simple_strtoul(argv[2], NULL, 16);
 
-		printf("%s\n", ret ? "ERROR" : "OK");
+		if (i)
+			ret = nand_make_bit_error(nand, off);
+		else
+			ret = nand_mark_bad(nand, off);
 
-		return ret;
-	} else {
-		printf ("Usage:\n%s\n", cmdtp->usage);
-		rcode = 1;
+		return ret == 0 ? 0 : 1;
 	}
+#endif
 
-	return rcode;
-    }
+usage:
+	printf("Usage:\n%s\n", cmdtp->usage);
+	return 1;
 }
 
-U_BOOT_CMD(
-	nand,	5,	1,	do_nand,
+U_BOOT_CMD(nand, 5, 1, do_nand,
 	"nand    - NAND sub-system\n",
-	"info  - show available NAND devices\n"
-	"nand device [dev] - show or set current device\n"
-	"nand read[.jffs2[s]]  addr off size\n"
-	"nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
+	"info                  - show available NAND devices\n"
+	"nand device [dev]     - show or set current device\n"
+	"nand read[.jffs2]     - addr off size\n"
+	"nand write[.jffs2]    - addr off size - read/write `size' bytes starting\n"
 	"    at offset `off' to/from memory address `addr'\n"
 	"nand erase [clean] [off size] - erase `size' bytes from\n"
 	"    offset `off' (entire device if not specified)\n"
 	"nand bad - show bad blocks\n"
-	"nand read.oob addr off size - read out-of-band data\n"
-	"nand write.oob addr off size - read out-of-band data\n"
-);
+	"nand dump[.oob] off - dump page\n"
+	"nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
+	"nand markbad off - mark bad block at offset (UNSAFE)\n"
+	"nand biterr off - make a bit error at offset (UNSAFE)\n");
 
-int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
 {
 	char *boot_device = NULL;
 	char *ep;
 	int dev;
-	ulong cnt;
-	ulong addr;
-	ulong offset = 0;
+	int r;
+	ulong addr, cnt, offset = 0;
 	image_header_t *hdr;
-	int rcode = 0;
+	nand_info_t *nand;
+
 	switch (argc) {
 	case 1:
 		addr = CFG_LOAD_ADDR;
-		boot_device = getenv ("bootdevice");
+		boot_device = getenv("bootdevice");
 		break;
 	case 2:
 		addr = simple_strtoul(argv[1], NULL, 16);
-		boot_device = getenv ("bootdevice");
+		boot_device = getenv("bootdevice");
 		break;
 	case 3:
 		addr = simple_strtoul(argv[1], NULL, 16);
@@ -315,55 +334,53 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 		offset = simple_strtoul(argv[3], NULL, 16);
 		break;
 	default:
-		printf ("Usage:\n%s\n", cmdtp->usage);
-		SHOW_BOOT_PROGRESS (-1);
+		printf("Usage:\n%s\n", cmdtp->usage);
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
 	if (!boot_device) {
-		puts ("\n** No boot device **\n");
-		SHOW_BOOT_PROGRESS (-1);
+		puts("\n** No boot device **\n");
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
 	dev = simple_strtoul(boot_device, &ep, 16);
 
-	if ((dev >= CFG_MAX_NAND_DEVICE) ||
-	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
-		printf ("\n** Device %d not available\n", dev);
-		SHOW_BOOT_PROGRESS (-1);
+	if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+		printf("\n** Device %d not available\n", dev);
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
-	printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
-		dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
-		offset);
+	nand = &nand_info[dev];
+	printf("\nLoading from device %d: %s (offset 0x%lx)\n",
+	       dev, nand->name, offset);
 
-	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
-		    SECTORSIZE, NULL, (u_char *)addr)) {
-		printf ("** Read error on %d\n", dev);
-		SHOW_BOOT_PROGRESS (-1);
+	cnt = nand->oobblock;
+	r = nand_read(nand, offset, &cnt, (u_char *) addr);
+	if (r) {
+		printf("** Read error on %d\n", dev);
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
-	hdr = (image_header_t *)addr;
-
-	if (ntohl(hdr->ih_magic) == IH_MAGIC) {
+	hdr = (image_header_t *) addr;
 
-		print_image_hdr (hdr);
-
-		cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
-		cnt -= SECTORSIZE;
-	} else {
-		printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
-		SHOW_BOOT_PROGRESS (-1);
+	if (ntohl(hdr->ih_magic) != IH_MAGIC) {
+		printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
-	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
-		    NULL, (u_char *)(addr+SECTORSIZE))) {
-		printf ("** Read error on %d\n", dev);
-		SHOW_BOOT_PROGRESS (-1);
+	print_image_hdr(hdr);
+
+	cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+
+	r = nand_read(nand, offset, &cnt, (u_char *) addr);
+	if (r) {
+		printf("** Read error on %d\n", dev);
+		SHOW_BOOT_PROGRESS(-1);
 		return 1;
 	}
 
@@ -372,1526 +389,24 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 	load_addr = addr;
 
 	/* Check if we should attempt an auto-start */
-	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
+	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
 		char *local_args[2];
-		extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
+		extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
 
 		local_args[0] = argv[0];
 		local_args[1] = NULL;
 
-		printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
-
-		do_bootm (cmdtp, 0, 1, local_args);
-		rcode = 1;
-	}
-	return rcode;
-}
-
-U_BOOT_CMD(
-	nboot,	4,	1,	do_nandboot,
-	"nboot   - boot from NAND device\n",
-	"loadAddr dev\n"
-);
+		printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
 
-/* returns 0 if block containing pos is OK:
- *		valid erase block and
- *		not marked bad, or no bad mark position is specified
- * returns 1 if marked bad or otherwise invalid
- */
-int check_block (struct nand_chip *nand, unsigned long pos)
-{
-	int retlen;
-	uint8_t oob_data;
-	uint16_t oob_data16[6];
-	int page0 = pos & (-nand->erasesize);
-	int page1 = page0 + nand->oobblock;
-	int badpos = oob_config.badblock_pos;
-
-	if (pos >= nand->totlen)
+		do_bootm(cmdtp, 0, 1, local_args);
 		return 1;
-
-	if (badpos < 0)
-		return 0;	/* no way to check, assume OK */
-
-	if (nand->bus16) {
-		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
-		    || (oob_data16[2] & 0xff00) != 0xff00)
-			return 1;
-		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
-		    || (oob_data16[2] & 0xff00) != 0xff00)
-			return 1;
-	} else {
-		/* Note - bad block marker can be on first or second page */
-		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
-		    || oob_data != 0xff
-		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
-		    || oob_data != 0xff)
-			return 1;
-	}
-
-	return 0;
-}
-
-/* print bad blocks in NAND flash */
-static void nand_print_bad(struct nand_chip* nand)
-{
-	unsigned long pos;
-
-	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
-		if (check_block(nand, pos))
-			printf(" 0x%8.8lx\n", pos);
-	}
-	puts("\n");
-}
-
-/* cmd: 0: NANDRW_WRITE			write, fail on bad block
- *	1: NANDRW_READ			read, fail on bad block
- *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks
- *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks
- *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
- */
-int nand_rw (struct nand_chip* nand, int cmd,
-	    size_t start, size_t len,
-	    size_t * retlen, u_char * buf)
-{
-	int ret = 0, n, total = 0;
-	char eccbuf[6];
-	/* eblk (once set) is the start of the erase block containing the
-	 * data being processed.
-	 */
-	unsigned long eblk = ~0;	/* force mismatch on first pass */
-	unsigned long erasesize = nand->erasesize;
-
-	while (len) {
-		if ((start & (-erasesize)) != eblk) {
-			/* have crossed into new erase block, deal with
-			 * it if it is sure marked bad.
-			 */
-			eblk = start & (-erasesize); /* start of block */
-			if (check_block(nand, eblk)) {
-				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
-					while (len > 0 &&
-					       start - eblk < erasesize) {
-						*(buf++) = 0xff;
-						++start;
-						++total;
-						--len;
-					}
-					continue;
-				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
-					start += erasesize;
-					continue;
-				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
-					/* skip bad block */
-					start += erasesize;
-					continue;
-				} else {
-					ret = 1;
-					break;
-				}
-			}
-		}
-		/* The ECC will not be calculated correctly if
-		   less than 512 is written or read */
-		/* Is request at least 512 bytes AND it starts on a proper boundry */
-		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
-			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
-
-		if (cmd & NANDRW_READ) {
-			ret = nand_read_ecc(nand, start,
-					   min(len, eblk + erasesize - start),
-					   &n, (u_char*)buf, eccbuf);
-		} else {
-			ret = nand_write_ecc(nand, start,
-					    min(len, eblk + erasesize - start),
-					    &n, (u_char*)buf, eccbuf);
-		}
-
-		if (ret)
-			break;
-
-		start  += n;
-		buf   += n;
-		total += n;
-		len   -= n;
-	}
-	if (retlen)
-		*retlen = total;
-
-	return ret;
-}
-
-static void nand_print(struct nand_chip *nand)
-{
-	if (nand->numchips > 1) {
-		printf("%s at 0x%lx,\n"
-		       "\t  %d chips %s, size %d MB, \n"
-		       "\t  total size %ld MB, sector size %ld kB\n",
-		       nand->name, nand->IO_ADDR, nand->numchips,
-		       nand->chips_name, 1 << (nand->chipshift - 20),
-		       nand->totlen >> 20, nand->erasesize >> 10);
-	}
-	else {
-		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
-		print_size(nand->totlen, ", ");
-		print_size(nand->erasesize, " sector)\n");
-	}
-}
-
-/* ------------------------------------------------------------------------- */
-
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
-{
-	/* This is inline, to optimise the common case, where it's ready instantly */
-	int ret = 0;
-
-#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */
-	if(ale_wait)
-		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */
-	else
-		udelay(10);
-#else	/* has functional r/b signal */
-	NAND_WAIT_READY(nand);
-#endif
-	return ret;
-}
-
-/* NanD_Command: Send a flash command to the flash chip */
-
-static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
-{
-	unsigned long nandptr = nand->IO_ADDR;
-
-	/* Assert the CLE (Command Latch Enable) line to the flash chip */
-	NAND_CTL_SETCLE(nandptr);
-
-	/* Send the command */
-	WRITE_NAND_COMMAND(command, nandptr);
-
-	/* Lower the CLE line */
-	NAND_CTL_CLRCLE(nandptr);
-
-#ifdef NAND_NO_RB
-	if(command == NAND_CMD_RESET){
-		u_char ret_val;
-		NanD_Command(nand, NAND_CMD_STATUS);
-		do {
-			ret_val = READ_NAND(nandptr);/* wait till ready */
-		} while((ret_val & 0x40) != 0x40);
-	}
-#endif
-	return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_Address: Set the current address for the flash chip */
-
-static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
-{
-	unsigned long nandptr;
-	int i;
-
-	nandptr = nand->IO_ADDR;
-
-	/* Assert the ALE (Address Latch Enable) line to the flash chip */
-	NAND_CTL_SETALE(nandptr);
-
-	/* Send the address */
-	/* Devices with 256-byte page are addressed as:
-	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
-	 * there is no device on the market with page256
-	 * and more than 24 bits.
-	 * Devices with 512-byte page are addressed as:
-	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
-	 * 25-31 is sent only if the chip support it.
-	 * bit 8 changes the read command to be sent
-	 * (NAND_CMD_READ0 or NAND_CMD_READ1).
-	 */
-
-	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
-		WRITE_NAND_ADDRESS(ofs, nandptr);
-
-	ofs = ofs >> nand->page_shift;
-
-	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
-		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
-			WRITE_NAND_ADDRESS(ofs, nandptr);
-		}
-	}
-
-	/* Lower the ALE line */
-	NAND_CTL_CLRALE(nandptr);
-
-	/* Wait for the chip to respond */
-	return NanD_WaitReady(nand, 1);
-}
-
-/* NanD_SelectChip: Select a given flash chip within the current floor */
-
-static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
-{
-	/* Wait for it to be ready */
-	return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
-
-static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
-{
-	int mfr, id, i;
-
-	NAND_ENABLE_CE(nand);  /* set pin low */
-	/* Reset the chip */
-	if (NanD_Command(nand, NAND_CMD_RESET)) {
-#ifdef NAND_DEBUG
-		printf("NanD_Command (reset) for %d,%d returned true\n",
-		       floor, chip);
-#endif
-		NAND_DISABLE_CE(nand);  /* set pin high */
-		return 0;
-	}
-
-	/* Read the NAND chip ID: 1. Send ReadID command */
-	if (NanD_Command(nand, NAND_CMD_READID)) {
-#ifdef NAND_DEBUG
-		printf("NanD_Command (ReadID) for %d,%d returned true\n",
-		       floor, chip);
-#endif
-		NAND_DISABLE_CE(nand);  /* set pin high */
-		return 0;
-	}
-
-	/* Read the NAND chip ID: 2. Send address byte zero */
-	NanD_Address(nand, ADDR_COLUMN, 0);
-
-	/* Read the manufacturer and device id codes from the device */
-
-	mfr = READ_NAND(nand->IO_ADDR);
-
-	id = READ_NAND(nand->IO_ADDR);
-
-	NAND_DISABLE_CE(nand);  /* set pin high */
-
-#ifdef NAND_DEBUG
-	printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
-#endif
-	if (mfr == 0xff || mfr == 0) {
-		/* No response - return failure */
-		return 0;
-	}
-
-	/* Check it's the same as the first chip we identified.
-	 * M-Systems say that any given nand_chip device should only
-	 * contain _one_ type of flash part, although that's not a
-	 * hardware restriction. */
-	if (nand->mfr) {
-		if (nand->mfr == mfr && nand->id == id) {
-			return 1;	/* This is another the same the first */
-		} else {
-			printf("Flash chip at floor %d, chip %d is different:\n",
-			       floor, chip);
-		}
-	}
-
-	/* Print and store the manufacturer and ID codes. */
-	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
-		if (mfr == nand_flash_ids[i].manufacture_id &&
-		    id == nand_flash_ids[i].model_id) {
-#ifdef NAND_DEBUG
-			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
-			       "Chip ID: 0x%2.2X (%s)\n", mfr, id,
-			       nand_flash_ids[i].name);
-#endif
-			if (!nand->mfr) {
-				nand->mfr = mfr;
-				nand->id = id;
-				nand->chipshift =
-				    nand_flash_ids[i].chipshift;
-				nand->page256 = nand_flash_ids[i].page256;
-				nand->eccsize = 256;
-				if (nand->page256) {
-					nand->oobblock = 256;
-					nand->oobsize = 8;
-					nand->page_shift = 8;
-				} else {
-					nand->oobblock = 512;
-					nand->oobsize = 16;
-					nand->page_shift = 9;
-				}
-				nand->pageadrlen = nand_flash_ids[i].pageadrlen;
-				nand->erasesize  = nand_flash_ids[i].erasesize;
-				nand->chips_name = nand_flash_ids[i].name;
-				nand->bus16	 = nand_flash_ids[i].bus16;
- 				return 1;
-			}
-			return 0;
-		}
-	}
-
-
-#ifdef NAND_DEBUG
-	/* We haven't fully identified the chip. Print as much as we know. */
-	printf("Unknown flash chip found: %2.2X %2.2X\n",
-	       id, mfr);
-#endif
-
-	return 0;
-}
-
-/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
-
-static void NanD_ScanChips(struct nand_chip *nand)
-{
-	int floor, chip;
-	int numchips[NAND_MAX_FLOORS];
-	int maxchips = NAND_MAX_CHIPS;
-	int ret = 1;
-
-	nand->numchips = 0;
-	nand->mfr = 0;
-	nand->id = 0;
-
-
-	/* For each floor, find the number of valid chips it contains */
-	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
-		ret = 1;
-		numchips[floor] = 0;
-		for (chip = 0; chip < maxchips && ret != 0; chip++) {
-
-			ret = NanD_IdentChip(nand, floor, chip);
-			if (ret) {
-				numchips[floor]++;
-				nand->numchips++;
-			}
-		}
-	}
-
-	/* If there are none at all that we recognise, bail */
-	if (!nand->numchips) {
-#ifdef NAND_DEBUG
-		puts ("No NAND flash chips recognised.\n");
-#endif
-		return;
-	}
-
-	/* Allocate an array to hold the information for each chip */
-	nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
-	if (!nand->chips) {
-		puts ("No memory for allocating chip info structures\n");
-		return;
-	}
-
-	ret = 0;
-
-	/* Fill out the chip array with {floor, chipno} for each
-	 * detected chip in the device. */
-	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
-		for (chip = 0; chip < numchips[floor]; chip++) {
-			nand->chips[ret].floor = floor;
-			nand->chips[ret].chip = chip;
-			nand->chips[ret].curadr = 0;
-			nand->chips[ret].curmode = 0x50;
-			ret++;
-		}
-	}
-
-	/* Calculate and print the total size of the device */
-	nand->totlen = nand->numchips * (1 << nand->chipshift);
-
-#ifdef NAND_DEBUG
-	printf("%d flash chips found. Total nand_chip size: %ld MB\n",
-	       nand->numchips, nand->totlen >> 20);
-#endif
-}
-
-/* we need to be fast here, 1 us per read translates to 1 second per meg */
-static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
-{
-	unsigned long nandptr = nand->IO_ADDR;
-
-	NanD_Command (nand, NAND_CMD_READ0);
-
-	if (nand->bus16) {
-		u16 val;
-
-		while (cntr >= 16) {
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			cntr -= 16;
-		}
-
-		while (cntr > 0) {
-			val = READ_NAND (nandptr);
-			*data_buf++ = val & 0xff;
-			*data_buf++ = val >> 8;
-			cntr -= 2;
-		}
-	} else {
-		while (cntr >= 16) {
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			*data_buf++ = READ_NAND (nandptr);
-			cntr -= 16;
-		}
-
-		while (cntr > 0) {
-			*data_buf++ = READ_NAND (nandptr);
-			cntr--;
-		}
-	}
-}
-
-/*
- * NAND read with ECC
- */
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
-		 size_t * retlen, u_char *buf, u_char *ecc_code)
-{
-	int col, page;
-	int ecc_status = 0;
-#ifdef CONFIG_MTD_NAND_ECC
-	int j;
-	int ecc_failed = 0;
-	u_char *data_poi;
-	u_char ecc_calc[6];
-#endif
-
-	/* Do not allow reads past end of device */
-	if ((start + len) > nand->totlen) {
-		printf ("%s: Attempt read beyond end of device %x %x %x\n",
-			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
-		*retlen = 0;
-		return -1;
 	}
-
-	/* First we calculate the starting page */
-	/*page = shr(start, nand->page_shift);*/
-	page = start >> nand->page_shift;
-
-	/* Get raw starting column */
-	col = start & (nand->oobblock - 1);
-
-	/* Initialize return value */
-	*retlen = 0;
-
-	/* Select the NAND device */
-	NAND_ENABLE_CE(nand);  /* set pin low */
-
-	/* Loop until all data read */
-	while (*retlen < len) {
-
-#ifdef CONFIG_MTD_NAND_ECC
-		/* Do we have this page in cache ? */
-		if (nand->cache_page == page)
-			goto readdata;
-		/* Send the read command */
-		NanD_Command(nand, NAND_CMD_READ0);
-		if (nand->bus16) {
- 			NanD_Address(nand, ADDR_COLUMN_PAGE,
-				     (page << nand->page_shift) + (col >> 1));
-		} else {
- 			NanD_Address(nand, ADDR_COLUMN_PAGE,
-				     (page << nand->page_shift) + col);
-		}
-
-		/* Read in a page + oob data */
-		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
-
-		/* copy data into cache, for read out of cache and if ecc fails */
-		if (nand->data_cache) {
-			memcpy (nand->data_cache, nand->data_buf,
-				nand->oobblock + nand->oobsize);
-		}
-
-		/* Pick the ECC bytes out of the oob data */
-		for (j = 0; j < 6; j++) {
-			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
-		}
-
-		/* Calculate the ECC and verify it */
-		/* If block was not written with ECC, skip ECC */
-		if (oob_config.eccvalid_pos != -1 &&
-		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
-
-			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
-			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
-			case -1:
-				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
-				ecc_failed++;
-				break;
-			case 1:
-			case 2:	/* transfer ECC corrected data to cache */
-				if (nand->data_cache)
-					memcpy (nand->data_cache, nand->data_buf, 256);
-				break;
-			}
-		}
-
-		if (oob_config.eccvalid_pos != -1 &&
-		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
-
-			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
-			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
-			case -1:
-				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
-				ecc_failed++;
-				break;
-			case 1:
-			case 2:	/* transfer ECC corrected data to cache */
-				if (nand->data_cache)
-					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
-				break;
-			}
-		}
-readdata:
-		/* Read the data from ECC data buffer into return buffer */
-		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
-		data_poi += col;
-		if ((*retlen + (nand->oobblock - col)) >= len) {
-			memcpy (buf + *retlen, data_poi, len - *retlen);
-			*retlen = len;
-		} else {
-			memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
-			*retlen += nand->oobblock - col;
-		}
-		/* Set cache page address, invalidate, if ecc_failed */
-		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
-
-		ecc_status += ecc_failed;
-		ecc_failed = 0;
-
-#else
-		/* Send the read command */
-		NanD_Command(nand, NAND_CMD_READ0);
-		if (nand->bus16) {
-			NanD_Address(nand, ADDR_COLUMN_PAGE,
-				     (page << nand->page_shift) + (col >> 1));
-		} else {
-			NanD_Address(nand, ADDR_COLUMN_PAGE,
-				     (page << nand->page_shift) + col);
-		}
-
-		/* Read the data directly into the return buffer */
-		if ((*retlen + (nand->oobblock - col)) >= len) {
-			NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
-			*retlen = len;
-			/* We're done */
-			continue;
-		} else {
-			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
-			*retlen += nand->oobblock - col;
-			}
-#endif
-		/* For subsequent reads align to page boundary. */
-		col = 0;
-		/* Increment page address */
-		page++;
-	}
-
-	/* De-select the NAND device */
-	NAND_DISABLE_CE(nand);  /* set pin high */
-
-	/*
-	 * Return success, if no ECC failures, else -EIO
-	 * fs driver will take care of that, because
-	 * retlen == desired len and result == -EIO
-	 */
-	return ecc_status ? -1 : 0;
-}
-
-/*
- *	Nand_page_program function is used for write and writev !
- */
-static int nand_write_page (struct nand_chip *nand,
-			    int page, int col, int last, u_char * ecc_code)
-{
-
-	int i;
-	unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef CONFIG_MTD_NAND_ECC
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
-#endif
-#endif
-	/* pad oob area */
-	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
-		nand->data_buf[i] = 0xff;
-
-#ifdef CONFIG_MTD_NAND_ECC
-	/* Zero out the ECC array */
-	for (i = 0; i < 6; i++)
-		ecc_code[i] = 0x00;
-
-	/* Read back previous written data, if col > 0 */
-	if (col) {
-		NanD_Command (nand, NAND_CMD_READ0);
-		if (nand->bus16) {
-			NanD_Address (nand, ADDR_COLUMN_PAGE,
-				      (page << nand->page_shift) + (col >> 1));
-		} else {
-			NanD_Address (nand, ADDR_COLUMN_PAGE,
-				      (page << nand->page_shift) + col);
-		}
-
-		if (nand->bus16) {
-			u16 val;
-
-			for (i = 0; i < col; i += 2) {
-				val = READ_NAND (nandptr);
-				nand->data_buf[i] = val & 0xff;
-				nand->data_buf[i + 1] = val >> 8;
-			}
-		} else {
-			for (i = 0; i < col; i++)
-				nand->data_buf[i] = READ_NAND (nandptr);
-		}
-	}
-
-	/* Calculate and write the ECC if we have enough data */
-	if ((col < nand->eccsize) && (last >= nand->eccsize)) {
-		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
-		for (i = 0; i < 3; i++) {
-			nand->data_buf[(nand->oobblock +
-					oob_config.ecc_pos[i])] = ecc_code[i];
-		}
-		if (oob_config.eccvalid_pos != -1) {
-			nand->data_buf[nand->oobblock +
-				       oob_config.eccvalid_pos] = 0xf0;
-		}
-	}
-
-	/* Calculate and write the second ECC if we have enough data */
-	if ((nand->oobblock == 512) && (last == nand->oobblock)) {
-		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
-		for (i = 3; i < 6; i++) {
-			nand->data_buf[(nand->oobblock +
-					oob_config.ecc_pos[i])] = ecc_code[i];
-		}
-		if (oob_config.eccvalid_pos != -1) {
-			nand->data_buf[nand->oobblock +
-				       oob_config.eccvalid_pos] &= 0x0f;
-		}
-	}
-#endif
-	/* Prepad for partial page programming !!! */
-	for (i = 0; i < col; i++)
-		nand->data_buf[i] = 0xff;
-
-	/* Postpad for partial page programming !!! oob is already padded */
-	for (i = last; i < nand->oobblock; i++)
-		nand->data_buf[i] = 0xff;
-
-	/* Send command to begin auto page programming */
-	NanD_Command (nand, NAND_CMD_READ0);
-	NanD_Command (nand, NAND_CMD_SEQIN);
-	if (nand->bus16) {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + (col >> 1));
-	} else {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + col);
-	}
-
-	/* Write out complete page of data */
-	if (nand->bus16) {
-		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
-			WRITE_NAND (nand->data_buf[i] +
-				    (nand->data_buf[i + 1] << 8),
-				    nand->IO_ADDR);
-		}
-	} else {
-		for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
-			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
-	}
-
-	/* Send command to actually program the data */
-	NanD_Command (nand, NAND_CMD_PAGEPROG);
-	NanD_Command (nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-	{
-		u_char ret_val;
-
-		do {
-			ret_val = READ_NAND (nandptr);	/* wait till ready */
-		} while ((ret_val & 0x40) != 0x40);
-	}
-#endif
-	/* See if device thinks it succeeded */
-	if (READ_NAND (nand->IO_ADDR) & 0x01) {
-		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
-			page);
-		return -1;
-	}
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-	/*
-	 * The NAND device assumes that it is always writing to
-	 * a cleanly erased page. Hence, it performs its internal
-	 * write verification only on bits that transitioned from
-	 * 1 to 0. The device does NOT verify the whole page on a
-	 * byte by byte basis. It is possible that the page was
-	 * not completely erased or the page is becoming unusable
-	 * due to wear. The read with ECC would catch the error
-	 * later when the ECC page check fails, but we would rather
-	 * catch it early in the page write stage. Better to write
-	 * no data than invalid data.
-	 */
-
-	/* Send command to read back the page */
-	if (col < nand->eccsize)
-		NanD_Command (nand, NAND_CMD_READ0);
-	else
-		NanD_Command (nand, NAND_CMD_READ1);
-	if (nand->bus16) {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + (col >> 1));
-	} else {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + col);
-	}
-
-	/* Loop through and verify the data */
-	if (nand->bus16) {
-		for (i = col; i < last; i = +2) {
-			if ((nand->data_buf[i] +
-			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
-				printf ("%s: Failed write verify, page 0x%08x ",
-					__FUNCTION__, page);
-				return -1;
-			}
-		}
-	} else {
-		for (i = col; i < last; i++) {
-			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
-				printf ("%s: Failed write verify, page 0x%08x ",
-					__FUNCTION__, page);
-				return -1;
-			}
-		}
-	}
-
-#ifdef CONFIG_MTD_NAND_ECC
-	/*
-	 * We also want to check that the ECC bytes wrote
-	 * correctly for the same reasons stated above.
-	 */
-	NanD_Command (nand, NAND_CMD_READOOB);
-	if (nand->bus16) {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + (col >> 1));
-	} else {
-		NanD_Address (nand, ADDR_COLUMN_PAGE,
-			      (page << nand->page_shift) + col);
-	}
-	if (nand->bus16) {
-		for (i = 0; i < nand->oobsize; i += 2) {
-			u16 val;
-
-			val = READ_NAND (nand->IO_ADDR);
-			nand->data_buf[i] = val & 0xff;
-			nand->data_buf[i + 1] = val >> 8;
-		}
-	} else {
-		for (i = 0; i < nand->oobsize; i++) {
-			nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
-		}
-	}
-	for (i = 0; i < ecc_bytes; i++) {
-		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
-			printf ("%s: Failed ECC write "
-				"verify, page 0x%08x, "
-				"%6i bytes were succesful\n",
-				__FUNCTION__, page, i);
-			return -1;
-		}
-	}
-#endif	/* CONFIG_MTD_NAND_ECC */
-#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */
 	return 0;
 }
 
