|
@@ -27,6 +27,371 @@
|
|
|
#include <asm/arch/timer.h>
|
|
|
#include <asm/arch/tegra2.h>
|
|
|
#include <common.h>
|
|
|
+#include <div64.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * This is our record of the current clock rate of each clock. We don't
|
|
|
+ * fill all of these in since we are only really interested in clocks which
|
|
|
+ * we use as parents.
|
|
|
+ */
|
|
|
+static unsigned pll_rate[CLOCK_ID_COUNT];
|
|
|
+
|
|
|
+/*
|
|
|
+ * The oscillator frequency is fixed to one of four set values. Based on this
|
|
|
+ * the other clocks are set up appropriately.
|
|
|
+ */
|
|
|
+static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
|
|
|
+ 13000000,
|
|
|
+ 19200000,
|
|
|
+ 12000000,
|
|
|
+ 26000000,
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Clock types that we can use as a source. The Tegra2 has muxes for the
|
|
|
+ * peripheral clocks, and in most cases there are four options for the clock
|
|
|
+ * source. This gives us a clock 'type' and exploits what commonality exists
|
|
|
+ * in the device.
|
|
|
+ *
|
|
|
+ * Letters are obvious, except for T which means CLK_M, and S which means the
|
|
|
+ * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
|
|
|
+ * datasheet) and PLL_M are different things. The former is the basic
|
|
|
+ * clock supplied to the SOC from an external oscillator. The latter is the
|
|
|
+ * memory clock PLL.
|
|
|
+ *
|
|
|
+ * See definitions in clock_id in the header file.
|
|
|
+ */
|
|
|
+enum clock_type_id {
|
|
|
+ CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
|
|
|
+ CLOCK_TYPE_MCPA, /* and so on */
|
|
|
+ CLOCK_TYPE_MCPT,
|
|
|
+ CLOCK_TYPE_PCM,
|
|
|
+ CLOCK_TYPE_PCMT,
|
|
|
+ CLOCK_TYPE_PCXTS,
|
|
|
+ CLOCK_TYPE_PDCT,
|
|
|
+
|
|
|
+ CLOCK_TYPE_COUNT,
|
|
|
+ CLOCK_TYPE_NONE = -1, /* invalid clock type */
|
|
|
+};
|
|
|
+
|
|
|
+/* return 1 if a peripheral ID is in range */
|
|
|
+#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
|
|
+ (id) < CLOCK_TYPE_COUNT)
|
|
|
+
|
|
|
+char pllp_valid = 1; /* PLLP is set up correctly */
|
|
|
+
|
|
|
+enum {
|
|
|
+ CLOCK_MAX_MUX = 4 /* number of source options for each clock */
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Clock source mux for each clock type. This just converts our enum into
|
|
|
+ * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
|
|
|
+ * is special as it has 5 sources. Since it also has a different number of
|
|
|
+ * bits in its register for the source, we just handle it with a special
|
|
|
+ * case in the code.
|
|
|
+ */
|
|
|
+#define CLK(x) CLOCK_ID_ ## x
|
|
|
+static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
|
|
|
+ { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
|
|
|
+ { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
|
|
|
+ { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
|
|
|
+ { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
|
|
|
+ { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
|
|
|
+ { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
|
|
|
+ { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
|
|
|
+ * not in the header file since it is for purely internal use - we want
|
|
|
+ * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
|
|
|
+ * confusion bewteen PERIPH_ID_... and PERIPHC_...
|
|
|
+ *
|
|
|
+ * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
|
|
|
+ * confusing.
|
|
|
+ *
|
|
|
+ * Note to SOC vendors: perhaps define a unified numbering for peripherals and
|
|
|
+ * use it for reset, clock enable, clock source/divider and even pinmuxing
|
|
|
+ * if you can.
