|
@@ -0,0 +1,912 @@
|
|
|
|
+/*
|
|
|
|
+ * This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
+ * License. See the file "COPYING" in the main directory of this archive
|
|
|
|
+ * for more details.
|
|
|
|
+ *
|
|
|
|
+ * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
|
|
|
|
+ * Copyright (c) 2000 Silicon Graphics, Inc.
|
|
|
|
+ */
|
|
|
|
+#ifndef _ASM_BITOPS_H
|
|
|
|
+#define _ASM_BITOPS_H
|
|
|
|
+
|
|
|
|
+#include <linux/types.h>
|
|
|
|
+#include <asm/byteorder.h> /* sigh ... */
|
|
|
|
+
|
|
|
|
+#ifdef __KERNEL__
|
|
|
|
+
|
|
|
|
+#include <asm/sgidefs.h>
|
|
|
|
+#include <asm/system.h>
|
|
|
|
+#include <linux/config.h>
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * clear_bit() doesn't provide any barrier for the compiler.
|
|
|
|
+ */
|
|
|
|
+#define smp_mb__before_clear_bit() barrier()
|
|
|
|
+#define smp_mb__after_clear_bit() barrier()
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Only disable interrupt for kernel mode stuff to keep usermode stuff
|
|
|
|
+ * that dares to use kernel include files alive.
|
|
|
|
+ */
|
|
|
|
+#define __bi_flags unsigned long flags
|
|
|
|
+#define __bi_cli() __cli()
|
|
|
|
+#define __bi_save_flags(x) __save_flags(x)
|
|
|
|
+#define __bi_save_and_cli(x) __save_and_cli(x)
|
|
|
|
+#define __bi_restore_flags(x) __restore_flags(x)
|
|
|
|
+#else
|
|
|
|
+#define __bi_flags
|
|
|
|
+#define __bi_cli()
|
|
|
|
+#define __bi_save_flags(x)
|
|
|
|
+#define __bi_save_and_cli(x)
|
|
|
|
+#define __bi_restore_flags(x)
|
|
|
|
+#endif /* __KERNEL__ */
|
|
|
|
+
|
|
|
|
+#ifdef CONFIG_CPU_HAS_LLSC
|
|
|
|
+
|
|
|
|
+#include <asm/mipsregs.h>
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * These functions for MIPS ISA > 1 are interrupt and SMP proof and
|
|
|
|
+ * interrupt friendly
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * set_bit - Atomically set a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * This function is atomic and may not be reordered. See __set_bit()
|
|
|
|
+ * if you do not require the atomic guarantees.
|
|
|
|
+ * Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
+ * restricted to acting on a single-word quantity.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void
|
|
|
|
+set_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ "1:\tll\t%0, %1\t\t# set_bit\n\t"
|
|
|
|
+ "or\t%0, %2\n\t"
|
|
|
|
+ "sc\t%0, %1\n\t"
|
|
|
|
+ "beqz\t%0, 1b"
|
|
|
|
+ : "=&r" (temp), "=m" (*m)
|
|
|
|
+ : "ir" (1UL << (nr & 0x1f)), "m" (*m));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __set_bit - Set a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
|
|
+ * If it's called on the same region of memory simultaneously, the effect
|
|
|
|
+ * may be that only one operation succeeds.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+
|
|
|
|
+ *m |= 1UL << (nr & 31);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * clear_bit - Clears a bit in memory
|
|
|
|
+ * @nr: Bit to clear
|
|
|
|
+ * @addr: Address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * clear_bit() is atomic and may not be reordered. However, it does
|
|
|
|
+ * not contain a memory barrier, so if it is used for locking purposes,
|
|
|
|
+ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
|
|
+ * in order to ensure changes are visible on other processors.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void
|
|
|
|
+clear_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ "1:\tll\t%0, %1\t\t# clear_bit\n\t"
|
|
|
|
+ "and\t%0, %2\n\t"
|
|
|
|
+ "sc\t%0, %1\n\t"
|
|
|
|
+ "beqz\t%0, 1b\n\t"
|
|
|
|
+ : "=&r" (temp), "=m" (*m)
|
|
|
|
+ : "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * change_bit - Toggle a bit in memory
|
|
|
|
+ * @nr: Bit to clear
|
|
|
|
+ * @addr: Address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * change_bit() is atomic and may not be reordered.
