i915_gem.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. mutex_lock(&dev->struct_mutex);
  116. i915_gem_init_global_gtt(dev, args->gtt_start,
  117. args->gtt_end, args->gtt_end);
  118. mutex_unlock(&dev->struct_mutex);
  119. return 0;
  120. }
  121. int
  122. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. struct drm_i915_gem_get_aperture *args = data;
  127. struct drm_i915_gem_object *obj;
  128. size_t pinned;
  129. if (!(dev->driver->driver_features & DRIVER_GEM))
  130. return -ENODEV;
  131. pinned = 0;
  132. mutex_lock(&dev->struct_mutex);
  133. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  134. pinned += obj->gtt_space->size;
  135. mutex_unlock(&dev->struct_mutex);
  136. args->aper_size = dev_priv->mm.gtt_total;
  137. args->aper_available_size = args->aper_size - pinned;
  138. return 0;
  139. }
  140. static int
  141. i915_gem_create(struct drm_file *file,
  142. struct drm_device *dev,
  143. uint64_t size,
  144. uint32_t *handle_p)
  145. {
  146. struct drm_i915_gem_object *obj;
  147. int ret;
  148. u32 handle;
  149. size = roundup(size, PAGE_SIZE);
  150. if (size == 0)
  151. return -EINVAL;
  152. /* Allocate the new object */
  153. obj = i915_gem_alloc_object(dev, size);
  154. if (obj == NULL)
  155. return -ENOMEM;
  156. ret = drm_gem_handle_create(file, &obj->base, &handle);
  157. if (ret) {
  158. drm_gem_object_release(&obj->base);
  159. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  160. kfree(obj);
  161. return ret;
  162. }
  163. /* drop reference from allocate - handle holds it now */
  164. drm_gem_object_unreference(&obj->base);
  165. trace_i915_gem_object_create(obj);
  166. *handle_p = handle;
  167. return 0;
  168. }
  169. int
  170. i915_gem_dumb_create(struct drm_file *file,
  171. struct drm_device *dev,
  172. struct drm_mode_create_dumb *args)
  173. {
  174. /* have to work out size/pitch and return them */
  175. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  176. args->size = args->pitch * args->height;
  177. return i915_gem_create(file, dev,
  178. args->size, &args->handle);
  179. }
  180. int i915_gem_dumb_destroy(struct drm_file *file,
  181. struct drm_device *dev,
  182. uint32_t handle)
  183. {
  184. return drm_gem_handle_delete(file, handle);
  185. }
  186. /**
  187. * Creates a new mm object and returns a handle to it.
  188. */
  189. int
  190. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  191. struct drm_file *file)
  192. {
  193. struct drm_i915_gem_create *args = data;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  198. {
  199. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  200. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  201. obj->tiling_mode != I915_TILING_NONE;
  202. }
  203. static inline int
  204. __copy_to_user_swizzled(char __user *cpu_vaddr,
  205. const char *gpu_vaddr, int gpu_offset,
  206. int length)
  207. {
  208. int ret, cpu_offset = 0;
  209. while (length > 0) {
  210. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  211. int this_length = min(cacheline_end - gpu_offset, length);
  212. int swizzled_gpu_offset = gpu_offset ^ 64;
  213. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  214. gpu_vaddr + swizzled_gpu_offset,
  215. this_length);
  216. if (ret)
  217. return ret + length;
  218. cpu_offset += this_length;
  219. gpu_offset += this_length;
  220. length -= this_length;
  221. }
  222. return 0;
  223. }
  224. static inline int
  225. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  226. const char *cpu_vaddr,
  227. int length)
  228. {
  229. int ret, cpu_offset = 0;
  230. while (length > 0) {
  231. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  232. int this_length = min(cacheline_end - gpu_offset, length);
  233. int swizzled_gpu_offset = gpu_offset ^ 64;
  234. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  235. cpu_vaddr + cpu_offset,
  236. this_length);
  237. if (ret)
  238. return ret + length;
  239. cpu_offset += this_length;
  240. gpu_offset += this_length;
  241. length -= this_length;
  242. }
  243. return 0;
  244. }
  245. static int
  246. i915_gem_shmem_pread(struct drm_device *dev,
  247. struct drm_i915_gem_object *obj,
  248. struct drm_i915_gem_pread *args,
  249. struct drm_file *file)
  250. {
  251. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  252. char __user *user_data;
  253. ssize_t remain;
  254. loff_t offset;
  255. int shmem_page_offset, page_length, ret = 0;
  256. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  257. int hit_slowpath = 0;
  258. int prefaulted = 0;
  259. int needs_clflush = 0;
  260. int release_page;
  261. user_data = (char __user *) (uintptr_t) args->data_ptr;
  262. remain = args->size;
  263. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  264. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  265. /* If we're not in the cpu read domain, set ourself into the gtt
  266. * read domain and manually flush cachelines (if required). This
  267. * optimizes for the case when the gpu will dirty the data
  268. * anyway again before the next pread happens. */
  269. if (obj->cache_level == I915_CACHE_NONE)
  270. needs_clflush = 1;
  271. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  272. if (ret)
  273. return ret;
  274. }
  275. offset = args->offset;
  276. while (remain > 0) {
  277. struct page *page;
  278. char *vaddr;
  279. /* Operation in this page
  280. *
  281. * shmem_page_offset = offset within page in shmem file
  282. * page_length = bytes to copy for this page
  283. */
  284. shmem_page_offset = offset_in_page(offset);