|
|
|
+ */
|
|
|
+enum periphc_internal_id {
|
|
|
+ /* 0x00 */
|
|
|
+ PERIPHC_I2S1,
|
|
|
+ PERIPHC_I2S2,
|
|
|
+ PERIPHC_SPDIF_OUT,
|
|
|
+ PERIPHC_SPDIF_IN,
|
|
|
+ PERIPHC_PWM,
|
|
|
+ PERIPHC_SPI1,
|
|
|
+ PERIPHC_SPI2,
|
|
|
+ PERIPHC_SPI3,
|
|
|
+
|
|
|
+ /* 0x08 */
|
|
|
+ PERIPHC_XIO,
|
|
|
+ PERIPHC_I2C1,
|
|
|
+ PERIPHC_DVC_I2C,
|
|
|
+ PERIPHC_TWC,
|
|
|
+ PERIPHC_0c,
|
|
|
+ PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
|
|
|
+ PERIPHC_DISP1,
|
|
|
+ PERIPHC_DISP2,
|
|
|
+
|
|
|
+ /* 0x10 */
|
|
|
+ PERIPHC_CVE,
|
|
|
+ PERIPHC_IDE0,
|
|
|
+ PERIPHC_VI,
|
|
|
+ PERIPHC_1c,
|
|
|
+ PERIPHC_SDMMC1,
|
|
|
+ PERIPHC_SDMMC2,
|
|
|
+ PERIPHC_G3D,
|
|
|
+ PERIPHC_G2D,
|
|
|
+
|
|
|
+ /* 0x18 */
|
|
|
+ PERIPHC_NDFLASH,
|
|
|
+ PERIPHC_SDMMC4,
|
|
|
+ PERIPHC_VFIR,
|
|
|
+ PERIPHC_EPP,
|
|
|
+ PERIPHC_MPE,
|
|
|
+ PERIPHC_MIPI,
|
|
|
+ PERIPHC_UART1,
|
|
|
+ PERIPHC_UART2,
|
|
|
+
|
|
|
+ /* 0x20 */
|
|
|
+ PERIPHC_HOST1X,
|
|
|
+ PERIPHC_21,
|
|
|
+ PERIPHC_TVO,
|
|
|
+ PERIPHC_HDMI,
|
|
|
+ PERIPHC_24,
|
|
|
+ PERIPHC_TVDAC,
|
|
|
+ PERIPHC_I2C2,
|
|
|
+ PERIPHC_EMC,
|
|
|
+
|
|
|
+ /* 0x28 */
|
|
|
+ PERIPHC_UART3,
|
|
|
+ PERIPHC_29,
|
|
|
+ PERIPHC_VI_SENSOR,
|
|
|
+ PERIPHC_2b,
|
|
|
+ PERIPHC_2c,
|
|
|
+ PERIPHC_SPI4,
|
|
|
+ PERIPHC_I2C3,
|
|
|
+ PERIPHC_SDMMC3,
|
|
|
+
|
|
|
+ /* 0x30 */
|
|
|
+ PERIPHC_UART4,
|
|
|
+ PERIPHC_UART5,
|
|
|
+ PERIPHC_VDE,
|
|
|
+ PERIPHC_OWR,
|
|
|
+ PERIPHC_NOR,
|
|
|
+ PERIPHC_CSITE,
|
|
|
+
|
|
|
+ PERIPHC_COUNT,
|
|
|
+
|
|
|
+ PERIPHC_NONE = -1,
|
|
|
+};
|
|
|
+
|
|
|
+/* return 1 if a periphc_internal_id is in range */
|
|
|
+#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
|
|
+ (id) < PERIPHC_COUNT)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Clock type for each peripheral clock source. We put the name in each
|
|
|
+ * record just so it is easy to match things up
|
|
|
+ */
|
|
|
+#define TYPE(name, type) type
|
|
|
+static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
|
|
|
+ /* 0x00 */
|
|
|
+ TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
|
|
|
+ TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
|
|
|
+ TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
|
|
|
+ TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
|
|
|
+ TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
|
|
|
+ TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
|
|
|
+
|
|
|
+ /* 0x08 */
|
|
|
+ TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
|
|
|
+ TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
|
|
|
+
|
|
|
+ /* 0x10 */
|
|
|
+ TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
|
|
|
+ TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
|
|
|
+
|
|
|
+ /* 0x18 */
|
|
|
+ TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
|
|
|
+
|
|
|
+ /* 0x20 */
|
|
|
+ TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
|
|
|
+ TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
|
|
|
+ TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
|
|
|
+
|
|
|
+ /* 0x28 */
|
|
|
+ TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
|
|
|
+ TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
|
|
|
+
|
|
|
+ /* 0x30 */
|
|
|
+ TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
|
|
|
+ TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * This array translates a periph_id to a periphc_internal_id
|
|
|
+ *
|
|
|
+ * Not present/matched up:
|
|
|
+ * uint vi_sensor; _VI_SENSOR_0, 0x1A8
|
|
|
+ * SPDIF - which is both 0x08 and 0x0c
|
|
|
+ *
|
|
|
+ */
|
|
|
+#define NONE(name) (-1)
|
|
|
+#define OFFSET(name, value) PERIPHC_ ## name
|
|
|
+static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
|
|
|
+ /* Low word: 31:0 */
|
|
|
+ NONE(CPU),
|
|
|
+ NONE(RESERVED1),
|
|
|
+ NONE(RESERVED2),
|
|
|
+ NONE(AC97),
|
|
|
+ NONE(RTC),
|
|
|
+ NONE(TMR),
|
|
|
+ PERIPHC_UART1,
|
|
|
+ PERIPHC_UART2, /* and vfir 0x68 */
|
|
|
+
|
|
|
+ /* 0x08 */
|
|
|
+ NONE(GPIO),
|
|
|
+ PERIPHC_SDMMC2,
|
|
|
+ NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
|
|
|
+ PERIPHC_I2S1,
|
|
|
+ PERIPHC_I2C1,
|
|
|
+ PERIPHC_NDFLASH,
|
|
|
+ PERIPHC_SDMMC1,
|
|
|
+ PERIPHC_SDMMC4,
|
|
|
+
|
|
|
+ /* 0x10 */
|
|
|
+ PERIPHC_TWC,
|
|
|
+ PERIPHC_PWM,
|
|
|
+ PERIPHC_I2S2,
|
|
|
+ PERIPHC_EPP,
|
|
|
+ PERIPHC_VI,
|
|
|
+ PERIPHC_G2D,
|
|
|
+ NONE(USBD),
|
|
|
+ NONE(ISP),
|
|
|
+
|
|
|
+ /* 0x18 */
|
|
|
+ PERIPHC_G3D,
|
|
|
+ PERIPHC_IDE0,
|
|
|
+ PERIPHC_DISP2,
|
|
|
+ PERIPHC_DISP1,
|
|
|
+ PERIPHC_HOST1X,
|
|
|
+ NONE(VCP),
|
|
|
+ NONE(RESERVED30),
|
|
|
+ NONE(CACHE2),
|
|
|
+
|
|
|
+ /* Middle word: 63:32 */
|
|
|
+ NONE(MEM),
|
|
|
+ NONE(AHBDMA),
|
|
|
+ NONE(APBDMA),
|
|
|
+ NONE(RESERVED35),
|
|
|
+ NONE(KBC),
|
|
|
+ NONE(STAT_MON),
|
|
|
+ NONE(PMC),
|
|
|
+ NONE(FUSE),
|
|
|
+
|
|
|
+ /* 0x28 */
|
|
|
+ NONE(KFUSE),
|
|
|
+ NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
|
|
|
+ PERIPHC_NOR,
|
|
|
+ PERIPHC_SPI1,
|
|
|
+ PERIPHC_SPI2,
|
|
|
+ PERIPHC_XIO,
|
|
|
+ PERIPHC_SPI3,
|
|
|
+ PERIPHC_DVC_I2C,
|
|
|
+
|
|
|
+ /* 0x30 */
|
|
|
+ NONE(DSI),
|
|
|
+ PERIPHC_TVO, /* also CVE 0x40 */
|
|
|
+ PERIPHC_MIPI,
|
|
|
+ PERIPHC_HDMI,
|
|
|
+ PERIPHC_CSITE,
|
|
|
+ PERIPHC_TVDAC,
|
|
|
+ PERIPHC_I2C2,
|
|
|
+ PERIPHC_UART3,
|
|
|
+
|
|
|
+ /* 0x38 */
|
|
|
+ NONE(RESERVED56),
|
|
|
+ PERIPHC_EMC,
|
|
|
+ NONE(USB2),
|
|
|
+ NONE(USB3),
|
|
|
+ PERIPHC_MPE,
|
|
|
+ PERIPHC_VDE,
|
|
|
+ NONE(BSEA),
|
|
|
+ NONE(BSEV),
|
|
|
+
|
|
|
+ /* Upper word 95:64 */
|
|
|
+ NONE(SPEEDO),
|
|
|
+ PERIPHC_UART4,
|
|
|
+ PERIPHC_UART5,
|
|
|
+ PERIPHC_I2C3,
|
|
|
+ PERIPHC_SPI4,
|
|
|
+ PERIPHC_SDMMC3,
|
|
|
+ NONE(PCIE),
|
|
|
+ PERIPHC_OWR,
|
|
|
+
|
|
|
+ /* 0x48 */
|
|
|
+ NONE(AFI),
|
|
|
+ NONE(CORESIGHT),
|
|
|
+ NONE(RESERVED74),
|
|
|
+ NONE(AVPUCQ),
|
|
|
+ NONE(RESERVED76),
