|
@@ -60,7 +60,7 @@
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
*/
|
|
|
-extern __inline__ void
|
|
|
+static __inline__ void
|
|
|
set_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -84,7 +84,7 @@ set_bit(int nr, volatile void *addr)
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
* may be that only one operation succeeds.
|
|
|
*/
|
|
|
-extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
|
@@ -101,7 +101,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
|
* in order to ensure changes are visible on other processors.
|
|
|
*/
|
|
|
-extern __inline__ void
|
|
|
+static __inline__ void
|
|
|
clear_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -125,7 +125,7 @@ clear_bit(int nr, volatile void *addr)
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
*/
|
|
|
-extern __inline__ void
|
|
|
+static __inline__ void
|
|
|
change_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -149,7 +149,7 @@ change_bit(int nr, volatile void *addr)
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
* may be that only one operation succeeds.
|
|
|
*/
|
|
|
-extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
|
@@ -164,7 +164,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int
|
|
|
+static __inline__ int
|
|
|
test_and_set_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -194,7 +194,7 @@ test_and_set_bit(int nr, volatile void *addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -215,7 +215,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int
|
|
|
+static __inline__ int
|
|
|
test_and_clear_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -246,7 +246,7 @@ test_and_clear_bit(int nr, volatile void *addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -267,7 +267,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int
|
|
|
+static __inline__ int
|
|
|
test_and_change_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
|
@@ -297,7 +297,7 @@ test_and_change_bit(int nr, volatile void *addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -322,7 +322,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
*/
|
|
|
-extern __inline__ void set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask;
|
|
|
volatile int *a = addr;
|
|
@@ -344,7 +344,7 @@ extern __inline__ void set_bit(int nr, volatile void * addr)
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
* may be that only one operation succeeds.
|
|
|
*/
|
|
|
-extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask;
|
|
|
volatile int *a = addr;
|
|
@@ -364,7 +364,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr)
|
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
|
* in order to ensure changes are visible on other processors.
|
|
|
*/
|
|
|
-extern __inline__ void clear_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask;
|
|
|
volatile int *a = addr;
|
|
@@ -386,7 +386,7 @@ extern __inline__ void clear_bit(int nr, volatile void * addr)
|
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
|
* restricted to acting on a single-word quantity.
|
|
|
*/
|
|
|
-extern __inline__ void change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask;
|
|
|
volatile int *a = addr;
|
|
@@ -408,7 +408,7 @@ extern __inline__ void change_bit(int nr, volatile void * addr)
|
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
|
* may be that only one operation succeeds.
|
|
|
*/
|
|
|
-extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
|
|
|
|
@@ -423,7 +423,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -448,7 +448,7 @@ extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -469,7 +469,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -494,7 +494,7 @@ extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -515,7 +515,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
|
* This operation is atomic and cannot be reordered.
|
|
|
* It also implies a memory barrier.
|
|
|
*/
|
|
|
-extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -540,7 +540,7 @@ extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
|
* If two examples of this operation race, one can appear to succeed
|
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
|
*/
|
|
|
-extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
+static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
{
|
|
|
int mask, retval;
|
|
|
volatile int *a = addr;
|
|
@@ -565,7 +565,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
|
|
* @nr: bit number to test
|
|
|
* @addr: Address to start counting from
|
|
|
*/
|
|
|
-extern __inline__ int test_bit(int nr, volatile void *addr)
|
|
|
+static __inline__ int test_bit(int nr, volatile void *addr)
|
|
|
{
|
|
|
return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
|
|
|
}
|
|
@@ -582,7 +582,7 @@ extern __inline__ int test_bit(int nr, volatile void *addr)
|
|
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
|
|
* containing a bit.
|
|
|
*/
|
|
|
-extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
|
|
|
+static __inline__ int find_first_zero_bit (void *addr, unsigned size)
|
|
|
{
|
|
|
unsigned long dummy;
|
|
|
int res;
|
|
@@ -633,7 +633,7 @@ extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
|
|
|
* @offset: The bitnumber to start searching at
|
|
|
* @size: The maximum size to search
|
|
|
*/
|
|
|
-extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
|
+static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
|
{
|
|
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
|
|
int set = 0, bit = offset & 31, res;
|
|
@@ -679,7 +679,7 @@ extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
|
*
|
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
|
|
*/
|
|
|
-extern __inline__ unsigned long ffz(unsigned long word)
|
|
|
+static __inline__ unsigned long ffz(unsigned long word)
|
|
|
{
|
|
|
unsigned int __res;
|
|
|
unsigned int mask = 1;
|
|
@@ -736,7 +736,7 @@ extern __inline__ unsigned long ffz(unsigned long word)
|
|
|
* @offset: The bitnumber to start searching at
|
|
|
* @size: The maximum size to search
|
|
|
*/
|
|
|
-extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
|
|
|
+static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
|
|
|
{
|
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
|
unsigned long result = offset & ~31UL;
|
|
@@ -785,7 +785,7 @@ found_middle:
|
|
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
|
|
* containing a bit.
|
|
|
*/
|
|
|
-extern int find_first_zero_bit (void *addr, unsigned size);
|
|
|
+static int find_first_zero_bit (void *addr, unsigned size);
|
|
|
#endif
|
|
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
@@ -796,7 +796,7 @@ extern int find_first_zero_bit (void *addr, unsigned size);
|
|
|
/* Now for the ext2 filesystem bit operations and helper routines. */
|
|
|
|
|
|
#ifdef __MIPSEB__
|
|
|
-extern __inline__ int ext2_set_bit(int nr, void * addr)
|
|
|
+static __inline__ int ext2_set_bit(int nr, void * addr)
|
|
|
{
|
|
|
int mask, retval, flags;
|
|
|
unsigned char *ADDR = (unsigned char *) addr;
|
|
@@ -810,7 +810,7 @@ extern __inline__ int ext2_set_bit(int nr, void * addr)
|
|
|
return retval;
|
|
|
}
|
|
|
|
|
|
-extern __inline__ int ext2_clear_bit(int nr, void * addr)
|
|
|
+static __inline__ int ext2_clear_bit(int nr, void * addr)
|
|
|
{
|
|
|
int mask, retval, flags;
|
|
|
unsigned char *ADDR = (unsigned char *) addr;
|
|
@@ -824,7 +824,7 @@ extern __inline__ int ext2_clear_bit(int nr, void * addr)
|
|
|
return retval;
|
|
|
}
|
|
|
|
|
|
-extern __inline__ int ext2_test_bit(int nr, const void * addr)
|
|
|
+static __inline__ int ext2_test_bit(int nr, const void * addr)
|
|
|
{
|
|
|
int mask;
|
|
|
const unsigned char *ADDR = (const unsigned char *) addr;
|
|
@@ -837,7 +837,7 @@ extern __inline__ int ext2_test_bit(int nr, const void * addr)
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
|
|
-extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
|
+static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
|
{
|
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
|
unsigned long result = offset & ~31UL;
|