  285. page_length = remain;
  286. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  287. page_length = PAGE_SIZE - shmem_page_offset;
  288. if (obj->pages) {
  289. page = obj->pages[offset >> PAGE_SHIFT];
  290. release_page = 0;
  291. } else {
  292. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  293. if (IS_ERR(page)) {
  294. ret = PTR_ERR(page);
  295. goto out;
  296. }
  297. release_page = 1;
  298. }
  299. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  300. (page_to_phys(page) & (1 << 17)) != 0;
  301. if (!page_do_bit17_swizzling) {
  302. vaddr = kmap_atomic(page);
  303. if (needs_clflush)
  304. drm_clflush_virt_range(vaddr + shmem_page_offset,
  305. page_length);
  306. ret = __copy_to_user_inatomic(user_data,
  307. vaddr + shmem_page_offset,
  308. page_length);
  309. kunmap_atomic(vaddr);
  310. if (ret == 0)
  311. goto next_page;
  312. }
  313. hit_slowpath = 1;
  314. page_cache_get(page);
  315. mutex_unlock(&dev->struct_mutex);
  316. if (!prefaulted) {
  317. ret = fault_in_pages_writeable(user_data, remain);
  318. /* Userspace is tricking us, but we've already clobbered
  319. * its pages with the prefault and promised to write the
  320. * data up to the first fault. Hence ignore any errors
  321. * and just continue. */
  322. (void)ret;
  323. prefaulted = 1;
  324. }
  325. vaddr = kmap(page);
  326. if (needs_clflush)
  327. drm_clflush_virt_range(vaddr + shmem_page_offset,
  328. page_length);
  329. if (page_do_bit17_swizzling)
  330. ret = __copy_to_user_swizzled(user_data,
  331. vaddr, shmem_page_offset,
  332. page_length);
  333. else
  334. ret = __copy_to_user(user_data,
  335. vaddr + shmem_page_offset,
  336. page_length);
  337. kunmap(page);
  338. mutex_lock(&dev->struct_mutex);
  339. page_cache_release(page);
  340. next_page:
  341. mark_page_accessed(page);
  342. if (release_page)
  343. page_cache_release(page);
  344. if (ret) {
  345. ret = -EFAULT;
  346. goto out;
  347. }
  348. remain -= page_length;
  349. user_data += page_length;
  350. offset += page_length;
  351. }
  352. out:
  353. if (hit_slowpath) {
  354. /* Fixup: Kill any reinstated backing storage pages */
  355. if (obj->madv == __I915_MADV_PURGED)
  356. i915_gem_object_truncate(obj);
  357. }
  358. return ret;
  359. }
  360. /**
  361. * Reads data from the object referenced by handle.
  362. *
  363. * On error, the contents of *data are undefined.
  364. */
  365. int
  366. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  367. struct drm_file *file)
  368. {
  369. struct drm_i915_gem_pread *args = data;
  370. struct drm_i915_gem_object *obj;
  371. int ret = 0;
  372. if (args->size == 0)
  373. return 0;
  374. if (!access_ok(VERIFY_WRITE,
  375. (char __user *)(uintptr_t)args->data_ptr,
  376. args->size))
  377. return -EFAULT;
  378. ret = i915_mutex_lock_interruptible(dev);
  379. if (ret)
  380. return ret;
  381. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  382. if (&obj->base == NULL) {
  383. ret = -ENOENT;
  384. goto unlock;
  385. }
  386. /* Bounds check source. */
  387. if (args->offset > obj->base.size ||
  388. args->size > obj->base.size - args->offset) {
  389. ret = -EINVAL;
  390. goto out;
  391. }
  392. trace_i915_gem_object_pread(obj, args->offset, args->size);
  393. ret = i915_gem_shmem_pread(dev, obj, args, file);
  394. out:
  395. drm_gem_object_unreference(&obj->base);
  396. unlock:
  397. mutex_unlock(&dev->struct_mutex);
  398. return ret;
  399. }
  400. /* This is the fast write path which cannot handle
  401. * page faults in the source data
  402. */
  403. static inline int
  404. fast_user_write(struct io_mapping *mapping,
  405. loff_t page_base, int page_offset,
  406. char __user *user_data,
  407. int length)
  408. {
  409. char *vaddr_atomic;
  410. unsigned long unwritten;
  411. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  412. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  413. user_data, length);
  414. io_mapping_unmap_atomic(vaddr_atomic);
  415. return unwritten;
  416. }
  417. /**
  418. * This is the fast pwrite path, where we copy the data directly from the
  419. * user into the GTT, uncached.
  420. */
  421. static int
  422. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  423. struct drm_i915_gem_object *obj,
  424. struct drm_i915_gem_pwrite *args,
  425. struct drm_file *file)
  426. {
  427. drm_i915_private_t *dev_priv = dev->dev_private;
  428. ssize_t remain;
  429. loff_t offset, page_base;
  430. char __user *user_data;
  431. int page_offset, page_length, ret;
  432. ret = i915_gem_object_pin(obj, 0, true);
  433. if (ret)
  434. goto out;
  435. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  436. if (ret)
  437. goto out_unpin;
  438. ret = i915_gem_object_put_fence(obj);
  439. if (ret)
  440. goto out_unpin;
  441. user_data = (char __user *) (uintptr_t) args->data_ptr;
  442. remain = args->size;
  443. offset = obj->gtt_offset + args->offset;
  444. while (remain > 0) {
  445. /* Operation in this page
  446. *
  447. * page_base = page offset within aperture
  448. * page_offset = offset within page
  449. * page_length = bytes to copy for this page
  450. */
  451. page_base = offset & PAGE_MASK;
  452. page_offset = offset_in_page(offset);
  453. page_length = remain;
  454. if ((page_offset + remain) > PAGE_SIZE)
  455. page_length = PAGE_SIZE - page_offset;
  456. /* If we get a fault while copying data, then (presumably) our
  457. * source page isn't available. Return the error and we'll
  458. * retry in the slow path.