|
|
|
+ NONE(RESERVED77),
|
|
|
+ NONE(RESERVED78),
|
|
|
+ NONE(RESERVED79),
|
|
|
+
|
|
|
+ /* 0x50 */
|
|
|
+ NONE(RESERVED80),
|
|
|
+ NONE(RESERVED81),
|
|
|
+ NONE(RESERVED82),
|
|
|
+ NONE(RESERVED83),
|
|
|
+ NONE(IRAMA),
|
|
|
+ NONE(IRAMB),
|
|
|
+ NONE(IRAMC),
|
|
|
+ NONE(IRAMD),
|
|
|
+
|
|
|
+ /* 0x58 */
|
|
|
+ NONE(CRAM2),
|
|
|
+};
|
|
|
|
|
|
/*
|
|
|
* Get the oscillator frequency, from the corresponding hardware configuration
|
|
@@ -42,16 +407,21 @@ enum clock_osc_freq clock_get_osc_freq(void)
|
|
|
return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
|
|
|
}
|
|
|
|
|
|
-unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
|
|
- u32 divp, u32 cpcon, u32 lfcon)
|
|
|
+/* Returns a pointer to the registers of the given pll */
|
|
|
+static struct clk_pll *get_pll(enum clock_id clkid)
|
|
|
{
|
|
|
struct clk_rst_ctlr *clkrst =
|
|
|
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
|
- u32 data;
|
|
|
- struct clk_pll *pll;
|
|
|
|
|
|
assert(clock_id_isvalid(clkid));
|
|
|
- pll = &clkrst->crc_pll[clkid];
|
|
|
+ return &clkrst->crc_pll[clkid];
|
|
|
+}
|
|
|
+
|
|
|
+unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
|
|
+ u32 divp, u32 cpcon, u32 lfcon)
|
|
|
+{
|
|
|
+ struct clk_pll *pll = get_pll(clkid);
|
|
|
+ u32 data;
|
|
|
|
|
|
/*
|
|
|
* We cheat by treating all PLL (except PLLU) in the same fashion.
|
|
@@ -76,6 +446,294 @@ unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
|
|
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
|
|
|
}
|
|
|
|
|
|
+/* return 1 if a peripheral ID is in range and valid */
|
|
|
+static int clock_periph_id_isvalid(enum periph_id id)
|
|
|
+{
|
|
|
+ if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
|
|
|
+ printf("Peripheral id %d out of range\n", id);
|
|
|
+ else {
|
|
|
+ switch (id) {
|
|
|
+ case PERIPH_ID_RESERVED1:
|
|
|
+ case PERIPH_ID_RESERVED2:
|
|
|
+ case PERIPH_ID_RESERVED30:
|
|
|
+ case PERIPH_ID_RESERVED35:
|
|
|
+ case PERIPH_ID_RESERVED56:
|
|
|
+ case PERIPH_ID_RESERVED74:
|
|
|
+ case PERIPH_ID_RESERVED76:
|
|
|
+ case PERIPH_ID_RESERVED77:
|
|
|
+ case PERIPH_ID_RESERVED78:
|
|
|
+ case PERIPH_ID_RESERVED79:
|
|
|
+ case PERIPH_ID_RESERVED80:
|
|
|
+ case PERIPH_ID_RESERVED81:
|
|
|
+ case PERIPH_ID_RESERVED82:
|
|
|
+ case PERIPH_ID_RESERVED83:
|
|
|
+ printf("Peripheral id %d is reserved\n", id);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Returns a pointer to the clock source register for a peripheral */
|
|
|
+static u32 *get_periph_source_reg(enum periph_id periph_id)
|
|
|
+{
|
|
|
+ struct clk_rst_ctlr *clkrst =
|
|
|
+ (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
|
+ enum periphc_internal_id internal_id;
|
|
|
+
|
|
|
+ assert(clock_periph_id_isvalid(periph_id));
|
|
|
+ internal_id = periph_id_to_internal_id[periph_id];
|
|
|
+ assert(internal_id != -1);
|
|
|