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
-			   size_t * retlen, const u_char * buf, u_char * ecc_code)
-{
-	int i, page, col, cnt, ret = 0;
-
-	/* Do not allow write past end of device */
-	if ((to + len) > nand->totlen) {
-		printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
-		return -1;
-	}
-
-	/* Shift to get page */
-	page = ((int) to) >> nand->page_shift;
-
-	/* Get the starting column */
-	col = to & (nand->oobblock - 1);
-
-	/* Initialize return length value */
-	*retlen = 0;
-
-	/* Select the NAND device */
-#ifdef CONFIG_OMAP1510
-	archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
-	NAND_WP_OFF();
-#endif
-
-    	NAND_ENABLE_CE(nand);  /* set pin low */
-
-	/* Check the WP bit */
-	NanD_Command(nand, NAND_CMD_STATUS);
-	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
-		ret = -1;
-		goto out;
-	}
-
-	/* Loop until all data is written */
-	while (*retlen < len) {
-		/* Invalidate cache, if we write to this page */
-		if (nand->cache_page == page)
-			nand->cache_page = -1;
-
-		/* Write data into buffer */
-		if ((col + len) >= nand->oobblock) {
-			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
-				nand->data_buf[i] = buf[(*retlen + cnt)];
-			}
-		} else {
-			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
-				nand->data_buf[i] = buf[(*retlen + cnt)];
-			}
-		}
-		/* We use the same function for write and writev !) */
-		ret = nand_write_page (nand, page, col, i, ecc_code);
-		if (ret)
-			goto out;
-
-		/* Next data start at page boundary */
-		col = 0;
-
-		/* Update written bytes count */
-		*retlen += cnt;
-
-		/* Increment page address */
-		page++;
-	}
-
-	/* Return happy */
-	*retlen = len;
-
-out:
-	/* De-select the NAND device */
-	NAND_DISABLE_CE(nand);  /* set pin high */
-#ifdef CONFIG_OMAP1510
-    	archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
-	NAND_WP_ON();
-#endif
-
-	return ret;
-}
-
-/* read from the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
-			 size_t * retlen, u_char * buf)
-{
-	int len256 = 0;
-	struct Nand *mychip;
-	int ret = 0;
-
-	mychip = &nand->chips[ofs >> nand->chipshift];
-
-	/* update address for 2M x 8bit devices. OOB starts on the second */
-	/* page to maintain compatibility with nand_read_ecc. */
-	if (nand->page256) {
-		if (!(ofs & 0x8))
-			ofs += 0x100;
-		else
-			ofs -= 0x8;
-	}
-
-	NAND_ENABLE_CE(nand);  /* set pin low */
-	NanD_Command(nand, NAND_CMD_READOOB);
-	if (nand->bus16) {
- 		NanD_Address(nand, ADDR_COLUMN_PAGE,
-			     ((ofs >> nand->page_shift) << nand->page_shift) +
- 				((ofs & (nand->oobblock - 1)) >> 1));
-	} else {
-		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-	}
-
-	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
-	/* Note: datasheet says it should automaticaly wrap to the */
-	/*       next OOB block, but it didn't work here. mf.      */
-	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
-		len256 = (ofs | 0x7) + 1 - ofs;
-		NanD_ReadBuf(nand, buf, len256);
-
-		NanD_Command(nand, NAND_CMD_READOOB);
-		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
-	}
-
-	NanD_ReadBuf(nand, &buf[len256], len - len256);
-
-	*retlen = len;
-	/* Reading the full OOB data drops us off of the end of the page,
-	 * causing the flash device to go into busy mode, so we need
-	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
-
-	ret = NanD_WaitReady(nand, 1);
-	NAND_DISABLE_CE(nand);  /* set pin high */
-
-	return ret;
-
-}
-
-/* write to the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
-		  size_t * retlen, const u_char * buf)
-{
-	int len256 = 0;
-	int i;
-	unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef PSYCHO_DEBUG
-	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
-	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
-	       buf[8], buf[9], buf[14],buf[15]);
-#endif
-
-	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */
-
-	/* Reset the chip */
-	NanD_Command(nand, NAND_CMD_RESET);
-
-	/* issue the Read2 command to set the pointer to the Spare Data Area. */
-	NanD_Command(nand, NAND_CMD_READOOB);
-	if (nand->bus16) {
- 		NanD_Address(nand, ADDR_COLUMN_PAGE,
-			     ((ofs >> nand->page_shift) << nand->page_shift) +
- 				((ofs & (nand->oobblock - 1)) >> 1));
-	} else {
- 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-	}
-
-	/* update address for 2M x 8bit devices. OOB starts on the second */
-	/* page to maintain compatibility with nand_read_ecc. */
-	if (nand->page256) {
-		if (!(ofs & 0x8))
-			ofs += 0x100;
-		else
-			ofs -= 0x8;
-	}
-
-	/* issue the Serial Data In command to initial the Page Program process */
-	NanD_Command(nand, NAND_CMD_SEQIN);
-	if (nand->bus16) {
- 		NanD_Address(nand, ADDR_COLUMN_PAGE,
-			     ((ofs >> nand->page_shift) << nand->page_shift) +
- 				((ofs & (nand->oobblock - 1)) >> 1));
-	} else {
- 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
-	}
-
-	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
-	/* Note: datasheet says it should automaticaly wrap to the */
-	/*       next OOB block, but it didn't work here. mf.      */
-	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
-		len256 = (ofs | 0x7) + 1 - ofs;
-		for (i = 0; i < len256; i++)
-			WRITE_NAND(buf[i], nandptr);
-
-		NanD_Command(nand, NAND_CMD_PAGEPROG);
-		NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-   		{ u_char ret_val;
-			do {
-				ret_val = READ_NAND(nandptr); /* wait till ready */
-			} while ((ret_val & 0x40) != 0x40);
-		}
-#endif
-		if (READ_NAND(nandptr) & 1) {
-			puts ("Error programming oob data\n");
-			/* There was an error */
-			NAND_DISABLE_CE(nand);  /* set pin high */
-			*retlen = 0;
-			return -1;
-		}
-		NanD_Command(nand, NAND_CMD_SEQIN);
-		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
-	}
-
-	if (nand->bus16) {
-		for (i = len256; i < len; i += 2) {
-			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
-		}
-	} else {
-		for (i = len256; i < len; i++)
-			WRITE_NAND(buf[i], nandptr);
-	}
-
-	NanD_Command(nand, NAND_CMD_PAGEPROG);
-	NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
-	{	u_char ret_val;
-		do {
-			ret_val = READ_NAND(nandptr); /* wait till ready */
-		} while ((ret_val & 0x40) != 0x40);
-	}
-#endif
-	if (READ_NAND(nandptr) & 1) {
-		puts ("Error programming oob data\n");
-		/* There was an error */
-		NAND_DISABLE_CE(nand);  /* set pin high */
-		*retlen = 0;
-		return -1;
-	}
-
-	NAND_DISABLE_CE(nand);  /* set pin high */
-	*retlen = len;
-	return 0;
-
-}
-
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
-{
-	/* This is defined as a structure so it will work on any system
-	 * using native endian jffs2 (the default).
-	 */
-	static struct jffs2_unknown_node clean_marker = {
-		JFFS2_MAGIC_BITMASK,
-		JFFS2_NODETYPE_CLEANMARKER,
-		8		/* 8 bytes in this node */
-	};
-	unsigned long nandptr;
-	struct Nand *mychip;
-	int ret = 0;
-
-	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
-		printf ("Offset and size must be sector aligned, erasesize = %d\n",
-			(int) nand->erasesize);
-		return -1;
-	}
-
-	nandptr = nand->IO_ADDR;
-
-	/* Select the NAND device */
-#ifdef CONFIG_OMAP1510
-	archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
-	NAND_WP_OFF();
-#endif
-    NAND_ENABLE_CE(nand);  /* set pin low */
-
-	/* Check the WP bit */
-	NanD_Command(nand, NAND_CMD_STATUS);
-	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-		printf ("nand_write_ecc: Device is write protected!!!\n");
-		ret = -1;
-		goto out;
-	}
-
-	/* Check the WP bit */
-	NanD_Command(nand, NAND_CMD_STATUS);
-	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
-		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
-		ret = -1;
-		goto out;
-	}
-
-	/* FIXME: Do nand in the background. Use timers or schedule_task() */
-	while(len) {
-		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
-		mychip = &nand->chips[ofs >> nand->chipshift];
-
-		/* always check for bad block first, genuine bad blocks
-		 * should _never_  be erased.
-		 */
-		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
-			/* Select the NAND device */
-			NAND_ENABLE_CE(nand);  /* set pin low */
-
-			NanD_Command(nand, NAND_CMD_ERASE1);
-			NanD_Address(nand, ADDR_PAGE, ofs);
-			NanD_Command(nand, NAND_CMD_ERASE2);
-
-			NanD_Command(nand, NAND_CMD_STATUS);
-
-#ifdef NAND_NO_RB
-			{	u_char ret_val;
-				do {
-					ret_val = READ_NAND(nandptr); /* wait till ready */
-				} while ((ret_val & 0x40) != 0x40);
-			}
-#endif
-			if (READ_NAND(nandptr) & 1) {
-				printf ("%s: Error erasing at 0x%lx\n",
-					__FUNCTION__, (long)ofs);
-				/* There was an error */
-				ret = -1;
-				goto out;
-			}
-			if (clean) {
-				int n;	/* return value not used */
-				int p, l;
-
-				/* clean marker position and size depend
-				 * on the page size, since 256 byte pages
-				 * only have 8 bytes of oob data
-				 */
-				if (nand->page256) {
-					p = NAND_JFFS2_OOB8_FSDAPOS;
-					l = NAND_JFFS2_OOB8_FSDALEN;
-				} else {
-					p = NAND_JFFS2_OOB16_FSDAPOS;
-					l = NAND_JFFS2_OOB16_FSDALEN;
-				}
-
-				ret = nand_write_oob(nand, ofs + p, l, &n,
-						     (u_char *)&clean_marker);
-				/* quit here if write failed */
-				if (ret)
-					goto out;
-			}
-		}
-		ofs += nand->erasesize;
-		len -= nand->erasesize;
-	}
-
-out:
-	/* De-select the NAND device */
-	NAND_DISABLE_CE(nand);  /* set pin high */
-#ifdef CONFIG_OMAP1510
-    	archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
-	NAND_WP_ON();
-#endif
-
-	return ret;
-}
-
-static inline int nandcheck(unsigned long potential, unsigned long physadr)
-{
-	return 0;
-}
-
-unsigned long nand_probe(unsigned long physadr)
-{
-	struct nand_chip *nand = NULL;
-	int i = 0, ChipID = 1;
-
-#ifdef CONFIG_MTD_NAND_ECC_JFFS2
-	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
-	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
-	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
-	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
-	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
-	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
-	oob_config.eccvalid_pos = 4;
-#else
-	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
-	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
-	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
-	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
-	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
-	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
-	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
-#endif
-	oob_config.badblock_pos = 5;
-
-	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
-		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
-			nand = &nand_dev_desc[i];
-			break;
-		}
-	}
-	if (!nand)
-		return (0);
-
-	memset((char *)nand, 0, sizeof(struct nand_chip));
-
-	nand->IO_ADDR = physadr;
-	nand->cache_page = -1;  /* init the cache page */
-	NanD_ScanChips(nand);
-
-	if (nand->totlen == 0) {
-		/* no chips found, clean up and quit */
-		memset((char *)nand, 0, sizeof(struct nand_chip));
-		nand->ChipID = NAND_ChipID_UNKNOWN;
-		return (0);
-	}
-
-	nand->ChipID = ChipID;
-	if (curr_device == -1)
-		curr_device = i;
-
-	nand->data_buf = malloc (nand->oobblock + nand->oobsize);
-	if (!nand->data_buf) {
-		puts ("Cannot allocate memory for data structures.\n");
-		return (0);
-	}
-
-	return (nand->totlen);
-}
-
-#ifdef CONFIG_MTD_NAND_ECC
-/*
- * Pre-calculated 256-way 1 byte column parity
- */
-static const u_char nand_ecc_precalc_table[] = {
-	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
-	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
-	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
-	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
-	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
-	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
-	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
-	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
-	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
-	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
-	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
-	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
-	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
-	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
-	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
-	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
-	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
-	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
-	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
-	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
-	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
-	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
-	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
-	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
-	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
-	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
-	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
-	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
-	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
-	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
-	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
-	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
-};
-
-
-/*
- * Creates non-inverted ECC code from line parity
- */
-static void nand_trans_result(u_char reg2, u_char reg3,
-	u_char *ecc_code)
-{
-	u_char a, b, i, tmp1, tmp2;
-
-	/* Initialize variables */
-	a = b = 0x80;
-	tmp1 = tmp2 = 0;
-
-	/* Calculate first ECC byte */
-	for (i = 0; i < 4; i++) {
-		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */
-			tmp1 |= b;
-		b >>= 1;
-		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */
-			tmp1 |= b;
-		b >>= 1;
-		a >>= 1;
-	}
-
-	/* Calculate second ECC byte */
-	b = 0x80;
-	for (i = 0; i < 4; i++) {
-		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */
-			tmp2 |= b;
-		b >>= 1;
-		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */
-			tmp2 |= b;
-		b >>= 1;
-		a >>= 1;
-	}
-
-	/* Store two of the ECC bytes */
-	ecc_code[0] = tmp1;
-	ecc_code[1] = tmp2;
-}
-
-/*
- * Calculate 3 byte ECC code for 256 byte block
- */
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
-{
-	u_char idx, reg1, reg3;
-	int j;
-
-	/* Initialize variables */
-	reg1 = reg3 = 0;
-	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
-
-	/* Build up column parity */
-	for(j = 0; j < 256; j++) {
-
-		/* Get CP0 - CP5 from table */
-		idx = nand_ecc_precalc_table[dat[j]];
-		reg1 ^= idx;
-
-		/* All bit XOR = 1 ? */
-		if (idx & 0x40) {
-			reg3 ^= (u_char) j;
-		}
-	}
-
-	/* Create non-inverted ECC code from line parity */
-	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
-
-	/* Calculate final ECC code */
-	ecc_code[0] = ~ecc_code[0];
-	ecc_code[1] = ~ecc_code[1];
-	ecc_code[2] = ((~reg1) << 2) | 0x03;
-}
-
-/*
- * Detect and correct a 1 bit error for 256 byte block
- */
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
-{
-	u_char a, b, c, d1, d2, d3, add, bit, i;
-
-	/* Do error detection */
-	d1 = calc_ecc[0] ^ read_ecc[0];
-	d2 = calc_ecc[1] ^ read_ecc[1];
-	d3 = calc_ecc[2] ^ read_ecc[2];
-
-	if ((d1 | d2 | d3) == 0) {
-		/* No errors */
-		return 0;
-	} else {
-		a = (d1 ^ (d1 >> 1)) & 0x55;
-		b = (d2 ^ (d2 >> 1)) & 0x55;
-		c = (d3 ^ (d3 >> 1)) & 0x54;
-
-		/* Found and will correct single bit error in the data */
-		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
-			c = 0x80;
-			add = 0;
-			a = 0x80;
-			for (i=0; i<4; i++) {
-				if (d1 & c)
-					add |= a;
-				c >>= 2;
-				a >>= 1;
-			}
-			c = 0x80;
-			for (i=0; i<4; i++) {
-				if (d2 & c)
-					add |= a;
-				c >>= 2;
-				a >>= 1;
-			}
-			bit = 0;
-			b = 0x04;
-			c = 0x80;
-			for (i=0; i<3; i++) {
-				if (d3 & c)
-					bit |= b;
-				c >>= 2;
-				b >>= 1;
-			}
-			b = 0x01;
-			a = dat[add];
-			a ^= (b << bit);
-			dat[add] = a;
-			return 1;
-		}
-		else {
-			i = 0;
-			while (d1) {
-				if (d1 & 0x01)
-					++i;
-				d1 >>= 1;
-			}
-			while (d2) {
-				if (d2 & 0x01)
-					++i;
-				d2 >>= 1;
-			}
-			while (d3) {
-				if (d3 & 0x01)
-					++i;
-				d3 >>= 1;
-			}
-			if (i == 1) {
-				/* ECC Code Error Correction */
-				read_ecc[0] = calc_ecc[0];
-				read_ecc[1] = calc_ecc[1];
-				read_ecc[2] = calc_ecc[2];
-				return 2;
-			}
-			else {
-				/* Uncorrectable Error */
-				return -1;
-			}
-		}
-	}
-
-	/* Should never happen */
-	return -1;
-}
-
-#endif
-
-#ifdef CONFIG_JFFS2_NAND
-
-int read_jffs2_nand(size_t start, size_t len,
-		    size_t * retlen, u_char * buf, int nanddev)
-{
-	return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
-		       start, len, retlen, buf);
-}
+U_BOOT_CMD(nboot, 4, 1, do_nandboot,
+	"nboot   - boot from NAND device\n", "loadAddr dev\n");
 
-#endif /* CONFIG_JFFS2_NAND */
 
+#endif				/* (CONFIG_COMMANDS & CFG_CMD_NAND) */
 
-#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */

+ 17 - 0
drivers/nand/Makefile

@@ -0,0 +1,17 @@
+include $(TOPDIR)/config.mk
+
+LIB := libnand.a
+
+OBJS := nand.o nand_base.o nand_ids.o nand_ecc.o nand_bbt.o
+all:	$(LIB)
+
+$(LIB):	$(OBJS)
+	$(AR) crv $@ $(OBJS)
+
+#########################################################################
+
+.depend:	Makefile $(OBJS:.o=.c)
+		$(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@
+
+sinclude .depend
+