  459. */
  460. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  461. page_offset, user_data, page_length)) {
  462. ret = -EFAULT;
  463. goto out_unpin;
  464. }
  465. remain -= page_length;
  466. user_data += page_length;
  467. offset += page_length;
  468. }
  469. out_unpin:
  470. i915_gem_object_unpin(obj);
  471. out:
  472. return ret;
  473. }
  474. static int
  475. i915_gem_shmem_pwrite(struct drm_device *dev,
  476. struct drm_i915_gem_object *obj,
  477. struct drm_i915_gem_pwrite *args,
  478. struct drm_file *file)
  479. {
  480. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  481. ssize_t remain;
  482. loff_t offset;
  483. char __user *user_data;
  484. int shmem_page_offset, page_length, ret = 0;
  485. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  486. int hit_slowpath = 0;
  487. int needs_clflush_after = 0;
  488. int needs_clflush_before = 0;
  489. int release_page;
  490. user_data = (char __user *) (uintptr_t) args->data_ptr;
  491. remain = args->size;
  492. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  493. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  494. /* If we're not in the cpu write domain, set ourself into the gtt
  495. * write domain and manually flush cachelines (if required). This
  496. * optimizes for the case when the gpu will use the data
  497. * right away and we therefore have to clflush anyway. */
  498. if (obj->cache_level == I915_CACHE_NONE)
  499. needs_clflush_after = 1;
  500. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  501. if (ret)
  502. return ret;
  503. }
  504. /* Same trick applies for invalidate partially written cachelines before
  505. * writing. */
  506. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  507. && obj->cache_level == I915_CACHE_NONE)
  508. needs_clflush_before = 1;
  509. offset = args->offset;
  510. obj->dirty = 1;
  511. while (remain > 0) {
  512. struct page *page;
  513. char *vaddr;
  514. int partial_cacheline_write;
  515. /* Operation in this page
  516. *
  517. * shmem_page_offset = offset within page in shmem file
  518. * page_length = bytes to copy for this page
  519. */
  520. shmem_page_offset = offset_in_page(offset);
  521. page_length = remain;
  522. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  523. page_length = PAGE_SIZE - shmem_page_offset;
  524. /* If we don't overwrite a cacheline completely we need to be
  525. * careful to have up-to-date data by first clflushing. Don't
  526. * overcomplicate things and flush the entire patch. */
  527. partial_cacheline_write = needs_clflush_before &&
  528. ((shmem_page_offset | page_length)
  529. & (boot_cpu_data.x86_clflush_size - 1));
  530. if (obj->pages) {
  531. page = obj->pages[offset >> PAGE_SHIFT];
  532. release_page = 0;
  533. } else {
  534. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  535. if (IS_ERR(page)) {
  536. ret = PTR_ERR(page);
  537. goto out;
  538. }
  539. release_page = 1;
  540. }
  541. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  542. (page_to_phys(page) & (1 << 17)) != 0;
  543. if (!page_do_bit17_swizzling) {
  544. vaddr = kmap_atomic(page);
  545. if (partial_cacheline_write)
  546. drm_clflush_virt_range(vaddr + shmem_page_offset,
  547. page_length);
  548. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  549. user_data,
  550. page_length);
  551. if (needs_clflush_after)
  552. drm_clflush_virt_range(vaddr + shmem_page_offset,
  553. page_length);
  554. kunmap_atomic(vaddr);
  555. if (ret == 0)
  556. goto next_page;
  557. }
  558. hit_slowpath = 1;
  559. page_cache_get(page);
  560. mutex_unlock(&dev->struct_mutex);
  561. vaddr = kmap(page);
  562. if (partial_cacheline_write)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. if (page_do_bit17_swizzling)
  566. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  567. user_data,
  568. page_length);
  569. else
  570. ret = __copy_from_user(vaddr + shmem_page_offset,
  571. user_data,
  572. page_length);
  573. if (needs_clflush_after)
  574. drm_clflush_virt_range(vaddr + shmem_page_offset,
  575. page_length);
  576. kunmap(page);
  577. mutex_lock(&dev->struct_mutex);
  578. page_cache_release(page);
  579. next_page:
  580. set_page_dirty(page);
  581. mark_page_accessed(page);
  582. if (release_page)
  583. page_cache_release(page);
  584. if (ret) {
  585. ret = -EFAULT;
  586. goto out;
  587. }
  588. remain -= page_length;
  589. user_data += page_length;
  590. offset += page_length;
  591. }
  592. out:
  593. if (hit_slowpath) {
  594. /* Fixup: Kill any reinstated backing storage pages */
  595. if (obj->madv == __I915_MADV_PURGED)
  596. i915_gem_object_truncate(obj);
  597. /* and flush dirty cachelines in case the object isn't in the cpu write
  598. * domain anymore. */
  599. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  600. i915_gem_clflush_object(obj);
  601. intel_gtt_chipset_flush();
  602. }
  603. }
  604. if (needs_clflush_after)
  605. intel_gtt_chipset_flush();
  606. return ret;
  607. }
  608. /**
  609. * Writes data to the object referenced by handle.
  610. *
  611. * On error, the contents of the buffer that were to be modified are undefined.
  612. */
  613. int
  614. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  615. struct drm_file *file)
  616. {
  617. struct drm_i915_gem_pwrite *args = data;
  618. struct drm_i915_gem_object *obj;
  619. int ret;
  620. if (args->size == 0)
  621. return 0;
  622. if (!access_ok(VERIFY_READ,
  623. (char __user *)(uintptr_t)args->data_ptr,
  624. args->size))
  625. return -EFAULT;
  626. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  627. args->size);
  628. if (ret)
  629. return -EFAULT;
  630. ret = i915_mutex_lock_interruptible(dev);
  631. if (ret)
  632. return ret;
  633. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  634. if (&obj->base == NULL) {
  635. ret = -ENOENT;
  636. goto unlock;
  637. }
  638. /* Bounds check destination. */
  639. if (args->offset > obj->base.size ||
  640. args->size > obj->base.size - args->offset) {
  641. ret = -EINVAL;
  642. goto out;
  643. }
  644. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  645. ret = -EFAULT;
  646. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  647. * it would end up going through the fenced access, and we'll get
  648. * different detiling behavior between reading and writing.