+ return &clkrst->crc_clk_src[internal_id];
|
|
|
+}
|
|
|
+
|
|
|
+void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
|
|
|
+ unsigned divisor)
|
|
|
+{
|
|
|
+ u32 *reg = get_periph_source_reg(periph_id);
|
|
|
+ u32 value;
|
|
|
+
|
|
|
+ value = readl(reg);
|
|
|
+
|
|
|
+ value &= ~OUT_CLK_SOURCE_MASK;
|
|
|
+ value |= source << OUT_CLK_SOURCE_SHIFT;
|
|
|
+
|
|
|
+ value &= ~OUT_CLK_DIVISOR_MASK;
|
|
|
+ value |= divisor << OUT_CLK_DIVISOR_SHIFT;
|
|
|
+
|
|
|
+ writel(value, reg);
|
|
|
+}
|
|
|
+
|
|
|
+void clock_ll_set_source(enum periph_id periph_id, unsigned source)
|
|
|
+{
|
|
|
+ u32 *reg = get_periph_source_reg(periph_id);
|
|
|
+
|
|
|
+ clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
|
|
+ source << OUT_CLK_SOURCE_SHIFT);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Given the parent's rate and the required rate for the children, this works
|
|
|
+ * out the peripheral clock divider to use, in 7.1 binary format.
|
|
|
+ *
|
|
|
+ * @param parent_rate clock rate of parent clock in Hz
|
|
|
+ * @param rate required clock rate for this clock
|
|
|
+ * @return divider which should be used
|
|
|
+ */
|
|
|
+static int clk_div7_1_get_divider(unsigned long parent_rate,
|
|
|
+ unsigned long rate)
|
|
|
+{
|
|
|
+ u64 divider = parent_rate * 2;
|
|
|
+
|
|
|
+ divider += rate - 1;
|
|
|
+ do_div(divider, rate);
|
|
|
+
|
|
|
+ if ((s64)divider - 2 < 0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ if ((s64)divider - 2 > 255)
|
|
|
+ return -1;
|
|
|
+
|
|
|
+ return divider - 2;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Given the parent's rate and the divider in 7.1 format, this works out the
|
|
|
+ * resulting peripheral clock rate.
|
|
|
+ *
|
|
|
+ * @param parent_rate clock rate of parent clock in Hz
|
|
|
+ * @param divider which should be used in 7.1 format
|
|
|
+ * @return effective clock rate of peripheral
|
|
|
+ */
|
|
|
+static unsigned long get_rate_from_divider(unsigned long parent_rate,
|
|
|
+ int divider)
|
|
|
+{
|
|
|
+ u64 rate;
|
|
|
+
|
|
|
+ rate = (u64)parent_rate * 2;
|
|
|
+ do_div(rate, divider + 2);
|
|
|
+ return rate;
|
|
|
+}
|
|
|
+
|
|
|
+unsigned long clock_get_periph_rate(enum periph_id periph_id,
|
|
|
+ enum clock_id parent)
|
|
|
+{
|
|
|
+ u32 *reg = get_periph_source_reg(periph_id);
|
|
|
+
|
|
|
+ return get_rate_from_divider(pll_rate[parent],
|
|
|
+ (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Find the best available 7.1 format divisor given a parent clock rate and
|
|
|
+ * required child clock rate. This function assumes that a second-stage
|
|
|
+ * divisor is available which can divide by powers of 2 from 1 to 256.
|
|
|
+ *
|
|
|
+ * @param parent_rate clock rate of parent clock in Hz
|
|
|
+ * @param rate required clock rate for this clock
|
|
|
+ * @param extra_div value for the second-stage divisor (not set if this
|
|
|
+ * function returns -1.