+ 1782 - 0
drivers/nand/diskonchip.c

@@ -0,0 +1,1782 @@
+/* 
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ * 
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *  
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 
+	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 
+	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 
+	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /*  CONFIG_MTD_DOCPROBE_HIGH */
+	0xc8000, 0xca000, 0xcc000, 0xce000, 
+	0xd0000, 0xd2000, 0xd4000, 0xd6000,
+	0xd8000, 0xda000, 0xdc000, 0xde000, 
+	0xe0000, 0xe2000, 0xe4000, 0xe6000, 
+	0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+	0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+	0x2f000000,
+        0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+        0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+	0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+	void __iomem *virtadr;
+	unsigned long physadr;
+	u_char ChipID;
+	u_char CDSNControl;
+	int chips_per_floor; /* The number of chips detected on each floor */
+	int curfloor;
+	int curchip;
+	int mh0_page;
+	int mh1_page;
+	struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+   MediaHeader.  The spec says to just keep going, I think, but that's just
+   silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+   page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+   page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/* 
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+	int i, j, nerr, errpos[8];
+	uint8_t parity;
+	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+	/* Convert the ecc bytes into words */
+	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+	parity = ecc[1];
+
+	/* Initialize the syndrom buffer */
+	for (i = 0; i < NROOTS; i++)
+		s[i] = ds[0];
+	/* 
+	 *  Evaluate 
+	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+	 *  where x = alpha^(FCR + i)
+	 */
+	for(j = 1; j < NROOTS; j++) {
+		if(ds[j] == 0)
+			continue;
+		tmp = rs->index_of[ds[j]];
+		for(i = 0; i < NROOTS; i++)
+			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+	}
+
+	/* Calc s[i] = s[i] / alpha^(v + i) */
+	for (i = 0; i < NROOTS; i++) {
+		if (syn[i])
+ 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+	}
+	/* Call the decoder library */
+	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+	/* Incorrectable errors ? */
+	if (nerr < 0)
+		return nerr;
+
+	/* 
+	 * Correct the errors. The bitpositions are a bit of magic,
+	 * but they are given by the design of the de/encoder circuit
+	 * in the DoC ASIC's.
+	 */
+	for(i = 0;i < nerr; i++) {
+		int index, bitpos, pos = 1015 - errpos[i];
+		uint8_t val;
+		if (pos >= NB_DATA && pos < 1019)
+			continue;
+		if (pos < NB_DATA) {
+			/* extract bit position (MSB first) */
+			pos = 10 * (NB_DATA - 1 - pos) - 6;
+			/* now correct the following 10 bits. At most two bytes
+			   can be modified since pos is even */
+			index = (pos >> 3) ^ 1;
+			bitpos = pos & 7;
+			if ((index >= 0 && index < SECTOR_SIZE) || 
+			    index == (SECTOR_SIZE + 1)) {
+				val = (uint8_t) (errval[i] >> (2 + bitpos));
+				parity ^= val;
+				if (index < SECTOR_SIZE)
+					data[index] ^= val;
+			}
+			index = ((pos >> 3) + 1) ^ 1;
+			bitpos = (bitpos + 10) & 7;
+			if (bitpos == 0)
+				bitpos = 8;
+			if ((index >= 0 && index < SECTOR_SIZE) || 
+			    index == (SECTOR_SIZE + 1)) {
+				val = (uint8_t)(errval[i] << (8 - bitpos));
+				parity ^= val;
+				if (index < SECTOR_SIZE)
+					data[index] ^= val;
+			}
+		}
+	}
+	/* If the parity is wrong, no rescue possible */
+	return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+	volatile char dummy;
+	int i;
+	
+	for (i = 0; i < cycles; i++) {
+		if (DoC_is_Millennium(doc))
+			dummy = ReadDOC(doc->virtadr, NOP);
+		else if (DoC_is_MillenniumPlus(doc))
+			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+		else
+			dummy = ReadDOC(doc->virtadr, DOCStatus);
+	}
+	
+}
+
+#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+        void __iomem *docptr = doc->virtadr;
+	unsigned long timeo = jiffies + (HZ * 10);
+
+	if(debug) printk("_DoC_WaitReady...\n");
+	/* Out-of-line routine to wait for chip response */
+	if (DoC_is_MillenniumPlus(doc)) {
+		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+			if (time_after(jiffies, timeo)) {
+				printk("_DoC_WaitReady timed out.\n");
+				return -EIO;
+			}
+			udelay(1);
+			cond_resched();
+		}
+	} else {
+		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+			if (time_after(jiffies, timeo)) {
+				printk("_DoC_WaitReady timed out.\n");
+				return -EIO;
+			}
+			udelay(1);
+			cond_resched();
+		}
+	}
+
+	return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+        void __iomem *docptr = doc->virtadr;
+	int ret = 0;
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		DoC_Delay(doc, 4);
+
+		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+			/* Call the out-of-line routine to wait */
+			ret = _DoC_WaitReady(doc);
+	} else {
+		DoC_Delay(doc, 4);
+
+		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+			/* Call the out-of-line routine to wait */
+			ret = _DoC_WaitReady(doc);
+		DoC_Delay(doc, 2);
+	}
+
+	if(debug) printk("DoC_WaitReady OK\n");
+	return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	if(debug)printk("write_byte %02x\n", datum);
+	WriteDOC(datum, docptr, CDSNSlowIO);
+	WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	u_char ret;
+
+	ReadDOC(docptr, CDSNSlowIO);
+	DoC_Delay(doc, 2);
+	ret = ReadDOC(docptr, 2k_CDSN_IO);
+	if (debug) printk("read_byte returns %02x\n", ret);
+	return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd, 
+			     const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+	if (debug)printk("writebuf of %d bytes: ", len);
+	for (i=0; i < len; i++) {
+		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+	if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd, 
+			    u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+ 	int i;
+
+	if (debug)printk("readbuf of %d bytes: ", len);
+
+	for (i=0; i < len; i++) {
+		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+	}
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd, 
+			    u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+ 	int i;
+
+	if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+	if (unlikely((((unsigned long)buf)|len) & 3)) {
+		for (i=0; i < len; i++) {
+			*(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+		}
+	} else {
+		for (i=0; i < len; i+=4) {
+			*(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+		}
+	}
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd, 
+			      const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	for (i=0; i < len; i++)
+		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+			return -EFAULT;
+	return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	uint16_t ret;
+
+	doc200x_select_chip(mtd, nr);
+	doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+	this->write_byte(mtd, NAND_CMD_READID);
+	doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+	doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+	this->write_byte(mtd, 0);
+	doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+	ret = this->read_byte(mtd) << 8;
+	ret |= this->read_byte(mtd);
+
+	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+		/* First chip probe. See if we get same results by 32-bit access */
+		union {
+			uint32_t dword;
+			uint8_t byte[4];
+		} ident;
+		void __iomem *docptr = doc->virtadr;
+
+		doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+		doc2000_write_byte(mtd, NAND_CMD_READID);
+		doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+		doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+		doc2000_write_byte(mtd, 0);
+		doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+			this->read_buf = &doc2000_readbuf_dword;
+		}
+	}
+		
+	return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	uint16_t mfrid;
+	int i;
+
+	/* Max 4 chips per floor on DiskOnChip 2000 */
+	doc->chips_per_floor = 4;
+
+	/* Find out what the first chip is */
+	mfrid = doc200x_ident_chip(mtd, 0);
+
+	/* Find how many chips in each floor. */
+	for (i = 1; i < 4; i++) {
+		if (doc200x_ident_chip(mtd, i) != mfrid)
+			break;
+	}
+	doc->chips_per_floor = i;
+	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+	struct doc_priv *doc = this->priv;
+
+	int status;
+	
+	DoC_WaitReady(doc);
+	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	DoC_WaitReady(doc);
+	status = (int)this->read_byte(mtd);
+
+	return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	WriteDOC(datum, docptr, CDSNSlowIO);
+	WriteDOC(datum, docptr, Mil_CDSN_IO);
+	WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	//ReadDOC(docptr, CDSNSlowIO);
+	/* 11.4.5 -- delay twice to allow extended length cycle */
+	DoC_Delay(doc, 2);
+	ReadDOC(docptr, ReadPipeInit);
+	//return ReadDOC(docptr, Mil_CDSN_IO);
+	return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd, 
+			     const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	for (i=0; i < len; i++)
+		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+	/* Terminate write pipeline */
+	WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd, 
+			    u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	/* Start read pipeline */
+	ReadDOC(docptr, ReadPipeInit);
+
+	for (i=0; i < len-1; i++)
+		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+	/* Terminate read pipeline */
+	buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd, 
+			     const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	/* Start read pipeline */
+	ReadDOC(docptr, ReadPipeInit);
+
+	for (i=0; i < len-1; i++)
+		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+			ReadDOC(docptr, LastDataRead);
+			return i;
+		}
+	if (buf[i] != ReadDOC(docptr, LastDataRead))
+		return i;
+	return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	u_char ret;
+
+        ReadDOC(docptr, Mplus_ReadPipeInit);
+        ReadDOC(docptr, Mplus_ReadPipeInit);
+        ret = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug) printk("read_byte returns %02x\n", ret);
+	return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd, 
+			     const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)printk("writebuf of %d bytes: ", len);
+	for (i=0; i < len; i++) {
+		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+	if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd, 
+			    u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)printk("readbuf of %d bytes: ", len);
+
+	/* Start read pipeline */
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+
+	for (i=0; i < len-2; i++) {
+		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+
+	/* Terminate read pipeline */
+	buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug && i < 16)
+		printk("%02x ", buf[len-2]);
+	buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug && i < 16)
+		printk("%02x ", buf[len-1]);
+	if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd, 
+			     const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)printk("verifybuf of %d bytes: ", len);
+
+	/* Start read pipeline */
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+
+	for (i=0; i < len-2; i++)
+		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+			ReadDOC(docptr, Mplus_LastDataRead);
+			ReadDOC(docptr, Mplus_LastDataRead);
+			return i;
+		}
+	if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+		return len-2;
+	if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+		return len-1;
+	return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int floor = 0;
+
+	if(debug)printk("select chip (%d)\n", chip);
+
+	if (chip == -1) {
+		/* Disable flash internally */
+		WriteDOC(0, docptr, Mplus_FlashSelect);
+		return;
+	}
+
+	floor = chip / doc->chips_per_floor;
+	chip -= (floor *  doc->chips_per_floor);
+
+	/* Assert ChipEnable and deassert WriteProtect */
+	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	doc->curchip = chip;
+	doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int floor = 0;
+
+	if(debug)printk("select chip (%d)\n", chip);
+
+	if (chip == -1)
+		return;
+
+	floor = chip / doc->chips_per_floor;
+	chip -= (floor *  doc->chips_per_floor);
+
+	/* 11.4.4 -- deassert CE before changing chip */
+	doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+	WriteDOC(floor, docptr, FloorSelect);
+	WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+	doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+	doc->curchip = chip;
+	doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	switch(cmd) {
+	case NAND_CTL_SETNCE:
+		doc->CDSNControl |= CDSN_CTRL_CE;
+		break;
+	case NAND_CTL_CLRNCE:
+		doc->CDSNControl &= ~CDSN_CTRL_CE;
+		break;
+	case NAND_CTL_SETCLE:
+		doc->CDSNControl |= CDSN_CTRL_CLE;
+		break;
+	case NAND_CTL_CLRCLE:
+		doc->CDSNControl &= ~CDSN_CTRL_CLE;
+		break;
+	case NAND_CTL_SETALE:
+		doc->CDSNControl |= CDSN_CTRL_ALE;
+		break;
+	case NAND_CTL_CLRALE:
+		doc->CDSNControl &= ~CDSN_CTRL_ALE;
+		break;
+	case NAND_CTL_SETWP:
+		doc->CDSNControl |= CDSN_CTRL_WP;
+		break;
+	case NAND_CTL_CLRWP:
+		doc->CDSNControl &= ~CDSN_CTRL_WP;
+		break;
+	}
+	if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+	WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+	/* 11.4.3 -- 4 NOPs after CSDNControl write */
+	DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	/*
+	 * Must terminate write pipeline before sending any commands
+	 * to the device.
+	 */
+	if (command == NAND_CMD_PAGEPROG) {
+		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+	}
+
+	/*
+	 * Write out the command to the device.
+	 */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->oobblock) {
+			/* OOB area */
+			column -= mtd->oobblock;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+	}
+	WriteDOC(command, docptr, Mplus_FlashCmd);
+	WriteDOC(0, docptr, Mplus_WritePipeTerm);
+	WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+	if (column != -1 || page_addr != -1) {
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (this->options & NAND_BUSWIDTH_16)
+				column >>= 1;
+			WriteDOC(column, docptr, Mplus_FlashAddress);
+		}
+		if (page_addr != -1) {
+			WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+			WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+			/* One more address cycle for higher density devices */
+			if (this->chipsize & 0x0c000000) {
+				WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+				printk("high density\n");
+			}
+		}
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		/* deassert ALE */
+		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+			WriteDOC(0, docptr, Mplus_FlashControl);
+	}
+
+	/* 
+	 * program and erase have their own busy handlers
+	 * status and sequential in needs no delay
+	*/
+	switch (command) {
+
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+		return;
+
+	case NAND_CMD_RESET:
+		if (this->dev_ready)
+			break;
+		udelay(this->chip_delay);
+		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		while ( !(this->read_byte(mtd) & 0x40));
+		return;
+
+	/* This applies to read commands */
+	default:
+		/* 
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		*/
+		if (!this->dev_ready) {
+			udelay (this->chip_delay);
+			return;
+		}
+	}
+
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay (100);
+	/* wait until command is processed */
+	while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		/* 11.4.2 -- must NOP four times before checking FR/B# */
+		DoC_Delay(doc, 4);
+		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+			if(debug)
+				printk("not ready\n");
+			return 0;
+		}
+		if (debug)printk("was ready\n");
+		return 1;
+	} else {
+		/* 11.4.2 -- must NOP four times before checking FR/B# */
+		DoC_Delay(doc, 4);
+		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+			if(debug)
+				printk("not ready\n");
+			return 0;
+		}
+		/* 11.4.2 -- Must NOP twice if it's ready */
+		DoC_Delay(doc, 2);
+		if (debug)printk("was ready\n");
+		return 1;
+	}
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+	/* This is our last resort if we couldn't find or create a BBT.  Just
+	   pretend all blocks are good. */
+	return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	/* Prime the ECC engine */
+	switch(mode) {
+	case NAND_ECC_READ:
+		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+		break;
+	case NAND_ECC_WRITE:
+		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+		break;
+	}
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+
+	/* Prime the ECC engine */
+	switch(mode) {
+	case NAND_ECC_READ:
+		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+		break;
+	case NAND_ECC_WRITE:
+		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+		break;
+	}
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				 unsigned char *ecc_code)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	int i;
+	int emptymatch = 1;
+
+	/* flush the pipeline */
+	if (DoC_is_2000(doc)) {
+		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+	} else if (DoC_is_MillenniumPlus(doc)) {
+		WriteDOC(0, docptr, Mplus_NOP);
+		WriteDOC(0, docptr, Mplus_NOP);
+		WriteDOC(0, docptr, Mplus_NOP);
+	} else {
+		WriteDOC(0, docptr, NOP);
+		WriteDOC(0, docptr, NOP);
+		WriteDOC(0, docptr, NOP);
+	}
+
+	for (i = 0; i < 6; i++) {
+		if (DoC_is_MillenniumPlus(doc))
+			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+		else 
+			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+		if (ecc_code[i] != empty_write_ecc[i])
+			emptymatch = 0;
+	}
+	if (DoC_is_MillenniumPlus(doc))
+		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+	else
+		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
+	if (emptymatch) {
+		/* Note: this somewhat expensive test should not be triggered
+		   often.  It could be optimized away by examining the data in
+		   the writebuf routine, and remembering the result. */
+		for (i = 0; i < 512; i++) {
+			if (dat[i] == 0xff) continue;
+			emptymatch = 0;
+			break;
+		}
+	}
+	/* If emptymatch still =1, we do have an all-0xff data buffer.
+	   Return all-0xff ecc value instead of the computed one, so
+	   it'll look just like a freshly-erased page. */
+	if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+	return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+	int i, ret = 0;
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+        void __iomem *docptr = doc->virtadr;
+	volatile u_char dummy;
+	int emptymatch = 1;
+	
+	/* flush the pipeline */
+	if (DoC_is_2000(doc)) {
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+	} else if (DoC_is_MillenniumPlus(doc)) {
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+	} else {
+		dummy = ReadDOC(docptr, ECCConf);
+		dummy = ReadDOC(docptr, ECCConf);
+		dummy = ReadDOC(docptr, ECCConf);
+	}
+	
+	/* Error occured ? */
+	if (dummy & 0x80) {
+		for (i = 0; i < 6; i++) {
+			if (DoC_is_MillenniumPlus(doc))
+				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+			else
+				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+			if (calc_ecc[i] != empty_read_syndrome[i])
+				emptymatch = 0;
+		}
+		/* If emptymatch=1, the read syndrome is consistent with an
+		   all-0xff data and stored ecc block.  Check the stored ecc. */
+		if (emptymatch) {
+			for (i = 0; i < 6; i++) {
+				if (read_ecc[i] == 0xff) continue;
+				emptymatch = 0;
+				break;
+			}
+		}
+		/* If emptymatch still =1, check the data block. */
+		if (emptymatch) {
+		/* Note: this somewhat expensive test should not be triggered
+		   often.  It could be optimized away by examining the data in
+		   the readbuf routine, and remembering the result. */
+			for (i = 0; i < 512; i++) {
+				if (dat[i] == 0xff) continue;
+				emptymatch = 0;
+				break;
+			}
+		}
+		/* If emptymatch still =1, this is almost certainly a freshly-
+		   erased block, in which case the ECC will not come out right.
+		   We'll suppress the error and tell the caller everything's
+		   OK.  Because it is. */
+		if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+		if (ret > 0)
+			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+	}	
+	if (DoC_is_MillenniumPlus(doc))
+		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+	else
+		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+	if (no_ecc_failures && (ret == -1)) {
+		printk(KERN_ERR "suppressing ECC failure\n");
+		ret = 0;
+	}
+	return ret;
+}
+		
+//u_char mydatabuf[528];
+
+static struct nand_oobinfo doc200x_oobinfo = {
+        .useecc = MTD_NANDECC_AUTOPLACE,
+        .eccbytes = 6,
+        .eccpos = {0, 1, 2, 3, 4, 5},
+        .oobfree = { {8, 8} }
+};
+ 
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+   On sucessful return, buf will contain a copy of the media header for
+   further processing.  id is the string to scan for, and will presumably be
+   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
+   header.  The page #s of the found media headers are placed in mh0_page and
+   mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+				     const char *id, int findmirror)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+	int ret;
+	size_t retlen;
+
+	end = min(end, mtd->size); // paranoia
+	for (offs = 0; offs < end; offs += mtd->erasesize) {
+		ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+		if (retlen != mtd->oobblock) continue;
+		if (ret) {
+			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+				offs);
+		}
+		if (memcmp(buf, id, 6)) continue;
+		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+		if (doc->mh0_page == -1) {
+			doc->mh0_page = offs >> this->page_shift;
+			if (!findmirror) return 1;
+			continue;
+		}
+		doc->mh1_page = offs >> this->page_shift;
+		return 2;
+	}
+	if (doc->mh0_page == -1) {
+		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+		return 0;
+	}
+	/* Only one mediaheader was found.  We want buf to contain a
+	   mediaheader on return, so we'll have to re-read the one we found. */
+	offs = doc->mh0_page << this->page_shift;
+	ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+	if (retlen != mtd->oobblock) {
+		/* Insanity.  Give up. */
+		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+		return 0;
+	}
+	return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+				struct mtd_partition *parts)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	int ret = 0;
+	u_char *buf;
+	struct NFTLMediaHeader *mh;
+	const unsigned psize = 1 << this->page_shift;
+	unsigned blocks, maxblocks;
+	int offs, numheaders;
+
+	buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+	if (!buf) {
+		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+		return 0;
+	}
+	if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+	mh = (struct NFTLMediaHeader *) buf;
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//	if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+	printk(KERN_INFO "    DataOrgID        = %s\n"
+			 "    NumEraseUnits    = %d\n"
+			 "    FirstPhysicalEUN = %d\n"
+			 "    FormattedSize    = %d\n"
+			 "    UnitSizeFactor   = %d\n",
+		mh->DataOrgID, mh->NumEraseUnits,
+		mh->FirstPhysicalEUN, mh->FormattedSize,
+		mh->UnitSizeFactor);
+//#endif
+
+	blocks = mtd->size >> this->phys_erase_shift;
+	maxblocks = min(32768U, mtd->erasesize - psize);
+
+	if (mh->UnitSizeFactor == 0x00) {
+		/* Auto-determine UnitSizeFactor.  The constraints are:
+		   - There can be at most 32768 virtual blocks.
+		   - There can be at most (virtual block size - page size)
+		     virtual blocks (because MediaHeader+BBT must fit in 1).
+		*/
+		mh->UnitSizeFactor = 0xff;
+		while (blocks > maxblocks) {
+			blocks >>= 1;
+			maxblocks = min(32768U, (maxblocks << 1) + psize);
+			mh->UnitSizeFactor--;
+		}
+		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+	}
+
+	/* NOTE: The lines below modify internal variables of the NAND and MTD
+	   layers; variables with have already been configured by nand_scan.
+	   Unfortunately, we didn't know before this point what these values
+	   should be.  Thus, this code is somewhat dependant on the exact
+	   implementation of the NAND layer.  */
+	if (mh->UnitSizeFactor != 0xff) {
+		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+		blocks = mtd->size >> this->bbt_erase_shift;
+		maxblocks = min(32768U, mtd->erasesize - psize);
+	}
+
+	if (blocks > maxblocks) {
+		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
+		goto out;
+	}
+
+	/* Skip past the media headers. */
+	offs = max(doc->mh0_page, doc->mh1_page);
+	offs <<= this->page_shift;
+	offs += mtd->erasesize;
+
+	//parts[0].name = " DiskOnChip Boot / Media Header partition";
+	//parts[0].offset = 0;
+	//parts[0].size = offs;
+
+	parts[0].name = " DiskOnChip BDTL partition";
+	parts[0].offset = offs;
+	parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+	offs += parts[0].size;
+	if (offs < mtd->size) {
+		parts[1].name = " DiskOnChip Remainder partition";
+		parts[1].offset = offs;
+		parts[1].size = mtd->size - offs;
+		ret = 2;
+		goto out;
+	}
+	ret = 1;
+out:
+	kfree(buf);
+	return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+				 struct mtd_partition *parts)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	int ret = 0;
+	u_char *buf;
+	struct INFTLMediaHeader *mh;
+	struct INFTLPartition *ip;
+	int numparts = 0;
+	int blocks;
+	int vshift, lastvunit = 0;
+	int i;
+	int end = mtd->size;
+
+	if (inftl_bbt_write)
+		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+	buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+	if (!buf) {
+		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+		return 0;
+	}
+
+	if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+	mh = (struct INFTLMediaHeader *) buf;
+
+	mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+	mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+	mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+	mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+	mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+	mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+ 
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//	if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+	printk(KERN_INFO "    bootRecordID          = %s\n"
+			 "    NoOfBootImageBlocks   = %d\n"
+			 "    NoOfBinaryPartitions  = %d\n"
+			 "    NoOfBDTLPartitions    = %d\n"
+			 "    BlockMultiplerBits    = %d\n"
+			 "    FormatFlgs            = %d\n"
+			 "    OsakVersion           = %d.%d.%d.%d\n"
+			 "    PercentUsed           = %d\n",
+		mh->bootRecordID, mh->NoOfBootImageBlocks,
+		mh->NoOfBinaryPartitions,
+		mh->NoOfBDTLPartitions,
+		mh->BlockMultiplierBits, mh->FormatFlags,
+		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+		mh->PercentUsed);
+//#endif
+
+	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+	blocks = mtd->size >> vshift;
+	if (blocks > 32768) {
+		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
+		goto out;
+	}
+
+	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
+		goto out;
+	}
+
+	/* Scan the partitions */
+	for (i = 0; (i < 4); i++) {
+		ip = &(mh->Partitions[i]);
+		ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+		ip->firstUnit = le32_to_cpu(ip->firstUnit);
+		ip->lastUnit = le32_to_cpu(ip->lastUnit);
+		ip->flags = le32_to_cpu(ip->flags);
+		ip->spareUnits = le32_to_cpu(ip->spareUnits);
+		ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//		if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+		printk(KERN_INFO	"    PARTITION[%d] ->\n"
+			"        virtualUnits    = %d\n"
+			"        firstUnit       = %d\n"
+			"        lastUnit        = %d\n"
+			"        flags           = 0x%x\n"
+			"        spareUnits      = %d\n",
+			i, ip->virtualUnits, ip->firstUnit,
+			ip->lastUnit, ip->flags,
+			ip->spareUnits);
+//#endif
+
+/*
+		if ((i == 0) && (ip->firstUnit > 0)) {
+			parts[0].name = " DiskOnChip IPL / Media Header partition";
+			parts[0].offset = 0;
+			parts[0].size = mtd->erasesize * ip->firstUnit;
+			numparts = 1;
+		}
+*/
+
+		if (ip->flags & INFTL_BINARY)
+			parts[numparts].name = " DiskOnChip BDK partition";
+		else
+			parts[numparts].name = " DiskOnChip BDTL partition";
+		parts[numparts].offset = ip->firstUnit << vshift;
+		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+		numparts++;
+		if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+		if (ip->flags & INFTL_LAST) break;
+	}
+	lastvunit++;
+	if ((lastvunit << vshift) < end) {
+		parts[numparts].name = " DiskOnChip Remainder partition";
+		parts[numparts].offset = lastvunit << vshift;
+		parts[numparts].size = end - parts[numparts].offset;
+		numparts++;
+	}
+	ret = numparts;
+out:
+	kfree(buf);
+	return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+	int ret, numparts;
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	struct mtd_partition parts[2];
+
+	memset((char *) parts, 0, sizeof(parts));
+	/* On NFTL, we have to find the media headers before we can read the
+	   BBTs, since they're stored in the media header eraseblocks. */
+	numparts = nftl_partscan(mtd, parts);
+	if (!numparts) return -EIO;
+	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+				NAND_BBT_VERSION;
+	this->bbt_td->veroffs = 7;
+	this->bbt_td->pages[0] = doc->mh0_page + 1;
+	if (doc->mh1_page != -1) {
+		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+					NAND_BBT_VERSION;
+		this->bbt_md->veroffs = 7;
+		this->bbt_md->pages[0] = doc->mh1_page + 1;
+	} else {
+		this->bbt_md = NULL;
+	}
+
+	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+	   At least as nand_bbt.c is currently written. */
+	if ((ret = nand_scan_bbt(mtd, NULL)))
+		return ret;
+	add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+	if (!no_autopart)
+		add_mtd_partitions(mtd, parts, numparts);
+#endif
+	return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+	int ret, numparts;
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+	struct mtd_partition parts[5];
+
+	if (this->numchips > doc->chips_per_floor) {
+		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+		return -EIO;
+	}
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+		if (inftl_bbt_write)
+			this->bbt_td->options |= NAND_BBT_WRITE;
+		this->bbt_td->pages[0] = 2;
+		this->bbt_md = NULL;
+	} else {
+		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+					NAND_BBT_VERSION;
+		if (inftl_bbt_write)
+			this->bbt_td->options |= NAND_BBT_WRITE;
+		this->bbt_td->offs = 8;
+		this->bbt_td->len = 8;
+		this->bbt_td->veroffs = 7;
+		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+		this->bbt_td->reserved_block_code = 0x01;
+		this->bbt_td->pattern = "MSYS_BBT";
+
+		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+					NAND_BBT_VERSION;
+		if (inftl_bbt_write)
+			this->bbt_md->options |= NAND_BBT_WRITE;
+		this->bbt_md->offs = 8;
+		this->bbt_md->len = 8;
+		this->bbt_md->veroffs = 7;
+		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+		this->bbt_md->reserved_block_code = 0x01;
+		this->bbt_md->pattern = "TBB_SYSM";
+	}
+
+	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+	   At least as nand_bbt.c is currently written. */
+	if ((ret = nand_scan_bbt(mtd, NULL)))
+		return ret;
+	memset((char *) parts, 0, sizeof(parts));
+	numparts = inftl_partscan(mtd, parts);
+	/* At least for now, require the INFTL Media Header.  We could probably
+	   do without it for non-INFTL use, since all it gives us is
+	   autopartitioning, but I want to give it more thought. */
+	if (!numparts) return -EIO;
+	add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+	if (!no_autopart)
+		add_mtd_partitions(mtd, parts, numparts);
+#endif
+	return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+
+	this->write_byte = doc2000_write_byte;
+	this->read_byte = doc2000_read_byte;
+	this->write_buf = doc2000_writebuf;
+	this->read_buf = doc2000_readbuf;
+	this->verify_buf = doc2000_verifybuf;
+	this->scan_bbt = nftl_scan_bbt;
+
+	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+	doc2000_count_chips(mtd);
+	mtd->name = "DiskOnChip 2000 (NFTL Model)";
+	return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+
+	this->write_byte = doc2001_write_byte;
+	this->read_byte = doc2001_read_byte;
+	this->write_buf = doc2001_writebuf;
+	this->read_buf = doc2001_readbuf;
+	this->verify_buf = doc2001_verifybuf;
+
+	ReadDOC(doc->virtadr, ChipID);
+	ReadDOC(doc->virtadr, ChipID);
+	ReadDOC(doc->virtadr, ChipID);
+	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+		/* It's not a Millennium; it's one of the newer
+		   DiskOnChip 2000 units with a similar ASIC. 
+		   Treat it like a Millennium, except that it
+		   can have multiple chips. */
+		doc2000_count_chips(mtd);
+		mtd->name = "DiskOnChip 2000 (INFTL Model)";
+		this->scan_bbt = inftl_scan_bbt;
+		return (4 * doc->chips_per_floor);
+	} else {
+		/* Bog-standard Millennium */
+		doc->chips_per_floor = 1;
+		mtd->name = "DiskOnChip Millennium";
+		this->scan_bbt = nftl_scan_bbt;
+		return 1;
+	}
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	struct doc_priv *doc = this->priv;
+
+	this->write_byte = NULL;
+	this->read_byte = doc2001plus_read_byte;
+	this->write_buf = doc2001plus_writebuf;
+	this->read_buf = doc2001plus_readbuf;
+	this->verify_buf = doc2001plus_verifybuf;
+	this->scan_bbt = inftl_scan_bbt;
+	this->hwcontrol = NULL;
+	this->select_chip = doc2001plus_select_chip;
+	this->cmdfunc = doc2001plus_command;
+	this->enable_hwecc = doc2001plus_enable_hwecc;
+
+	doc->chips_per_floor = 1;
+	mtd->name = "DiskOnChip Millennium Plus";
+
+	return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+	unsigned char ChipID;
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	struct doc_priv *doc;
+	void __iomem *virtadr;
+	unsigned char save_control;
+	unsigned char tmp, tmpb, tmpc;
+	int reg, len, numchips;
+	int ret = 0;
+
+	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+	if (!virtadr) {
+		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+		return -EIO;
+	}
+
+	/* It's not possible to cleanly detect the DiskOnChip - the
+	 * bootup procedure will put the device into reset mode, and
+	 * it's not possible to talk to it without actually writing
+	 * to the DOCControl register. So we store the current contents
+	 * of the DOCControl register's location, in case we later decide
+	 * that it's not a DiskOnChip, and want to put it back how we
+	 * found it. 
+	 */
+	save_control = ReadDOC(virtadr, DOCControl);
+
+	/* Reset the DiskOnChip ASIC */
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+		 virtadr, DOCControl);
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+		 virtadr, DOCControl);
+
+	/* Enable the DiskOnChip ASIC */
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+		 virtadr, DOCControl);
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+		 virtadr, DOCControl);
+
+	ChipID = ReadDOC(virtadr, ChipID);
+
+	switch(ChipID) {
+	case DOC_ChipID_Doc2k:
+		reg = DoC_2k_ECCStatus;
+		break;
+	case DOC_ChipID_DocMil:
+		reg = DoC_ECCConf;
+		break;
+	case DOC_ChipID_DocMilPlus16:
+	case DOC_ChipID_DocMilPlus32:
+	case 0:
+		/* Possible Millennium Plus, need to do more checks */
+		/* Possibly release from power down mode */
+		for (tmp = 0; (tmp < 4); tmp++)
+			ReadDOC(virtadr, Mplus_Power);
+
+		/* Reset the Millennium Plus ASIC */
+		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+			DOC_MODE_BDECT;
+		WriteDOC(tmp, virtadr, Mplus_DOCControl);
+		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+		mdelay(1);
+		/* Enable the Millennium Plus ASIC */
+		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+			DOC_MODE_BDECT;
+		WriteDOC(tmp, virtadr, Mplus_DOCControl);
+		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+		mdelay(1);
+
+		ChipID = ReadDOC(virtadr, ChipID);
+
+		switch (ChipID) {
+		case DOC_ChipID_DocMilPlus16:
+			reg = DoC_Mplus_Toggle;
+			break;
+		case DOC_ChipID_DocMilPlus32:
+			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+		default:
+			ret = -ENODEV;
+			goto notfound;
+		}
+		break;
+
+	default:
+		ret = -ENODEV;
+		goto notfound;
+	}
+	/* Check the TOGGLE bit in the ECC register */
+	tmp  = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	if ((tmp == tmpb) || (tmp != tmpc)) {
+		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+		ret = -ENODEV;
+		goto notfound;
+	}
+
+	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+		unsigned char oldval;
+		unsigned char newval;
+		nand = mtd->priv;
+		doc = nand->priv;
+		/* Use the alias resolution register to determine if this is
+		   in fact the same DOC aliased to a new address.  If writes
+		   to one chip's alias resolution register change the value on
+		   the other chip, they're the same chip. */
+		if (ChipID == DOC_ChipID_DocMilPlus16) {
+			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+			newval = ReadDOC(virtadr, Mplus_AliasResolution);
+		} else {
+			oldval = ReadDOC(doc->virtadr, AliasResolution);
+			newval = ReadDOC(virtadr, AliasResolution);
+		}
+		if (oldval != newval)
+			continue;
+		if (ChipID == DOC_ChipID_DocMilPlus16) {
+			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+			WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
+		} else {
+			WriteDOC(~newval, virtadr, AliasResolution);
+			oldval = ReadDOC(doc->virtadr, AliasResolution);
+			WriteDOC(newval, virtadr, AliasResolution); // restore it
+		}
+		newval = ~newval;
+		if (oldval == newval) {
+			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+			goto notfound;
+		}
+	}
+
+	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+	len = sizeof(struct mtd_info) +
+	      sizeof(struct nand_chip) +
+	      sizeof(struct doc_priv) +
+	      (2 * sizeof(struct nand_bbt_descr));
+	mtd =  kmalloc(len, GFP_KERNEL);
+	if (!mtd) {
+		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+		ret = -ENOMEM;
+		goto fail;
+	}
+	memset(mtd, 0, len);
+
+	nand			= (struct nand_chip *) (mtd + 1);
+	doc			= (struct doc_priv *) (nand + 1);
+	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
+	nand->bbt_md		= nand->bbt_td + 1;
+
+	mtd->priv		= nand;
+	mtd->owner		= THIS_MODULE;
+
+	nand->priv		= doc;
+	nand->select_chip	= doc200x_select_chip;
+	nand->hwcontrol		= doc200x_hwcontrol;
+	nand->dev_ready		= doc200x_dev_ready;
+	nand->waitfunc		= doc200x_wait;
+	nand->block_bad		= doc200x_block_bad;
+	nand->enable_hwecc	= doc200x_enable_hwecc;
+	nand->calculate_ecc	= doc200x_calculate_ecc;
+	nand->correct_data	= doc200x_correct_data;
+
+	nand->autooob		= &doc200x_oobinfo;
+	nand->eccmode		= NAND_ECC_HW6_512;
+	nand->options		= NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+	doc->physadr		= physadr;
+	doc->virtadr		= virtadr;
+	doc->ChipID		= ChipID;
+	doc->curfloor		= -1;
+	doc->curchip		= -1;
+	doc->mh0_page		= -1;
+	doc->mh1_page		= -1;
+	doc->nextdoc		= doclist;
+
+	if (ChipID == DOC_ChipID_Doc2k)
+		numchips = doc2000_init(mtd);
+	else if (ChipID == DOC_ChipID_DocMilPlus16)
+		numchips = doc2001plus_init(mtd);
+	else
+		numchips = doc2001_init(mtd);
+
+	if ((ret = nand_scan(mtd, numchips))) {
+		/* DBB note: i believe nand_release is necessary here, as
+		   buffers may have been allocated in nand_base.  Check with
+		   Thomas. FIX ME! */
+		/* nand_release will call del_mtd_device, but we haven't yet
+		   added it.  This is handled without incident by
+		   del_mtd_device, as far as I can tell. */
+		nand_release(mtd);
+		kfree(mtd);
+		goto fail;
+	}
+
+	/* Success! */
+	doclist = mtd;
+	return 0;
+
+notfound:
+	/* Put back the contents of the DOCControl register, in case it's not
+	   actually a DiskOnChip.  */
+	WriteDOC(save_control, virtadr, DOCControl);
+fail:
+	iounmap(virtadr);
+	return ret;
+}
+
+static void release_nanddoc(void)
+{
+ 	struct mtd_info *mtd, *nextmtd;
+	struct nand_chip *nand;
+	struct doc_priv *doc;
+
+	for (mtd = doclist; mtd; mtd = nextmtd) {
+		nand = mtd->priv;
+		doc = nand->priv;
+
+		nextmtd = doc->nextdoc;
+		nand_release(mtd);
+		iounmap(doc->virtadr);
+		kfree(mtd);
+	}
+}
+
+static int __init init_nanddoc(void)
+{
+	int i, ret = 0;
+
+	/* We could create the decoder on demand, if memory is a concern.
+	 * This way we have it handy, if an error happens 
+	 *
+	 * Symbolsize is 10 (bits)
+	 * Primitve polynomial is x^10+x^3+1
+	 * first consecutive root is 510
+	 * primitve element to generate roots = 1
+	 * generator polinomial degree = 4
+	 */
+	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+ 	if (!rs_decoder) {
+		printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+		return -ENOMEM;
+	}
+
+	if (doc_config_location) {
+		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+		ret = doc_probe(doc_config_location);
+		if (ret < 0)
+			goto outerr;
+	} else {
+		for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+			doc_probe(doc_locations[i]);
+		}
+	}
+	/* No banner message any more. Print a message if no DiskOnChip
+	   found, so the user knows we at least tried. */
+	if (!doclist) {
+		printk(KERN_INFO "No valid DiskOnChip devices found\n");
+		ret = -ENODEV;
+		goto outerr;
+	}
+	return 0;
+outerr:
+	free_rs(rs_decoder);
+	return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+	/* Cleanup the nand/DoC resources */
+	release_nanddoc();
+
+	/* Free the reed solomon resources */
+	if (rs_decoder) {
+		free_rs(rs_decoder);
+	}
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");

+ 71 - 0
drivers/nand/nand.c

@@ -0,0 +1,71 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <nand.h>
+
+#ifndef CFG_NAND_BASE_LIST
+#define CFG_NAND_BASE_LIST { CFG_NAND_BASE }
+#endif
+
+int nand_curr_device = -1;
+nand_info_t nand_info[CFG_MAX_NAND_DEVICE];
+
+static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE];
+static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST;
+
+static const char default_nand_name[] = "nand";
+
+extern void board_nand_init(struct nand_chip *nand);
+
+static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand,
+			   ulong base_addr)
+{
+	mtd->priv = nand;
+
+	nand->IO_ADDR_R = nand->IO_ADDR_W = base_addr;
+	board_nand_init(nand);
+
+	if (nand_scan(mtd, 1) == 0) {
+		if (!mtd->name)
+			mtd->name = default_nand_name;
+	} else
+		mtd->name = NULL;
+
+}
+
+void nand_init(void)
+{
+	int i;
+
+	for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+		nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]);
+		if (nand_curr_device == -1)
+			nand_curr_device = i;
+	}
+}
+
+#endif