  649. * pread/pwrite currently are reading and writing from the CPU
  650. * perspective, requiring manual detiling by the client.
  651. */
  652. if (obj->phys_obj) {
  653. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  654. goto out;
  655. }
  656. if (obj->gtt_space &&
  657. obj->cache_level == I915_CACHE_NONE &&
  658. obj->map_and_fenceable &&
  659. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  660. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  661. /* Note that the gtt paths might fail with non-page-backed user
  662. * pointers (e.g. gtt mappings when moving data between
  663. * textures). Fallback to the shmem path in that case. */
  664. }
  665. if (ret == -EFAULT)
  666. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  667. out:
  668. drm_gem_object_unreference(&obj->base);
  669. unlock:
  670. mutex_unlock(&dev->struct_mutex);
  671. return ret;
  672. }
  673. /**
  674. * Called when user space prepares to use an object with the CPU, either
  675. * through the mmap ioctl's mapping or a GTT mapping.
  676. */
  677. int
  678. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  679. struct drm_file *file)
  680. {
  681. struct drm_i915_gem_set_domain *args = data;
  682. struct drm_i915_gem_object *obj;
  683. uint32_t read_domains = args->read_domains;
  684. uint32_t write_domain = args->write_domain;
  685. int ret;
  686. if (!(dev->driver->driver_features & DRIVER_GEM))
  687. return -ENODEV;
  688. /* Only handle setting domains to types used by the CPU. */
  689. if (write_domain & I915_GEM_GPU_DOMAINS)
  690. return -EINVAL;
  691. if (read_domains & I915_GEM_GPU_DOMAINS)
  692. return -EINVAL;
  693. /* Having something in the write domain implies it's in the read
  694. * domain, and only that read domain. Enforce that in the request.
  695. */
  696. if (write_domain != 0 && read_domains != write_domain)
  697. return -EINVAL;
  698. ret = i915_mutex_lock_interruptible(dev);
  699. if (ret)
  700. return ret;
  701. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  702. if (&obj->base == NULL) {
  703. ret = -ENOENT;
  704. goto unlock;
  705. }
  706. if (read_domains & I915_GEM_DOMAIN_GTT) {
  707. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  708. /* Silently promote "you're not bound, there was nothing to do"
  709. * to success, since the client was just asking us to
  710. * make sure everything was done.
  711. */
  712. if (ret == -EINVAL)
  713. ret = 0;
  714. } else {
  715. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  716. }
  717. drm_gem_object_unreference(&obj->base);
  718. unlock:
  719. mutex_unlock(&dev->struct_mutex);
  720. return ret;
  721. }
  722. /**
  723. * Called when user space has done writes to this buffer
  724. */
  725. int
  726. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  727. struct drm_file *file)
  728. {
  729. struct drm_i915_gem_sw_finish *args = data;
  730. struct drm_i915_gem_object *obj;
  731. int ret = 0;
  732. if (!(dev->driver->driver_features & DRIVER_GEM))
  733. return -ENODEV;
  734. ret = i915_mutex_lock_interruptible(dev);
  735. if (ret)
  736. return ret;
  737. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  738. if (&obj->base == NULL) {
  739. ret = -ENOENT;
  740. goto unlock;
  741. }
  742. /* Pinned buffers may be scanout, so flush the cache */
  743. if (obj->pin_count)
  744. i915_gem_object_flush_cpu_write_domain(obj);
  745. drm_gem_object_unreference(&obj->base);
  746. unlock:
  747. mutex_unlock(&dev->struct_mutex);
  748. return ret;
  749. }
  750. /**
  751. * Maps the contents of an object, returning the address it is mapped
  752. * into.
  753. *
  754. * While the mapping holds a reference on the contents of the object, it doesn't
  755. * imply a ref on the object itself.
  756. */
  757. int
  758. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  759. struct drm_file *file)
  760. {
  761. struct drm_i915_gem_mmap *args = data;
  762. struct drm_gem_object *obj;
  763. unsigned long addr;
  764. if (!(dev->driver->driver_features & DRIVER_GEM))
  765. return -ENODEV;
  766. obj = drm_gem_object_lookup(dev, file, args->handle);
  767. if (obj == NULL)
  768. return -ENOENT;
  769. down_write(&current->mm->mmap_sem);
  770. addr = do_mmap(obj->filp, 0, args->size,
  771. PROT_READ | PROT_WRITE, MAP_SHARED,
  772. args->offset);
  773. up_write(&current->mm->mmap_sem);
  774. drm_gem_object_unreference_unlocked(obj);
  775. if (IS_ERR((void *)addr))
  776. return addr;
  777. args->addr_ptr = (uint64_t) addr;
  778. return 0;
  779. }
  780. /**
  781. * i915_gem_fault - fault a page into the GTT
  782. * vma: VMA in question
  783. * vmf: fault info
  784. *
  785. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  786. * from userspace. The fault handler takes care of binding the object to
  787. * the GTT (if needed), allocating and programming a fence register (again,
  788. * only if needed based on whether the old reg is still valid or the object
  789. * is tiled) and inserting a new PTE into the faulting process.
  790. *
  791. * Note that the faulting process may involve evicting existing objects
  792. * from the GTT and/or fence registers to make room. So performance may
  793. * suffer if the GTT working set is large or there are few fence registers
  794. * left.
