|
@@ -20,16 +20,11 @@
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
* MA 02111-1307 USA
|
|
|
*/
|
|
|
-
|
|
|
#include <asm/io.h>
|
|
|
-#include <asm/arch/tegra20.h>
|
|
|
#include <asm/arch/ap20.h>
|
|
|
-#include <asm/arch/clk_rst.h>
|
|
|
-#include <asm/arch/clock.h>
|
|
|
#include <asm/arch/fuse.h>
|
|
|
#include <asm/arch/gp_padctrl.h>
|
|
|
#include <asm/arch/pmc.h>
|
|
|
-#include <asm/arch/pinmux.h>
|
|
|
#include <asm/arch/scu.h>
|
|
|
#include <asm/arch/warmboot.h>
|
|
|
#include <common.h>
|
|
@@ -68,235 +63,7 @@ int tegra_get_chip_type(void)
|
|
|
return TEGRA_SOC_UNKNOWN;
|
|
|
}
|
|
|
|
|
|
-/* Returns 1 if the current CPU executing is a Cortex-A9, else 0 */
|
|
|
-static int ap20_cpu_is_cortexa9(void)
|
|
|
-{
|
|
|
- u32 id = readb(NV_PA_PG_UP_BASE + PG_UP_TAG_0);
|
|
|
- return id == (PG_UP_TAG_0_PID_CPU & 0xff);
|
|
|
-}
|
|
|
-
|
|
|
-void init_pllx(void)
|
|
|
-{
|
|
|
- struct clk_rst_ctlr *clkrst =
|
|
|
- (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
|
- struct clk_pll_simple *pll =
|
|
|
- &clkrst->crc_pll_simple[CLOCK_ID_XCPU - CLOCK_ID_FIRST_SIMPLE];
|
|
|
- u32 reg;
|
|
|
-
|
|
|
- /* If PLLX is already enabled, just return */
|
|
|
- if (readl(&pll->pll_base) & PLL_ENABLE_MASK)
|
|
|
- return;
|
|
|
-
|
|
|
- /* Set PLLX_MISC */
|
|
|
- writel(1 << PLL_CPCON_SHIFT, &pll->pll_misc);
|
|
|
-
|
|
|
- /* Use 12MHz clock here */
|
|
|
- reg = PLL_BYPASS_MASK | (12 << PLL_DIVM_SHIFT);
|
|
|
- reg |= 1000 << PLL_DIVN_SHIFT;
|
|
|
- writel(reg, &pll->pll_base);
|
|
|
-
|
|
|
- reg |= PLL_ENABLE_MASK;
|
|
|
- writel(reg, &pll->pll_base);
|
|
|
-
|
|
|
- reg &= ~PLL_BYPASS_MASK;
|
|
|
- writel(reg, &pll->pll_base);
|
|
|
-}
|
|
|
-
|
|
|
-static void enable_cpu_clock(int enable)
|
|
|
-{
|
|
|
- struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
|
- u32 clk;
|
|
|
-
|
|
|
- /*
|
|
|
- * NOTE:
|
|
|
- * Regardless of whether the request is to enable or disable the CPU
|
|
|
- * clock, every processor in the CPU complex except the master (CPU 0)
|
|
|
- * will have it's clock stopped because the AVP only talks to the
|
|
|
- * master. The AVP does not know (nor does it need to know) that there
|
|
|
- * are multiple processors in the CPU complex.
|
|
|
- */
|
|
|
-
|
|
|
- if (enable) {
|
|
|
- /* Initialize PLLX */
|
|
|
- init_pllx();
|
|
|
-
|
|
|
- /* Wait until all clocks are stable */
|
|
|
- udelay(PLL_STABILIZATION_DELAY);
|
|
|
-
|
|
|
- writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
|
|
|
- writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Read the register containing the individual CPU clock enables and
|
|
|
- * always stop the clock to CPU 1.