|
|
|
+ * @return divider which should be used, or -1 if nothing is valid
|
|
|
+ *
|
|
|
+ */
|
|
|
+static int find_best_divider(unsigned long parent_rate, unsigned long rate,
|
|
|
+ int *extra_div)
|
|
|
+{
|
|
|
+ int shift;
|
|
|
+ int best_divider = -1;
|
|
|
+ int best_error = rate;
|
|
|
+
|
|
|
+ /* try dividers from 1 to 256 and find closest match */
|
|
|
+ for (shift = 0; shift <= 8 && best_error > 0; shift++) {
|
|
|
+ unsigned divided_parent = parent_rate >> shift;
|
|
|
+ int divider = clk_div7_1_get_divider(divided_parent, rate);
|
|
|
+ unsigned effective_rate = get_rate_from_divider(divided_parent,
|
|
|
+ divider);
|
|
|
+ int error = rate - effective_rate;
|
|
|
+
|
|
|
+ /* Given a valid divider, look for the lowest error */
|
|
|
+ if (divider != -1 && error < best_error) {
|
|
|
+ best_error = error;
|
|
|
+ *extra_div = 1 << shift;
|
|
|
+ best_divider = divider;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* return what we found - *extra_div will already be set */
|
|
|
+ return best_divider;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Given a peripheral ID and the required source clock, this returns which
|
|
|
+ * value should be programmed into the source mux for that peripheral.
|
|
|
+ *
|
|
|
+ * There is special code here to handle the one source type with 5 sources.
|
|
|
+ *
|
|
|
+ * @param periph_id peripheral to start
|
|
|
+ * @param source PLL id of required parent clock
|
|
|
+ * @param mux_bits Set to number of bits in mux register: 2 or 4
|
|
|
+ * @return mux value (0-4, or -1 if not found)
|
|
|
+ */
|
|
|
+static int get_periph_clock_source(enum periph_id periph_id,
|
|
|
+ enum clock_id parent, int *mux_bits)
|
|
|
+{
|
|
|
+ enum clock_type_id type;
|
|
|
+ enum periphc_internal_id internal_id;
|
|
|
+ int mux;
|
|
|
+
|
|
|
+ assert(clock_periph_id_isvalid(periph_id));
|
|
|
+
|
|
|
+ internal_id = periph_id_to_internal_id[periph_id];
|
|
|
+ assert(periphc_internal_id_isvalid(internal_id));
|
|
|
+
|
|
|
+ type = clock_periph_type[internal_id];
|
|
|
+ assert(clock_type_id_isvalid(type));
|
|
|
+
|
|
|
+ /* Special case here for the clock with a 4-bit source mux */
|
|
|
+ if (type == CLOCK_TYPE_PCXTS)
|
|
|
+ *mux_bits = 4;
|
|
|
+ else
|
|
|
+ *mux_bits = 2;
|
|
|
+
|
|
|
+ for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
|
|
|
+ if (clock_source[type][mux] == parent)
|
|
|
+ return mux;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
|
|
|
+ * which is not in our table. If not, then they are asking for a
|
|
|
+ * source which this peripheral can't access through its mux.
|
|
|
+ */
|
|
|
+ assert(type == CLOCK_TYPE_PCXTS);
|
|
|
+ assert(parent == CLOCK_ID_SFROM32KHZ);
|
|
|
+ if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
|
|
|
+ return 4; /* mux value for this clock */
|
|
|
+
|
|
|
+ /* if we get here, either us or the caller has made a mistake */
|
|
|
+ printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
|
|
|
+ parent);
|
|
|
+ return -1;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Adjust peripheral PLL to use the given divider and source.