  795. */
  796. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  797. {
  798. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  799. struct drm_device *dev = obj->base.dev;
  800. drm_i915_private_t *dev_priv = dev->dev_private;
  801. pgoff_t page_offset;
  802. unsigned long pfn;
  803. int ret = 0;
  804. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  805. /* We don't use vmf->pgoff since that has the fake offset */
  806. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  807. PAGE_SHIFT;
  808. ret = i915_mutex_lock_interruptible(dev);
  809. if (ret)
  810. goto out;
  811. trace_i915_gem_object_fault(obj, page_offset, true, write);
  812. /* Now bind it into the GTT if needed */
  813. if (!obj->map_and_fenceable) {
  814. ret = i915_gem_object_unbind(obj);
  815. if (ret)
  816. goto unlock;
  817. }
  818. if (!obj->gtt_space) {
  819. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  820. if (ret)
  821. goto unlock;
  822. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  823. if (ret)
  824. goto unlock;
  825. }
  826. if (!obj->has_global_gtt_mapping)
  827. i915_gem_gtt_bind_object(obj, obj->cache_level);
  828. if (obj->tiling_mode == I915_TILING_NONE)
  829. ret = i915_gem_object_put_fence(obj);
  830. else
  831. ret = i915_gem_object_get_fence(obj, NULL);
  832. if (ret)
  833. goto unlock;
  834. if (i915_gem_object_is_inactive(obj))
  835. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  836. obj->fault_mappable = true;
  837. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  838. page_offset;
  839. /* Finally, remap it using the new GTT offset */
  840. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  841. unlock:
  842. mutex_unlock(&dev->struct_mutex);
  843. out:
  844. switch (ret) {
  845. case -EIO:
  846. case -EAGAIN:
  847. /* Give the error handler a chance to run and move the
  848. * objects off the GPU active list. Next time we service the
  849. * fault, we should be able to transition the page into the
  850. * GTT without touching the GPU (and so avoid further
  851. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  852. * with coherency, just lost writes.
  853. */
  854. set_need_resched();
  855. case 0:
  856. case -ERESTARTSYS:
  857. case -EINTR:
  858. return VM_FAULT_NOPAGE;
  859. case -ENOMEM:
  860. return VM_FAULT_OOM;
  861. default:
  862. return VM_FAULT_SIGBUS;
  863. }
  864. }
  865. /**
  866. * i915_gem_release_mmap - remove physical page mappings
  867. * @obj: obj in question
  868. *
  869. * Preserve the reservation of the mmapping with the DRM core code, but
  870. * relinquish ownership of the pages back to the system.
  871. *
  872. * It is vital that we remove the page mapping if we have mapped a tiled
  873. * object through the GTT and then lose the fence register due to
  874. * resource pressure. Similarly if the object has been moved out of the
  875. * aperture, than pages mapped into userspace must be revoked. Removing the
  876. * mapping will then trigger a page fault on the next user access, allowing
  877. * fixup by i915_gem_fault().
  878. */
  879. void
  880. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  881. {
  882. if (!obj->fault_mappable)
  883. return;
  884. if (obj->base.dev->dev_mapping)
  885. unmap_mapping_range(obj->base.dev->dev_mapping,
  886. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  887. obj->base.size, 1);
  888. obj->fault_mappable = false;
  889. }
  890. static uint32_t
  891. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  892. {
  893. uint32_t gtt_size;
  894. if (INTEL_INFO(dev)->gen >= 4 ||
  895. tiling_mode == I915_TILING_NONE)
  896. return size;
  897. /* Previous chips need a power-of-two fence region when tiling */
  898. if (INTEL_INFO(dev)->gen == 3)
  899. gtt_size = 1024*1024;
  900. else
  901. gtt_size = 512*1024;
  902. while (gtt_size < size)
  903. gtt_size <<= 1;
  904. return gtt_size;
  905. }
  906. /**
  907. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  908. * @obj: object to check
  909. *
  910. * Return the required GTT alignment for an object, taking into account
  911. * potential fence register mapping.
  912. */
  913. static uint32_t
  914. i915_gem_get_gtt_alignment(struct drm_device *dev,
  915. uint32_t size,
  916. int tiling_mode)
  917. {
  918. /*
  919. * Minimum alignment is 4k (GTT page size), but might be greater
  920. * if a fence register is needed for the object.
  921. */
  922. if (INTEL_INFO(dev)->gen >= 4 ||
  923. tiling_mode == I915_TILING_NONE)
  924. return 4096;
  925. /*
  926. * Previous chips need to be aligned to the size of the smallest
  927. * fence register that can contain the object.
  928. */
  929. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  930. }
  931. /**
  932. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  933. * unfenced object
  934. * @dev: the device
  935. * @size: size of the object
  936. * @tiling_mode: tiling mode of the object
  937. *
  938. * Return the required GTT alignment for an object, only taking into account
  939. * unfenced tiled surface requirements.
  940. */
  941. uint32_t
  942. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  943. uint32_t size,
  944. int tiling_mode)
  945. {
  946. /*
  947. * Minimum alignment is 4k (GTT page size) for sane hw.
  948. */
  949. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  950. tiling_mode == I915_TILING_NONE)
  951. return 4096;
  952. /* Previous hardware however needs to be aligned to a power-of-two
  953. * tile height. The simplest method for determining this is to reuse
  954. * the power-of-tile object size.