+ 2630 - 0
drivers/nand/nand_base.c

@@ -0,0 +1,2630 @@
+/*
+ *  drivers/mtd/nand.c
+ *
+ *  Overview:
+ *   This is the generic MTD driver for NAND flash devices. It should be
+ *   capable of working with almost all NAND chips currently available.
+ *   Basic support for AG-AND chips is provided.
+ *   
+ *	Additional technical information is available on
+ *	http://www.linux-mtd.infradead.org/tech/nand.html
+ *	
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 		  2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  02-08-2004  tglx: support for strange chips, which cannot auto increment 
+ *		pages on read / read_oob
+ *
+ *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes
+ *		pointed this out, as he marked an auto increment capable chip
+ *		as NOAUTOINCR in the board driver.
+ *		Make reads over block boundaries work too
+ *
+ *  04-14-2004	tglx: first working version for 2k page size chips
+ *  
+ *  05-19-2004  tglx: Basic support for Renesas AG-AND chips
+ *
+ *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared
+ *		among multiple independend devices. Suggestions and initial patch
+ *		from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ *	David Woodhouse for adding multichip support  
+ *	
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ * TODO:
+ *	Enable cached programming for 2k page size chips
+ *	Check, if mtd->ecctype should be set to MTD_ECC_HW
+ *	if we have HW ecc support.
+ *	The AG-AND chips have nice features for speed improvement,
+ *	which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/* XXX U-BOOT XXX */
+#if 0
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+#else
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <watchdog.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+
+#ifdef CONFIG_JFFS2_NAND
+#include <jffs2/jffs2.h>
+#endif
+
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+	.useecc = MTD_NANDECC_AUTOPLACE,
+	.eccbytes = 3,
+	.eccpos = {0, 1, 2},
+	.oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+	.useecc = MTD_NANDECC_AUTOPLACE,
+	.eccbytes = 6,
+	.eccpos = {0, 1, 2, 3, 6, 7},
+	.oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+	.useecc = MTD_NANDECC_AUTOPLACE,
+	.eccbytes = 24,
+	.eccpos = {
+		40, 41, 42, 43, 44, 45, 46, 47, 
+		48, 49, 50, 51, 52, 53, 54, 55, 
+		56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+			  size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+			unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+			unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+		struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+		
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd:	MTD device structure
+ * 
+ * Deselect, release chip lock and wake up anyone waiting on the device 
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_release_device (struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+
+	/* De-select the NAND device */
+	this->select_chip(mtd, -1);
+	/* Do we have a hardware controller ? */
+	if (this->controller) {
+		spin_lock(&this->controller->lock);
+		this->controller->active = NULL;
+		spin_unlock(&this->controller->lock);
+	}
+	/* Release the chip */
+	spin_lock (&this->chip_lock);
+	this->state = FL_READY;
+	wake_up (&this->wq);
+	spin_unlock (&this->chip_lock);
+}
+#else
+#define nand_release_device(mtd)	do {} while(0)
+#endif
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd:	MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd:	MTD device structure
+ * @byte:	pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd->priv;
+	writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd:	MTD device structure
+ *
+ * Default read function for 16bit buswith with 
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd:	MTD device structure
+ * @byte:	pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd->priv;
+	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd:	MTD device structure
+ *
+ * Default read function for 16bit buswith without 
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd:	MTD device structure
+ * @word:	data word to write
+ *
+ * Default write function for 16bit buswith without 
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+	struct nand_chip *this = mtd->priv;
+	writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd:	MTD device structure
+ * @chip:	chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *this = mtd->priv;
+	switch(chip) {
+	case -1:
+		this->hwcontrol(mtd, NAND_CTL_CLRNCE);	
+		break;
+	case 0:
+		this->hwcontrol(mtd, NAND_CTL_SETNCE);
+		break;
+
+	default:
+		BUG();
+	}
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+
+	for (i=0; i<len; i++)
+		writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer 
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+
+	for (i=0; i<len; i++)
+		buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer 
+ * @mtd:	MTD device structure
+ * @buf:	buffer containing the data to compare
+ * @len:	number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+
+	for (i=0; i<len; i++)
+		if (buf[i] != readb(this->IO_ADDR_R))
+			return -EFAULT;
+
+	return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+	u16 *p = (u16 *) buf;
+	len >>= 1;
+	
+	for (i=0; i<len; i++)
+		writew(p[i], this->IO_ADDR_W);
+		
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer 
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+	u16 *p = (u16 *) buf;
+	len >>= 1;
+
+	for (i=0; i<len; i++)
+		p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer 
+ * @mtd:	MTD device structure
+ * @buf:	buffer containing the data to compare
+ * @len:	number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd->priv;
+	u16 *p = (u16 *) buf;
+	len >>= 1;
+
+	for (i=0; i<len; i++)
+		if (p[i] != readw(this->IO_ADDR_R))
+			return -EFAULT;
+
+	return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd:	MTD device structure
+ * @ofs:	offset from device start
+ * @getchip:	0, if the chip is already selected
+ *
+ * Check, if the block is bad. 
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+	int page, chipnr, res = 0;
+	struct nand_chip *this = mtd->priv;
+	u16 bad;
+
+	if (getchip) {
+		page = (int)(ofs >> this->page_shift);
+		chipnr = (int)(ofs >> this->chip_shift);
+
+		/* Grab the lock and see if the device is available */
+		nand_get_device (this, mtd, FL_READING);
+
+		/* Select the NAND device */
+		this->select_chip(mtd, chipnr);
+	} else 
+		page = (int) ofs;	
+
+	if (this->options & NAND_BUSWIDTH_16) {
+		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+		bad = cpu_to_le16(this->read_word(mtd));
+		if (this->badblockpos & 0x1)
+			bad >>= 1;
+		if ((bad & 0xFF) != 0xff)
+			res = 1;
+	} else {
+		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+		if (this->read_byte(mtd) != 0xff)
+			res = 1;
+	}
+		
+	if (getchip) {
+		/* Deselect and wake up anyone waiting on the device */
+		nand_release_device(mtd);
+	}	
+	
+	return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd:	MTD device structure
+ * @ofs:	offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *this = mtd->priv;
+	u_char buf[2] = {0, 0};
+	size_t	retlen;
+	int block;
+	
+	/* Get block number */
+	block = ((int) ofs) >> this->bbt_erase_shift;
+	this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+	/* Do we have a flash based bad block table ? */
+	if (this->options & NAND_USE_FLASH_BBT)
+		return nand_update_bbt (mtd, ofs);
+		
+	/* We write two bytes, so we dont have to mess with 16 bit access */
+	ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+	return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/** 
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd:	MTD device structure
+ * Check, if the device is write protected 
+ *
+ * The function expects, that the device is already selected 
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	/* Check the WP bit */
+	this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+	return (this->read_byte(mtd) & 0x80) ? 0 : 1; 
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd:	MTD device structure
+ * @ofs:	offset from device start
+ * @getchip:	0, if the chip is already selected
+ * @allowbbt:	1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+	struct nand_chip *this = mtd->priv;
+	
+	if (!this->bbt)
+		return this->block_bad(mtd, ofs, getchip);
+	
+	/* Return info from the table */
+	return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd:	MTD device structure
+ * @command:	the command to be sent
+ * @column:	the column address for this command, -1 if none
+ * @page_addr:	the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+	register struct nand_chip *this = mtd->priv;
+
+	/* Begin command latch cycle */
+	this->hwcontrol(mtd, NAND_CTL_SETCLE);
+	/*
+	 * Write out the command to the device.
+	 */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->oobblock) {
+			/* OOB area */
+			column -= mtd->oobblock;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		this->write_byte(mtd, readcmd);
+	}
+	this->write_byte(mtd, command);
+
+	/* Set ALE and clear CLE to start address cycle */
+	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+	if (column != -1 || page_addr != -1) {
+		this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (this->options & NAND_BUSWIDTH_16)
+				column >>= 1;
+			this->write_byte(mtd, column);
+		}
+		if (page_addr != -1) {
+			this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+			/* One more address cycle for devices > 32MiB */
+			if (this->chipsize > (32 << 20))
+				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+		}
+		/* Latch in address */
+		this->hwcontrol(mtd, NAND_CTL_CLRALE);
+	}
+	
+	/* 
+	 * program and erase have their own busy handlers 
+	 * status and sequential in needs no delay
+	*/
+	switch (command) {
+			
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+		return;
+
+	case NAND_CMD_RESET:
+		if (this->dev_ready)	
+			break;
+		udelay(this->chip_delay);
+		this->hwcontrol(mtd, NAND_CTL_SETCLE);
+		this->write_byte(mtd, NAND_CMD_STATUS);
+		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+		while ( !(this->read_byte(mtd) & 0x40));
+		return;
+
+	/* This applies to read commands */	
+	default:
+		/* 
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		*/
+		if (!this->dev_ready) {
+			udelay (this->chip_delay);
+			return;
+		}	
+	}
+	
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay (100);
+	/* wait until command is processed */
+	while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd:	MTD device structure
+ * @command:	the command to be sent
+ * @column:	the column address for this command, -1 if none
+ * @page_addr:	the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+	register struct nand_chip *this = mtd->priv;
+
+	/* Emulate NAND_CMD_READOOB */
+	if (command == NAND_CMD_READOOB) {
+		column += mtd->oobblock;
+		command = NAND_CMD_READ0;
+	}
+	
+		
+	/* Begin command latch cycle */
+	this->hwcontrol(mtd, NAND_CTL_SETCLE);
+	/* Write out the command to the device. */
+	this->write_byte(mtd, command);
+	/* End command latch cycle */
+	this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+	if (column != -1 || page_addr != -1) {
+		this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (this->options & NAND_BUSWIDTH_16)
+				column >>= 1;
+			this->write_byte(mtd, column & 0xff);
+			this->write_byte(mtd, column >> 8);
+		}	
+		if (page_addr != -1) {
+			this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+			/* One more address cycle for devices > 128MiB */
+			if (this->chipsize > (128 << 20))
+				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+		}
+		/* Latch in address */
+		this->hwcontrol(mtd, NAND_CTL_CLRALE);
+	}
+	
+	/* 
+	 * program and erase have their own busy handlers 
+	 * status and sequential in needs no delay
+	*/
+	switch (command) {
+			
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+		return;
+
+
+	case NAND_CMD_RESET:
+		if (this->dev_ready)	
+			break;
+		udelay(this->chip_delay);
+		this->hwcontrol(mtd, NAND_CTL_SETCLE);
+		this->write_byte(mtd, NAND_CMD_STATUS);
+		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+		while ( !(this->read_byte(mtd) & 0x40));
+		return;
+
+	case NAND_CMD_READ0:
+		/* Begin command latch cycle */
+		this->hwcontrol(mtd, NAND_CTL_SETCLE);
+		/* Write out the start read command */
+		this->write_byte(mtd, NAND_CMD_READSTART);
+		/* End command latch cycle */
+		this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+		/* Fall through into ready check */
+		
+	/* This applies to read commands */	
+	default:
+		/* 
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		*/
+		if (!this->dev_ready) {
+			udelay (this->chip_delay);
+			return;
+		}	
+	}
+	
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay (100);
+	/* wait until command is processed */
+	while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this:	the nand chip descriptor
+ * @mtd:	MTD device structure
+ * @new_state:	the state which is requested 
+ *
+ * Get the device and lock it for exclusive access
+ */
+/* XXX U-BOOT XXX */
+#if 0
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+	struct nand_chip *active = this;
+
+	DECLARE_WAITQUEUE (wait, current);
+
+	/* 
+	 * Grab the lock and see if the device is available 
+	*/
+retry:
+	/* Hardware controller shared among independend devices */
+	if (this->controller) {
+		spin_lock (&this->controller->lock);
+		if (this->controller->active)
+			active = this->controller->active;
+		else
+			this->controller->active = this;
+		spin_unlock (&this->controller->lock);
+	}
+	
+	if (active == this) {
+		spin_lock (&this->chip_lock);
+		if (this->state == FL_READY) {
+			this->state = new_state;
+			spin_unlock (&this->chip_lock);
+			return;
+		}
+	}	
+	set_current_state (TASK_UNINTERRUPTIBLE);
+	add_wait_queue (&active->wq, &wait);
+	spin_unlock (&active->chip_lock);
+	schedule ();
+	remove_wait_queue (&active->wq, &wait);
+	goto retry;
+}
+#else
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
+#endif
+
+/**
+ * nand_wait - [DEFAULT]  wait until the command is done
+ * @mtd:	MTD device structure
+ * @this:	NAND chip structure
+ * @state:	state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to 
+ * general NAND and SmartMedia specs
+ *
+*/
+/* XXX U-BOOT XXX */
+#if 0
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+	unsigned long	timeo = jiffies;
+	int	status;
+	
+	if (state == FL_ERASING)
+		 timeo += (HZ * 400) / 1000;
+	else
+		 timeo += (HZ * 20) / 1000;
+
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay (100);
+
+	if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+		this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+	else	
+		this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+	while (time_before(jiffies, timeo)) {		
+		/* Check, if we were interrupted */
+		if (this->state != state)
+			return 0;
+
+		if (this->dev_ready) {
+			if (this->dev_ready(mtd))
+				break;	
+		} else {
+			if (this->read_byte(mtd) & NAND_STATUS_READY)
+				break;
+		}
+		yield ();
+	}
+	status = (int) this->read_byte(mtd);
+	return status;
+
+	return 0;
+}
+#else
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+	/* TODO */
+	return 0;
+}
+#endif
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd:	MTD device structure
+ * @this:	NAND chip structure
+ * @page: 	startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf:	out of band data buffer
+ * @oobsel:	out of band selecttion structre
+ * @cached:	1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, 
+	u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached)
+{
+	int 	i, status;
+	u_char	ecc_code[32];
+	int	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+	int  	*oob_config = oobsel->eccpos;
+	int	datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+	int	eccbytes = 0;
+	
+	/* FIXME: Enable cached programming */
+	cached = 0;
+	
+	/* Send command to begin auto page programming */
+	this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+	/* Write out complete page of data, take care of eccmode */
+	switch (eccmode) {
+	/* No ecc, write all */
+	case NAND_ECC_NONE:
+		printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+		this->write_buf(mtd, this->data_poi, mtd->oobblock);
+		break;
+		
+	/* Software ecc 3/256, write all */
+	case NAND_ECC_SOFT:
+		for (; eccsteps; eccsteps--) {
+			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+			for (i = 0; i < 3; i++, eccidx++)
+				oob_buf[oob_config[eccidx]] = ecc_code[i];
+			datidx += this->eccsize;
+		}
+		this->write_buf(mtd, this->data_poi, mtd->oobblock);
+		break;
+	default:
+		eccbytes = this->eccbytes;
+		for (; eccsteps; eccsteps--) {
+			/* enable hardware ecc logic for write */
+			this->enable_hwecc(mtd, NAND_ECC_WRITE);
+			this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+			for (i = 0; i < eccbytes; i++, eccidx++)
+				oob_buf[oob_config[eccidx]] = ecc_code[i];
+			/* If the hardware ecc provides syndromes then
+			 * the ecc code must be written immidiately after
+			 * the data bytes (words) */
+			if (this->options & NAND_HWECC_SYNDROME)
+				this->write_buf(mtd, ecc_code, eccbytes);
+			datidx += this->eccsize;
+		}
+		break;
+	}
+										
+	/* Write out OOB data */
+	if (this->options & NAND_HWECC_SYNDROME)
+		this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+	else 
+		this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+	/* Send command to actually program the data */
+	this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+	if (!cached) {
+		/* call wait ready function */
+		status = this->waitfunc (mtd, this, FL_WRITING);
+		/* See if device thinks it succeeded */
+		if (status & 0x01) {
+			DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+			return -EIO;
+		}
+	} else {
+		/* FIXME: Implement cached programming ! */
+		/* wait until cache is ready*/
+		// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+	}
+	return 0;	
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd:	MTD device structure
+ * @this:	NAND chip structure
+ * @page: 	startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages:	number of pages to verify
+ * @oob_buf:	out of band data buffer
+ * @oobsel:	out of band selecttion structre
+ * @chipnr:	number of the current chip
+ * @oobmode:	1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that 
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased 
+ * or the page is becoming unusable due to wear. The read with ECC would catch 
+ * the error later when the ECC page check fails, but we would rather catch 
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+	int 	i, j, datidx = 0, oobofs = 0, res = -EIO;
+	int	eccsteps = this->eccsteps;
+	int	hweccbytes; 
+	u_char 	oobdata[64];
+
+	hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+	/* Send command to read back the first page */
+	this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+	for(;;) {
+		for (j = 0; j < eccsteps; j++) {
+			/* Loop through and verify the data */
+			if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+				goto out;
+			}
+			datidx += mtd->eccsize;
+			/* Have we a hw generator layout ? */
+			if (!hweccbytes)
+				continue;
+			if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+				goto out;
+			}
+			oobofs += hweccbytes;
+		}
+
+		/* check, if we must compare all data or if we just have to
+		 * compare the ecc bytes
+		 */
+		if (oobmode) {
+			if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+				goto out;
+			}
+		} else {
+			/* Read always, else autoincrement fails */
+			this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+			if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+				int ecccnt = oobsel->eccbytes;
+		
+				for (i = 0; i < ecccnt; i++) {
+					int idx = oobsel->eccpos[i];
+					if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+						DEBUG (MTD_DEBUG_LEVEL0,
+					       	"%s: Failed ECC write "
+						"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+						goto out;
+					}
+				}
+			}	
+		}
+		oobofs += mtd->oobsize - hweccbytes * eccsteps;
+		page++;
+		numpages--;
+
+		/* Apply delay or wait for ready/busy pin 
+		 * Do this before the AUTOINCR check, so no problems
+		 * arise if a chip which does auto increment
+		 * is marked as NOAUTOINCR by the board driver.
+		 * Do this also before returning, so the chip is
+		 * ready for the next command.
+		*/
+		if (!this->dev_ready) 
+			udelay (this->chip_delay);
+		else
+			while (!this->dev_ready(mtd));	
+
+		/* All done, return happy */
+		if (!numpages)
+			return 0;
+		
+			
+		/* Check, if the chip supports auto page increment */ 
+		if (!NAND_CANAUTOINCR(this))
+			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+	}
+	/* 
+	 * Terminate the read command. We come here in case of an error
+	 * So we must issue a reset command.
+	 */
+out:	 
+	this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+	return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd:	MTD device structure
+ * @from:	offset to read from
+ * @len:	number of bytes to read
+ * @retlen:	pointer to variable to store the number of read bytes
+ * @buf:	the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+	return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}			   
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd:	MTD device structure
+ * @from:	offset to read from
+ * @len:	number of bytes to read
+ * @retlen:	pointer to variable to store the number of read bytes
+ * @buf:	the databuffer to put data
+ * @oob_buf:	filesystem supplied oob data buffer
+ * @oobsel:	oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+			  size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+	int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+	int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+	struct nand_chip *this = mtd->priv;
+	u_char *data_poi, *oob_data = oob_buf;
+	u_char ecc_calc[32];
+	u_char ecc_code[32];
+        int eccmode, eccsteps;
+	int	*oob_config, datidx;
+	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+	int	eccbytes;
+	int	compareecc = 1;
+	int	oobreadlen;
+
+
+	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+	/* Do not allow reads past end of device */
+	if ((from + len) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+		*retlen = 0;
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd ,FL_READING);
+
+	/* use userspace supplied oobinfo, if zero */
+	if (oobsel == NULL)
+		oobsel = &mtd->oobinfo;
+	
+	/* Autoplace of oob data ? Use the default placement scheme */
+	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+		oobsel = this->autooob;
+		
+	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+	oob_config = oobsel->eccpos;
+
+	/* Select the NAND device */
+	chipnr = (int)(from >> this->chip_shift);
+	this->select_chip(mtd, chipnr);
+
+	/* First we calculate the starting page */
+	realpage = (int) (from >> this->page_shift);
+	page = realpage & this->pagemask;
+
+	/* Get raw starting column */
+	col = from & (mtd->oobblock - 1);
+
+	end = mtd->oobblock;
+	ecc = this->eccsize;
+	eccbytes = this->eccbytes;
+	
+	if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+		compareecc = 0;
+
+	oobreadlen = mtd->oobsize;
+	if (this->options & NAND_HWECC_SYNDROME) 
+		oobreadlen -= oobsel->eccbytes;
+
+	/* Loop until all data read */
+	while (read < len) {
+		
+		int aligned = (!col && (len - read) >= end);
+		/* 
+		 * If the read is not page aligned, we have to read into data buffer
+		 * due to ecc, else we read into return buffer direct
+		 */
+		if (aligned)
+			data_poi = &buf[read];
+		else 
+			data_poi = this->data_buf;
+		
+		/* Check, if we have this page in the buffer 
+		 *
+		 * FIXME: Make it work when we must provide oob data too,
+		 * check the usage of data_buf oob field
+		 */
+		if (realpage == this->pagebuf && !oob_buf) {
+			/* aligned read ? */
+			if (aligned)
+				memcpy (data_poi, this->data_buf, end);
+			goto readdata;
+		}
+
+		/* Check, if we must send the read command */
+		if (sndcmd) {
+			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+			sndcmd = 0;
+		}	
+
+		/* get oob area, if we have no oob buffer from fs-driver */
+		if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
+			oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+			oob_data = &this->data_buf[end];
+
+		eccsteps = this->eccsteps;
+		
+		switch (eccmode) {
+		case NAND_ECC_NONE: {	/* No ECC, Read in a page */
+/* XXX U-BOOT XXX */
+#if 0
+			static unsigned long lastwhinge = 0;
+			if ((lastwhinge / HZ) != (jiffies / HZ)) {
+				printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+				lastwhinge = jiffies;
+			}
+#else
+			puts("Reading data from NAND FLASH without ECC is not recommended\n");
+#endif
+			this->read_buf(mtd, data_poi, end);
+			break;
+		}
+			
+		case NAND_ECC_SOFT:	/* Software ECC 3/256: Read in a page + oob data */
+			this->read_buf(mtd, data_poi, end);
+			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) 
+				this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+			break;	
+
+		default:
+			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+				this->enable_hwecc(mtd, NAND_ECC_READ);
+				this->read_buf(mtd, &data_poi[datidx], ecc);
+
+				/* HW ecc with syndrome calculation must read the
+				 * syndrome from flash immidiately after the data */
+				if (!compareecc) {
+					/* Some hw ecc generators need to know when the
+					 * syndrome is read from flash */
+					this->enable_hwecc(mtd, NAND_ECC_READSYN);
+					this->read_buf(mtd, &oob_data[i], eccbytes);
+					/* We calc error correction directly, it checks the hw
+					 * generator for an error, reads back the syndrome and
+					 * does the error correction on the fly */
+					if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+						DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " 
+							"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+						ecc_failed++;
+					}
+				} else {
+					this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+				}	
+			}
+			break;						
+		}
+
+		/* read oobdata */
+		this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+		/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+		if (!compareecc)
+			goto readoob;	
+		
+		/* Pick the ECC bytes out of the oob data */
+		for (j = 0; j < oobsel->eccbytes; j++)
+			ecc_code[j] = oob_data[oob_config[j]];
+
+		/* correct data, if neccecary */
+		for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+			ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+			
+			/* Get next chunk of ecc bytes */
+			j += eccbytes;
+			
+			/* Check, if we have a fs supplied oob-buffer, 
+			 * This is the legacy mode. Used by YAFFS1
+			 * Should go away some day
+			 */
+			if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { 
+				int *p = (int *)(&oob_data[mtd->oobsize]);
+				p[i] = ecc_status;
+			}
+			
+			if (ecc_status == -1) {	
+				DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+				ecc_failed++;
+			}
+		}		
+
+	readoob:
+		/* check, if we have a fs supplied oob-buffer */
+		if (oob_buf) {
+			/* without autoplace. Legacy mode used by YAFFS1 */
+			switch(oobsel->useecc) {
+			case MTD_NANDECC_AUTOPLACE:
+			case MTD_NANDECC_AUTOPL_USR:
+				/* Walk through the autoplace chunks */
+				for (i = 0, j = 0; j < mtd->oobavail; i++) {
+					int from = oobsel->oobfree[i][0];
+					int num = oobsel->oobfree[i][1];
+					memcpy(&oob_buf[oob], &oob_data[from], num);
+					j+= num;
+				}
+				oob += mtd->oobavail;
+				break;
+			case MTD_NANDECC_PLACE:
+				/* YAFFS1 legacy mode */
+				oob_data += this->eccsteps * sizeof (int);
+			default:
+				oob_data += mtd->oobsize;
+			}
+		}
+	readdata:
+		/* Partial page read, transfer data into fs buffer */
+		if (!aligned) { 
+			for (j = col; j < end && read < len; j++)
+				buf[read++] = data_poi[j];
+			this->pagebuf = realpage;	
+		} else		
+			read += mtd->oobblock;
+
+		/* Apply delay or wait for ready/busy pin 
+		 * Do this before the AUTOINCR check, so no problems
+		 * arise if a chip which does auto increment
+		 * is marked as NOAUTOINCR by the board driver.
+		*/
+		if (!this->dev_ready) 
+			udelay (this->chip_delay);
+		else
+			while (!this->dev_ready(mtd));	
+			
+		if (read == len)
+			break;	
+
+		/* For subsequent reads align to page boundary. */
+		col = 0;
+		/* Increment page address */
+		realpage++;
+
+		page = realpage & this->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			this->select_chip(mtd, -1);
+			this->select_chip(mtd, chipnr);
+		}
+		/* Check, if the chip supports auto page increment 
+		 * or if we have hit a block boundary. 
+		*/ 
+		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+			sndcmd = 1;				
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	*retlen = read;
+	return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd:	MTD device structure
+ * @from:	offset to read from
+ * @len:	number of bytes to read
+ * @retlen:	pointer to variable to store the number of read bytes
+ * @buf:	the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+	int i, col, page, chipnr;
+	struct nand_chip *this = mtd->priv;
+	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+	/* Shift to get page */
+	page = (int)(from >> this->page_shift);
+	chipnr = (int)(from >> this->chip_shift);
+	
+	/* Mask to get column */
+	col = from & (mtd->oobsize - 1);
+
+	/* Initialize return length value */
+	*retlen = 0;
+
+	/* Do not allow reads past end of device */
+	if ((from + len) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+		*retlen = 0;
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd , FL_READING);
+
+	/* Select the NAND device */
+	this->select_chip(mtd, chipnr);
+
+	/* Send the read command */
+	this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+	/* 
+	 * Read the data, if we read more than one page
+	 * oob data, let the device transfer the data !
+	 */
+	i = 0;
+	while (i < len) {
+		int thislen = mtd->oobsize - col;
+		thislen = min_t(int, thislen, len);
+		this->read_buf(mtd, &buf[i], thislen);
+		i += thislen;
+		
+		/* Apply delay or wait for ready/busy pin 
+		 * Do this before the AUTOINCR check, so no problems
+		 * arise if a chip which does auto increment
+		 * is marked as NOAUTOINCR by the board driver.
+		*/
+		if (!this->dev_ready) 
+			udelay (this->chip_delay);
+		else
+			while (!this->dev_ready(mtd));	
+
+		/* Read more ? */
+		if (i < len) {
+			page++;
+			col = 0;
+
+			/* Check, if we cross a chip boundary */
+			if (!(page & this->pagemask)) {
+				chipnr++;
+				this->select_chip(mtd, -1);
+				this->select_chip(mtd, chipnr);
+			}
+				
+			/* Check, if the chip supports auto page increment 
+			 * or if we have hit a block boundary. 
+			*/ 
+			if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+				/* For subsequent page reads set offset to 0 */
+			        this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+			}
+		}
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	/* Return happy */
+	*retlen = len;
+	return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @from:	offset to read from
+ * @len:	number of bytes to read
+ * @ooblen:	number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+	struct nand_chip *this = mtd->priv;
+	int page = (int) (from >> this->page_shift);
+	int chip = (int) (from >> this->chip_shift);
+	int sndcmd = 1;
+	int cnt = 0;
+	int pagesize = mtd->oobblock + mtd->oobsize;
+	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+	/* Do not allow reads past end of device */
+	if ((from + len) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd , FL_READING);
+
+	this->select_chip (mtd, chip);
+	
+	/* Add requested oob length */
+	len += ooblen;
+	
+	while (len) {
+		if (sndcmd)
+			this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+		sndcmd = 0;	
+
+		this->read_buf (mtd, &buf[cnt], pagesize);
+
+		len -= pagesize;
+		cnt += pagesize;
+		page++;
+		
+		if (!this->dev_ready) 
+			udelay (this->chip_delay);
+		else
+			while (!this->dev_ready(mtd));	
+			
+		/* Check, if the chip supports auto page increment */ 
+		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+			sndcmd = 1;
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+	return 0;
+}
+
+
+/** 
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer 
+ * @mtd:	MTD device structure
+ * @fsbuf:	buffer given by fs driver
+ * @oobsel:	out of band selection structre
+ * @autoplace:	1 = place given buffer into the oob bytes
+ * @numpages:	number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ *    return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ *    buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ *    put data from fs buffer into internal buffer and
+ *    retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+		int autoplace, int numpages)
+{
+	struct nand_chip *this = mtd->priv;
+	int i, len, ofs;
+
+	/* Zero copy fs supplied buffer */
+	if (fsbuf && !autoplace) 
+		return fsbuf;
+
+	/* Check, if the buffer must be filled with ff again */
+	if (this->oobdirty) {	
+		memset (this->oob_buf, 0xff, 
+			mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+		this->oobdirty = 0;
+	}	
+	
+	/* If we have no autoplacement or no fs buffer use the internal one */
+	if (!autoplace || !fsbuf)
+		return this->oob_buf;
+	
+	/* Walk through the pages and place the data */
+	this->oobdirty = 1;
+	ofs = 0;
+	while (numpages--) {
+		for (i = 0, len = 0; len < mtd->oobavail; i++) {
+			int to = ofs + oobsel->oobfree[i][0];
+			int num = oobsel->oobfree[i][1];
+			memcpy (&this->oob_buf[to], fsbuf, num);
+			len += num;
+			fsbuf += num;
+		}
+		ofs += mtd->oobavail;
+	}
+	return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd:	MTD device structure
+ * @to:		offset to write to
+ * @len:	number of bytes to write
+ * @retlen:	pointer to variable to store the number of written bytes
+ * @buf:	the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+	return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+			   
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd:	MTD device structure
+ * @to:		offset to write to
+ * @len:	number of bytes to write
+ * @retlen:	pointer to variable to store the number of written bytes
+ * @buf:	the data to write
+ * @eccbuf:	filesystem supplied oob data buffer
+ * @oobsel:	oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+	int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+	int autoplace = 0, numpages, totalpages;
+	struct nand_chip *this = mtd->priv;
+	u_char *oobbuf, *bufstart;
+	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+	/* Initialize retlen, in case of early exit */
+	*retlen = 0;
+
+	/* Do not allow write past end of device */
+	if ((to + len) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+		return -EINVAL;
+	}
+
+	/* reject writes, which are not page aligned */	
+	if (NOTALIGNED (to) || NOTALIGNED(len)) {
+		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd, FL_WRITING);
+
+	/* Calculate chipnr */
+	chipnr = (int)(to >> this->chip_shift);
+	/* Select the NAND device */
+	this->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd))
+		goto out;
+
+	/* if oobsel is NULL, use chip defaults */
+	if (oobsel == NULL) 
+		oobsel = &mtd->oobinfo;		
+		
+	/* Autoplace of oob data ? Use the default placement scheme */
+	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+		oobsel = this->autooob;
+		autoplace = 1;
+	}	
+	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+		autoplace = 1;
+
+	/* Setup variables and oob buffer */
+	totalpages = len >> this->page_shift;
+	page = (int) (to >> this->page_shift);
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page <= this->pagebuf && this->pagebuf < (page + totalpages))  
+		this->pagebuf = -1;
+	
+	/* Set it relative to chip */
+	page &= this->pagemask;
+	startpage = page;
+	/* Calc number of pages we can write in one go */
+	numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages);
+	oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+	bufstart = (u_char *)buf;
+
+	/* Loop until all data is written */
+	while (written < len) {
+
+		this->data_poi = (u_char*) &buf[written];
+		/* Write one page. If this is the last page to write
+		 * or the last page in this block, then use the
+		 * real pageprogram command, else select cached programming
+		 * if supported by the chip.
+		 */
+		ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+		if (ret) {
+			DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+			goto out;
+		}	
+		/* Next oob page */
+		oob += mtd->oobsize;
+		/* Update written bytes count */
+		written += mtd->oobblock;
+		if (written == len) 
+			goto cmp;
+		
+		/* Increment page address */
+		page++;
+
+		/* Have we hit a block boundary ? Then we have to verify and
+		 * if verify is ok, we have to setup the oob buffer for
+		 * the next pages.
+		*/
+		if (!(page & (ppblock - 1))){
+			int ofs;
+			this->data_poi = bufstart;
+			ret = nand_verify_pages (mtd, this, startpage, 
+				page - startpage,
+				oobbuf, oobsel, chipnr, (eccbuf != NULL));
+			if (ret) {
+				DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+				goto out;
+			}	
+			*retlen = written;
+
+			ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+			if (eccbuf)
+				eccbuf += (page - startpage) * ofs;
+			totalpages -= page - startpage;
+			numpages = min (totalpages, ppblock);
+			page &= this->pagemask;
+			startpage = page;
+			oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, 
+					autoplace, numpages);
+			/* Check, if we cross a chip boundary */
+			if (!page) {
+				chipnr++;
+				this->select_chip(mtd, -1);
+				this->select_chip(mtd, chipnr);
+			}
+		}
+	}
+	/* Verify the remaining pages */
+cmp:
+	this->data_poi = bufstart;
+ 	ret = nand_verify_pages (mtd, this, startpage, totalpages,
+		oobbuf, oobsel, chipnr, (eccbuf != NULL));
+	if (!ret)
+		*retlen = written;
+	else	
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd:	MTD device structure
+ * @to:		offset to write to
+ * @len:	number of bytes to write
+ * @retlen:	pointer to variable to store the number of written bytes
+ * @buf:	the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+	int column, page, status, ret = -EIO, chipnr;
+	struct nand_chip *this = mtd->priv;
+
+	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+	/* Shift to get page */
+	page = (int) (to >> this->page_shift);
+	chipnr = (int) (to >> this->chip_shift);
+
+	/* Mask to get column */
+	column = to & (mtd->oobsize - 1);
+
+	/* Initialize return length value */
+	*retlen = 0;
+
+	/* Do not allow write past end of page */
+	if ((column + len) > mtd->oobsize) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd, FL_WRITING);
+
+	/* Select the NAND device */
+	this->select_chip(mtd, chipnr);
+
+	/* Reset the chip. Some chips (like the Toshiba TC5832DC found
+	   in one of my DiskOnChip 2000 test units) will clear the whole
+	   data page too if we don't do this. I have no clue why, but
+	   I seem to have 'fixed' it in the doc2000 driver in
+	   August 1999.  dwmw2. */
+	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd))
+		goto out;
+	
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page == this->pagebuf)
+		this->pagebuf = -1;
+
+	if (NAND_MUST_PAD(this)) {
+		/* Write out desired data */
+		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+		/* prepad 0xff for partial programming */
+		this->write_buf(mtd, ffchars, column);
+		/* write data */
+		this->write_buf(mtd, buf, len);
+		/* postpad 0xff for partial programming */
+		this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+	} else {
+		/* Write out desired data */
+		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+		/* write data */
+		this->write_buf(mtd, buf, len);
+	}
+	/* Send command to program the OOB data */
+	this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+	status = this->waitfunc (mtd, this, FL_WRITING);
+
+	/* See if device thinks it succeeded */
+	if (status & 0x01) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+		ret = -EIO;
+		goto out;
+	}
+	/* Return happy */
+	*retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+	/* Send command to read back the data */
+	this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+	if (this->verify_buf(mtd, buf, len)) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+		ret = -EIO;
+		goto out;
+	}
+#endif
+	ret = 0;
+out:
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	return ret;
+}
+
+/* XXX U-BOOT XXX */
+#if 0
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd:	MTD device structure
+ * @vecs:	the iovectors to write
+ * @count:	number of vectors
+ * @to:		offset to write to
+ * @retlen:	pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+		loff_t to, size_t * retlen)
+{
+	return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));	
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd:	MTD device structure
+ * @vecs:	the iovectors to write
+ * @count:	number of vectors
+ * @to:		offset to write to
+ * @retlen:	pointer to variable to store the number of written bytes
+ * @eccbuf:	filesystem supplied oob data buffer
+ * @oobsel:	oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+		loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+	int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+	int oob, numpages, autoplace = 0, startpage;
+	struct nand_chip *this = mtd->priv;
+	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+	u_char *oobbuf, *bufstart;
+
+	/* Preset written len for early exit */
+	*retlen = 0;
+
+	/* Calculate total length of data */
+	total_len = 0;
+	for (i = 0; i < count; i++)
+		total_len += (int) vecs[i].iov_len;
+
+	DEBUG (MTD_DEBUG_LEVEL3,
+	       "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+	/* Do not allow write past end of page */
+	if ((to + total_len) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+		return -EINVAL;
+	}
+
+	/* reject writes, which are not page aligned */	
+	if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd, FL_WRITING);
+
+	/* Get the current chip-nr */
+	chipnr = (int) (to >> this->chip_shift);
+	/* Select the NAND device */
+	this->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd))
+		goto out;
+
+	/* if oobsel is NULL, use chip defaults */
+	if (oobsel == NULL) 
+		oobsel = &mtd->oobinfo;		
+
+	/* Autoplace of oob data ? Use the default placement scheme */
+	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+		oobsel = this->autooob;
+		autoplace = 1;
+	}	
+	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
+		autoplace = 1;
+
+	/* Setup start page */
+	page = (int) (to >> this->page_shift);
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))  
+		this->pagebuf = -1;
+
+	startpage = page & this->pagemask;
+
+	/* Loop until all kvec' data has been written */
+	len = 0;
+	while (count) {
+		/* If the given tuple is >= pagesize then
+		 * write it out from the iov
+		 */
+		if ((vecs->iov_len - len) >= mtd->oobblock) {
+			/* Calc number of pages we can write
+			 * out of this iov in one go */
+			numpages = (vecs->iov_len - len) >> this->page_shift;
+			/* Do not cross block boundaries */
+			numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+			bufstart = (u_char *)vecs->iov_base;
+			bufstart += len;
+			this->data_poi = bufstart;
+			oob = 0;
+			for (i = 1; i <= numpages; i++) {
+				/* Write one page. If this is the last page to write
+				 * then use the real pageprogram command, else select 
+				 * cached programming if supported by the chip.
+				 */
+				ret = nand_write_page (mtd, this, page & this->pagemask, 
+					&oobbuf[oob], oobsel, i != numpages);
+				if (ret)
+					goto out;
+				this->data_poi += mtd->oobblock;
+				len += mtd->oobblock;
+				oob += mtd->oobsize;
+				page++;
+			}
+			/* Check, if we have to switch to the next tuple */
+			if (len >= (int) vecs->iov_len) {
+				vecs++;
+				len = 0;
+				count--;
+			}
+		} else {
+			/* We must use the internal buffer, read data out of each 
+			 * tuple until we have a full page to write
+			 */
+			int cnt = 0;
+			while (cnt < mtd->oobblock) {
+				if (vecs->iov_base != NULL && vecs->iov_len) 
+					this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+				/* Check, if we have to switch to the next tuple */
+				if (len >= (int) vecs->iov_len) {
+					vecs++;
+					len = 0;
+					count--;
+				}
+			}
+			this->pagebuf = page;	
+			this->data_poi = this->data_buf;	
+			bufstart = this->data_poi;
+			numpages = 1;		
+			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+			ret = nand_write_page (mtd, this, page & this->pagemask,
+				oobbuf, oobsel, 0);
+			if (ret)
+				goto out;
+			page++;
+		}
+
+		this->data_poi = bufstart;
+		ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+		if (ret)
+			goto out;
+			
+		written += mtd->oobblock * numpages;
+		/* All done ? */
+		if (!count)
+			break;
+
+		startpage = page & this->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!startpage) {
+			chipnr++;
+			this->select_chip(mtd, -1);
+			this->select_chip(mtd, chipnr);
+		}
+	}
+	ret = 0;
+out:
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	*retlen = written;
+	return ret;
+}
+#endif
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd:	MTD device structure
+ * @page:	the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+	struct nand_chip *this = mtd->priv;
+	/* Send commands to erase a block */
+	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd:	MTD device structure
+ * @page:	the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+	struct nand_chip *this = mtd->priv;
+	/* Send commands to erase a block */
+	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd:	MTD device structure
+ * @instr:	erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+	return nand_erase_nand (mtd, instr, 0);
+}
+ 
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd:	MTD device structure
+ * @instr:	erase instruction
+ * @allowbbt:	allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+	int page, len, status, pages_per_block, ret, chipnr;
+	struct nand_chip *this = mtd->priv;
+
+	DEBUG (MTD_DEBUG_LEVEL3,
+	       "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+	/* Start address must align on block boundary */
+	if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+		return -EINVAL;
+	}
+
+	/* Length must align on block boundary */
+	if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+		return -EINVAL;
+	}
+
+	/* Do not allow erase past end of device */
+	if ((instr->len + instr->addr) > mtd->size) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+		return -EINVAL;
+	}
+
+	instr->fail_addr = 0xffffffff;
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd, FL_ERASING);
+
+	/* Shift to get first page */
+	page = (int) (instr->addr >> this->page_shift);
+	chipnr = (int) (instr->addr >> this->chip_shift);
+
+	/* Calculate pages in each block */
+	pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+	/* Select the NAND device */
+	this->select_chip(mtd, chipnr);
+
+	/* Check the WP bit */
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+		instr->state = MTD_ERASE_FAILED;
+		goto erase_exit;
+	}
+
+	/* Loop through the pages */
+	len = instr->len;
+
+	instr->state = MTD_ERASING;
+
+	while (len) {
+		/* Check if we have a bad block, we do not erase bad blocks ! */
+		if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+			printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+			instr->state = MTD_ERASE_FAILED;
+			goto erase_exit;
+		}
+		
+		/* Invalidate the page cache, if we erase the block which contains 
+		   the current cached page */
+		if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+			this->pagebuf = -1;
+
+		this->erase_cmd (mtd, page & this->pagemask);
+		
+		status = this->waitfunc (mtd, this, FL_ERASING);
+
+		/* See if block erase succeeded */
+		if (status & 0x01) {
+			DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+			instr->state = MTD_ERASE_FAILED;
+			instr->fail_addr = (page << this->page_shift);
+			goto erase_exit;
+		}
+		
+		/* Increment page address and decrement length */
+		len -= (1 << this->phys_erase_shift);
+		page += pages_per_block;
+
+		/* Check, if we cross a chip boundary */
+		if (len && !(page & this->pagemask)) {
+			chipnr++;
+			this->select_chip(mtd, -1);
+			this->select_chip(mtd, chipnr);
+		}
+	}
+	instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+	/* Do call back function */
+	if (!ret)
+		mtd_erase_callback(instr);
+
+	/* Deselect and wake up anyone waiting on the device */
+	nand_release_device(mtd);
+
+	/* Return more or less happy */
+	return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd:	MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+
+	DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device (this, mtd, FL_SYNCING);
+	/* Release it and go back */
+	nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd:	MTD device structure
+ * @ofs:	offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+	/* Check for invalid offset */
+	if (ofs > mtd->size) 
+		return -EINVAL;
+	
+	return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd:	MTD device structure
+ * @ofs:	offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *this = mtd->priv;
+	int ret;
+
+        if ((ret = nand_block_isbad(mtd, ofs))) {
+        	/* If it was bad already, return success and do nothing. */
+		if (ret > 0)
+			return 0;
+        	return ret;
+        }
+
+	return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd:	MTD device structure
+ * @maxchips:	Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+	int i, j, nand_maf_id, nand_dev_id, busw;
+	struct nand_chip *this = mtd->priv;
+
+	/* Get buswidth to select the correct functions*/
+	busw = this->options & NAND_BUSWIDTH_16;
+
+	/* check for proper chip_delay setup, set 20us if not */
+	if (!this->chip_delay)
+		this->chip_delay = 20;
+
+	/* check, if a user supplied command function given */
+	if (this->cmdfunc == NULL)
+		this->cmdfunc = nand_command;
+
+	/* check, if a user supplied wait function given */
+	if (this->waitfunc == NULL)
+		this->waitfunc = nand_wait;
+
+	if (!this->select_chip)
+		this->select_chip = nand_select_chip;
+	if (!this->write_byte)
+		this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+	if (!this->read_byte)
+		this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+	if (!this->write_word)
+		this->write_word = nand_write_word;
+	if (!this->read_word)
+		this->read_word = nand_read_word;
+	if (!this->block_bad)
+		this->block_bad = nand_block_bad;
+	if (!this->block_markbad)
+		this->block_markbad = nand_default_block_markbad;
+	if (!this->write_buf)
+		this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+	if (!this->read_buf)
+		this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+	if (!this->verify_buf)
+		this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+	if (!this->scan_bbt)
+		this->scan_bbt = nand_default_bbt;
+
+	/* Select the device */
+	this->select_chip(mtd, 0);
+
+	/* Send the command for reading device ID */
+	this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read manufacturer and device IDs */
+	nand_maf_id = this->read_byte(mtd);
+	nand_dev_id = this->read_byte(mtd);
+
+	/* Print and store flash device information */
+	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+				
+		if (nand_dev_id != nand_flash_ids[i].id) 
+			continue;
+
+		if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+		this->chipsize = nand_flash_ids[i].chipsize << 20;
+		
+		/* New devices have all the information in additional id bytes */
+		if (!nand_flash_ids[i].pagesize) {
+			int extid;
+			/* The 3rd id byte contains non relevant data ATM */
+			extid = this->read_byte(mtd);
+			/* The 4th id byte is the important one */
+			extid = this->read_byte(mtd);
+			/* Calc pagesize */
+			mtd->oobblock = 1024 << (extid & 0x3);
+			extid >>= 2;
+			/* Calc oobsize */
+			mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+			extid >>= 2;
+			/* Calc blocksize. Blocksize is multiples of 64KiB */
+			mtd->erasesize = (64 * 1024)  << (extid & 0x03);
+			extid >>= 2;
+			/* Get buswidth information */
+			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+		
+		} else {
+			/* Old devices have this data hardcoded in the
+			 * device id table */
+			mtd->erasesize = nand_flash_ids[i].erasesize;
+			mtd->oobblock = nand_flash_ids[i].pagesize;
+			mtd->oobsize = mtd->oobblock / 32;
+			busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+		}
+
+		/* Check, if buswidth is correct. Hardware drivers should set
+		 * this correct ! */
+		if (busw != (this->options & NAND_BUSWIDTH_16)) {
+			printk (KERN_INFO "NAND device: Manufacturer ID:"
+				" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+				nand_manuf_ids[i].name , mtd->name);
+			printk (KERN_WARNING 
+				"NAND bus width %d instead %d bit\n", 
+					(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+					busw ? 16 : 8);
+			this->select_chip(mtd, -1);
+			return 1;	
+		}
+		
+		/* Calculate the address shift from the page size */	
+		this->page_shift = ffs(mtd->oobblock) - 1;
+		this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+		this->chip_shift = ffs(this->chipsize) - 1;
+
+		/* Set the bad block position */
+		this->badblockpos = mtd->oobblock > 512 ? 
+			NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+		/* Get chip options, preserve non chip based options */
+		this->options &= ~NAND_CHIPOPTIONS_MSK;
+		this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+		/* Set this as a default. Board drivers can override it, if neccecary */
+		this->options |= NAND_NO_AUTOINCR;
+		/* Check if this is a not a samsung device. Do not clear the options
+		 * for chips which are not having an extended id.
+		 */	
+		if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+			this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+		
+		/* Check for AND chips with 4 page planes */
+		if (this->options & NAND_4PAGE_ARRAY)
+			this->erase_cmd = multi_erase_cmd;
+		else
+			this->erase_cmd = single_erase_cmd;
+
+		/* Do not replace user supplied command function ! */
+		if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+			this->cmdfunc = nand_command_lp;
+				
+		/* Try to identify manufacturer */
+		for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+			if (nand_manuf_ids[j].id == nand_maf_id)
+				break;
+		}
+		printk (KERN_INFO "NAND device: Manufacturer ID:"
+			" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+			nand_manuf_ids[j].name , nand_flash_ids[i].name);
+		break;
+	}
+
+	if (!nand_flash_ids[i].name) {
+		printk (KERN_WARNING "No NAND device found!!!\n");
+		this->select_chip(mtd, -1);
+		return 1;
+	}
+
+	for (i=1; i < maxchips; i++) {
+		this->select_chip(mtd, i);
+
+		/* Send the command for reading device ID */
+		this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+		/* Read manufacturer and device IDs */
+		if (nand_maf_id != this->read_byte(mtd) ||
+		    nand_dev_id != this->read_byte(mtd))
+			break;
+	}
+	if (i > 1)
+		printk(KERN_INFO "%d NAND chips detected\n", i);
+	
+	/* Allocate buffers, if neccecary */
+	if (!this->oob_buf) {
+		size_t len;
+		len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+		this->oob_buf = kmalloc (len, GFP_KERNEL);
+		if (!this->oob_buf) {
+			printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+			return -ENOMEM;
+		}
+		this->options |= NAND_OOBBUF_ALLOC;
+	}
+	
+	if (!this->data_buf) {
+		size_t len;
+		len = mtd->oobblock + mtd->oobsize;
+		this->data_buf = kmalloc (len, GFP_KERNEL);
+		if (!this->data_buf) {
+			if (this->options & NAND_OOBBUF_ALLOC)
+				kfree (this->oob_buf);
+			printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+			return -ENOMEM;
+		}
+		this->options |= NAND_DATABUF_ALLOC;
+	}
+
+	/* Store the number of chips and calc total size for mtd */
+	this->numchips = i;
+	mtd->size = i * this->chipsize;
+	/* Convert chipsize to number of pages per chip -1. */
+	this->pagemask = (this->chipsize >> this->page_shift) - 1;
+	/* Preset the internal oob buffer */
+	memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+	/* If no default placement scheme is given, select an
+	 * appropriate one */
+	if (!this->autooob) {
+		/* Select the appropriate default oob placement scheme for
+		 * placement agnostic filesystems */
+		switch (mtd->oobsize) { 
+		case 8:
+			this->autooob = &nand_oob_8;
+			break;
+		case 16:
+			this->autooob = &nand_oob_16;
+			break;
+		case 64:
+			this->autooob = &nand_oob_64;
+			break;
+		default:
+			printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+				mtd->oobsize);
+/*			BUG(); */
+		}
+	}
+	
+	/* The number of bytes available for the filesystem to place fs dependend
+	 * oob data */
+	if (this->options & NAND_BUSWIDTH_16) {
+		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+		if (this->autooob->eccbytes & 0x01)
+			mtd->oobavail--;
+	} else
+		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+	/* 
+	 * check ECC mode, default to software
+	 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+	 * fallback to software ECC 
+	*/
+	this->eccsize = 256;	/* set default eccsize */	
+	this->eccbytes = 3;
+
+	switch (this->eccmode) {
+	case NAND_ECC_HW12_2048:
+		if (mtd->oobblock < 2048) {
+			printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+			       mtd->oobblock);
+			this->eccmode = NAND_ECC_SOFT;
+			this->calculate_ecc = nand_calculate_ecc;
+			this->correct_data = nand_correct_data;
+		} else
+			this->eccsize = 2048;
+		break;
+
+	case NAND_ECC_HW3_512: 
+	case NAND_ECC_HW6_512: 
+	case NAND_ECC_HW8_512: 
+		if (mtd->oobblock == 256) {
+			printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+			this->eccmode = NAND_ECC_SOFT;
+			this->calculate_ecc = nand_calculate_ecc;
+			this->correct_data = nand_correct_data;
+		} else 
+			this->eccsize = 512; /* set eccsize to 512 */
+		break;
+			
+	case NAND_ECC_HW3_256:
+		break;
+		
+	case NAND_ECC_NONE: 
+		printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+		this->eccmode = NAND_ECC_NONE;
+		break;
+
+	case NAND_ECC_SOFT:	
+		this->calculate_ecc = nand_calculate_ecc;
+		this->correct_data = nand_correct_data;
+		break;
+
+	default:
+		printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+/*		BUG(); */
+	}	
+
+	/* Check hardware ecc function availability and adjust number of ecc bytes per 
+	 * calculation step
+	*/
+	switch (this->eccmode) {
+	case NAND_ECC_HW12_2048:
+		this->eccbytes += 4;
+	case NAND_ECC_HW8_512: 
+		this->eccbytes += 2;
+	case NAND_ECC_HW6_512: 
+		this->eccbytes += 3;
+	case NAND_ECC_HW3_512: 
+	case NAND_ECC_HW3_256:
+		if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+			break;
+		printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+/*		BUG();	*/
+	}
+		
+	mtd->eccsize = this->eccsize;
+	
+	/* Set the number of read / write steps for one page to ensure ECC generation */
+	switch (this->eccmode) {
+	case NAND_ECC_HW12_2048:
+		this->eccsteps = mtd->oobblock / 2048;
+		break;
+	case NAND_ECC_HW3_512:
+	case NAND_ECC_HW6_512:
+	case NAND_ECC_HW8_512:
+		this->eccsteps = mtd->oobblock / 512;
+		break;
+	case NAND_ECC_HW3_256:
+	case NAND_ECC_SOFT:	
+		this->eccsteps = mtd->oobblock / 256;
+		break;
+		
+	case NAND_ECC_NONE: 
+		this->eccsteps = 1;
+		break;
+	}
+
+/* XXX U-BOOT XXX */
+#if 0	
+	/* Initialize state, waitqueue and spinlock */
+	this->state = FL_READY;
+	init_waitqueue_head (&this->wq);
+	spin_lock_init (&this->chip_lock);
+#endif
+
+	/* De-select the device */
+	this->select_chip(mtd, -1);
+
+	/* Invalidate the pagebuffer reference */
+	this->pagebuf = -1;
+
+	/* Fill in remaining MTD driver data */
+	mtd->type = MTD_NANDFLASH;
+	mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+	mtd->ecctype = MTD_ECC_SW;
+	mtd->erase = nand_erase;
+	mtd->point = NULL;
+	mtd->unpoint = NULL;
+	mtd->read = nand_read;
+	mtd->write = nand_write;
+	mtd->read_ecc = nand_read_ecc;
+	mtd->write_ecc = nand_write_ecc;
+	mtd->read_oob = nand_read_oob;
+	mtd->write_oob = nand_write_oob;
+/* XXX U-BOOT XXX */
+#if 0
+	mtd->readv = NULL;
+	mtd->writev = nand_writev;
+	mtd->writev_ecc = nand_writev_ecc;
+#endif
+	mtd->sync = nand_sync;
+/* XXX U-BOOT XXX */
+#if 0
+	mtd->lock = NULL;
+	mtd->unlock = NULL;
+	mtd->suspend = NULL;
+	mtd->resume = NULL;
+#endif
+	mtd->block_isbad = nand_block_isbad;
+	mtd->block_markbad = nand_block_markbad;
+
+	/* and make the autooob the default one */
+	memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+/* XXX U-BOOT XXX */
+#if 0
+	mtd->owner = THIS_MODULE;
+#endif
+	/* Build bad block table */
+	return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device 
+ * @mtd:	MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+	/* Deregister partitions */
+	del_mtd_partitions (mtd);
+#endif
+	/* Deregister the device */
+/* XXX U-BOOT XXX */
+#if 0
+	del_mtd_device (mtd);
+#endif
+	/* Free bad block table memory, if allocated */
+	if (this->bbt)
+		kfree (this->bbt);
+	/* Buffer allocated by nand_scan ? */
+	if (this->options & NAND_OOBBUF_ALLOC)
+		kfree (this->oob_buf);
+	/* Buffer allocated by nand_scan ? */
+	if (this->options & NAND_DATABUF_ALLOC)
+		kfree (this->data_buf);
+}
+
+#endif