|
|
|
+ *
|
|
|
+ * @param periph_id peripheral to adjust
|
|
|
+ * @param parent Required parent clock (for source mux)
|
|
|
+ * @param divider Required divider in 7.1 format
|
|
|
+ * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
|
|
|
+ * for this peripheral)
|
|
|
+ */
|
|
|
+static int adjust_periph_pll(enum periph_id periph_id,
|
|
|
+ enum clock_id parent, unsigned divider)
|
|
|
+{
|
|
|
+ u32 *reg = get_periph_source_reg(periph_id);
|
|
|
+ unsigned source;
|
|
|
+ int mux_bits;
|
|
|
+
|
|
|
+ clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
|
|
|
+ divider << OUT_CLK_DIVISOR_SHIFT);
|
|
|
+ udelay(1);
|
|
|
+
|
|
|
+ /* work out the source clock and set it */
|
|
|
+ source = get_periph_clock_source(periph_id, parent, &mux_bits);
|
|
|
+ if (source < 0)
|
|
|
+ return -1;
|
|
|
+ if (mux_bits == 4) {
|
|
|
+ clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
|
|
|
+ source << OUT_CLK_SOURCE4_SHIFT);
|
|
|
+ } else {
|
|
|
+ clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
|
|
|
+ source << OUT_CLK_SOURCE_SHIFT);
|
|
|
+ }
|
|
|
+ udelay(2);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
|
|
|
+ enum clock_id parent, unsigned rate, int *extra_div)
|
|
|
+{
|
|
|
+ unsigned effective_rate;
|
|
|
+ int divider;
|
|
|
+
|
|
|
+ if (extra_div)
|
|
|
+ divider = find_best_divider(pll_rate[parent], rate, extra_div);
|
|
|
+ else
|
|
|
+ divider = clk_div7_1_get_divider(pll_rate[parent], rate);
|
|
|
+ assert(divider >= 0);
|
|
|
+ if (adjust_periph_pll(periph_id, parent, divider))
|
|
|
+ return -1U;
|
|
|
+ debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
|
|
|
+ get_periph_source_reg(periph_id),
|
|
|
+ readl(get_periph_source_reg(periph_id)));
|
|
|
+
|
|
|
+ /* Check what we ended up with. This shouldn't matter though */
|
|
|
+ effective_rate = clock_get_periph_rate(periph_id, parent);
|
|
|
+ if (extra_div)
|
|
|
+ effective_rate /= *extra_div;
|
|
|
+ if (rate != effective_rate)
|
|
|
+ debug("Requested clock rate %u not honored (got %u)\n",
|
|
|
+ rate, effective_rate);
|
|
|
+ return effective_rate;
|
|
|
+}
|
|
|
+
|
|
|
+unsigned clock_start_periph_pll(enum periph_id periph_id,
|
|
|
+ enum clock_id parent, unsigned rate)
|
|
|
+{
|
|
|
+ unsigned effective_rate;
|
|
|
+
|
|
|
+ reset_set_enable(periph_id, 1);
|
|
|
+ clock_enable(periph_id);
|
|
|
+
|
|
|
+ effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
|
|
|
+ NULL);
|
|
|
+
|
|
|
+ reset_set_enable(periph_id, 0);
|
|
|
+ return effective_rate;
|
|
|
+}
|
|
|
+
|
|
|
void clock_set_enable(enum periph_id periph_id, int enable)
|
|
|
{
|
|
|
struct clk_rst_ctlr *clkrst =
|
|
@@ -148,3 +806,156 @@ void reset_cmplx_set_enable(int cpu, int which, int reset)
|
|
|
else
|
|
|
writel(mask, &clkrst->crc_cpu_cmplx_clr);
|
|
|
}
|
|
|
+
|
|
|
+unsigned clock_get_rate(enum clock_id clkid)
|
|
|
+{
|
|
|
+ struct clk_pll *pll;
|
|
|
+ u32 base;
|
|
|
+ u32 divm;
|
|
|
+ u64 parent_rate;
|
|
|
+ u64 rate;
|
|
|
+
|
|
|
+ parent_rate = osc_freq[clock_get_osc_freq()];
|
|
|
+ if (clkid == CLOCK_ID_OSC)
|
|
|
+ return parent_rate;
|
|
|
+
|
|
|
+ pll = get_pll(clkid);
|
|
|
+ base = readl(&pll->pll_base);
|
|
|
+
|
|
|
+ /* Oh for bf_unpack()... */
|
|
|
+ rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
|
|
|
+ divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
|
|
+ if (clkid == CLOCK_ID_USB)
|
|
|
+ divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
|
|
|
+ else
|
|
|
+ divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
|
|
+ do_div(rate, divm);
|
|
|
+ return rate;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Set the output frequency you want for each PLL clock.
|
|
|
+ * PLL output frequencies are programmed by setting their N, M and P values.
|
|
|
+ * The governing equations are:
|
|
|
+ * VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
|
|
+ * where Fo is the output frequency from the PLL.