  955. */
  956. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  957. }
  958. int
  959. i915_gem_mmap_gtt(struct drm_file *file,
  960. struct drm_device *dev,
  961. uint32_t handle,
  962. uint64_t *offset)
  963. {
  964. struct drm_i915_private *dev_priv = dev->dev_private;
  965. struct drm_i915_gem_object *obj;
  966. int ret;
  967. if (!(dev->driver->driver_features & DRIVER_GEM))
  968. return -ENODEV;
  969. ret = i915_mutex_lock_interruptible(dev);
  970. if (ret)
  971. return ret;
  972. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  973. if (&obj->base == NULL) {
  974. ret = -ENOENT;
  975. goto unlock;
  976. }
  977. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  978. ret = -E2BIG;
  979. goto out;
  980. }
  981. if (obj->madv != I915_MADV_WILLNEED) {
  982. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  983. ret = -EINVAL;
  984. goto out;
  985. }
  986. if (!obj->base.map_list.map) {
  987. ret = drm_gem_create_mmap_offset(&obj->base);
  988. if (ret)
  989. goto out;
  990. }
  991. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  992. out:
  993. drm_gem_object_unreference(&obj->base);
  994. unlock:
  995. mutex_unlock(&dev->struct_mutex);
  996. return ret;
  997. }
  998. /**
  999. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1000. * @dev: DRM device
  1001. * @data: GTT mapping ioctl data
  1002. * @file: GEM object info
  1003. *
  1004. * Simply returns the fake offset to userspace so it can mmap it.
  1005. * The mmap call will end up in drm_gem_mmap(), which will set things
  1006. * up so we can get faults in the handler above.
  1007. *
  1008. * The fault handler will take care of binding the object into the GTT
  1009. * (since it may have been evicted to make room for something), allocating
  1010. * a fence register, and mapping the appropriate aperture address into
  1011. * userspace.
  1012. */
  1013. int
  1014. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1015. struct drm_file *file)
  1016. {
  1017. struct drm_i915_gem_mmap_gtt *args = data;
  1018. if (!(dev->driver->driver_features & DRIVER_GEM))
  1019. return -ENODEV;
  1020. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1021. }
  1022. static int
  1023. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1024. gfp_t gfpmask)
  1025. {
  1026. int page_count, i;
  1027. struct address_space *mapping;
  1028. struct inode *inode;
  1029. struct page *page;
  1030. /* Get the list of pages out of our struct file. They'll be pinned
  1031. * at this point until we release them.
  1032. */
  1033. page_count = obj->base.size / PAGE_SIZE;
  1034. BUG_ON(obj->pages != NULL);
  1035. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1036. if (obj->pages == NULL)
  1037. return -ENOMEM;
  1038. inode = obj->base.filp->f_path.dentry->d_inode;
  1039. mapping = inode->i_mapping;
  1040. gfpmask |= mapping_gfp_mask(mapping);
  1041. for (i = 0; i < page_count; i++) {
  1042. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1043. if (IS_ERR(page))
  1044. goto err_pages;
  1045. obj->pages[i] = page;
  1046. }
  1047. if (i915_gem_object_needs_bit17_swizzle(obj))
  1048. i915_gem_object_do_bit_17_swizzle(obj);
  1049. return 0;
  1050. err_pages:
  1051. while (i--)
  1052. page_cache_release(obj->pages[i]);
  1053. drm_free_large(obj->pages);
  1054. obj->pages = NULL;
  1055. return PTR_ERR(page);
  1056. }
  1057. static void
  1058. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1059. {
  1060. int page_count = obj->base.size / PAGE_SIZE;
  1061. int i;
  1062. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1063. if (i915_gem_object_needs_bit17_swizzle(obj))
  1064. i915_gem_object_save_bit_17_swizzle(obj);
  1065. if (obj->madv == I915_MADV_DONTNEED)
  1066. obj->dirty = 0;
  1067. for (i = 0; i < page_count; i++) {
  1068. if (obj->dirty)
  1069. set_page_dirty(obj->pages[i]);
  1070. if (obj->madv == I915_MADV_WILLNEED)
  1071. mark_page_accessed(obj->pages[i]);
  1072. page_cache_release(obj->pages[i]);
  1073. }
  1074. obj->dirty = 0;
  1075. drm_free_large(obj->pages);
  1076. obj->pages = NULL;
  1077. }
  1078. void
  1079. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1080. struct intel_ring_buffer *ring,
  1081. u32 seqno)
  1082. {
  1083. struct drm_device *dev = obj->base.dev;
  1084. struct drm_i915_private *dev_priv = dev->dev_private;
  1085. BUG_ON(ring == NULL);
  1086. obj->ring = ring;
  1087. /* Add a reference if we're newly entering the active list. */
  1088. if (!obj->active) {
  1089. drm_gem_object_reference(&obj->base);
  1090. obj->active = 1;
  1091. }
  1092. /* Move from whatever list we were on to the tail of execution. */
  1093. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1094. list_move_tail(&obj->ring_list, &ring->active_list);
  1095. obj->last_rendering_seqno = seqno;
  1096. if (obj->fenced_gpu_access) {
  1097. struct drm_i915_fence_reg *reg;
  1098. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1099. obj->last_fenced_seqno = seqno;
  1100. obj->last_fenced_ring = ring;
  1101. reg = &dev_priv->fence_regs[obj->fence_reg];
  1102. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1103. }
  1104. }
  1105. static void
  1106. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1107. {
  1108. list_del_init(&obj->ring_list);
  1109. obj->last_rendering_seqno = 0;
  1110. }
  1111. static void
  1112. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1113. {
  1114. struct drm_device *dev = obj->base.dev;
  1115. drm_i915_private_t *dev_priv = dev->dev_private;
  1116. BUG_ON(!obj->active);
  1117. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1118. i915_gem_object_move_off_active(obj);
  1119. }
  1120. static void
  1121. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1122. {
  1123. struct drm_device *dev = obj->base.dev;
  1124. struct drm_i915_private *dev_priv = dev->dev_private;
  1125. if (obj->pin_count != 0)
  1126. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1127. else
  1128. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1129. BUG_ON(!list_empty(&obj->gpu_write_list));
  1130. BUG_ON(!obj->active);
  1131. obj->ring = NULL;
  1132. i915_gem_object_move_off_active(obj);
  1133. obj->fenced_gpu_access = false;
  1134. obj->active = 0;
  1135. obj->pending_gpu_write = false;
  1136. drm_gem_object_unreference(&obj->base);
  1137. WARN_ON(i915_verify_lists(dev));
  1138. }
  1139. /* Immediately discard the backing storage */
  1140. static void
  1141. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1142. {
  1143. struct inode *inode;
  1144. /* Our goal here is to return as much of the memory as
  1145. * is possible back to the system as we are called from OOM.