+ 1056 - 0
drivers/nand/nand_bbt.c

@@ -0,0 +1,1056 @@
+/*
+ *  drivers/mtd/nand_bbt.c
+ *
+ *  Overview:
+ *   Bad block table support for the NAND driver
+ *   
+ *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table 
+ * depending on the options in the bbt descriptor(s). If a bbt is found 
+ * then the contents are read and the memory based bbt is created. If a 
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number 
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created. 
+ * If no bbt exists at all then the device is scanned for factory marked 
+ * good / bad blocks and the bad block tables are created. 
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices 
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks 
+ * of the device. The table is mirrored, so it can be updated eventually. 
+ * The table is marked in the oob area with an ident pattern and a version 
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b: 	block is good
+ * 00b: 	block is factory marked bad
+ * 01b, 10b: 	block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b:		block is good
+ * 01b:		block is marked bad due to wear
+ * 10b:		block is reserved (to protect the bbt area)
+ * 11b:		block is factory marked bad
+ * 
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ * 
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <malloc.h>
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+#include <asm/errno.h>
+
+/** 
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf:	the buffer to search
+ * @len:	the length of buffer to search
+ * @paglen:	the pagelength
+ * @td:		search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+	int i, end;
+	uint8_t *p = buf;
+
+	end = paglen + td->offs;
+	if (td->options & NAND_BBT_SCANEMPTY) {
+		for (i = 0; i < end; i++) {
+			if (p[i] != 0xff)
+				return -1;
+		}
+	}	
+	p += end;
+	
+	/* Compare the pattern */
+	for (i = 0; i < td->len; i++) {
+		if (p[i] != td->pattern[i])
+			return -1;
+	}
+
+	p += td->len;
+	end += td->len;
+	if (td->options & NAND_BBT_SCANEMPTY) {
+		for (i = end; i < len; i++) {
+			if (*p++ != 0xff)
+				return -1;
+		}
+	}
+	return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @page:	the starting page
+ * @num:	the number of bbt descriptors to read
+ * @bits:	number of bits per block
+ * @offs:	offset in the memory table
+ * @reserved_block_code:	Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, 
+	int bits, int offs, int reserved_block_code)
+{
+	int res, i, j, act = 0;
+	struct nand_chip *this = mtd->priv;
+	size_t retlen, len, totlen;
+	loff_t from;
+	uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+	totlen = (num * bits) >> 3;
+	from = ((loff_t)page) << this->page_shift;
+	
+	while (totlen) {
+		len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+		res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+		if (res < 0) {
+			if (retlen != len) {
+				printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+				return res;
+			}
+			printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+		}	
+
+		/* Analyse data */
+		for (i = 0; i < len; i++) {
+			uint8_t dat = buf[i];
+			for (j = 0; j < 8; j += bits, act += 2) {
+				uint8_t tmp = (dat >> j) & msk;
+				if (tmp == msk)
+					continue;
+				if (reserved_block_code &&
+				    (tmp == reserved_block_code)) {
+					printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+						((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+					this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+					continue;
+				}
+				/* Leave it for now, if its matured we can move this
+				 * message to MTD_DEBUG_LEVEL0 */
+				printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+					((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+				/* Factory marked bad or worn out ? */	
+				if (tmp == 0)
+					this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+				else
+					this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+			}	
+		}
+		totlen -= len;
+		from += len;
+	}
+	return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @td:		descriptor for the bad block table 
+ * @chip:	read the table for a specific chip, -1 read all chips.
+ *		Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+	struct nand_chip *this = mtd->priv;
+	int res = 0, i;
+	int bits;
+
+	bits = td->options & NAND_BBT_NRBITS_MSK;
+	if (td->options & NAND_BBT_PERCHIP) {
+		int offs = 0;
+		for (i = 0; i < this->numchips; i++) {
+			if (chip == -1 || chip == i)
+				res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+			if (res)
+				return res;
+			offs += this->chipsize >> (this->bbt_erase_shift + 2);
+		}
+	} else {
+		res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+		if (res)
+			return res;
+	}
+	return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @td:		descriptor for the bad block table 
+ * @md:		descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+	struct nand_bbt_descr *md)
+{
+	struct nand_chip *this = mtd->priv;
+
+	/* Read the primary version, if available */	
+	if (td->options & NAND_BBT_VERSION) {
+		nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+		td->version[0] = buf[mtd->oobblock + td->veroffs];
+		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+	}
+
+	/* Read the mirror version, if available */	
+	if (md && (md->options & NAND_BBT_VERSION)) {
+		nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+		md->version[0] = buf[mtd->oobblock + md->veroffs];
+		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+	}
+
+	return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @bd:		descriptor for the good/bad block search pattern
+ * @chip:	create the table for a specific chip, -1 read all chips.
+ *		Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+	struct nand_chip *this = mtd->priv;
+	int i, j, numblocks, len, scanlen;
+	int startblock;
+	loff_t from;
+	size_t readlen, ooblen;
+
+	printk (KERN_INFO "Scanning device for bad blocks\n");
+
+	if (bd->options & NAND_BBT_SCANALLPAGES)
+		len = 1 << (this->bbt_erase_shift - this->page_shift);
+	else {
+		if (bd->options & NAND_BBT_SCAN2NDPAGE)
+			len = 2;
+		else	
+			len = 1;
+	}
+	scanlen	= mtd->oobblock + mtd->oobsize;
+	readlen = len * mtd->oobblock;
+	ooblen = len * mtd->oobsize;
+
+	if (chip == -1) {
+		/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+		 * makes shifting and masking less painful */
+		numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+		startblock = 0;
+		from = 0;
+	} else {
+		if (chip >= this->numchips) {
+			printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+				chip + 1, this->numchips);
+			return;	
+		}
+		numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+		startblock = chip * numblocks;
+		numblocks += startblock;
+		from = startblock << (this->bbt_erase_shift - 1);
+	}
+	
+	for (i = startblock; i < numblocks;) {
+		nand_read_raw (mtd, buf, from, readlen, ooblen);
+		for (j = 0; j < len; j++) {
+			if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+				this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+				printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n", 
+					i >> 1, (unsigned int) from);
+				break;
+			}
+		}
+		i += 2;
+		from += (1 << this->bbt_erase_shift);
+	}
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @td:		descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of 
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched 
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page 
+ * in a block. 
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd->priv;
+	int i, chips;
+	int bits, startblock, block, dir;
+	int scanlen = mtd->oobblock + mtd->oobsize;
+	int bbtblocks;
+
+	/* Search direction top -> down ? */
+	if (td->options & NAND_BBT_LASTBLOCK) {
+		startblock = (mtd->size >> this->bbt_erase_shift) -1;
+		dir = -1;
+	} else {
+		startblock = 0;	
+		dir = 1;
+	}	
+	
+	/* Do we have a bbt per chip ? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		bbtblocks = this->chipsize >> this->bbt_erase_shift;
+		startblock &= bbtblocks - 1;
+	} else {
+		chips = 1;
+		bbtblocks = mtd->size >> this->bbt_erase_shift;
+	}
+	
+	/* Number of bits for each erase block in the bbt */
+	bits = td->options & NAND_BBT_NRBITS_MSK;
+	
+	for (i = 0; i < chips; i++) {
+		/* Reset version information */
+		td->version[i] = 0;	
+		td->pages[i] = -1;
+		/* Scan the maximum number of blocks */
+		for (block = 0; block < td->maxblocks; block++) {
+			int actblock = startblock + dir * block;
+			/* Read first page */
+			nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); 
+			if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+				td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+				if (td->options & NAND_BBT_VERSION) {
+					td->version[i] = buf[mtd->oobblock + td->veroffs];
+				}
+				break;
+			}
+		}
+		startblock += this->chipsize >> this->bbt_erase_shift;
+	}
+	/* Check, if we found a bbt for each requested chip */
+	for (i = 0; i < chips; i++) {
+		if (td->pages[i] == -1)
+			printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+		else
+			printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+	}
+	return 0;	
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @td:		descriptor for the bad block table 
+ * @md:		descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, 
+	struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+	/* Search the primary table */
+	search_bbt (mtd, buf, td);
+		
+	/* Search the mirror table */
+	if (md)
+		search_bbt (mtd, buf, md);
+	
+	/* Force result check */
+	return 1;	
+}
+	
+
+/** 
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @td:		descriptor for the bad block table 
+ * @md:		descriptor for the bad block table mirror
+ * @chipsel:	selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf, 
+	struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+	struct nand_chip *this = mtd->priv;
+	struct nand_oobinfo oobinfo;
+	struct erase_info einfo;
+	int i, j, res, chip = 0;
+	int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+	int nrchips, bbtoffs, pageoffs;
+	uint8_t msk[4];
+	uint8_t rcode = td->reserved_block_code;
+	size_t retlen, len = 0;
+	loff_t to;
+
+	if (!rcode)
+		rcode = 0xff;
+	/* Write bad block table per chip rather than per device ? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+		/* Full device write or specific chip ? */	
+		if (chipsel == -1) {
+			nrchips = this->numchips;
+		} else {
+			nrchips = chipsel + 1;
+			chip = chipsel;
+		}
+	} else {
+		numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+		nrchips = 1;
+	}	
+	
+	/* Loop through the chips */
+	for (; chip < nrchips; chip++) {
+		
+		/* There was already a version of the table, reuse the page 
+		 * This applies for absolute placement too, as we have the 
+		 * page nr. in td->pages.
+		 */
+		if (td->pages[chip] != -1) {
+			page = td->pages[chip];
+			goto write;
+		}	
+
+		/* Automatic placement of the bad block table */
+		/* Search direction top -> down ? */
+		if (td->options & NAND_BBT_LASTBLOCK) {
+			startblock = numblocks * (chip + 1) - 1;
+			dir = -1;
+		} else {
+			startblock = chip * numblocks;
+			dir = 1;
+		}	
+
+		for (i = 0; i < td->maxblocks; i++) {
+			int block = startblock + dir * i;
+			/* Check, if the block is bad */
+			switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+			case 0x01:
+			case 0x03:
+				continue;
+			}
+			page = block << (this->bbt_erase_shift - this->page_shift);
+			/* Check, if the block is used by the mirror table */
+			if (!md || md->pages[chip] != page)
+				goto write;
+		}
+		printk (KERN_ERR "No space left to write bad block table\n");
+		return -ENOSPC;
+write:	
+
+		/* Set up shift count and masks for the flash table */
+		bits = td->options & NAND_BBT_NRBITS_MSK;
+		switch (bits) {
+		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+		default: return -EINVAL;
+		}
+		
+		bbtoffs = chip * (numblocks >> 2);
+		
+		to = ((loff_t) page) << this->page_shift;
+
+		memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+		oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+		
+		/* Must we save the block contents ? */
+		if (td->options & NAND_BBT_SAVECONTENT) {
+			/* Make it block aligned */
+			to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+			len = 1 << this->bbt_erase_shift;
+			res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+			if (res < 0) {
+				if (retlen != len) {
+					printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+					return res;
+				}
+				printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+			}
+			/* Calc the byte offset in the buffer */
+			pageoffs = page - (int)(to >> this->page_shift);
+			offs = pageoffs << this->page_shift;
+			/* Preset the bbt area with 0xff */
+			memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+			/* Preset the bbt's oob area with 0xff */
+			memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+				((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+			if (td->options & NAND_BBT_VERSION) {
+				buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+			}
+		} else {
+			/* Calc length */
+			len = (size_t) (numblocks >> sft);
+			/* Make it page aligned ! */
+			len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+			/* Preset the buffer with 0xff */
+			memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+			offs = 0;
+			/* Pattern is located in oob area of first page */
+			memcpy (&buf[len + td->offs], td->pattern, td->len);
+			if (td->options & NAND_BBT_VERSION) {
+				buf[len + td->veroffs] = td->version[chip];
+			}
+		}
+	
+		/* walk through the memory table */
+		for (i = 0; i < numblocks; ) {
+			uint8_t dat;
+			dat = this->bbt[bbtoffs + (i >> 2)];
+			for (j = 0; j < 4; j++ , i++) {
+				int sftcnt = (i << (3 - sft)) & sftmsk;
+				/* Do not store the reserved bbt blocks ! */
+				buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+				dat >>= 2;
+			}
+		}
+		
+		memset (&einfo, 0, sizeof (einfo));
+		einfo.mtd = mtd;
+		einfo.addr = (unsigned long) to;
+		einfo.len = 1 << this->bbt_erase_shift;
+		res = nand_erase_nand (mtd, &einfo, 1);
+		if (res < 0) {
+			printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+			return res;
+		}
+	
+		res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+		if (res < 0) {
+			printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+			return res;
+		}
+		printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", 
+			(unsigned int) to, td->version[chip]);
+	
+		/* Mark it as used */
+		td->pages[chip] = page;
+	}	
+	return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd:	MTD device structure
+ * @bd:		descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device 
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd->priv;
+
+	/* Ensure that we only scan for the pattern and nothing else */
+	bd->options = 0;
+	create_bbt (mtd, this->data_buf, bd, -1);
+	return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd:	MTD device structure
+ * @buf:	temporary buffer
+ * @bd:		descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+	int i, chips, writeops, chipsel, res;
+	struct nand_chip *this = mtd->priv;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+	struct nand_bbt_descr *rd, *rd2;
+
+	/* Do we have a bbt per chip ? */
+	if (td->options & NAND_BBT_PERCHIP) 
+		chips = this->numchips;
+	else 
+		chips = 1;
+	
+	for (i = 0; i < chips; i++) {
+		writeops = 0;
+		rd = NULL;
+		rd2 = NULL;
+		/* Per chip or per device ? */
+		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+		/* Mirrored table avilable ? */
+		if (md) {
+			if (td->pages[i] == -1 && md->pages[i] == -1) {
+				writeops = 0x03;
+				goto create;
+			}
+
+			if (td->pages[i] == -1) {
+				rd = md;				
+				td->version[i] = md->version[i];
+				writeops = 1;
+				goto writecheck;
+			}
+
+			if (md->pages[i] == -1) {
+				rd = td;
+				md->version[i] = td->version[i];
+				writeops = 2;
+				goto writecheck;
+			}
+
+			if (td->version[i] == md->version[i]) {
+				rd = td;
+				if (!(td->options & NAND_BBT_VERSION))
+					rd2 = md;
+				goto writecheck;
+			}	
+
+			if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+				rd = td;
+				md->version[i] = td->version[i];
+				writeops = 2;
+			} else {
+				rd = md;
+				td->version[i] = md->version[i];
+				writeops = 1;
+			}
+
+			goto writecheck;
+
+		} else {
+			if (td->pages[i] == -1) {
+				writeops = 0x01;
+				goto create;
+			}
+			rd = td;
+			goto writecheck;
+		}
+create:
+		/* Create the bad block table by scanning the device ? */
+		if (!(td->options & NAND_BBT_CREATE))
+			continue;	
+		
+		/* Create the table in memory by scanning the chip(s) */
+		create_bbt (mtd, buf, bd, chipsel);
+		
+		td->version[i] = 1;
+		if (md)
+			md->version[i] = 1;	
+writecheck:	
+		/* read back first ? */
+		if (rd)
+			read_abs_bbt (mtd, buf, rd, chipsel);
+		/* If they weren't versioned, read both. */
+		if (rd2)
+			read_abs_bbt (mtd, buf, rd2, chipsel);
+
+		/* Write the bad block table to the device ? */
+		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+			res = write_bbt (mtd, buf, td, md, chipsel);
+			if (res < 0)
+				return res;
+		}
+		
+		/* Write the mirror bad block table to the device ? */
+		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+			res = write_bbt (mtd, buf, md, td, chipsel);
+			if (res < 0)
+				return res;
+		}
+	}
+	return 0;	
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions 
+ * @mtd:	MTD device structure
+ * @td:		bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd->priv;
+	int i, j, chips, block, nrblocks, update;
+	uint8_t oldval, newval;
+
+	/* Do we have a bbt per chip ? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+	} else {
+		chips = 1;
+		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+	}	
+	
+	for (i = 0; i < chips; i++) {
+		if ((td->options & NAND_BBT_ABSPAGE) ||
+		    !(td->options & NAND_BBT_WRITE)) {
+		    	if (td->pages[i] == -1) continue;
+			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+			block <<= 1;		
+			oldval = this->bbt[(block >> 3)];
+			newval = oldval | (0x2 << (block & 0x06));
+			this->bbt[(block >> 3)] = newval;
+			if ((oldval != newval) && td->reserved_block_code)
+				nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+			continue;
+		}
+		update = 0;
+		if (td->options & NAND_BBT_LASTBLOCK)
+			block = ((i + 1) * nrblocks) - td->maxblocks;
+		else	
+			block = i * nrblocks;
+		block <<= 1;	
+		for (j = 0; j < td->maxblocks; j++) {
+			oldval = this->bbt[(block >> 3)];
+			newval = oldval | (0x2 << (block & 0x06));
+			this->bbt[(block >> 3)] = newval;
+			if (oldval != newval) update = 1;
+			block += 2;
+		}	
+		/* If we want reserved blocks to be recorded to flash, and some
+		   new ones have been marked, then we need to update the stored
+		   bbts.  This should only happen once. */
+		if (update && td->reserved_block_code)
+			nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+	}
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd:	MTD device structure
+ * @bd:		descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already 
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd->priv;
+	int len, res = 0;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	len = mtd->size >> (this->bbt_erase_shift + 2);
+	/* Allocate memory (2bit per block) */
+	this->bbt = kmalloc (len, GFP_KERNEL);
+	if (!this->bbt) {
+		printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+		return -ENOMEM;
+	}
+	/* Clear the memory bad block table */
+	memset (this->bbt, 0x00, len);
+
+	/* If no primary table decriptor is given, scan the device
+	 * to build a memory based bad block table
+	 */
+	if (!td)
+		return nand_memory_bbt(mtd, bd);
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = kmalloc (len, GFP_KERNEL);
+	if (!buf) {
+		printk (KERN_ERR "nand_bbt: Out of memory\n");
+		kfree (this->bbt);
+		this->bbt = NULL;
+		return -ENOMEM;
+	}
+	
+	/* Is the bbt at a given page ? */
+	if (td->options & NAND_BBT_ABSPAGE) {
+		res = read_abs_bbts (mtd, buf, td, md);
+	} else {	
+		/* Search the bad block table using a pattern in oob */
+		res = search_read_bbts (mtd, buf, td, md);
+	}	
+
+	if (res) 
+		res = check_create (mtd, buf, bd);
+	
+	/* Prevent the bbt regions from erasing / writing */
+	mark_bbt_region (mtd, td);
+	if (md)
+		mark_bbt_region (mtd, md);
+	
+	kfree (buf);
+	return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s) 
+ * @mtd:	MTD device structure
+ * @offs:	the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd->priv;
+	int len, res = 0, writeops = 0;
+	int chip, chipsel;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	if (!this->bbt || !td)
+		return -EINVAL;
+
+	len = mtd->size >> (this->bbt_erase_shift + 2);
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = kmalloc (len, GFP_KERNEL);
+	if (!buf) {
+		printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+		return -ENOMEM;
+	}
+	
+	writeops = md != NULL ? 0x03 : 0x01;
+
+	/* Do we have a bbt per chip ? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chip = (int) (offs >> this->chip_shift);
+		chipsel = chip;
+	} else {
+		chip = 0;
+		chipsel = -1;
+	}
+
+	td->version[chip]++;
+	if (md)
+		md->version[chip]++;	
+
+	/* Write the bad block table to the device ? */
+	if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+		res = write_bbt (mtd, buf, td, md, chipsel);
+		if (res < 0)
+			goto out;
+	}
+	/* Write the mirror bad block table to the device ? */
+	if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+		res = write_bbt (mtd, buf, md, td, chipsel);
+	}
+
+out:	
+	kfree (buf);
+	return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used 
+ * while scanning a device for factory marked good / bad blocks
+ * 
+ * The memory based patterns just 
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+	.options = 0,
+	.offs = 5,
+	.len = 1,
+	.pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+	.options = 0,
+	.offs = 0,
+	.len = 2,
+	.pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+	.offs = 5,
+	.len = 1,
+	.pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+	.offs = 0,
+	.len = 2,
+	.pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+	.offs = 0x20,
+	.len = 6,
+	.pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device 
+ * @mtd:	MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd->priv;
+	
+	/* Default for AG-AND. We must use a flash based 
+	 * bad block table as the devices have factory marked
+	 * _good_ blocks. Erasing those blocks leads to loss
+	 * of the good / bad information, so we _must_ store
+	 * this information in a good / bad table during 
+	 * startup
+	*/
+	if (this->options & NAND_IS_AND) {
+		/* Use the default pattern descriptors */
+		if (!this->bbt_td) {	
+			this->bbt_td = &bbt_main_descr;
+			this->bbt_md = &bbt_mirror_descr;
+		}	
+		this->options |= NAND_USE_FLASH_BBT;
+		return nand_scan_bbt (mtd, &agand_flashbased);
+	}
+	
+	
+	/* Is a flash based bad block table requested ? */
+	if (this->options & NAND_USE_FLASH_BBT) {
+		/* Use the default pattern descriptors */	
+		if (!this->bbt_td) {	
+			this->bbt_td = &bbt_main_descr;
+			this->bbt_md = &bbt_mirror_descr;
+		}
+		if (!this->badblock_pattern) {
+			this->badblock_pattern = (mtd->oobblock > 512) ?
+				&largepage_flashbased : &smallpage_flashbased;
+		}
+	} else {
+		this->bbt_td = NULL;
+		this->bbt_md = NULL;
+		if (!this->badblock_pattern) {
+			this->badblock_pattern = (mtd->oobblock > 512) ?
+				&largepage_memorybased : &smallpage_memorybased;
+		}
+	}
+	return nand_scan_bbt (mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad 
+ * @mtd:	MTD device structure
+ * @offs:	offset in the device
+ * @allowbbt:	allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	struct nand_chip *this = mtd->priv;
+	int block;
+	uint8_t	res;
+	
+	/* Get block number * 2 */
+	block = (int) (offs >> (this->bbt_erase_shift - 1));
+	res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+	DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", 
+		(unsigned int)offs, res, block >> 1);
+
+	switch ((int)res) {
+	case 0x00:	return 0;
+	case 0x01:	return 1;
+	case 0x02:	return allowbbt ? 0 : 1;
+	}
+	return 1;
+}
+
+#endif

