|
@@ -40,6 +40,13 @@
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
|
|
|
|
|
|
#include<linux/mtd/mtd.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
|
|
|
+ * only nand_correct_data() is needed
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef CONFIG_NAND_SPL
|
|
|
/*
|
|
|
* Pre-calculated 256-way 1 byte column parity
|
|
|
*/
|
|
@@ -62,90 +69,75 @@ static const u_char nand_ecc_precalc_table[] = {
|
|
|
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
|
|
|
};
|
|
|
|
|
|
-
|
|
|
-/**
|
|
|
- * nand_trans_result - [GENERIC] create non-inverted ECC
|
|
|
- * @reg2: line parity reg 2
|
|
|
- * @reg3: line parity reg 3
|
|
|
- * @ecc_code: ecc
|
|
|
- *
|
|
|
- * Creates non-inverted ECC code from line parity
|
|
|
- */
|
|
|
-static void nand_trans_result(u_char reg2, u_char reg3,
|
|
|
- u_char *ecc_code)
|
|
|
-{
|
|
|
- u_char a, b, i, tmp1, tmp2;
|
|
|
-
|
|
|
- /* Initialize variables */
|
|
|
- a = b = 0x80;
|
|
|
- tmp1 = tmp2 = 0;
|
|
|
-
|
|
|
- /* Calculate first ECC byte */
|
|
|
- for (i = 0; i < 4; i++) {
|
|
|
- if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
|
|
|
- tmp1 |= b;
|
|
|
- b >>= 1;
|
|
|
- if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
|
|
|
- tmp1 |= b;
|
|
|
- b >>= 1;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Calculate second ECC byte */
|
|
|
- b = 0x80;
|
|
|
- for (i = 0; i < 4; i++) {
|
|
|
- if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
|
|
|
- tmp2 |= b;
|
|
|
- b >>= 1;
|
|
|
- if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
|
|
|
- tmp2 |= b;
|
|
|
- b >>= 1;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* Store two of the ECC bytes */
|
|
|
- ecc_code[0] = tmp1;
|
|
|
- ecc_code[1] = tmp2;
|
|
|
-}
|
|
|
-
|
|
|
/**
|
|
|
- * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
|
|
|
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
|
|
|
* @mtd: MTD block structure
|
|
|
* @dat: raw data
|
|
|
* @ecc_code: buffer for ECC
|
|
|
*/
|
|
|
-int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
|
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
|
+ u_char *ecc_code)
|
|
|
{
|
|
|
- u_char idx, reg1, reg2, reg3;
|
|
|
- int j;
|
|
|
+ uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
|
|
|
+ int i;
|
|
|
|
|
|
/* Initialize variables */
|
|
|
reg1 = reg2 = reg3 = 0;
|
|
|
- ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
|
|
|
|
|
|
/* Build up column parity */
|
|
|
- for(j = 0; j < 256; j++) {
|
|
|
-
|
|
|
+ for(i = 0; i < 256; i++) {
|
|
|
/* Get CP0 - CP5 from table */
|
|
|
- idx = nand_ecc_precalc_table[dat[j]];
|
|
|
+ idx = nand_ecc_precalc_table[*dat++];
|
|
|
reg1 ^= (idx & 0x3f);
|
|
|
|
|
|
/* All bit XOR = 1 ? */
|
|
|
if (idx & 0x40) {
|
|
|
- reg3 ^= (u_char) j;
|
|
|
- reg2 ^= ~((u_char) j);
|
|
|
+ reg3 ^= (uint8_t) i;
|
|
|
+ reg2 ^= ~((uint8_t) i);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Create non-inverted ECC code from line parity */
|
|
|
- nand_trans_result(reg2, reg3, ecc_code);
|
|
|
+ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
|
|
|
+ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
|
|
|
+ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
|
|
|
+ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
|
|
|
+ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
|
|
|
+ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
|
|
|
+ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
|
|
|
+ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
|
|
|
+
|
|
|
+ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
|
|
|
+ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
|
|
|
+ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
|
|
|
+ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
|
|
|
+ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
|
|
|
+ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
|
|
|
+ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
|
|
|
+ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
|
|
|
|
|
|
/* Calculate final ECC code */
|
|
|
- ecc_code[0] = ~ecc_code[0];