  1146. * To do this we must instruct the shmfs to drop all of its
  1147. * backing pages, *now*.
  1148. */
  1149. inode = obj->base.filp->f_path.dentry->d_inode;
  1150. shmem_truncate_range(inode, 0, (loff_t)-1);
  1151. if (obj->base.map_list.map)
  1152. drm_gem_free_mmap_offset(&obj->base);
  1153. obj->madv = __I915_MADV_PURGED;
  1154. }
  1155. static inline int
  1156. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1157. {
  1158. return obj->madv == I915_MADV_DONTNEED;
  1159. }
  1160. static void
  1161. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1162. uint32_t flush_domains)
  1163. {
  1164. struct drm_i915_gem_object *obj, *next;
  1165. list_for_each_entry_safe(obj, next,
  1166. &ring->gpu_write_list,
  1167. gpu_write_list) {
  1168. if (obj->base.write_domain & flush_domains) {
  1169. uint32_t old_write_domain = obj->base.write_domain;
  1170. obj->base.write_domain = 0;
  1171. list_del_init(&obj->gpu_write_list);
  1172. i915_gem_object_move_to_active(obj, ring,
  1173. i915_gem_next_request_seqno(ring));
  1174. trace_i915_gem_object_change_domain(obj,
  1175. obj->base.read_domains,
  1176. old_write_domain);
  1177. }
  1178. }
  1179. }
  1180. static u32
  1181. i915_gem_get_seqno(struct drm_device *dev)
  1182. {
  1183. drm_i915_private_t *dev_priv = dev->dev_private;
  1184. u32 seqno = dev_priv->next_seqno;
  1185. /* reserve 0 for non-seqno */
  1186. if (++dev_priv->next_seqno == 0)
  1187. dev_priv->next_seqno = 1;
  1188. return seqno;
  1189. }
  1190. u32
  1191. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1192. {
  1193. if (ring->outstanding_lazy_request == 0)
  1194. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1195. return ring->outstanding_lazy_request;
  1196. }
  1197. int
  1198. i915_add_request(struct intel_ring_buffer *ring,
  1199. struct drm_file *file,
  1200. struct drm_i915_gem_request *request)
  1201. {
  1202. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1203. uint32_t seqno;
  1204. u32 request_ring_position;
  1205. int was_empty;
  1206. int ret;
  1207. BUG_ON(request == NULL);
  1208. seqno = i915_gem_next_request_seqno(ring);
  1209. /* Record the position of the start of the request so that
  1210. * should we detect the updated seqno part-way through the
  1211. * GPU processing the request, we never over-estimate the
  1212. * position of the head.
  1213. */
  1214. request_ring_position = intel_ring_get_tail(ring);
  1215. ret = ring->add_request(ring, &seqno);
  1216. if (ret)
  1217. return ret;
  1218. trace_i915_gem_request_add(ring, seqno);
  1219. request->seqno = seqno;
  1220. request->ring = ring;
  1221. request->tail = request_ring_position;
  1222. request->emitted_jiffies = jiffies;
  1223. was_empty = list_empty(&ring->request_list);
  1224. list_add_tail(&request->list, &ring->request_list);
  1225. if (file) {
  1226. struct drm_i915_file_private *file_priv = file->driver_priv;
  1227. spin_lock(&file_priv->mm.lock);
  1228. request->file_priv = file_priv;
  1229. list_add_tail(&request->client_list,
  1230. &file_priv->mm.request_list);
  1231. spin_unlock(&file_priv->mm.lock);
  1232. }
  1233. ring->outstanding_lazy_request = 0;
  1234. if (!dev_priv->mm.suspended) {
  1235. if (i915_enable_hangcheck) {
  1236. mod_timer(&dev_priv->hangcheck_timer,
  1237. jiffies +
  1238. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1239. }
  1240. if (was_empty)
  1241. queue_delayed_work(dev_priv->wq,
  1242. &dev_priv->mm.retire_work, HZ);
  1243. }
  1244. return 0;
  1245. }
  1246. static inline void
  1247. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1248. {
  1249. struct drm_i915_file_private *file_priv = request->file_priv;
  1250. if (!file_priv)
  1251. return;
  1252. spin_lock(&file_priv->mm.lock);
  1253. if (request->file_priv) {
  1254. list_del(&request->client_list);
  1255. request->file_priv = NULL;
  1256. }
  1257. spin_unlock(&file_priv->mm.lock);
  1258. }
  1259. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1260. struct intel_ring_buffer *ring)
  1261. {
  1262. while (!list_empty(&ring->request_list)) {
  1263. struct drm_i915_gem_request *request;
  1264. request = list_first_entry(&ring->request_list,
  1265. struct drm_i915_gem_request,
  1266. list);
  1267. list_del(&request->list);
  1268. i915_gem_request_remove_from_client(request);
  1269. kfree(request);
  1270. }
  1271. while (!list_empty(&ring->active_list)) {
  1272. struct drm_i915_gem_object *obj;
  1273. obj = list_first_entry(&ring->active_list,
  1274. struct drm_i915_gem_object,
  1275. ring_list);
  1276. obj->base.write_domain = 0;
  1277. list_del_init(&obj->gpu_write_list);
  1278. i915_gem_object_move_to_inactive(obj);
  1279. }
  1280. }
  1281. static void i915_gem_reset_fences(struct drm_device *dev)
  1282. {
  1283. struct drm_i915_private *dev_priv = dev->dev_private;
  1284. int i;
  1285. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1286. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1287. struct drm_i915_gem_object *obj = reg->obj;
  1288. if (!obj)
  1289. continue;
  1290. if (obj->tiling_mode)
  1291. i915_gem_release_mmap(obj);
  1292. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1293. reg->obj->fenced_gpu_access = false;
  1294. reg->obj->last_fenced_seqno = 0;
  1295. reg->obj->last_fenced_ring = NULL;
  1296. i915_gem_clear_fence_reg(dev, reg);
  1297. }
  1298. }
  1299. void i915_gem_reset(struct drm_device *dev)
  1300. {
  1301. struct drm_i915_private *dev_priv = dev->dev_private;
  1302. struct drm_i915_gem_object *obj;
  1303. int i;
  1304. for (i = 0; i < I915_NUM_RINGS; i++)
  1305. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1306. /* Remove anything from the flushing lists. The GPU cache is likely
  1307. * to be lost on reset along with the data, so simply move the
  1308. * lost bo to the inactive list.