+ 244 - 0
drivers/nand/nand_ecc.c

@@ -0,0 +1,244 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ *                         Toshiba America Electronics Components, Inc.
+ *
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ * 
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ * 
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ * 
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ * 
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/**
+ * nand_trans_result - [GENERIC] create non-inverted ECC
+ * @reg2:	line parity reg 2
+ * @reg3:	line parity reg 3
+ * @ecc_code:	ecc 
+ *
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+	u_char *ecc_code)
+{
+	u_char a, b, i, tmp1, tmp2;
+	
+	/* Initialize variables */
+	a = b = 0x80;
+	tmp1 = tmp2 = 0;
+	
+	/* Calculate first ECC byte */
+	for (i = 0; i < 4; i++) {
+		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */
+			tmp1 |= b;
+		b >>= 1;
+		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */
+			tmp1 |= b;
+		b >>= 1;
+		a >>= 1;
+	}
+	
+	/* Calculate second ECC byte */
+	b = 0x80;
+	for (i = 0; i < 4; i++) {
+		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */
+			tmp2 |= b;
+		b >>= 1;
+		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */
+			tmp2 |= b;
+		b >>= 1;
+		a >>= 1;
+	}
+	
+	/* Store two of the ECC bytes */
+	ecc_code[0] = tmp1;
+	ecc_code[1] = tmp2;
+}
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * @mtd:	MTD block structure
+ * @dat:	raw data
+ * @ecc_code:	buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+	u_char idx, reg1, reg2, reg3;
+	int j;
+	
+	/* Initialize variables */
+	reg1 = reg2 = reg3 = 0;
+	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+	
+	/* Build up column parity */ 
+	for(j = 0; j < 256; j++) {
+		
+		/* Get CP0 - CP5 from table */
+		idx = nand_ecc_precalc_table[dat[j]];
+		reg1 ^= (idx & 0x3f);
+		
+		/* All bit XOR = 1 ? */
+		if (idx & 0x40) {
+			reg3 ^= (u_char) j;
+			reg2 ^= ~((u_char) j);
+		}
+	}
+	
+	/* Create non-inverted ECC code from line parity */
+	nand_trans_result(reg2, reg3, ecc_code);
+	
+	/* Calculate final ECC code */
+	ecc_code[0] = ~ecc_code[0];
+	ecc_code[1] = ~ecc_code[1];
+	ecc_code[2] = ((~reg1) << 2) | 0x03;
+	return 0;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:	MTD block structure
+ * @dat:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+	u_char a, b, c, d1, d2, d3, add, bit, i;
+	
+	/* Do error detection */ 
+	d1 = calc_ecc[0] ^ read_ecc[0];
+	d2 = calc_ecc[1] ^ read_ecc[1];
+	d3 = calc_ecc[2] ^ read_ecc[2];
+	
+	if ((d1 | d2 | d3) == 0) {
+		/* No errors */
+		return 0;
+	}
+	else {
+		a = (d1 ^ (d1 >> 1)) & 0x55;
+		b = (d2 ^ (d2 >> 1)) & 0x55;
+		c = (d3 ^ (d3 >> 1)) & 0x54;
+		
+		/* Found and will correct single bit error in the data */
+		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+			c = 0x80;
+			add = 0;
+			a = 0x80;
+			for (i=0; i<4; i++) {
+				if (d1 & c)
+					add |= a;
+				c >>= 2;
+				a >>= 1;
+			}
+			c = 0x80;
+			for (i=0; i<4; i++) {
+				if (d2 & c)
+					add |= a;
+				c >>= 2;
+				a >>= 1;
+			}
+			bit = 0;
+			b = 0x04;
+			c = 0x80;
+			for (i=0; i<3; i++) {
+				if (d3 & c)
+					bit |= b;
+				c >>= 2;
+				b >>= 1;
+			}
+			b = 0x01;
+			a = dat[add];
+			a ^= (b << bit);
+			dat[add] = a;
+			return 1;
+		}
+		else {
+			i = 0;
+			while (d1) {
+				if (d1 & 0x01)
+					++i;
+				d1 >>= 1;
+			}
+			while (d2) {
+				if (d2 & 0x01)
+					++i;
+				d2 >>= 1;
+			}
+			while (d3) {
+				if (d3 & 0x01)
+					++i;
+				d3 >>= 1;
+			}
+			if (i == 1) {
+				/* ECC Code Error Correction */
+				read_ecc[0] = calc_ecc[0];
+				read_ecc[1] = calc_ecc[1];
+				read_ecc[2] = calc_ecc[2];
+				return 2;
+			}
+			else {
+				/* Uncorrectable Error */
+				return -1;
+			}
+		}
+	}
+	
+	/* Should never happen */
+	return -1;
+}
+
+#endif	/* CONFIG_COMMANDS & CFG_CMD_NAND */

+ 127 - 0
drivers/nand/nand_ids.c

@@ -0,0 +1,127 @@
+/*
+ *  drivers/mtd/nandids.c
+ *
+ *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+  *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <linux/mtd/nand.h>
+
+/*
+*	Chip ID list
+*	
+*	Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+*	options
+* 
+* 	Pagesize; 0, 256, 512
+*	0 	get this information from the extended chip ID
++	256	256 Byte page size
+*	512	512 Byte page size	
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+	{"NAND 1MiB 5V 8-bit", 		0x6e, 256, 1, 0x1000, 0},
+	{"NAND 2MiB 5V 8-bit", 		0x64, 256, 2, 0x1000, 0},
+	{"NAND 4MiB 5V 8-bit", 		0x6b, 512, 4, 0x2000, 0},
+	{"NAND 1MiB 3,3V 8-bit", 	0xe8, 256, 1, 0x1000, 0},
+	{"NAND 1MiB 3,3V 8-bit", 	0xec, 256, 1, 0x1000, 0},
+	{"NAND 2MiB 3,3V 8-bit", 	0xea, 256, 2, 0x1000, 0},
+	{"NAND 4MiB 3,3V 8-bit", 	0xd5, 512, 4, 0x2000, 0},
+	{"NAND 4MiB 3,3V 8-bit", 	0xe3, 512, 4, 0x2000, 0},
+	{"NAND 4MiB 3,3V 8-bit", 	0xe5, 512, 4, 0x2000, 0},
+	{"NAND 8MiB 3,3V 8-bit", 	0xd6, 512, 8, 0x2000, 0},
+	
+	{"NAND 8MiB 1,8V 8-bit", 	0x39, 512, 8, 0x2000, 0},
+	{"NAND 8MiB 3,3V 8-bit", 	0xe6, 512, 8, 0x2000, 0},
+	{"NAND 8MiB 1,8V 16-bit", 	0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+	{"NAND 8MiB 3,3V 16-bit", 	0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+	
+	{"NAND 16MiB 1,8V 8-bit", 	0x33, 512, 16, 0x4000, 0},
+	{"NAND 16MiB 3,3V 8-bit", 	0x73, 512, 16, 0x4000, 0},
+	{"NAND 16MiB 1,8V 16-bit", 	0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+	{"NAND 16MiB 3,3V 16-bit", 	0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+	
+	{"NAND 32MiB 1,8V 8-bit", 	0x35, 512, 32, 0x4000, 0},
+	{"NAND 32MiB 3,3V 8-bit", 	0x75, 512, 32, 0x4000, 0},
+	{"NAND 32MiB 1,8V 16-bit", 	0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+	{"NAND 32MiB 3,3V 16-bit", 	0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+	
+	{"NAND 64MiB 1,8V 8-bit", 	0x36, 512, 64, 0x4000, 0},
+	{"NAND 64MiB 3,3V 8-bit", 	0x76, 512, 64, 0x4000, 0},
+	{"NAND 64MiB 1,8V 16-bit", 	0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+	{"NAND 64MiB 3,3V 16-bit", 	0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+	
+	{"NAND 128MiB 1,8V 8-bit", 	0x78, 512, 128, 0x4000, 0},
+	{"NAND 128MiB 3,3V 8-bit", 	0x79, 512, 128, 0x4000, 0},
+	{"NAND 128MiB 1,8V 16-bit", 	0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+	{"NAND 128MiB 3,3V 16-bit", 	0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+	
+	{"NAND 256MiB 3,3V 8-bit", 	0x71, 512, 256, 0x4000, 0},
+
+	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 512, 512, 0x4000, 0},
+	
+	/* These are the new chips with large page size. The pagesize
+	* and the erasesize is determined from the extended id bytes
+	*/
+	/* 1 Gigabit */
+	{"NAND 128MiB 1,8V 8-bit", 	0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 128MiB 3,3V 8-bit", 	0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 128MiB 1,8V 16-bit", 	0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	{"NAND 128MiB 3,3V 16-bit", 	0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+	/* 2 Gigabit */
+	{"NAND 256MiB 1,8V 8-bit", 	0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 256MiB 3,3V 8-bit", 	0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 256MiB 1,8V 16-bit", 	0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	{"NAND 256MiB 3,3V 16-bit", 	0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	
+	/* 4 Gigabit */
+	{"NAND 512MiB 1,8V 8-bit", 	0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 512MiB 1,8V 16-bit", 	0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	{"NAND 512MiB 3,3V 16-bit", 	0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	
+	/* 8 Gigabit */
+	{"NAND 1GiB 1,8V 8-bit", 	0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 1GiB 3,3V 8-bit", 	0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 1GiB 1,8V 16-bit", 	0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	{"NAND 1GiB 3,3V 16-bit", 	0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+	/* 16 Gigabit */
+	{"NAND 2GiB 1,8V 8-bit", 	0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 2GiB 3,3V 8-bit", 	0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+	{"NAND 2GiB 1,8V 16-bit", 	0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+	{"NAND 2GiB 3,3V 16-bit", 	0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+	/* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout ! 
+	 * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+	 * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+	 * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+	 * There are more speed improvements for reads and writes possible, but not implemented now 
+	 */
+	{"AND 128MiB 3,3V 8-bit",	0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
+	{NULL,}
+};
+
+/*
+*	Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+	{NAND_MFR_TOSHIBA, "Toshiba"},
+	{NAND_MFR_SAMSUNG, "Samsung"},
+	{NAND_MFR_FUJITSU, "Fujitsu"},
+	{NAND_MFR_NATIONAL, "National"},
+	{NAND_MFR_RENESAS, "Renesas"},
+	{NAND_MFR_STMICRO, "ST Micro"},
+	{0x0, "Unknown"}
+};
+#endif