|
|
|
- ecc_code[1] = ~ecc_code[1];
|
|
|
+#ifdef CONFIG_MTD_NAND_ECC_SMC
|
|
|
+ ecc_code[0] = ~tmp2;
|
|
|
+ ecc_code[1] = ~tmp1;
|
|
|
+#else
|
|
|
+ ecc_code[0] = ~tmp1;
|
|
|
+ ecc_code[1] = ~tmp2;
|
|
|
+#endif
|
|
|
ecc_code[2] = ((~reg1) << 2) | 0x03;
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
+#endif /* CONFIG_NAND_SPL */
|
|
|
+
|
|
|
+static inline int countbits(uint32_t byte)
|
|
|
+{
|
|
|
+ int res = 0;
|
|
|
+
|
|
|
+ for (;byte; byte >>= 1)
|
|
|
+ res += byte & 0x01;
|
|
|
+ return res;
|
|
|
+}
|
|
|
|
|
|
/**
|
|
|
* nand_correct_data - [NAND Interface] Detect and correct bit error(s)
|
|
@@ -156,88 +148,52 @@ int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code
|
|
|
*
|
|
|
* Detect and correct a 1 bit error for 256 byte block
|
|
|
*/
|
|
|
-int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
|
|
|
+int nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
|
+ u_char *read_ecc, u_char *calc_ecc)
|
|
|
{
|
|
|
- u_char a, b, c, d1, d2, d3, add, bit, i;
|
|
|
+ uint8_t s0, s1, s2;
|
|
|
+
|
|
|
+#ifdef CONFIG_MTD_NAND_ECC_SMC
|
|
|
+ s0 = calc_ecc[0] ^ read_ecc[0];
|
|
|
+ s1 = calc_ecc[1] ^ read_ecc[1];
|
|
|
+ s2 = calc_ecc[2] ^ read_ecc[2];
|
|
|
+#else
|
|
|
+ s1 = calc_ecc[0] ^ read_ecc[0];
|
|
|
+ s0 = calc_ecc[1] ^ read_ecc[1];
|
|
|
+ s2 = calc_ecc[2] ^ read_ecc[2];
|
|
|
+#endif
|
|
|
+ if ((s0 | s1 | s2) == 0)
|
|
|
+ return 0;
|
|
|
|
|
|
- /* Do error detection */
|
|
|
- d1 = calc_ecc[0] ^ read_ecc[0];
|
|
|
- d2 = calc_ecc[1] ^ read_ecc[1];
|
|
|
- d3 = calc_ecc[2] ^ read_ecc[2];
|
|
|
+ /* Check for a single bit error */
|
|
|
+ if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
|
|
|
+ ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
|
|
|
+ ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
|
|
|
|
|
|
- if ((d1 | d2 | d3) == 0) {
|
|
|
- /* No errors */
|
|
|
- return 0;
|
|
|
- }
|
|
|
- else {
|
|
|
- a = (d1 ^ (d1 >> 1)) & 0x55;
|
|
|
- b = (d2 ^ (d2 >> 1)) & 0x55;
|
|
|
- c = (d3 ^ (d3 >> 1)) & 0x54;
|
|
|
-
|
|
|
- /* Found and will correct single bit error in the data */
|
|
|
- if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
|
|
|
- c = 0x80;
|
|
|
- add = 0;
|
|
|
- a = 0x80;
|
|
|
- for (i=0; i<4; i++) {
|
|
|
- if (d1 & c)
|
|
|
- add |= a;
|
|
|
- c >>= 2;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
- c = 0x80;
|
|
|
- for (i=0; i<4; i++) {
|
|
|
- if (d2 & c)
|
|
|
- add |= a;
|
|
|
- c >>= 2;
|
|
|
- a >>= 1;
|
|
|
- }
|
|
|
- bit = 0;
|
|
|
- b = 0x04;
|
|
|
- c = 0x80;
|
|
|
- for (i=0; i<3; i++) {
|
|
|
- if (d3 & c)
|
|
|
- bit |= b;
|
|
|
- c >>= 2;
|
|
|
- b >>= 1;
|
|
|
- }
|
|
|
- b = 0x01;
|
|
|
- a = dat[add];
|
|
|
- a ^= (b << bit);
|
|
|
- dat[add] = a;
|
|
|
- return 1;
|
|
|
- } else {
|
|
|
- i = 0;
|
|
|
- while (d1) {
|
|
|
- if (d1 & 0x01)
|
|
|
- ++i;
|
|
|
- d1 >>= 1;
|
|
|
- }
|
|
|
- while (d2) {
|
|
|
- if (d2 & 0x01)
|
|
|
- ++i;
|
|
|
- d2 >>= 1;
|
|
|
- }
|
|
|
- while (d3) {
|
|
|
- if (d3 & 0x01)
|
|
|
- ++i;
|
|
|
- d3 >>= 1;
|
|
|
- }
|
|
|
- if (i == 1) {
|
|
|
- /* ECC Code Error Correction */
|
|
|
- read_ecc[0] = calc_ecc[0];
|
|
|
- read_ecc[1] = calc_ecc[1];
|
|
|
- read_ecc[2] = calc_ecc[2];
|
|
|
- return 2;
|
|
|
- }
|
|
|
- else {
|
|
|
- /* Uncorrectable Error */
|
|
|
- return -1;
|
|
|
- }
|
|
|
- }
|
|
|
+ uint32_t byteoffs, bitnum;
|
|
|
+
|
|
|
+ byteoffs = (s1 << 0) & 0x80;
|
|
|
+ byteoffs |= (s1 << 1) & 0x40;
|
|
|
+ byteoffs |= (s1 << 2) & 0x20;
|
|
|
+ byteoffs |= (s1 << 3) & 0x10;
|
|
|
+
|
|
|
+ byteoffs |= (s0 >> 4) & 0x08;
|
|
|
+ byteoffs |= (s0 >> 3) & 0x04;
|
|
|
+ byteoffs |= (s0 >> 2) & 0x02;
|
|
|
+ byteoffs |= (s0 >> 1) & 0x01;
|
|
|
+
|
|
|
+ bitnum = (s2 >> 5) & 0x04;
|
|
|
+ bitnum |= (s2 >> 4) & 0x02;
|
|
|
+ bitnum |= (s2 >> 3) & 0x01;
|
|
|
+
|
|
|
+ dat[byteoffs] ^= (1 << bitnum);
|
|
|
+
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
- /* Should never happen */
|
|
|
+ if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
|
|
|
+ return 1;
|
|
|
+
|
|
|
return -1;
|
|
|
}
|
|
|
|