|
|
|
|
+ * Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
+ * restricted to acting on a single-word quantity.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void
|
|
|
|
+change_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ "1:\tll\t%0, %1\t\t# change_bit\n\t"
|
|
|
|
+ "xor\t%0, %2\n\t"
|
|
|
|
+ "sc\t%0, %1\n\t"
|
|
|
|
+ "beqz\t%0, 1b"
|
|
|
|
+ : "=&r" (temp), "=m" (*m)
|
|
|
|
+ : "ir" (1UL << (nr & 0x1f)), "m" (*m));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __change_bit - Toggle a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
|
|
+ * If it's called on the same region of memory simultaneously, the effect
|
|
|
|
+ * may be that only one operation succeeds.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+
|
|
|
|
+ *m ^= 1UL << (nr & 31);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_set_bit - Set a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int
|
|
|
|
+test_and_set_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp, res;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ ".set\tnoreorder\t\t# test_and_set_bit\n"
|
|
|
|
+ "1:\tll\t%0, %1\n\t"
|
|
|
|
+ "or\t%2, %0, %3\n\t"
|
|
|
|
+ "sc\t%2, %1\n\t"
|
|
|
|
+ "beqz\t%2, 1b\n\t"
|
|
|
|
+ " and\t%2, %0, %3\n\t"
|
|
|
|
+ ".set\treorder"
|
|
|
|
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
|
|
|
|
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
|
|
|
|
+ : "memory");
|
|
|
|
+
|
|
|
|
+ return res != 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_set_bit - Set a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a |= mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int
|
|
|
|
+test_and_clear_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp, res;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ ".set\tnoreorder\t\t# test_and_clear_bit\n"
|
|
|
|
+ "1:\tll\t%0, %1\n\t"
|
|
|
|
+ "or\t%2, %0, %3\n\t"
|
|
|
|
+ "xor\t%2, %3\n\t"
|
|
|
|
+ "sc\t%2, %1\n\t"
|
|
|
|
+ "beqz\t%2, 1b\n\t"
|
|
|
|
+ " and\t%2, %0, %3\n\t"
|
|
|
|
+ ".set\treorder"
|
|
|
|
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
|
|
|
|
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
|
|
|
|
+ : "memory");
|
|
|
|
+
|
|
|
|
+ return res != 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a &= ~mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_change_bit - Change a bit and return its new value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int
|
|
|
|
+test_and_change_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+ unsigned long temp, res;
|
|
|
|
+
|
|
|
|
+ __asm__ __volatile__(
|
|
|
|
+ ".set\tnoreorder\t\t# test_and_change_bit\n"
|
|
|
|
+ "1:\tll\t%0, %1\n\t"
|
|
|
|
+ "xor\t%2, %0, %3\n\t"
|
|
|
|
+ "sc\t%2, %1\n\t"
|
|
|
|
+ "beqz\t%2, 1b\n\t"
|
|
|
|
+ " and\t%2, %0, %3\n\t"
|
|
|
|
+ ".set\treorder"
|
|
|
|
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
|
|
|
|
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
|
|
|
|
+ : "memory");
|
|
|
|
+
|
|
|
|
+ return res != 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_change_bit - Change a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a ^= mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else /* MIPS I */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * set_bit - Atomically set a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * This function is atomic and may not be reordered. See __set_bit()
|
|
|
|
+ * if you do not require the atomic guarantees.
|
|
|
|
+ * Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
+ * restricted to acting on a single-word quantity.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ *a |= mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __set_bit - Set a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
|
|
+ * If it's called on the same region of memory simultaneously, the effect
|
|
|
|
+ * may be that only one operation succeeds.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ *a |= mask;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * clear_bit - Clears a bit in memory
|
|
|
|
+ * @nr: Bit to clear
|
|
|
|
+ * @addr: Address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * clear_bit() is atomic and may not be reordered. However, it does
|
|
|
|
+ * not contain a memory barrier, so if it is used for locking purposes,
|
|
|
|
+ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
|
|
+ * in order to ensure changes are visible on other processors.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void clear_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ *a &= ~mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * change_bit - Toggle a bit in memory
|
|
|
|
+ * @nr: Bit to clear
|
|
|
|
+ * @addr: Address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * change_bit() is atomic and may not be reordered.