|
|
|
- */
|
|
|
- clk = readl(&clkrst->crc_clk_cpu_cmplx);
|
|
|
- clk |= 1 << CPU1_CLK_STP_SHIFT;
|
|
|
-
|
|
|
- /* Stop/Unstop the CPU clock */
|
|
|
- clk &= ~CPU0_CLK_STP_MASK;
|
|
|
- clk |= !enable << CPU0_CLK_STP_SHIFT;
|
|
|
- writel(clk, &clkrst->crc_clk_cpu_cmplx);
|
|
|
-
|
|
|
- clock_enable(PERIPH_ID_CPU);
|
|
|
-}
|
|
|
-
|
|
|
-static int is_cpu_powered(void)
|
|
|
-{
|
|
|
- struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
|
|
|
-
|
|
|
- return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
|
|
|
-}
|
|
|
-
|
|
|
-static void remove_cpu_io_clamps(void)
|
|
|
-{
|
|
|
- struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
|
|
|
- u32 reg;
|
|
|
-
|
|
|
- /* Remove the clamps on the CPU I/O signals */
|
|
|
- reg = readl(&pmc->pmc_remove_clamping);
|
|
|
- reg |= CPU_CLMP;
|
|
|
- writel(reg, &pmc->pmc_remove_clamping);
|
|
|
-
|
|
|
- /* Give I/O signals time to stabilize */
|
|
|
- udelay(IO_STABILIZATION_DELAY);
|
|
|
-}
|
|
|
-
|
|
|
-static void powerup_cpu(void)
|
|
|
-{
|
|
|
- struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
|
|
|
- u32 reg;
|
|
|
- int timeout = IO_STABILIZATION_DELAY;
|
|
|
-
|
|
|
- if (!is_cpu_powered()) {
|
|
|
- /* Toggle the CPU power state (OFF -> ON) */
|
|
|
- reg = readl(&pmc->pmc_pwrgate_toggle);
|
|
|
- reg &= PARTID_CP;
|
|
|
- reg |= START_CP;
|
|
|
- writel(reg, &pmc->pmc_pwrgate_toggle);
|
|
|
-
|
|
|
- /* Wait for the power to come up */
|
|
|
- while (!is_cpu_powered()) {
|
|
|
- if (timeout-- == 0)
|
|
|
- printf("CPU failed to power up!\n");
|
|
|
- else
|
|
|
- udelay(10);
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Remove the I/O clamps from CPU power partition.
|
|
|
- * Recommended only on a Warm boot, if the CPU partition gets
|
|
|
- * power gated. Shouldn't cause any harm when called after a
|
|
|
- * cold boot according to HW, probably just redundant.
|
|
|
- */
|
|
|
- remove_cpu_io_clamps();
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void enable_cpu_power_rail(void)
|
|
|
-{
|
|
|
- struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
|
|
|
- u32 reg;
|
|
|
-
|
|
|
- reg = readl(&pmc->pmc_cntrl);
|
|
|
- reg |= CPUPWRREQ_OE;
|
|
|
- writel(reg, &pmc->pmc_cntrl);
|
|
|
-
|
|
|
- /*
|
|
|
- * The TI PMU65861C needs a 3.75ms delay between enabling
|
|
|
- * the power rail and enabling the CPU clock. This delay
|
|
|
- * between SM1EN and SM1 is for switching time + the ramp
|
|
|
- * up of the voltage to the CPU (VDD_CPU from PMU).
|
|
|
- */
|
|
|
- udelay(3750);
|
|
|
-}
|
|
|
-
|
|
|
-static void reset_A9_cpu(int reset)
|
|
|
-{
|
|
|
- /*
|
|
|
- * NOTE: Regardless of whether the request is to hold the CPU in reset
|
|
|
- * or take it out of reset, every processor in the CPU complex
|
|
|
- * except the master (CPU 0) will be held in reset because the
|
|
|
- * AVP only talks to the master. The AVP does not know that there
|
|
|
- * are multiple processors in the CPU complex.
|
|
|
- */
|
|
|
-
|
|
|
- /* Hold CPU 1 in reset, and CPU 0 if asked */
|
|
|
- reset_cmplx_set_enable(1, crc_rst_cpu | crc_rst_de | crc_rst_debug, 1);
|
|
|
- reset_cmplx_set_enable(0, crc_rst_cpu | crc_rst_de | crc_rst_debug,
|
|
|
- reset);
|
|
|
-
|
|
|
- /* Enable/Disable master CPU reset */
|
|
|
- reset_set_enable(PERIPH_ID_CPU, reset);
|
|
|
-}
|
|
|
-
|
|
|
-static void clock_enable_coresight(int enable)
|
|
|
-{
|
|
|
- u32 rst, src;
|
|
|
-
|
|
|
- clock_set_enable(PERIPH_ID_CORESIGHT, enable);
|
|
|
- reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
|
|
|
-
|
|
|
- if (enable) {
|
|
|
- /*
|
|
|
- * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
|
|
|
- * 1.5, giving an effective frequency of 144MHz.