+ 1045 - 0
fs/jffs2/jffs2_nand_1pass.c

@@ -0,0 +1,1045 @@
+#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_JFFS2)
+
+#include <malloc.h>
+#include <linux/stat.h>
+#include <linux/time.h>
+
+#include <jffs2/jffs2.h>
+#include <jffs2/jffs2_1pass.h>
+#include <nand.h>
+
+#include "jffs2_nand_private.h"
+
+#define	NODE_CHUNK  	1024	/* size of memory allocation chunk in b_nodes */
+
+/* Debugging switches */
+#undef	DEBUG_DIRENTS		/* print directory entry list after scan */
+#undef	DEBUG_FRAGMENTS		/* print fragment list after scan */
+#undef	DEBUG  			/* enable debugging messages */
+
+#ifdef  DEBUG
+# define DEBUGF(fmt,args...)	printf(fmt ,##args)
+#else
+# define DEBUGF(fmt,args...)
+#endif
+
+static int nanddev = -1; /* nand device of current partition */
+static nand_info_t *nand;
+
+/* Compression names */
+static char *compr_names[] = {
+	"NONE",
+	"ZERO",
+	"RTIME",
+	"RUBINMIPS",
+	"COPY",
+	"DYNRUBIN",
+	"ZLIB",
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+	"LZO",
+	"LZARI",
+#endif
+};
+
+/* Spinning wheel */
+static char spinner[] = { '|', '/', '-', '\\' };
+
+/* Memory management */
+struct mem_block {
+	unsigned index;
+	struct mem_block *next;
+	char nodes[0];
+};
+
+static void
+free_nodes(struct b_list *list)
+{
+	while (list->listMemBase != NULL) {
+		struct mem_block *next = list->listMemBase->next;
+		free(list->listMemBase);
+		list->listMemBase = next;
+	}
+}
+
+static struct b_node *
+add_node(struct b_list *list, int size)
+{
+	u32 index = 0;
+	struct mem_block *memBase;
+	struct b_node *b;
+
+	memBase = list->listMemBase;
+	if (memBase != NULL)
+		index = memBase->index;
+
+	if (memBase == NULL || index >= NODE_CHUNK) {
+		/* we need more space before we continue */
+		memBase = mmalloc(sizeof(struct mem_block) + NODE_CHUNK * size);
+		if (memBase == NULL) {
+			putstr("add_node: malloc failed\n");
+			return NULL;
+		}
+		memBase->next = list->listMemBase;
+		index = 0;
+	}
+	/* now we have room to add it. */
+	b = (struct b_node *)&memBase->nodes[size * index];
+	index ++;
+
+	memBase->index = index;
+	list->listMemBase = memBase;
+	list->listCount++;
+	return b;
+}
+
+static struct b_node *
+insert_node(struct b_list *list, struct b_node *new)
+{
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+	struct b_node *b, *prev;
+
+	if (list->listTail != NULL && list->listCompare(new, list->listTail))
+		prev = list->listTail;
+	else if (list->listLast != NULL && list->listCompare(new, list->listLast))
+		prev = list->listLast;
+	else
+		prev = NULL;
+
+	for (b = (prev ? prev->next : list->listHead);
+	     b != NULL && list->listCompare(new, b);
+	     prev = b, b = b->next) {
+		list->listLoops++;
+	}
+	if (b != NULL)
+		list->listLast = prev;
+
+	if (b != NULL) {
+		new->next = b;
+		if (prev != NULL)
+			prev->next = new;
+		else
+			list->listHead = new;
+	} else
+#endif
+	{
+		new->next = (struct b_node *) NULL;
+		if (list->listTail != NULL) {
+			list->listTail->next = new;
+			list->listTail = new;
+		} else {
+			list->listTail = list->listHead = new;
+		}
+	}
+
+	return new;
+}
+
+static struct b_node *
+insert_inode(struct b_list *list, struct jffs2_raw_inode *node, u32 offset)
+{
+	struct b_inode *new;
+
+	if (!(new = (struct b_inode *)add_node(list, sizeof(struct b_inode)))) {
+		putstr("add_node failed!\r\n");
+		return NULL;
+	}
+	new->offset = offset;
+	new->version = node->version;
+	new->ino = node->ino;
+	new->isize = node->isize;
+	new->csize = node->csize;
+
+	return insert_node(list, (struct b_node *)new);
+}
+
+static struct b_node *
+insert_dirent(struct b_list *list, struct jffs2_raw_dirent *node, u32 offset)
+{
+	struct b_dirent *new;
+
+	if (!(new = (struct b_dirent *)add_node(list, sizeof(struct b_dirent)))) {
+		putstr("add_node failed!\r\n");
+		return NULL;
+	}
+	new->offset = offset;
+	new->version = node->version;
+	new->pino = node->pino;
+	new->ino = node->ino;
+	new->nhash = full_name_hash(node->name, node->nsize);
+	new->nsize = node->nsize;
+	new->type = node->type;
+
+	return insert_node(list, (struct b_node *)new);
+}
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+/* Sort data entries with the latest version last, so that if there
+ * is overlapping data the latest version will be used.
+ */
+static int compare_inodes(struct b_node *new, struct b_node *old)
+{
+	struct jffs2_raw_inode ojNew;
+	struct jffs2_raw_inode ojOld;
+	struct jffs2_raw_inode *jNew =
+		(struct jffs2_raw_inode *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+	struct jffs2_raw_inode *jOld =
+		(struct jffs2_raw_inode *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+
+	return jNew->version > jOld->version;
+}
+
+/* Sort directory entries so all entries in the same directory
+ * with the same name are grouped together, with the latest version
+ * last. This makes it easy to eliminate all but the latest version
+ * by marking the previous version dead by setting the inode to 0.
+ */
+static int compare_dirents(struct b_node *new, struct b_node *old)
+{
+	struct jffs2_raw_dirent ojNew;
+	struct jffs2_raw_dirent ojOld;
+	struct jffs2_raw_dirent *jNew =
+		(struct jffs2_raw_dirent *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew);
+	struct jffs2_raw_dirent *jOld =
+		(struct jffs2_raw_dirent *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld);
+	int cmp;
+
+	/* ascending sort by pino */
+	if (jNew->pino != jOld->pino)
+		return jNew->pino > jOld->pino;
+
+	/* pino is the same, so use ascending sort by nsize, so
+	 * we don't do strncmp unless we really must.
+	 */
+	if (jNew->nsize != jOld->nsize)
+		return jNew->nsize > jOld->nsize;
+
+	/* length is also the same, so use ascending sort by name
+	 */
+	cmp = strncmp(jNew->name, jOld->name, jNew->nsize);
+	if (cmp != 0)
+		return cmp > 0;
+
+	/* we have duplicate names in this directory, so use ascending
+	 * sort by version
+	 */
+	if (jNew->version > jOld->version) {
+		/* since jNew is newer, we know jOld is not valid, so
+		 * mark it with inode 0 and it will not be used
+		 */
+		jOld->ino = 0;
+		return 1;
+	}
+
+	return 0;
+}
+#endif
+
+static u32
+jffs_init_1pass_list(struct part_info *part)
+{
+	struct b_lists *pL;
+
+	if (part->jffs2_priv != NULL) {
+		pL = (struct b_lists *)part->jffs2_priv;
+		free_nodes(&pL->frag);
+		free_nodes(&pL->dir);
+		free(pL);
+	}
+	if (NULL != (part->jffs2_priv = malloc(sizeof(struct b_lists)))) {
+		pL = (struct b_lists *)part->jffs2_priv;
+
+		memset(pL, 0, sizeof(*pL));
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+		pL->dir.listCompare = compare_dirents;
+		pL->frag.listCompare = compare_inodes;
+#endif
+	}
+	return 0;
+}
+
+/* find the inode from the slashless name given a parent */
+static long
+jffs2_1pass_read_inode(struct b_lists *pL, u32 ino, char *dest,
+		       struct stat *stat)
+{
+	struct b_inode *jNode;
+	u32 totalSize = 0;
+	u32 latestVersion = 0;
+	long ret;
+
+#ifdef CFG_JFFS2_SORT_FRAGMENTS
+	/* Find file size before loading any data, so fragments that
+	 * start past the end of file can be ignored. A fragment
+	 * that is partially in the file is loaded, so extra data may
+	 * be loaded up to the next 4K boundary above the file size.
+	 * This shouldn't cause trouble when loading kernel images, so
+	 * we will live with it.
+	 */
+	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+		if ((ino == jNode->ino)) {
+			/* get actual file length from the newest node */
+			if (jNode->version >= latestVersion) {
+				totalSize = jNode->isize;
+				latestVersion = jNode->version;
+			}
+		}
+	}
+#endif
+
+	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+		if ((ino != jNode->ino))
+			continue;
+#ifndef CFG_JFFS2_SORT_FRAGMENTS
+		/* get actual file length from the newest node */
+		if (jNode->version >= latestVersion) {
+			totalSize = jNode->isize;
+			latestVersion = jNode->version;
+		}
+#endif
+		if (dest || stat) {
+			char *src, *dst;
+			char data[4096 + sizeof(struct jffs2_raw_inode)];
+			struct jffs2_raw_inode *inode;
+			size_t len;
+
+			inode = (struct jffs2_raw_inode *)&data;
+			len = sizeof(struct jffs2_raw_inode);
+			if (dest)
+				len += jNode->csize;
+			nand_read(nand, jNode->offset, &len, inode);
+			/* ignore data behind latest known EOF */
+			if (inode->offset > totalSize)
+				continue;
+
+			if (stat) {
+				stat->st_mtime = inode->mtime;
+				stat->st_mode = inode->mode;
+				stat->st_ino = inode->ino;
+				stat->st_size = totalSize;
+			}
+
+			if (!dest)
+				continue;
+
+			src = ((char *) inode) + sizeof(struct jffs2_raw_inode);
+			dst = (char *) (dest + inode->offset);
+
+			switch (inode->compr) {
+			case JFFS2_COMPR_NONE:
+				ret = 0;
+				memcpy(dst, src, inode->dsize);
+				break;
+			case JFFS2_COMPR_ZERO:
+				ret = 0;
+				memset(dst, 0, inode->dsize);
+				break;
+			case JFFS2_COMPR_RTIME:
+				ret = 0;
+				rtime_decompress(src, dst, inode->csize, inode->dsize);
+				break;
+			case JFFS2_COMPR_DYNRUBIN:
+				/* this is slow but it works */
+				ret = 0;
+				dynrubin_decompress(src, dst, inode->csize, inode->dsize);
+				break;
+			case JFFS2_COMPR_ZLIB:
+				ret = zlib_decompress(src, dst, inode->csize, inode->dsize);
+				break;
+#if defined(CONFIG_JFFS2_LZO_LZARI)
+			case JFFS2_COMPR_LZO:
+				ret = lzo_decompress(src, dst, inode->csize, inode->dsize);
+				break;
+			case JFFS2_COMPR_LZARI:
+				ret = lzari_decompress(src, dst, inode->csize, inode->dsize);
+				break;
+#endif
+			default:
+				/* unknown */
+				putLabeledWord("UNKOWN COMPRESSION METHOD = ", inode->compr);
+				return -1;
+			}
+		}
+	}
+
+	return totalSize;
+}
+
+/* find the inode from the slashless name given a parent */
+static u32
+jffs2_1pass_find_inode(struct b_lists * pL, const char *name, u32 pino)
+{
+	struct b_dirent *jDir;
+	int len = strlen(name);	/* name is assumed slash free */
+	unsigned int nhash = full_name_hash(name, len);
+	u32 version = 0;
+	u32 inode = 0;
+
+	/* we need to search all and return the inode with the highest version */
+	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+		if ((pino == jDir->pino) && (jDir->ino) &&	/* 0 for unlink */
+		    (len == jDir->nsize) && (nhash == jDir->nhash)) {
+			/* TODO: compare name */
+			if (jDir->version < version)
+				continue;
+
+			if (jDir->version == version && inode != 0) {
+			    	/* I'm pretty sure this isn't legal */
+				putstr(" ** ERROR ** ");
+//				putnstr(jDir->name, jDir->nsize);
+//				putLabeledWord(" has dup version =", version);
+			}
+			inode = jDir->ino;
+			version = jDir->version;
+		}
+	}
+	return inode;
+}
+
+char *mkmodestr(unsigned long mode, char *str)
+{
+	static const char *l = "xwr";
+	int mask = 1, i;
+	char c;
+
+	switch (mode & S_IFMT) {
+		case S_IFDIR:    str[0] = 'd'; break;
+		case S_IFBLK:    str[0] = 'b'; break;
+		case S_IFCHR:    str[0] = 'c'; break;
+		case S_IFIFO:    str[0] = 'f'; break;
+		case S_IFLNK:    str[0] = 'l'; break;
+		case S_IFSOCK:   str[0] = 's'; break;
+		case S_IFREG:    str[0] = '-'; break;
+		default:         str[0] = '?';
+	}
+
+	for(i = 0; i < 9; i++) {
+		c = l[i%3];
+		str[9-i] = (mode & mask)?c:'-';
+		mask = mask<<1;
+	}
+
+	if(mode & S_ISUID) str[3] = (mode & S_IXUSR)?'s':'S';
+	if(mode & S_ISGID) str[6] = (mode & S_IXGRP)?'s':'S';
+	if(mode & S_ISVTX) str[9] = (mode & S_IXOTH)?'t':'T';
+	str[10] = '\0';
+	return str;
+}
+
+static inline void dump_stat(struct stat *st, const char *name)
+{
+	char str[20];
+	char s[64], *p;
+
+	if (st->st_mtime == (time_t)(-1)) /* some ctimes really hate -1 */
+		st->st_mtime = 1;
+
+	ctime_r(&st->st_mtime, s/*,64*/); /* newlib ctime doesn't have buflen */
+
+	if ((p = strchr(s,'\n')) != NULL) *p = '\0';
+	if ((p = strchr(s,'\r')) != NULL) *p = '\0';
+
+/*
+	printf("%6lo %s %8ld %s %s\n", st->st_mode, mkmodestr(st->st_mode, str),
+		st->st_size, s, name);
+*/
+
+	printf(" %s %8ld %s %s", mkmodestr(st->st_mode,str), st->st_size, s, name);
+}
+
+static inline int
+dump_inode(struct b_lists *pL, struct b_dirent *d, struct b_inode *i)
+{
+	char fname[JFFS2_MAX_NAME_LEN + 1];
+	struct stat st;
+	size_t len;
+
+	if(!d || !i) return -1;
+	len = d->nsize;
+	nand_read(nand, d->offset + sizeof(struct jffs2_raw_dirent),
+		  &len, &fname);
+	fname[d->nsize] = '\0';
+
+	memset(&st, 0, sizeof(st));
+
+	jffs2_1pass_read_inode(pL, i->ino, NULL, &st);
+
+	dump_stat(&st, fname);
+/* FIXME
+	if (d->type == DT_LNK) {
+		unsigned char *src = (unsigned char *) (&i[1]);
+	        putstr(" -> ");
+		putnstr(src, (int)i->dsize);
+	}
+*/
+	putstr("\r\n");
+
+	return 0;
+}
+
+/* list inodes with the given pino */
+static u32
+jffs2_1pass_list_inodes(struct b_lists * pL, u32 pino)
+{
+	struct b_dirent *jDir;
+	u32 i_version = 0;
+
+	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+		if ((pino == jDir->pino) && (jDir->ino)) { /* ino=0 -> unlink */
+			struct b_inode *jNode = (struct b_inode *)pL->frag.listHead;
+			struct b_inode *i = NULL;
+
+			while (jNode) {
+				if (jNode->ino == jDir->ino && jNode->version >= i_version) {
+					i_version = jNode->version;
+					i = jNode;
+				}
+				jNode = jNode->next;
+			}
+			dump_inode(pL, jDir, i);
+		}
+	}
+	return pino;
+}
+
+static u32
+jffs2_1pass_search_inode(struct b_lists * pL, const char *fname, u32 pino)
+{
+	int i;
+	char tmp[256];
+	char working_tmp[256];
+	char *c;
+
+	/* discard any leading slash */
+	i = 0;
+	while (fname[i] == '/')
+		i++;
+	strcpy(tmp, &fname[i]);
+
+	while ((c = (char *) strchr(tmp, '/')))	/* we are still dired searching */
+	{
+		strncpy(working_tmp, tmp, c - tmp);
+		working_tmp[c - tmp] = '\0';
+#if 0
+		putstr("search_inode: tmp = ");
+		putstr(tmp);
+		putstr("\r\n");
+		putstr("search_inode: wtmp = ");
+		putstr(working_tmp);
+		putstr("\r\n");
+		putstr("search_inode: c = ");
+		putstr(c);
+		putstr("\r\n");
+#endif
+		for (i = 0; i < strlen(c) - 1; i++)
+			tmp[i] = c[i + 1];
+		tmp[i] = '\0';
+#if 0
+		putstr("search_inode: post tmp = ");
+		putstr(tmp);
+		putstr("\r\n");
+#endif
+
+		if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino))) {
+			putstr("find_inode failed for name=");
+			putstr(working_tmp);
+			putstr("\r\n");
+			return 0;
+		}
+	}
+	/* this is for the bare filename, directories have already been mapped */
+	if (!(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+		putstr("find_inode failed for name=");
+		putstr(tmp);
+		putstr("\r\n");
+		return 0;
+	}
+	return pino;
+
+}
+
+static u32
+jffs2_1pass_resolve_inode(struct b_lists * pL, u32 ino)
+{
+	struct b_dirent *jDir;
+	struct b_inode *jNode;
+	u8 jDirFoundType = 0;
+	u32 jDirFoundIno = 0;
+	u32 jDirFoundPino = 0;
+	char tmp[JFFS2_MAX_NAME_LEN + 1];
+	u32 version = 0;
+	u32 pino;
+
+	/* we need to search all and return the inode with the highest version */
+	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) {
+		if (ino == jDir->ino) {
+		    	if (jDir->version < version)
+				continue;
+
+			if (jDir->version == version && jDirFoundType) {
+			    	/* I'm pretty sure this isn't legal */
+				putstr(" ** ERROR ** ");
+//				putnstr(jDir->name, jDir->nsize);
+//				putLabeledWord(" has dup version (resolve) = ",
+//					version);
+			}
+
+			jDirFoundType = jDir->type;
+			jDirFoundIno = jDir->ino;
+			jDirFoundPino = jDir->pino;
+			version = jDir->version;
+		}
+	}
+	/* now we found the right entry again. (shoulda returned inode*) */
+	if (jDirFoundType != DT_LNK)
+		return jDirFoundIno;
+
+	/* it's a soft link so we follow it again. */
+	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) {
+		if (jNode->ino == jDirFoundIno) {
+			size_t len = jNode->csize;
+			nand_read(nand, jNode->offset + sizeof(struct jffs2_raw_inode), &len, &tmp);
+			tmp[jNode->csize] = '\0';
+			break;
+		}
+	}
+	/* ok so the name of the new file to find is in tmp */
+	/* if it starts with a slash it is root based else shared dirs */
+	if (tmp[0] == '/')
+		pino = 1;
+	else
+		pino = jDirFoundPino;
+
+	return jffs2_1pass_search_inode(pL, tmp, pino);
+}
+
+static u32
+jffs2_1pass_search_list_inodes(struct b_lists * pL, const char *fname, u32 pino)
+{
+	int i;
+	char tmp[256];
+	char working_tmp[256];
+	char *c;
+
+	/* discard any leading slash */
+	i = 0;
+	while (fname[i] == '/')
+		i++;
+	strcpy(tmp, &fname[i]);
+	working_tmp[0] = '\0';
+	while ((c = (char *) strchr(tmp, '/')))	/* we are still dired searching */
+	{
+		strncpy(working_tmp, tmp, c - tmp);
+		working_tmp[c - tmp] = '\0';
+		for (i = 0; i < strlen(c) - 1; i++)
+			tmp[i] = c[i + 1];
+		tmp[i] = '\0';
+		/* only a failure if we arent looking at top level */
+		if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino)) &&
+		    (working_tmp[0])) {
+			putstr("find_inode failed for name=");
+			putstr(working_tmp);
+			putstr("\r\n");
+			return 0;
+		}
+	}
+
+	if (tmp[0] && !(pino = jffs2_1pass_find_inode(pL, tmp, pino))) {
+		putstr("find_inode failed for name=");
+		putstr(tmp);
+		putstr("\r\n");
+		return 0;
+	}
+	/* this is for the bare filename, directories have already been mapped */
+	if (!(pino = jffs2_1pass_list_inodes(pL, pino))) {
+		putstr("find_inode failed for name=");
+		putstr(tmp);
+		putstr("\r\n");
+		return 0;
+	}
+	return pino;
+
+}
+
+unsigned char
+jffs2_1pass_rescan_needed(struct part_info *part)
+{
+	struct b_node *b;
+	struct jffs2_unknown_node onode;
+	struct jffs2_unknown_node *node;
+	struct b_lists *pL = (struct b_lists *)part->jffs2_priv;
+
+	if (part->jffs2_priv == 0){
+		DEBUGF ("rescan: First time in use\n");
+		return 1;
+	}
+	/* if we have no list, we need to rescan */
+	if (pL->frag.listCount == 0) {
+		DEBUGF ("rescan: fraglist zero\n");
+		return 1;
+	}
+
+	/* or if we are scanning a new partition */
+	if (pL->partOffset != part->offset) {
+		DEBUGF ("rescan: different partition\n");
+		return 1;
+	}
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+	if (nanddev != (int)part->usr_priv - 1) {
+		DEBUGF ("rescan: nand device changed\n");
+		return -1;
+	}
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+	/* FIXME */
+#if 0
+	/* but suppose someone reflashed a partition at the same offset... */
+	b = pL->dir.listHead;
+	while (b) {
+		node = (struct jffs2_unknown_node *) get_fl_mem(b->offset,
+			sizeof(onode), &onode);
+		if (node->nodetype != JFFS2_NODETYPE_DIRENT) {
+			DEBUGF ("rescan: fs changed beneath me? (%lx)\n",
+					(unsigned long) b->offset);
+			return 1;
+		}
+		b = b->next;
+	}
+#endif
+	return 0;
+}
+
+#ifdef DEBUG_FRAGMENTS
+static void
+dump_fragments(struct b_lists *pL)
+{
+	struct b_node *b;
+	struct jffs2_raw_inode ojNode;
+	struct jffs2_raw_inode *jNode;
+
+	putstr("\r\n\r\n******The fragment Entries******\r\n");
+	b = pL->frag.listHead;
+	while (b) {
+		jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+			sizeof(ojNode), &ojNode);
+		putLabeledWord("\r\n\tbuild_list: FLASH_OFFSET = ", b->offset);
+		putLabeledWord("\tbuild_list: totlen = ", jNode->totlen);
+		putLabeledWord("\tbuild_list: inode = ", jNode->ino);
+		putLabeledWord("\tbuild_list: version = ", jNode->version);
+		putLabeledWord("\tbuild_list: isize = ", jNode->isize);
+		putLabeledWord("\tbuild_list: atime = ", jNode->atime);
+		putLabeledWord("\tbuild_list: offset = ", jNode->offset);
+		putLabeledWord("\tbuild_list: csize = ", jNode->csize);
+		putLabeledWord("\tbuild_list: dsize = ", jNode->dsize);
+		putLabeledWord("\tbuild_list: compr = ", jNode->compr);
+		putLabeledWord("\tbuild_list: usercompr = ", jNode->usercompr);
+		putLabeledWord("\tbuild_list: flags = ", jNode->flags);
+		putLabeledWord("\tbuild_list: offset = ", b->offset);	/* FIXME: ? [RS] */
+		b = b->next;
+	}
+}
+#endif
+
+#ifdef DEBUG_DIRENTS
+static void
+dump_dirents(struct b_lists *pL)
+{
+	struct b_node *b;
+	struct jffs2_raw_dirent *jDir;
+
+	putstr("\r\n\r\n******The directory Entries******\r\n");
+	b = pL->dir.listHead;
+	while (b) {
+		jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset);
+		putstr("\r\n");
+		putnstr(jDir->name, jDir->nsize);
+		putLabeledWord("\r\n\tbuild_list: magic = ", jDir->magic);
+		putLabeledWord("\tbuild_list: nodetype = ", jDir->nodetype);
+		putLabeledWord("\tbuild_list: hdr_crc = ", jDir->hdr_crc);
+		putLabeledWord("\tbuild_list: pino = ", jDir->pino);
+		putLabeledWord("\tbuild_list: version = ", jDir->version);
+		putLabeledWord("\tbuild_list: ino = ", jDir->ino);
+		putLabeledWord("\tbuild_list: mctime = ", jDir->mctime);
+		putLabeledWord("\tbuild_list: nsize = ", jDir->nsize);
+		putLabeledWord("\tbuild_list: type = ", jDir->type);
+		putLabeledWord("\tbuild_list: node_crc = ", jDir->node_crc);
+		putLabeledWord("\tbuild_list: name_crc = ", jDir->name_crc);
+		putLabeledWord("\tbuild_list: offset = ", b->offset); 	/* FIXME: ? [RS] */
+		b = b->next;
+		put_fl_mem(jDir);
+	}
+}
+#endif
+
+static int
+jffs2_fill_scan_buf(nand_info_t *nand, unsigned char *buf,
+		    unsigned ofs, unsigned len)
+{
+	int ret;
+	unsigned olen;
+
+	olen = len;
+	ret = nand_read(nand, ofs, &olen, buf);
+	if (ret) {
+		printf("nand_read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret);
+		return ret;
+	}
+	if (olen < len) {
+		printf("Read at 0x%x gave only 0x%x bytes\n", ofs, olen);
+		return -1;
+	}
+	return 0;
+}
+
+#define	EMPTY_SCAN_SIZE	1024
+static u32
+jffs2_1pass_build_lists(struct part_info * part)
+{
+	struct b_lists *pL;
+	struct jffs2_unknown_node *node;
+	unsigned nr_blocks, sectorsize, ofs, offset;
+	char *buf;
+	int i;
+	u32 counter = 0;
+	u32 counter4 = 0;
+	u32 counterF = 0;
+	u32 counterN = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND)
+	nanddev = (int)part->usr_priv - 1;
+	nand = &nand_info[nanddev];
+#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */
+
+	/* if we are building a list we need to refresh the cache. */
+	jffs_init_1pass_list(part);
+	pL = (struct b_lists *)part->jffs2_priv;
+	pL->partOffset = part->offset;
+	puts ("Scanning JFFS2 FS:   ");
+
+	sectorsize = nand->erasesize;
+	nr_blocks = part->size / sectorsize;
+	buf = malloc(sectorsize);
+	if (!buf)
+		return 0;
+
+	for (i = 0; i < nr_blocks; i++) {
+		printf("\b\b%c ", spinner[counter++ % sizeof(spinner)]);
+
+		offset = part->offset + i * sectorsize;
+
+		if (nand_block_isbad(nand, offset))
+			continue;
+
+		if (jffs2_fill_scan_buf(nand, buf, offset, EMPTY_SCAN_SIZE))
+			return 0;
+
+		ofs = 0;
+		/* Scan only 4KiB of 0xFF before declaring it's empty */
+		while (ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
+			ofs += 4;
+		if (ofs == EMPTY_SCAN_SIZE)
+			continue;
+
+		if (jffs2_fill_scan_buf(nand, buf + EMPTY_SCAN_SIZE, offset + EMPTY_SCAN_SIZE, sectorsize - EMPTY_SCAN_SIZE))
+			return 0;
+		offset += ofs;
+
+		while (ofs < sectorsize - sizeof(struct jffs2_unknown_node)) {
+			node = (struct jffs2_unknown_node *)&buf[ofs];
+			if (node->magic != JFFS2_MAGIC_BITMASK || !hdr_crc(node)) {
+				offset += 4;
+				ofs += 4;
+				counter4++;
+				continue;
+			}
+			/* if its a fragment add it */
+			if (node->nodetype == JFFS2_NODETYPE_INODE &&
+				    inode_crc((struct jffs2_raw_inode *) node)) {
+				if (insert_inode(&pL->frag, (struct jffs2_raw_inode *) node,
+						 offset) == NULL) {
+					return 0;
+				}
+			} else if (node->nodetype == JFFS2_NODETYPE_DIRENT &&
+				   dirent_crc((struct jffs2_raw_dirent *) node)  &&
+				   dirent_name_crc((struct jffs2_raw_dirent *) node)) {
+				if (! (counterN%100))
+					puts ("\b\b.  ");
+				if (insert_dirent(&pL->dir, (struct jffs2_raw_dirent *) node,
+						  offset) == NULL) {
+					return 0;
+				}
+				counterN++;
+			} else if (node->nodetype == JFFS2_NODETYPE_CLEANMARKER) {
+				if (node->totlen != sizeof(struct jffs2_unknown_node))
+					printf("OOPS Cleanmarker has bad size "
+						"%d != %d\n", node->totlen,
+						sizeof(struct jffs2_unknown_node));
+			} else if (node->nodetype == JFFS2_NODETYPE_PADDING) {
+				if (node->totlen < sizeof(struct jffs2_unknown_node))
+					printf("OOPS Padding has bad size "
+						"%d < %d\n", node->totlen,
+						sizeof(struct jffs2_unknown_node));
+			} else {
+				printf("Unknown node type: %x len %d "
+					"offset 0x%x\n", node->nodetype,
+					node->totlen, offset);
+			}
+			offset += ((node->totlen + 3) & ~3);
+			ofs += ((node->totlen + 3) & ~3);
+			counterF++;
+		}
+	}
+
+	putstr("\b\b done.\r\n");		/* close off the dots */
+
+#if 0
+	putLabeledWord("dir entries = ", pL->dir.listCount);
+	putLabeledWord("frag entries = ", pL->frag.listCount);
+	putLabeledWord("+4 increments = ", counter4);
+	putLabeledWord("+file_offset increments = ", counterF);
+#endif
+
+#ifdef DEBUG_DIRENTS
+	dump_dirents(pL);
+#endif
+
+#ifdef DEBUG_FRAGMENTS
+	dump_fragments(pL);
+#endif
+
+	/* give visual feedback that we are done scanning the flash */
+	led_blink(0x0, 0x0, 0x1, 0x1);	/* off, forever, on 100ms, off 100ms */
+	free(buf);
+
+	return 1;
+}
+
+
+static u32
+jffs2_1pass_fill_info(struct b_lists * pL, struct b_jffs2_info * piL)
+{
+	struct b_node *b;
+	struct jffs2_raw_inode ojNode;
+	struct jffs2_raw_inode *jNode;
+	int i;
+
+	for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+		piL->compr_info[i].num_frags = 0;
+		piL->compr_info[i].compr_sum = 0;
+		piL->compr_info[i].decompr_sum = 0;
+	}
+/*	FIXME
+	b = pL->frag.listHead;
+	while (b) {
+		jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset,
+			sizeof(ojNode), &ojNode);
+		if (jNode->compr < JFFS2_NUM_COMPR) {
+			piL->compr_info[jNode->compr].num_frags++;
+			piL->compr_info[jNode->compr].compr_sum += jNode->csize;
+			piL->compr_info[jNode->compr].decompr_sum += jNode->dsize;
+		}
+		b = b->next;
+	}
+*/
+	return 0;
+}
+
+
+static struct b_lists *
+jffs2_get_list(struct part_info * part, const char *who)
+{
+	if (jffs2_1pass_rescan_needed(part)) {
+		if (!jffs2_1pass_build_lists(part)) {
+			printf("%s: Failed to scan JFFSv2 file structure\n", who);
+			return NULL;
+		}
+	}
+	return (struct b_lists *)part->jffs2_priv;
+}
+
+
+/* Print directory / file contents */
+u32
+jffs2_1pass_ls(struct part_info * part, const char *fname)
+{
+	struct b_lists *pl;
+	long ret = 0;
+	u32 inode;
+
+	if (! (pl = jffs2_get_list(part, "ls")))
+		return 0;
+
+	if (! (inode = jffs2_1pass_search_list_inodes(pl, fname, 1))) {
+		putstr("ls: Failed to scan jffs2 file structure\r\n");
+		return 0;
+	}
+
+#if 0
+	putLabeledWord("found file at inode = ", inode);
+	putLabeledWord("read_inode returns = ", ret);
+#endif
+
+	return ret;
+}
+
+
+/* Load a file from flash into memory. fname can be a full path */
+u32
+jffs2_1pass_load(char *dest, struct part_info * part, const char *fname)
+{
+
+	struct b_lists *pl;
+	long ret = 0;
+	u32 inode;
+
+	if (! (pl  = jffs2_get_list(part, "load")))
+		return 0;
+
+	if (! (inode = jffs2_1pass_search_inode(pl, fname, 1))) {
+		putstr("load: Failed to find inode\r\n");
+		return 0;
+	}
+
+	/* Resolve symlinks */
+	if (! (inode = jffs2_1pass_resolve_inode(pl, inode))) {
+		putstr("load: Failed to resolve inode structure\r\n");
+		return 0;
+	}
+
+	if ((ret = jffs2_1pass_read_inode(pl, inode, dest, NULL)) < 0) {
+		putstr("load: Failed to read inode\r\n");
+		return 0;
+	}
+
+	DEBUGF ("load: loaded '%s' to 0x%lx (%ld bytes)\n", fname,
+				(unsigned long) dest, ret);
+	return ret;
+}
+
+/* Return information about the fs on this partition */
+u32
+jffs2_1pass_info(struct part_info * part)
+{
+	struct b_jffs2_info info;
+	struct b_lists *pl;
+	int i;
+
+	if (! (pl  = jffs2_get_list(part, "info")))
+		return 0;
+
+	jffs2_1pass_fill_info(pl, &info);
+	for (i = 0; i < JFFS2_NUM_COMPR; i++) {
+		printf ("Compression: %s\n"
+			"\tfrag count: %d\n"
+			"\tcompressed sum: %d\n"
+			"\tuncompressed sum: %d\n",
+			compr_names[i],
+			info.compr_info[i].num_frags,
+			info.compr_info[i].compr_sum,
+			info.compr_info[i].decompr_sum);
+	}
+	return 1;
+}
+
+#endif /* CFG_CMD_JFFS2 */

+ 133 - 0
fs/jffs2/jffs2_nand_private.h

@@ -0,0 +1,133 @@
+#ifndef jffs2_private_h
+#define jffs2_private_h
+
+#include <jffs2/jffs2.h>
+
+struct b_node {
+	struct b_node *next;
+};
+
+struct b_inode {
+	struct b_inode *next;
+	u32 offset;	/* physical offset to beginning of real inode */
+	u32 version;
+	u32 ino;
+	u32 isize;
+	u32 csize;
+};
+
+struct b_dirent {
+	struct b_dirent *next;
+	u32 offset;	/* physical offset to beginning of real dirent */
+	u32 version;
+	u32 pino;
+	u32 ino;
+	unsigned int nhash;
+	unsigned char nsize;
+	unsigned char type;
+};
+
+struct b_list {
+	struct b_node *listTail;
+	struct b_node *listHead;
+	unsigned int listCount;
+	struct mem_block *listMemBase;
+};
+
+struct b_lists {
+	char *partOffset;
+	struct b_list dir;
+	struct b_list frag;
+};
+
+struct b_compr_info {
+	u32 num_frags;
+	u32 compr_sum;
+	u32 decompr_sum;
+};
+
+struct b_jffs2_info {
+	struct b_compr_info compr_info[JFFS2_NUM_COMPR];
+};
+
+static inline int
+hdr_crc(struct jffs2_unknown_node *node)
+{
+#if 1
+	u32 crc = crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+#else
+	/* what's the semantics of this? why is this here? */
+	u32 crc = crc32_no_comp(~0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4);
+
+	crc ^= ~0;
+#endif
+	if (node->hdr_crc != crc) {
+		return 0;
+	} else {
+		return 1;
+	}
+}
+
+static inline int
+dirent_crc(struct jffs2_raw_dirent *node)
+{
+	if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_dirent) - 8)) {
+		return 0;
+	} else {
+		return 1;
+	}
+}
+
+static inline int
+dirent_name_crc(struct jffs2_raw_dirent *node)
+{
+	if (node->name_crc != crc32_no_comp(0, (unsigned char *)&(node->name), node->nsize)) {
+		return 0;
+	} else {
+		return 1;
+	}
+}
+
+static inline int
+inode_crc(struct jffs2_raw_inode *node)
+{
+	if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_inode) - 8)) {
+		return 0;
+	} else {
+		return 1;
+	}
+}
+
+/* Borrowed from include/linux/dcache.h */
+
+/* Name hashing routines. Initial hash value */
+/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
+#define init_name_hash()		0
+
+/* partial hash update function. Assume roughly 4 bits per character */
+static inline unsigned long
+partial_name_hash(unsigned long c, unsigned long prevhash)
+{
+	return (prevhash + (c << 4) + (c >> 4)) * 11;
+}
+
+/*
+ * Finally: cut down the number of bits to a int value (and try to avoid
+ * losing bits)
+ */
+static inline unsigned long end_name_hash(unsigned long hash)
+{
+	return (unsigned int) hash;
+}
+
+/* Compute the hash for a name string. */
+static inline unsigned int
+full_name_hash(const unsigned char *name, unsigned int len)
+{
+	unsigned long hash = init_name_hash();
+	while (len--)
+		hash = partial_name_hash(*name++, hash);
+	return end_name_hash(hash);
+}
+
+#endif /* jffs2_private.h */

+ 44 - 0
include/linux/mtd/compat.h

@@ -0,0 +1,44 @@
+#ifndef _LINUX_COMPAT_H_
+#define _LINUX_COMPAT_H_
+
+#define __user
+#define __iomem
+
+#define ndelay(x)	udelay(1)
+
+#define printk	printf
+
+#define KERN_EMERG
+#define KERN_ALERT
+#define KERN_CRIT
+#define KERN_ERR
+#define KERN_WARNING
+#define KERN_NOTICE
+#define KERN_INFO
+#define KERN_DEBUG
+
+#define kmalloc(size, flags)	malloc(size)
+#define kfree(ptr)		free(ptr)
+
+/*
+ * ..and if you can't take the strict
+ * types, you can specify one yourself.
+ *
+ * Or not use min/max at all, of course.
+ */
+#define min_t(type,x,y) \
+	({ type __x = (x); type __y = (y); __x < __y ? __x: __y; })
+#define max_t(type,x,y) \
+	({ type __x = (x); type __y = (y); __x > __y ? __x: __y; })
+
+#define BUG() do { \
+	printf("U-Boot BUG at %s:%d!\n", __FILE__, __LINE__); \
+} while (0)
+
+#define BUG_ON(condition) do { if (condition) BUG(); } while(0)
+
+#define likely(x)	__builtin_expect(!!(x), 1)
+#define unlikely(x)	__builtin_expect(!!(x), 0)
+
+#define PAGE_SIZE	4096
+#endif

+ 99 - 0
include/linux/mtd/mtd-abi.h

@@ -0,0 +1,99 @@
+/*
+ * $Id: mtd-abi.h,v 1.7 2004/11/23 15:37:32 gleixner Exp $
+ *
+ * Portions of MTD ABI definition which are shared by kernel and user space 
+ */
+
+#ifndef __MTD_ABI_H__
+#define __MTD_ABI_H__
+
+struct erase_info_user {
+	uint32_t start;
+	uint32_t length;
+};
+
+struct mtd_oob_buf {
+	uint32_t start;
+	uint32_t length;
+	unsigned char *ptr;
+};
+
+#define MTD_ABSENT		0
+#define MTD_RAM			1
+#define MTD_ROM			2
+#define MTD_NORFLASH		3
+#define MTD_NANDFLASH		4
+#define MTD_PEROM		5
+#define MTD_OTHER		14
+#define MTD_UNKNOWN		15
+
+#define MTD_CLEAR_BITS		1       // Bits can be cleared (flash)
+#define MTD_SET_BITS		2       // Bits can be set
+#define MTD_ERASEABLE		4       // Has an erase function
+#define MTD_WRITEB_WRITEABLE	8       // Direct IO is possible
+#define MTD_VOLATILE		16      // Set for RAMs
+#define MTD_XIP			32	// eXecute-In-Place possible
+#define MTD_OOB			64	// Out-of-band data (NAND flash)
+#define MTD_ECC			128	// Device capable of automatic ECC
+#define MTD_NO_VIRTBLOCKS	256	// Virtual blocks not allowed
+
+// Some common devices / combinations of capabilities
+#define MTD_CAP_ROM		0
+#define MTD_CAP_RAM		(MTD_CLEAR_BITS|MTD_SET_BITS|MTD_WRITEB_WRITEABLE)
+#define MTD_CAP_NORFLASH        (MTD_CLEAR_BITS|MTD_ERASEABLE)
+#define MTD_CAP_NANDFLASH       (MTD_CLEAR_BITS|MTD_ERASEABLE|MTD_OOB)
+#define MTD_WRITEABLE		(MTD_CLEAR_BITS|MTD_SET_BITS)
+
+
+// Types of automatic ECC/Checksum available
+#define MTD_ECC_NONE		0 	// No automatic ECC available
+#define MTD_ECC_RS_DiskOnChip	1	// Automatic ECC on DiskOnChip
+#define MTD_ECC_SW		2	// SW ECC for Toshiba & Samsung devices
+
+/* ECC byte placement */
+#define MTD_NANDECC_OFF		0	// Switch off ECC (Not recommended)
+#define MTD_NANDECC_PLACE	1	// Use the given placement in the structure (YAFFS1 legacy mode)
+#define MTD_NANDECC_AUTOPLACE	2	// Use the default placement scheme
+#define MTD_NANDECC_PLACEONLY	3	// Use the given placement in the structure (Do not store ecc result on read)
+#define MTD_NANDECC_AUTOPL_USR 	4	// Use the given autoplacement scheme rather than using the default
+
+struct mtd_info_user {
+	uint8_t type;
+	uint32_t flags;
+	uint32_t size;	 // Total size of the MTD
+	uint32_t erasesize;
+	uint32_t oobblock;  // Size of OOB blocks (e.g. 512)
+	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
+	uint32_t ecctype;
+	uint32_t eccsize;
+};
+
+struct region_info_user {
+	uint32_t offset;		/* At which this region starts, 
+					 * from the beginning of the MTD */
+	uint32_t erasesize;		/* For this region */
+	uint32_t numblocks;		/* Number of blocks in this region */
+	uint32_t regionindex;
+};
+
+#define MEMGETINFO              _IOR('M', 1, struct mtd_info_user)
+#define MEMERASE                _IOW('M', 2, struct erase_info_user)
+#define MEMWRITEOOB             _IOWR('M', 3, struct mtd_oob_buf)
+#define MEMREADOOB              _IOWR('M', 4, struct mtd_oob_buf)
+#define MEMLOCK                 _IOW('M', 5, struct erase_info_user)
+#define MEMUNLOCK               _IOW('M', 6, struct erase_info_user)
+#define MEMGETREGIONCOUNT	_IOR('M', 7, int)
+#define MEMGETREGIONINFO	_IOWR('M', 8, struct region_info_user)
+#define MEMSETOOBSEL		_IOW('M', 9, struct nand_oobinfo)
+#define MEMGETOOBSEL		_IOR('M', 10, struct nand_oobinfo)
+#define MEMGETBADBLOCK		_IOW('M', 11, loff_t)
+#define MEMSETBADBLOCK		_IOW('M', 12, loff_t)
+
+struct nand_oobinfo {
+	uint32_t useecc;
+	uint32_t eccbytes;
+	uint32_t oobfree[8][2];
+	uint32_t eccpos[32];
+};
+
+#endif /* __MTD_ABI_H__ */