|
|
|
|
+ * Note that @nr may be almost arbitrarily large; this function is not
|
|
|
|
+ * restricted to acting on a single-word quantity.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ *a ^= mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __change_bit - Toggle a bit in memory
|
|
|
|
+ * @nr: the bit to set
|
|
|
|
+ * @addr: the address to start counting from
|
|
|
|
+ *
|
|
|
|
+ * Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
|
|
+ * If it's called on the same region of memory simultaneously, the effect
|
|
|
|
+ * may be that only one operation succeeds.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
+
|
|
|
|
+ *m ^= 1UL << (nr & 31);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_set_bit - Set a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a |= mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_set_bit - Set a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a |= mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a &= ~mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_clear_bit - Clear a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a &= ~mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_and_change_bit - Change a bit and return its new value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is atomic and cannot be reordered.
|
|
|
|
+ * It also implies a memory barrier.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+ __bi_flags;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ __bi_save_and_cli(flags);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a ^= mask;
|
|
|
|
+ __bi_restore_flags(flags);
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * __test_and_change_bit - Change a bit and return its old value
|
|
|
|
+ * @nr: Bit to set
|
|
|
|
+ * @addr: Address to count from
|
|
|
|
+ *
|
|
|
|
+ * This operation is non-atomic and can be reordered.
|
|
|
|
+ * If two examples of this operation race, one can appear to succeed
|
|
|
|
+ * but actually fail. You must protect multiple accesses with a lock.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval;
|
|
|
|
+ volatile int *a = addr;
|
|
|
|
+
|
|
|
|
+ a += nr >> 5;
|
|
|
|
+ mask = 1 << (nr & 0x1f);
|
|
|
|
+ retval = (mask & *a) != 0;
|
|
|
|
+ *a ^= mask;
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#undef __bi_flags
|
|
|
|
+#undef __bi_cli
|
|
|
|
+#undef __bi_save_flags
|
|
|
|
+#undef __bi_restore_flags
|
|
|
|
+
|
|
|
|
+#endif /* MIPS I */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * test_bit - Determine whether a bit is set
|
|
|
|
+ * @nr: bit number to test
|
|
|
|
+ * @addr: Address to start counting from
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int test_bit(int nr, volatile void *addr)
|
|
|
|
+{
|
|
|
|
+ return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifndef __MIPSEB__
|
|
|
|
+
|
|
|
|
+/* Little endian versions. */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * find_first_zero_bit - find the first zero bit in a memory region
|
|
|
|
+ * @addr: The address to start the search at
|
|
|
|
+ * @size: The maximum size to search
|
|
|
|
+ *
|
|
|
|
+ * Returns the bit-number of the first zero bit, not the number of the byte
|
|
|
|
+ * containing a bit.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
|
|
|
|
+{
|
|
|
|
+ unsigned long dummy;
|
|
|
|
+ int res;
|
|
|
|
+
|
|
|
|
+ if (!size)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ __asm__ (".set\tnoreorder\n\t"
|
|
|
|
+ ".set\tnoat\n"
|
|
|
|
+ "1:\tsubu\t$1,%6,%0\n\t"
|
|
|
|
+ "blez\t$1,2f\n\t"
|
|
|
|
+ "lw\t$1,(%5)\n\t"
|
|
|
|
+ "addiu\t%5,4\n\t"