|
|
|
- * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
|
|
|
- * (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
|
|
|
- */
|
|
|
- src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
|
|
|
- clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
|
|
|
-
|
|
|
- /* Unlock the CPU CoreSight interfaces */
|
|
|
- rst = 0xC5ACCE55;
|
|
|
- writel(rst, CSITE_CPU_DBG0_LAR);
|
|
|
- writel(rst, CSITE_CPU_DBG1_LAR);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void start_cpu(u32 reset_vector)
|
|
|
-{
|
|
|
- /* Enable VDD_CPU */
|
|
|
- enable_cpu_power_rail();
|
|
|
-
|
|
|
- /* Hold the CPUs in reset */
|
|
|
- reset_A9_cpu(1);
|
|
|
-
|
|
|
- /* Disable the CPU clock */
|
|
|
- enable_cpu_clock(0);
|
|
|
-
|
|
|
- /* Enable CoreSight */
|
|
|
- clock_enable_coresight(1);
|
|
|
-
|
|
|
- /*
|
|
|
- * Set the entry point for CPU execution from reset,
|
|
|
- * if it's a non-zero value.
|
|
|
- */
|
|
|
- if (reset_vector)
|
|
|
- writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);
|
|
|
-
|
|
|
- /* Enable the CPU clock */
|
|
|
- enable_cpu_clock(1);
|
|
|
-
|
|
|
- /* If the CPU doesn't already have power, power it up */
|
|
|
- powerup_cpu();
|
|
|
-
|
|
|
- /* Take the CPU out of reset */
|
|
|
- reset_A9_cpu(0);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void halt_avp(void)
|
|
|
-{
|
|
|
- for (;;) {
|
|
|
- writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
|
|
|
- | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
|
|
|
- FLOW_CTLR_HALT_COP_EVENTS);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void enable_scu(void)
|
|
|
+static void enable_scu(void)
|
|
|
{
|
|
|
struct scu_ctlr *scu = (struct scu_ctlr *)NV_PA_ARM_PERIPHBASE;
|
|
|
u32 reg;
|
|
@@ -332,7 +99,7 @@ static u32 get_odmdata(void)
|
|
|
return odmdata;
|
|
|
}
|
|
|
|
|
|
-void init_pmc_scratch(void)
|
|
|
+static void init_pmc_scratch(void)
|
|
|
{
|
|
|
struct pmc_ctlr *const pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE;
|
|
|
u32 odmdata;
|
|
@@ -347,27 +114,8 @@ void init_pmc_scratch(void)
|
|
|
writel(odmdata, &pmc->pmc_scratch20);
|
|
|
}
|
|
|
|
|
|
-void tegra20_start(void)
|
|
|
+void s_init(void)
|
|
|
{
|
|
|
- struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE;
|
|
|
-
|
|
|
- /* If we are the AVP, start up the first Cortex-A9 */
|
|
|
- if (!ap20_cpu_is_cortexa9()) {
|
|
|
- /* enable JTAG */
|
|
|
- writel(0xC0, &pmt->pmt_cfg_ctl);
|
|
|
-
|
|
|
- /*
|
|
|
- * If we are ARM7 - give it a different stack. We are about to
|
|
|
- * start up the A9 which will want to use this one.
|
|
|
- */
|
|
|
- asm volatile("mov sp, %0\n"
|
|
|
- : : "r"(AVP_EARLY_BOOT_STACK_LIMIT));
|
|
|
-
|
|
|
- start_cpu((u32)_start);
|
|
|
- halt_avp();
|
|
|
- /* not reached */
|
|
|
- }
|
|
|
-
|
|
|
/* Init PMC scratch memory */
|
|
|
init_pmc_scratch();
|
|
|
|