+ 214 - 0
include/linux/mtd/mtd.h

@@ -0,0 +1,214 @@
+/* 
+ * $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $
+ *
+ * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al.
+ *
+ * Released under GPL
+ */
+
+#ifndef __MTD_MTD_H__
+#define __MTD_MTD_H__
+#include <linux/types.h>
+#include <linux/mtd/mtd-abi.h>
+
+#define MAX_MTD_DEVICES 16
+
+#define MTD_ERASE_PENDING      	0x01
+#define MTD_ERASING		0x02
+#define MTD_ERASE_SUSPEND	0x04
+#define MTD_ERASE_DONE          0x08
+#define MTD_ERASE_FAILED        0x10
+
+/* If the erase fails, fail_addr might indicate exactly which block failed.  If
+   fail_addr = 0xffffffff, the failure was not at the device level or was not
+   specific to any particular block. */
+struct erase_info {
+	struct mtd_info *mtd;
+	u_int32_t addr;
+	u_int32_t len;
+	u_int32_t fail_addr;
+	u_long time;
+	u_long retries;
+	u_int dev;
+	u_int cell;
+	void (*callback) (struct erase_info *self);
+	u_long priv;
+	u_char state;
+	struct erase_info *next;
+};
+
+struct mtd_erase_region_info {
+	u_int32_t offset;			/* At which this region starts, from the beginning of the MTD */
+	u_int32_t erasesize;		/* For this region */
+	u_int32_t numblocks;		/* Number of blocks of erasesize in this region */
+};
+
+struct mtd_info {
+	u_char type;
+	u_int32_t flags;
+	u_int32_t size;	 // Total size of the MTD
+
+	/* "Major" erase size for the device. Naïve users may take this
+	 * to be the only erase size available, or may use the more detailed
+	 * information below if they desire
+	 */
+	u_int32_t erasesize;
+
+	u_int32_t oobblock;  // Size of OOB blocks (e.g. 512)
+	u_int32_t oobsize;   // Amount of OOB data per block (e.g. 16)
+	u_int32_t oobavail;  // Number of bytes in OOB area available for fs 
+	u_int32_t ecctype;
+	u_int32_t eccsize;
+	
+
+	// Kernel-only stuff starts here.
+	char *name;
+	int index;
+
+	// oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO)
+	struct nand_oobinfo oobinfo;
+
+	/* Data for variable erase regions. If numeraseregions is zero,
+	 * it means that the whole device has erasesize as given above. 
+	 */
+	int numeraseregions;
+	struct mtd_erase_region_info *eraseregions; 
+
+	/* This really shouldn't be here. It can go away in 2.5 */
+	u_int32_t bank_size;
+
+	int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
+
+	/* This stuff for eXecute-In-Place */
+	int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf);
+
+	/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
+	void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len);
+
+
+	int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+	int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+	int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+	int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+
+	int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+	int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
+
+	/* 
+	 * Methods to access the protection register area, present in some 
+	 * flash devices. The user data is one time programmable but the
+	 * factory data is read only. 
+	 */
+	int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+	int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+
+	/* This function is not yet implemented */
+	int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
+#if 0
+	/* kvec-based read/write methods. We need these especially for NAND flash,
+	   with its limited number of write cycles per erase.
+	   NB: The 'count' parameter is the number of _vectors_, each of 
+	   which contains an (ofs, len) tuple.
+	*/
+	int (*readv) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, size_t *retlen);
+	int (*readv_ecc) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, 
+		size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+	int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
+	int (*writev_ecc) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, 
+		size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+#endif
+	/* Sync */
+	void (*sync) (struct mtd_info *mtd);
+#if 0
+	/* Chip-supported device locking */
+	int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+	int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len);
+
+	/* Power Management functions */
+	int (*suspend) (struct mtd_info *mtd);
+	void (*resume) (struct mtd_info *mtd);
+#endif
+	/* Bad block management functions */
+	int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
+	int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
+
+	void *priv;
+
+	struct module *owner;
+	int usecount;
+};
+
+
+	/* Kernel-side ioctl definitions */
+
+extern int add_mtd_device(struct mtd_info *mtd);
+extern int del_mtd_device (struct mtd_info *mtd);
+
+extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
+
+extern void put_mtd_device(struct mtd_info *mtd);
+
+#if 0
+struct mtd_notifier {
+	void (*add)(struct mtd_info *mtd);
+	void (*remove)(struct mtd_info *mtd);
+	struct list_head list;
+};
+
+
+extern void register_mtd_user (struct mtd_notifier *new);
+extern int unregister_mtd_user (struct mtd_notifier *old);
+
+int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
+		       unsigned long count, loff_t to, size_t *retlen);
+
+int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
+		      unsigned long count, loff_t from, size_t *retlen);
+#endif
+
+#define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args)
+#define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d))
+#define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg)
+#define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args)
+#define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args)
+#define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args)
+#define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args)
+#define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args)
+#define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args)
+#define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args)
+#define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args)
+#define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd);  } while (0) 
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+void mtd_erase_callback(struct erase_info *instr);
+#else
+static inline void mtd_erase_callback(struct erase_info *instr)
+{
+	if (instr->callback)
+		instr->callback(instr);
+}
+#endif
+
+/*
+ * Debugging macro and defines
+ */
+#define MTD_DEBUG_LEVEL0	(0)	/* Quiet   */
+#define MTD_DEBUG_LEVEL1	(1)	/* Audible */
+#define MTD_DEBUG_LEVEL2	(2)	/* Loud    */
+#define MTD_DEBUG_LEVEL3	(3)	/* Noisy   */
+
+#ifdef CONFIG_MTD_DEBUG
+#define DEBUG(n, args...)				\
+ 	do {						\
+		if (n <= CONFIG_MTD_DEBUG_VERBOSE)	\
+			printk(KERN_INFO args);		\
+	} while(0)
+#else /* CONFIG_MTD_DEBUG */
+#define DEBUG(n, args...) do { } while(0)
+
+#endif /* CONFIG_MTD_DEBUG */
+
+#endif /* __MTD_MTD_H__ */

+ 387 - 116
include/linux/mtd/nand.h

@@ -2,10 +2,10 @@
  *  linux/include/linux/mtd/nand.h
  *
  *  Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com>
- *                     Steven J. Hill <sjhill@cotw.com>
- *		       Thomas Gleixner <gleixner@autronix.de>
+ *                     Steven J. Hill <sjhill@realitydiluted.com>
+ *		       Thomas Gleixner <tglx@linutronix.de>
  *
- * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $
+ * $Id: nand.h,v 1.68 2004/11/12 10:40:37 gleixner Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -24,7 +24,7 @@
  *			bat later if I did something naughty.
  *   10-11-2000 SJH     Added private NAND flash structure for driver
  *   10-24-2000 SJH     Added prototype for 'nand_scan' function
- *   10-29-2001 TG	changed nand_chip structure to support
+ *   10-29-2001 TG	changed nand_chip structure to support 
  *			hardwarespecific function for accessing control lines
  *   02-21-2002 TG	added support for different read/write adress and
  *			ready/busy line access function
@@ -32,10 +32,68 @@
  *			command delay times for different chips
  *   04-28-2002 TG	OOB config defines moved from nand.c to avoid duplicate
  *			defines in jffs2/wbuf.c
+ *   08-07-2002 TG	forced bad block location to byte 5 of OOB, even if
+ *			CONFIG_MTD_NAND_ECC_JFFS2 is not set
+ *   08-10-2002 TG	extensions to nand_chip structure to support HW-ECC
+ *
+ *   08-29-2002 tglx 	nand_chip structure: data_poi for selecting 
+ *			internal / fs-driver buffer
+ *			support for 6byte/512byte hardware ECC
+ *			read_ecc, write_ecc extended for different oob-layout
+ *			oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB,
+ *			NAND_YAFFS_OOB
+ *  11-25-2002 tglx	Added Manufacturer code FUJITSU, NATIONAL
+ *			Split manufacturer and device ID structures 
+ *
+ *  02-08-2004 tglx 	added option field to nand structure for chip anomalities
+ *  05-25-2004 tglx 	added bad block table support, ST-MICRO manufacturer id
+ *			update of nand_chip structure description
  */
 #ifndef __LINUX_MTD_NAND_H
 #define __LINUX_MTD_NAND_H
 
+#include <linux/mtd/compat.h>
+#include <linux/mtd/mtd.h>
+
+struct mtd_info;
+/* Scan and identify a NAND device */
+extern int nand_scan (struct mtd_info *mtd, int max_chips);
+/* Free resources held by the NAND device */
+extern void nand_release (struct mtd_info *mtd);
+
+/* Read raw data from the device without ECC */
+extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen);
+
+
+/* The maximum number of NAND chips in an array */
+#define NAND_MAX_CHIPS		8
+
+/* This constant declares the max. oobsize / page, which
+ * is supported now. If you add a chip with bigger oobsize/page
+ * adjust this accordingly.
+ */
+#define NAND_MAX_OOBSIZE	64
+
+/*
+ * Constants for hardware specific CLE/ALE/NCE function
+*/
+/* Select the chip by setting nCE to low */
+#define NAND_CTL_SETNCE 	1
+/* Deselect the chip by setting nCE to high */
+#define NAND_CTL_CLRNCE		2
+/* Select the command latch by setting CLE to high */
+#define NAND_CTL_SETCLE		3
+/* Deselect the command latch by setting CLE to low */
+#define NAND_CTL_CLRCLE		4
+/* Select the address latch by setting ALE to high */
+#define NAND_CTL_SETALE		5
+/* Deselect the address latch by setting ALE to low */
+#define NAND_CTL_CLRALE		6
+/* Set write protection by setting WP to high. Not used! */
+#define NAND_CTL_SETWP		7
+/* Clear write protection by setting WP to low. Not used! */
+#define NAND_CTL_CLRWP		8
+
 /*
  * Standard NAND flash commands
  */
@@ -45,12 +103,104 @@
 #define NAND_CMD_READOOB	0x50
 #define NAND_CMD_ERASE1		0x60
 #define NAND_CMD_STATUS		0x70
+#define NAND_CMD_STATUS_MULTI	0x71
 #define NAND_CMD_SEQIN		0x80
 #define NAND_CMD_READID		0x90
 #define NAND_CMD_ERASE2		0xd0
 #define NAND_CMD_RESET		0xff
 
+/* Extended commands for large page devices */
+#define NAND_CMD_READSTART	0x30
+#define NAND_CMD_CACHEDPROG	0x15
+
+/* Status bits */
+#define NAND_STATUS_FAIL	0x01
+#define NAND_STATUS_FAIL_N1	0x02
+#define NAND_STATUS_TRUE_READY	0x20
+#define NAND_STATUS_READY	0x40
+#define NAND_STATUS_WP		0x80
+
+/* 
+ * Constants for ECC_MODES
+ */
+
+/* No ECC. Usage is not recommended ! */
+#define NAND_ECC_NONE		0
+/* Software ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_SOFT		1
+/* Hardware ECC 3 byte ECC per 256 Byte data */
+#define NAND_ECC_HW3_256	2
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW3_512	3
+/* Hardware ECC 3 byte ECC per 512 Byte data */
+#define NAND_ECC_HW6_512	4
+/* Hardware ECC 8 byte ECC per 512 Byte data */
+#define NAND_ECC_HW8_512	6
+/* Hardware ECC 12 byte ECC per 2048 Byte data */
+#define NAND_ECC_HW12_2048	7
+
 /*
+ * Constants for Hardware ECC
+*/
+/* Reset Hardware ECC for read */
+#define NAND_ECC_READ		0
+/* Reset Hardware ECC for write */
+#define NAND_ECC_WRITE		1
+/* Enable Hardware ECC before syndrom is read back from flash */
+#define NAND_ECC_READSYN	2
+
+/* Option constants for bizarre disfunctionality and real
+*  features
+*/
+/* Chip can not auto increment pages */
+#define NAND_NO_AUTOINCR	0x00000001
+/* Buswitdh is 16 bit */
+#define NAND_BUSWIDTH_16	0x00000002
+/* Device supports partial programming without padding */
+#define NAND_NO_PADDING		0x00000004
+/* Chip has cache program function */
+#define NAND_CACHEPRG		0x00000008
+/* Chip has copy back function */
+#define NAND_COPYBACK		0x00000010
+/* AND Chip which has 4 banks and a confusing page / block 
+ * assignment. See Renesas datasheet for further information */
+#define NAND_IS_AND		0x00000020
+/* Chip has a array of 4 pages which can be read without
+ * additional ready /busy waits */
+#define NAND_4PAGE_ARRAY	0x00000040 
+
+/* Options valid for Samsung large page devices */
+#define NAND_SAMSUNG_LP_OPTIONS \
+	(NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK)
+
+/* Macros to identify the above */
+#define NAND_CANAUTOINCR(chip) (!(chip->options & NAND_NO_AUTOINCR))
+#define NAND_MUST_PAD(chip) (!(chip->options & NAND_NO_PADDING))
+#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
+#define NAND_HAS_COPYBACK(chip) ((chip->options & NAND_COPYBACK))
+
+/* Mask to zero out the chip options, which come from the id table */
+#define NAND_CHIPOPTIONS_MSK	(0x0000ffff & ~NAND_NO_AUTOINCR)
+
+/* Non chip related options */
+/* Use a flash based bad block table. This option is passed to the
+ * default bad block table function. */
+#define NAND_USE_FLASH_BBT	0x00010000
+/* The hw ecc generator provides a syndrome instead a ecc value on read 
+ * This can only work if we have the ecc bytes directly behind the 
+ * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
+#define NAND_HWECC_SYNDROME	0x00020000
+
+
+/* Options set by nand scan */
+/* Nand scan has allocated oob_buf */
+#define NAND_OOBBUF_ALLOC	0x40000000
+/* Nand scan has allocated data_buf */
+#define NAND_DATABUF_ALLOC	0x80000000
+
+
+/*
+ * nand_state_t - chip states
  * Enumeration for NAND flash chip state
  */
 typedef enum {
@@ -58,71 +208,138 @@ typedef enum {
 	FL_READING,
 	FL_WRITING,
 	FL_ERASING,
-	FL_SYNCING
+	FL_SYNCING,
+	FL_CACHEDPRG,
 } nand_state_t;
 
+/* Keep gcc happy */
+struct nand_chip;
 
-/*
- * NAND Private Flash Chip Data
- *
- * Structure overview:
- *
- *  IO_ADDR - address to access the 8 I/O lines of the flash device
- *
- *  hwcontrol - hardwarespecific function for accesing control-lines
- *
- *  dev_ready - hardwarespecific function for accesing device ready/busy line
- *
- *  chip_lock - spinlock used to protect access to this structure
- *
- *  wq - wait queue to sleep on if a NAND operation is in progress
- *
- *  state - give the current state of the NAND device
- *
- *  page_shift - number of address bits in a page (column address bits)
- *
- *  data_buf - data buffer passed to/from MTD user modules
- *
- *  data_cache - data cache for redundant page access and shadow for
- *		 ECC failure
- *
- *  ecc_code_buf - used only for holding calculated or read ECCs for
- *                 a page read or written when ECC is in use
- *
- *  reserved - padding to make structure fall on word boundary if
- *             when ECC is in use
+#if 0
+/**
+ * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independend devices
+ * @lock:               protection lock  
+ * @active:		the mtd device which holds the controller currently
  */
-struct Nand {
-	char floor, chip;
-	unsigned long curadr;
-	unsigned char curmode;
-	/* Also some erase/write/pipeline info when we get that far */
+struct nand_hw_control {
+	spinlock_t	 lock;
+	struct nand_chip *active;
 };
+#endif
 
+/**
+ * struct nand_chip - NAND Private Flash Chip Data
+ * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the flash device 
+ * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the flash device 
+ * @read_byte:		[REPLACEABLE] read one byte from the chip
+ * @write_byte:		[REPLACEABLE] write one byte to the chip
+ * @read_word:		[REPLACEABLE] read one word from the chip
+ * @write_word:		[REPLACEABLE] write one word to the chip
+ * @write_buf:		[REPLACEABLE] write data from the buffer to the chip
+ * @read_buf:		[REPLACEABLE] read data from the chip into the buffer
+ * @verify_buf:		[REPLACEABLE] verify buffer contents against the chip data
+ * @select_chip:	[REPLACEABLE] select chip nr
+ * @block_bad:		[REPLACEABLE] check, if the block is bad
+ * @block_markbad:	[REPLACEABLE] mark the block bad
+ * @hwcontrol:		[BOARDSPECIFIC] hardwarespecific function for accesing control-lines
+ * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
+ *			If set to NULL no access to ready/busy is available and the ready/busy information
+ *			is read from the chip status register
+ * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing commands to the chip
+ * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on ready
+ * @calculate_ecc: 	[REPLACEABLE] function for ecc calculation or readback from ecc hardware
+ * @correct_data:	[REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw)
+ * @enable_hwecc:	[BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
+ *			be provided if a hardware ECC is available
+ * @erase_cmd:		[INTERN] erase command write function, selectable due to AND support
+ * @scan_bbt:		[REPLACEABLE] function to scan bad block table
+ * @eccmode:		[BOARDSPECIFIC] mode of ecc, see defines 
+ * @eccsize: 		[INTERN] databytes used per ecc-calculation
+ * @eccbytes: 		[INTERN] number of ecc bytes per ecc-calculation step
+ * @eccsteps:		[INTERN] number of ecc calculation steps per page
+ * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
+ * @chip_lock:		[INTERN] spinlock used to protect access to this structure and the chip
+ * @wq:			[INTERN] wait queue to sleep on if a NAND operation is in progress
+ * @state: 		[INTERN] the current state of the NAND device
+ * @page_shift:		[INTERN] number of address bits in a page (column address bits)
+ * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock
+ * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry
+ * @chip_shift:		[INTERN] number of address bits in one chip
+ * @data_buf:		[INTERN] internal buffer for one page + oob 
+ * @oob_buf:		[INTERN] oob buffer for one eraseblock
+ * @oobdirty:		[INTERN] indicates that oob_buf must be reinitialized
+ * @data_poi:		[INTERN] pointer to a data buffer
+ * @options:		[BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
+ *			special functionality. See the defines for further explanation
+ * @badblockpos:	[INTERN] position of the bad block marker in the oob area
+ * @numchips:		[INTERN] number of physical chips
+ * @chipsize:		[INTERN] the size of one chip for multichip arrays
+ * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1
+ * @pagebuf:		[INTERN] holds the pagenumber which is currently in data_buf
+ * @autooob:		[REPLACEABLE] the default (auto)placement scheme
+ * @bbt:		[INTERN] bad block table pointer
+ * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash lookup
+ * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor
+ * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial bad block scan 
+ * @controller:		[OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices
+ * @priv:		[OPTIONAL] pointer to private chip date
+ */
+ 
 struct nand_chip {
+	void  __iomem	*IO_ADDR_R;
+	void  __iomem 	*IO_ADDR_W;
+	
+	u_char		(*read_byte)(struct mtd_info *mtd);
+	void		(*write_byte)(struct mtd_info *mtd, u_char byte);
+	u16		(*read_word)(struct mtd_info *mtd);
+	void		(*write_word)(struct mtd_info *mtd, u16 word);
+	
+	void		(*write_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+	void		(*read_buf)(struct mtd_info *mtd, u_char *buf, int len);
+	int		(*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+	void		(*select_chip)(struct mtd_info *mtd, int chip);
+	int		(*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
+	int		(*block_markbad)(struct mtd_info *mtd, loff_t ofs);
+	void 		(*hwcontrol)(struct mtd_info *mtd, int cmd);
+	int  		(*dev_ready)(struct mtd_info *mtd);
+	void 		(*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
+	int 		(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
+	int		(*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+	int 		(*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+	void		(*enable_hwecc)(struct mtd_info *mtd, int mode);
+	void		(*erase_cmd)(struct mtd_info *mtd, int page);
+	int		(*scan_bbt)(struct mtd_info *mtd);
+	int		eccmode;
+	int		eccsize;
+	int		eccbytes;
+	int		eccsteps;
+	int 		chip_delay;
+#if 0
+	spinlock_t	chip_lock;
+	wait_queue_head_t wq;
+	nand_state_t 	state;
+#endif
 	int 		page_shift;
+	int		phys_erase_shift;
+	int		bbt_erase_shift;
+	int		chip_shift;
 	u_char 		*data_buf;
-	u_char 		*data_cache;
-	int		cache_page;
-	u_char 		ecc_code_buf[6];
-	u_char 		reserved[2];
-	char ChipID; /* Type of DiskOnChip */
-	struct Nand *chips;
-	int chipshift;
-	char* chips_name;
-	unsigned long erasesize;
-	unsigned long mfr; /* Flash IDs - only one type of flash per device */
-	unsigned long id;
-	char* name;
-	int numchips;
-	char page256;
-	char pageadrlen;
-	unsigned long IO_ADDR;  /* address to access the 8 I/O lines to the flash device */
-	unsigned long totlen;
-	uint oobblock;  /* Size of OOB blocks (e.g. 512) */
-	uint oobsize;   /* Amount of OOB data per block (e.g. 16) */
-	uint eccsize;
-	int bus16;
+	u_char		*oob_buf;
+	int		oobdirty;
+	u_char		*data_poi;
+	unsigned int	options;
+	int		badblockpos;
+	int		numchips;
+	unsigned long	chipsize;
+	int		pagemask;
+	int		pagebuf;
+	struct nand_oobinfo	*autooob;
+	uint8_t		*bbt;
+	struct nand_bbt_descr	*bbt_td;
+	struct nand_bbt_descr	*bbt_md;
+	struct nand_bbt_descr	*badblock_pattern;
+	struct nand_hw_control  *controller;
+	void		*priv;
 };
 
 /*
@@ -130,71 +347,125 @@ struct nand_chip {
  */
 #define NAND_MFR_TOSHIBA	0x98
 #define NAND_MFR_SAMSUNG	0xec
+#define NAND_MFR_FUJITSU	0x04
+#define NAND_MFR_NATIONAL	0x8f
+#define NAND_MFR_RENESAS	0x07
+#define NAND_MFR_STMICRO	0x20
 
-/*
- * NAND Flash Device ID Structure
- *
- * Structure overview:
- *
- *  name - Complete name of device
- *
- *  manufacture_id - manufacturer ID code of device.
- *
- *  model_id - model ID code of device.
- *
- *  chipshift - total number of address bits for the device which
- *              is used to calculate address offsets and the total
- *              number of bytes the device is capable of.
+/**
+ * struct nand_flash_dev - NAND Flash Device ID Structure
  *
- *  page256 - denotes if flash device has 256 byte pages or not.
- *
- *  pageadrlen - number of bytes minus one needed to hold the
- *               complete address into the flash array. Keep in
- *               mind that when a read or write is done to a
- *               specific address, the address is input serially
- *               8 bits at a time. This structure member is used
- *               by the read/write routines as a loop index for
- *               shifting the address out 8 bits at a time.
- *
- *  erasesize - size of an erase block in the flash device.
+ * @name:  	Identify the device type
+ * @id:   	device ID code
+ * @pagesize:  	Pagesize in bytes. Either 256 or 512 or 0
+ *		If the pagesize is 0, then the real pagesize 
+ *		and the eraseize are determined from the
+ *		extended id bytes in the chip
+ * @erasesize: 	Size of an erase block in the flash device.
+ * @chipsize:  	Total chipsize in Mega Bytes
+ * @options:	Bitfield to store chip relevant options
  */
 struct nand_flash_dev {
-	char * name;
-	int manufacture_id;
-	int model_id;
-	int chipshift;
-	char page256;
-	char pageadrlen;
+	char *name;
+	int id;
+	unsigned long pagesize;
+	unsigned long chipsize;
 	unsigned long erasesize;
-	int bus16;
+	unsigned long options;
+};
+
+/**
+ * struct nand_manufacturers - NAND Flash Manufacturer ID Structure
+ * @name:	Manufacturer name
+ * @id: 	manufacturer ID code of device.
+*/
+struct nand_manufacturers {
+	int id;
+	char * name;
+};
+
+extern struct nand_flash_dev nand_flash_ids[];
+extern struct nand_manufacturers nand_manuf_ids[];
+
+/** 
+ * struct nand_bbt_descr - bad block table descriptor
+ * @options:	options for this descriptor
+ * @pages:	the page(s) where we find the bbt, used with option BBT_ABSPAGE
+ *		when bbt is searched, then we store the found bbts pages here.
+ *		Its an array and supports up to 8 chips now
+ * @offs:	offset of the pattern in the oob area of the page
+ * @veroffs:	offset of the bbt version counter in the oob are of the page
+ * @version:	version read from the bbt page during scan
+ * @len:	length of the pattern, if 0 no pattern check is performed
+ * @maxblocks:	maximum number of blocks to search for a bbt. This number of
+ *		blocks is reserved at the end of the device where the tables are 
+ *		written.
+ * @reserved_block_code: if non-0, this pattern denotes a reserved (rather than
+ *              bad) block in the stored bbt
+ * @pattern:	pattern to identify bad block table or factory marked good / 
+ *		bad blocks, can be NULL, if len = 0
+ *
+ * Descriptor for the bad block table marker and the descriptor for the 
+ * pattern which identifies good and bad blocks. The assumption is made
+ * that the pattern and the version count are always located in the oob area
+ * of the first block.
+ */
+struct nand_bbt_descr {
+	int	options;
+	int	pages[NAND_MAX_CHIPS];
+	int	offs;
+	int	veroffs;
+	uint8_t	version[NAND_MAX_CHIPS];
+	int	len;
+	int 	maxblocks;
+	int	reserved_block_code;
+	uint8_t	*pattern;
 };
 
+/* Options for the bad block table descriptors */
+
+/* The number of bits used per block in the bbt on the device */
+#define NAND_BBT_NRBITS_MSK	0x0000000F
+#define NAND_BBT_1BIT		0x00000001
+#define NAND_BBT_2BIT		0x00000002
+#define NAND_BBT_4BIT		0x00000004
+#define NAND_BBT_8BIT		0x00000008
+/* The bad block table is in the last good block of the device */
+#define	NAND_BBT_LASTBLOCK	0x00000010
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_ABSPAGE	0x00000020
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_SEARCH		0x00000040
+/* bbt is stored per chip on multichip devices */
+#define NAND_BBT_PERCHIP	0x00000080
+/* bbt has a version counter at offset veroffs */
+#define NAND_BBT_VERSION	0x00000100
+/* Create a bbt if none axists */
+#define NAND_BBT_CREATE		0x00000200
+/* Search good / bad pattern through all pages of a block */
+#define NAND_BBT_SCANALLPAGES	0x00000400
+/* Scan block empty during good / bad block scan */
+#define NAND_BBT_SCANEMPTY	0x00000800
+/* Write bbt if neccecary */
+#define NAND_BBT_WRITE		0x00001000
+/* Read and write back block contents when writing bbt */
+#define NAND_BBT_SAVECONTENT	0x00002000
+/* Search good / bad pattern on the first and the second page */
+#define NAND_BBT_SCAN2NDPAGE	0x00004000
+
+/* The maximum number of blocks to scan for a bbt */
+#define NAND_BBT_SCAN_MAXBLOCKS	4
+
+extern int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd);
+extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs);
+extern int nand_default_bbt (struct mtd_info *mtd);
+extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
+extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
+
 /*
 * Constants for oob configuration
 */
-#define NAND_NOOB_ECCPOS0		0
-#define NAND_NOOB_ECCPOS1		1
-#define NAND_NOOB_ECCPOS2		2
-#define NAND_NOOB_ECCPOS3		3
-#define NAND_NOOB_ECCPOS4		6
-#define NAND_NOOB_ECCPOS5		7
-#define NAND_NOOB_BADBPOS		-1
-#define NAND_NOOB_ECCVPOS		-1
-
-#define NAND_JFFS2_OOB_ECCPOS0		0
-#define NAND_JFFS2_OOB_ECCPOS1		1
-#define NAND_JFFS2_OOB_ECCPOS2		2
-#define NAND_JFFS2_OOB_ECCPOS3		3
-#define NAND_JFFS2_OOB_ECCPOS4		6
-#define NAND_JFFS2_OOB_ECCPOS5		7
-#define NAND_JFFS2_OOB_BADBPOS		5
-#define NAND_JFFS2_OOB_ECCVPOS		4
-
-#define NAND_JFFS2_OOB8_FSDAPOS		6
-#define NAND_JFFS2_OOB16_FSDAPOS	8
-#define NAND_JFFS2_OOB8_FSDALEN		2
-#define NAND_JFFS2_OOB16_FSDALEN	8
-
-unsigned long nand_probe(unsigned long physadr);
+#define NAND_SMALL_BADBLOCK_POS		5
+#define NAND_LARGE_BADBLOCK_POS		0
 
 #endif /* __LINUX_MTD_NAND_H */

+ 30 - 0
include/linux/mtd/nand_ecc.h

@@ -0,0 +1,30 @@
+/*
+ *  drivers/mtd/nand_ecc.h
+ *
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ * $Id: nand_ecc.h,v 1.4 2004/06/17 02:35:02 dbrown Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This file is the header for the ECC algorithm.
+ */
+
+#ifndef __MTD_NAND_ECC_H__
+#define __MTD_NAND_ECC_H__
+
+struct mtd_info;
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC_H__ */

+ 1 - 0
include/linux/mtd/nand_ids.h

@@ -49,6 +49,7 @@ static struct nand_flash_dev nand_flash_ids[] = {
 	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
 	{"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
 	{"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
+	{"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
 	{NULL,}
 };
 

+ 56 - 0
include/nand.h

@@ -0,0 +1,56 @@
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#ifndef _NAND_H_
+#define _NAND_H_
+
+#include <linux_compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+typedef struct mtd_info nand_info_t;
+
+extern int nand_curr_device;
+extern nand_info_t nand_info[];
+
+static inline int nand_read(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+	return info->read(info, ofs, *len, len, buf);
+}
+
+static inline int nand_write(nand_info_t *info, ulong ofs, ulong *len, u_char *buf)
+{
+	return info->write(info, ofs, *len, len, buf);
+}
+
+static inline int nand_block_isbad(nand_info_t *info, ulong ofs)
+{
+	return info->block_isbad(info, ofs);
+}
+
+static inline int nand_erase(nand_info_t *info, ulong off, ulong size)
+{
+	return 0; /* FIXME */
+}
+
+#endif