|
|
|
|
+#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
|
|
|
|
+ (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
|
|
|
|
+ (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
|
|
|
|
+ "beql\t%1,$1,1b\n\t"
|
|
|
|
+ "addiu\t%0,32\n\t"
|
|
|
|
+#else
|
|
|
|
+ "addiu\t%0,32\n\t"
|
|
|
|
+ "beq\t%1,$1,1b\n\t"
|
|
|
|
+ "nop\n\t"
|
|
|
|
+ "subu\t%0,32\n\t"
|
|
|
|
+#endif
|
|
|
|
+#ifdef __MIPSEB__
|
|
|
|
+#error "Fix this for big endian"
|
|
|
|
+#endif /* __MIPSEB__ */
|
|
|
|
+ "li\t%1,1\n"
|
|
|
|
+ "1:\tand\t%2,$1,%1\n\t"
|
|
|
|
+ "beqz\t%2,2f\n\t"
|
|
|
|
+ "sll\t%1,%1,1\n\t"
|
|
|
|
+ "bnez\t%1,1b\n\t"
|
|
|
|
+ "add\t%0,%0,1\n\t"
|
|
|
|
+ ".set\tat\n\t"
|
|
|
|
+ ".set\treorder\n"
|
|
|
|
+ "2:"
|
|
|
|
+ : "=r" (res), "=r" (dummy), "=r" (addr)
|
|
|
|
+ : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
|
|
|
|
+ "2" (addr), "r" (size)
|
|
|
|
+ : "$1");
|
|
|
|
+
|
|
|
|
+ return res;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * find_next_zero_bit - find the first zero bit in a memory region
|
|
|
|
+ * @addr: The address to base the search on
|
|
|
|
+ * @offset: The bitnumber to start searching at
|
|
|
|
+ * @size: The maximum size to search
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
|
|
+{
|
|
|
|
+ unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
|
|
|
+ int set = 0, bit = offset & 31, res;
|
|
|
|
+ unsigned long dummy;
|
|
|
|
+
|
|
|
|
+ if (bit) {
|
|
|
|
+ /*
|
|
|
|
+ * Look for zero in first byte
|
|
|
|
+ */
|
|
|
|
+#ifdef __MIPSEB__
|
|
|
|
+#error "Fix this for big endian byte order"
|
|
|
|
+#endif
|
|
|
|
+ __asm__(".set\tnoreorder\n\t"
|
|
|
|
+ ".set\tnoat\n"
|
|
|
|
+ "1:\tand\t$1,%4,%1\n\t"
|
|
|
|
+ "beqz\t$1,1f\n\t"
|
|
|
|
+ "sll\t%1,%1,1\n\t"
|
|
|
|
+ "bnez\t%1,1b\n\t"
|
|
|
|
+ "addiu\t%0,1\n\t"
|
|
|
|
+ ".set\tat\n\t"
|
|
|
|
+ ".set\treorder\n"
|
|
|
|
+ "1:"
|
|
|
|
+ : "=r" (set), "=r" (dummy)
|
|
|
|
+ : "0" (0), "1" (1 << bit), "r" (*p)
|
|
|
|
+ : "$1");
|
|
|
|
+ if (set < (32 - bit))
|
|
|
|
+ return set + offset;
|
|
|
|
+ set = 32 - bit;
|
|
|
|
+ p++;
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * No zero yet, search remaining full bytes for a zero
|
|
|
|
+ */
|
|
|
|
+ res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
|
|
|
|
+ return offset + set + res;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif /* !(__MIPSEB__) */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * ffz - find first zero in word.
|
|
|
|
+ * @word: The word to search
|
|
|
|
+ *
|
|
|
|
+ * Undefined if no zero exists, so code should check against ~0UL first.
|
|
|
|
+ */
|
|
|
|
+extern __inline__ unsigned long ffz(unsigned long word)
|
|
|
|
+{
|
|
|
|
+ unsigned int __res;
|
|
|
|
+ unsigned int mask = 1;
|
|
|
|
+
|
|
|
|
+ __asm__ (
|
|
|
|
+ ".set\tnoreorder\n\t"
|
|
|
|
+ ".set\tnoat\n\t"
|
|
|
|
+ "move\t%0,$0\n"
|
|
|
|
+ "1:\tand\t$1,%2,%1\n\t"
|
|
|
|
+ "beqz\t$1,2f\n\t"
|
|
|
|
+ "sll\t%1,1\n\t"
|
|
|
|
+ "bnez\t%1,1b\n\t"
|
|
|
|
+ "addiu\t%0,1\n\t"
|
|
|
|
+ ".set\tat\n\t"
|
|
|
|
+ ".set\treorder\n"
|
|
|
|
+ "2:\n\t"
|
|
|
|
+ : "=&r" (__res), "=r" (mask)
|
|
|
|
+ : "r" (word), "1" (mask)
|
|
|
|
+ : "$1");
|
|
|
|
+
|
|
|
|
+ return __res;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef __KERNEL__
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ffs - find first bit set
|
|
|
|
+ * @x: the word to search
|
|
|
|
+ *
|
|
|
|
+ * This is defined the same way as
|
|
|
|
+ * the libc and compiler builtin ffs routines, therefore
|
|
|
|
+ * differs in spirit from the above ffz (man ffs).