|
|
|
+ * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
|
|
+ * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
|
|
+ * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
|
|
+ *
|
|
|
+ * @param n PLL feedback divider(DIVN)
|
|
|
+ * @param m PLL input divider(DIVN)
|
|
|
+ * @param p post divider(DIVP)
|
|
|
+ * @param cpcon base PLL charge pump(CPCON)
|
|
|
+ * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
|
|
+ * be overriden), 1 if PLL is already correct
|
|
|
+ */
|
|
|
+static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
|
|
|
+{
|
|
|
+ u32 base_reg;
|
|
|
+ u32 misc_reg;
|
|
|
+ struct clk_pll *pll;
|
|
|
+
|
|
|
+ pll = get_pll(clkid);
|
|
|
+
|
|
|
+ base_reg = readl(&pll->pll_base);
|
|
|
+
|
|
|
+ /* Set BYPASS, m, n and p to PLL_BASE */
|
|
|
+ base_reg &= ~PLL_DIVM_MASK;
|
|
|
+ base_reg |= m << PLL_DIVM_SHIFT;
|
|
|
+
|
|
|
+ base_reg &= ~PLL_DIVN_MASK;
|
|
|
+ base_reg |= n << PLL_DIVN_SHIFT;
|
|
|
+
|
|
|
+ base_reg &= ~PLL_DIVP_MASK;
|
|
|
+ base_reg |= p << PLL_DIVP_SHIFT;
|
|
|
+
|
|
|
+ if (clkid == CLOCK_ID_PERIPH) {
|
|
|
+ /*
|
|
|
+ * If the PLL is already set up, check that it is correct
|
|
|
+ * and record this info for clock_verify() to check.
|
|
|
+ */
|
|
|
+ if (base_reg & PLL_BASE_OVRRIDE_MASK) {
|
|
|
+ base_reg |= PLL_ENABLE_MASK;
|
|
|
+ if (base_reg != readl(&pll->pll_base))
|
|
|
+ pllp_valid = 0;
|
|
|
+ return pllp_valid ? 1 : -1;
|
|
|
+ }
|
|
|
+ base_reg |= PLL_BASE_OVRRIDE_MASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ base_reg |= PLL_BYPASS_MASK;
|
|
|
+ writel(base_reg, &pll->pll_base);
|
|
|
+
|
|
|
+ /* Set cpcon to PLL_MISC */
|
|
|
+ misc_reg = readl(&pll->pll_misc);
|
|
|
+ misc_reg &= ~PLL_CPCON_MASK;
|
|
|
+ misc_reg |= cpcon << PLL_CPCON_SHIFT;
|
|
|
+ writel(misc_reg, &pll->pll_misc);
|
|
|
+
|
|
|
+ /* Enable PLL */
|
|
|
+ base_reg |= PLL_ENABLE_MASK;
|
|
|
+ writel(base_reg, &pll->pll_base);
|
|
|
+
|
|
|
+ /* Disable BYPASS */
|
|
|
+ base_reg &= ~PLL_BYPASS_MASK;
|
|
|
+ writel(base_reg, &pll->pll_base);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int clock_verify(void)
|
|
|
+{
|
|
|
+ struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
|
|
|
+ u32 reg = readl(&pll->pll_base);
|
|
|
+
|
|
|
+ if (!pllp_valid) {
|
|
|
+ printf("Warning: PLLP %x is not correct\n", reg);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ debug("PLLX %x is correct\n", reg);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void clock_early_init(void)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * PLLP output frequency set to 216MHz
|
|
|
+ * PLLC output frequency set to 600Mhz
|
|
|
+ *
|
|
|
+ * TODO: Can we calculate these values instead of hard-coding?
|
|
|
+ */
|
|
|
+ switch (clock_get_osc_freq()) {
|
|
|
+ case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
|
|
|
+ clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
|
|
|
+ clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
|
|
|
+ break;
|
|
|
+
|
|
|
+ case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
|
|
|
+ clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
|
|
|
+ clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
|
|
|
+ break;
|
|
|
+
|
|
|
+ case CLOCK_OSC_FREQ_13_0:
|
|
|
+ case CLOCK_OSC_FREQ_19_2:
|
|
|
+ default:
|
|
|
+ /*
|
|
|
+ * These are not supported. It is too early to print a
|
|
|
+ * message and the UART likely won't work anyway due to the
|
|
|
+ * oscillator being wrong.
|
|
|
+ */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void clock_init(void)
|
|
|
+{
|
|
|
+ pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
|
|
|
+ pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
|
|
|
+ pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
|
|
|
+ pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
|
|
|
+ pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
|
|
|
+ debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
|
|
|
+ debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
|
|
|
+ debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
|
|
|
+}
|