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#define ffs(x) generic_ffs(x)
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * hweightN - returns the hamming weight of a N-bit word
|
|
|
|
+ * @x: the word to weigh
|
|
|
|
+ *
|
|
|
|
+ * The Hamming Weight of a number is the total number of bits set in it.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#define hweight32(x) generic_hweight32(x)
|
|
|
|
+#define hweight16(x) generic_hweight16(x)
|
|
|
|
+#define hweight8(x) generic_hweight8(x)
|
|
|
|
+
|
|
|
|
+#endif /* __KERNEL__ */
|
|
|
|
+
|
|
|
|
+#ifdef __MIPSEB__
|
|
|
|
+/*
|
|
|
|
+ * find_next_zero_bit - find the first zero bit in a memory region
|
|
|
|
+ * @addr: The address to base the search on
|
|
|
|
+ * @offset: The bitnumber to start searching at
|
|
|
|
+ * @size: The maximum size to search
|
|
|
|
+ */
|
|
|
|
+extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
|
|
|
|
+{
|
|
|
|
+ unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
|
|
+ unsigned long result = offset & ~31UL;
|
|
|
|
+ unsigned long tmp;
|
|
|
|
+
|
|
|
|
+ if (offset >= size)
|
|
|
|
+ return size;
|
|
|
|
+ size -= result;
|
|
|
|
+ offset &= 31UL;
|
|
|
|
+ if (offset) {
|
|
|
|
+ tmp = *(p++);
|
|
|
|
+ tmp |= ~0UL >> (32-offset);
|
|
|
|
+ if (size < 32)
|
|
|
|
+ goto found_first;
|
|
|
|
+ if (~tmp)
|
|
|
|
+ goto found_middle;
|
|
|
|
+ size -= 32;
|
|
|
|
+ result += 32;
|
|
|
|
+ }
|
|
|
|
+ while (size & ~31UL) {
|
|
|
|
+ if (~(tmp = *(p++)))
|
|
|
|
+ goto found_middle;
|
|
|
|
+ result += 32;
|
|
|
|
+ size -= 32;
|
|
|
|
+ }
|
|
|
|
+ if (!size)
|
|
|
|
+ return result;
|
|
|
|
+ tmp = *p;
|
|
|
|
+
|
|
|
|
+found_first:
|
|
|
|
+ tmp |= ~0UL << size;
|
|
|
|
+found_middle:
|
|
|
|
+ return result + ffz(tmp);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Linus sez that gcc can optimize the following correctly, we'll see if this
|
|
|
|
+ * holds on the Sparc as it does for the ALPHA.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
|
|
|
+/*
|
|
|
|
+ * find_first_zero_bit - find the first zero bit in a memory region
|
|
|
|
+ * @addr: The address to start the search at
|
|
|
|
+ * @size: The maximum size to search
|
|
|
|
+ *
|
|
|
|
+ * Returns the bit-number of the first zero bit, not the number of the byte
|
|
|
|
+ * containing a bit.
|
|
|
|
+ */
|
|
|
|
+extern int find_first_zero_bit (void *addr, unsigned size);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#define find_first_zero_bit(addr, size) \
|
|
|
|
+ find_next_zero_bit((addr), (size), 0)
|
|
|
|
+
|
|
|
|
+#endif /* (__MIPSEB__) */
|
|
|
|
+
|
|
|
|
+/* Now for the ext2 filesystem bit operations and helper routines. */
|
|
|
|
+
|
|
|
|
+#ifdef __MIPSEB__
|
|
|
|
+extern __inline__ int ext2_set_bit(int nr, void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval, flags;
|
|
|
|
+ unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
+
|
|
|
|
+ ADDR += nr >> 3;
|
|
|
|
+ mask = 1 << (nr & 0x07);
|
|
|
|
+ save_and_cli(flags);
|
|
|
|
+ retval = (mask & *ADDR) != 0;
|
|
|
|
+ *ADDR |= mask;
|
|
|
|
+ restore_flags(flags);
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+extern __inline__ int ext2_clear_bit(int nr, void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask, retval, flags;
|
|
|
|
+ unsigned char *ADDR = (unsigned char *) addr;
|
|
|
|
+
|
|
|
|
+ ADDR += nr >> 3;
|
|
|
|
+ mask = 1 << (nr & 0x07);
|
|
|
|
+ save_and_cli(flags);
|
|
|
|
+ retval = (mask & *ADDR) != 0;
|
|
|
|
+ *ADDR &= ~mask;
|
|
|
|
+ restore_flags(flags);
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+extern __inline__ int ext2_test_bit(int nr, const void * addr)
|
|
|
|
+{
|
|
|
|
+ int mask;
|
|
|
|
+ const unsigned char *ADDR = (const unsigned char *) addr;
|
|
|
|
+
|
|
|
|
+ ADDR += nr >> 3;
|
|
|
|
+ mask = 1 << (nr & 0x07);
|
|
|
|
+ return ((mask & *ADDR) != 0);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define ext2_find_first_zero_bit(addr, size) \
|
|
|
|
+ ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
+
|
|
|
|
+extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
|
|
+{
|
|
|
|
+ unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
|
|
+ unsigned long result = offset & ~31UL;
|
|
|
|
+ unsigned long tmp;
|
|
|
|
+
|
|
|
|
+ if (offset >= size)
|
|
|
|
+ return size;
|
|
|
|
+ size -= result;
|
|
|
|
+ offset &= 31UL;
|
|
|
|
+ if(offset) {
|
|
|
|
+ /* We hold the little endian value in tmp, but then the
|
|
|
|
+ * shift is illegal. So we could keep a big endian value
|
|
|
|
+ * in tmp, like this:
|
|
|
|
+ *
|
|
|
|
+ * tmp = __swab32(*(p++));
|
|
|
|
+ * tmp |= ~0UL >> (32-offset);
|
|
|
|
+ *
|
|
|
|
+ * but this would decrease preformance, so we change the
|
|
|
|
+ * shift:
|
|
|
|
+ */
|
|
|
|
+ tmp = *(p++);
|
|
|
|
+ tmp |= __swab32(~0UL >> (32-offset));
|
|
|
|
+ if(size < 32)
|
|
|
|
+ goto found_first;
|
|
|
|
+ if(~tmp)
|
|
|
|
+ goto found_middle;
|
|
|
|
+ size -= 32;
|
|
|
|
+ result += 32;
|
|
|
|
+ }
|
|
|
|
+ while(size & ~31UL) {
|
|
|
|
+ if(~(tmp = *(p++)))
|
|
|
|
+ goto found_middle;
|
|
|
|
+ result += 32;
|
|
|
|
+ size -= 32;
|
|
|
|
+ }
|
|
|
|
+ if(!size)
|
|
|
|
+ return result;
|
|
|
|
+ tmp = *p;
|
|
|
|
+
|
|
|
|
+found_first:
|
|
|
|
+ /* tmp is little endian, so we would have to swab the shift,
|
|
|
|
+ * see above. But then we have to swab tmp below for ffz, so
|
|
|
|
+ * we might as well do this here.
|
|
|
|
+ */
|
|
|
|
+ return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
|
|
+found_middle:
|
|
|
|
+ return result + ffz(__swab32(tmp));
|
|
|
|
+}
|
|
|
|
+#else /* !(__MIPSEB__) */
|
|
|
|
+
|
|
|
|
+/* Native ext2 byte ordering, just collapse using defines. */
|
|
|
|
+#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
|
|
|
|
+#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
|
|
|
|
+#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
|
|
|
|
+#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
|
|
|
|
+#define ext2_find_next_zero_bit(addr, size, offset) \
|
|
|
|
+ find_next_zero_bit((addr), (size), (offset))
|
|
|
|
+
|
|
|
|
+#endif /* !(__MIPSEB__) */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Bitmap functions for the minix filesystem.
|
|
|
|
+ * FIXME: These assume that Minix uses the native byte/bitorder.
|
|
|
|
+ * This limits the Minix filesystem's value for data exchange very much.
|
|
|
|
+ */
|
|
|
|
+#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
|
|
|
+#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
|
|
|
+#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
|
|
|
+#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
|
|
+#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
+
|
|
|
|
+#endif /* _ASM_BITOPS_H */
|