  1309. */
  1310. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1311. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1312. struct drm_i915_gem_object,
  1313. mm_list);
  1314. obj->base.write_domain = 0;
  1315. list_del_init(&obj->gpu_write_list);
  1316. i915_gem_object_move_to_inactive(obj);
  1317. }
  1318. /* Move everything out of the GPU domains to ensure we do any
  1319. * necessary invalidation upon reuse.
  1320. */
  1321. list_for_each_entry(obj,
  1322. &dev_priv->mm.inactive_list,
  1323. mm_list)
  1324. {
  1325. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1326. }
  1327. /* The fence registers are invalidated so clear them out */
  1328. i915_gem_reset_fences(dev);
  1329. }
  1330. /**
  1331. * This function clears the request list as sequence numbers are passed.
  1332. */
  1333. void
  1334. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1335. {
  1336. uint32_t seqno;
  1337. int i;
  1338. if (list_empty(&ring->request_list))
  1339. return;
  1340. WARN_ON(i915_verify_lists(ring->dev));
  1341. seqno = ring->get_seqno(ring);
  1342. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1343. if (seqno >= ring->sync_seqno[i])
  1344. ring->sync_seqno[i] = 0;
  1345. while (!list_empty(&ring->request_list)) {
  1346. struct drm_i915_gem_request *request;
  1347. request = list_first_entry(&ring->request_list,
  1348. struct drm_i915_gem_request,
  1349. list);
  1350. if (!i915_seqno_passed(seqno, request->seqno))
  1351. break;
  1352. trace_i915_gem_request_retire(ring, request->seqno);
  1353. /* We know the GPU must have read the request to have
  1354. * sent us the seqno + interrupt, so use the position
  1355. * of tail of the request to update the last known position
  1356. * of the GPU head.
  1357. */
  1358. ring->last_retired_head = request->tail;
  1359. list_del(&request->list);
  1360. i915_gem_request_remove_from_client(request);
  1361. kfree(request);
  1362. }
  1363. /* Move any buffers on the active list that are no longer referenced
  1364. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1365. */
  1366. while (!list_empty(&ring->active_list)) {
  1367. struct drm_i915_gem_object *obj;
  1368. obj = list_first_entry(&ring->active_list,
  1369. struct drm_i915_gem_object,
  1370. ring_list);
  1371. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1372. break;
  1373. if (obj->base.write_domain != 0)
  1374. i915_gem_object_move_to_flushing(obj);
  1375. else
  1376. i915_gem_object_move_to_inactive(obj);
  1377. }
  1378. if (unlikely(ring->trace_irq_seqno &&
  1379. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1380. ring->irq_put(ring);
  1381. ring->trace_irq_seqno = 0;
  1382. }
  1383. WARN_ON(i915_verify_lists(ring->dev));
  1384. }
  1385. void
  1386. i915_gem_retire_requests(struct drm_device *dev)
  1387. {
  1388. drm_i915_private_t *dev_priv = dev->dev_private;
  1389. int i;
  1390. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1391. struct drm_i915_gem_object *obj, *next;
  1392. /* We must be careful that during unbind() we do not
  1393. * accidentally infinitely recurse into retire requests.
  1394. * Currently:
  1395. * retire -> free -> unbind -> wait -> retire_ring
  1396. */
  1397. list_for_each_entry_safe(obj, next,
  1398. &dev_priv->mm.deferred_free_list,
  1399. mm_list)
  1400. i915_gem_free_object_tail(obj);
  1401. }
  1402. for (i = 0; i < I915_NUM_RINGS; i++)
  1403. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1404. }
  1405. static void
  1406. i915_gem_retire_work_handler(struct work_struct *work)
  1407. {
  1408. drm_i915_private_t *dev_priv;
  1409. struct drm_device *dev;
  1410. bool idle;
  1411. int i;
  1412. dev_priv = container_of(work, drm_i915_private_t,
  1413. mm.retire_work.work);
  1414. dev = dev_priv->dev;
  1415. /* Come back later if the device is busy... */
  1416. if (!mutex_trylock(&dev->struct_mutex)) {
  1417. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1418. return;
  1419. }
  1420. i915_gem_retire_requests(dev);
  1421. /* Send a periodic flush down the ring so we don't hold onto GEM
  1422. * objects indefinitely.
  1423. */
  1424. idle = true;
  1425. for (i = 0; i < I915_NUM_RINGS; i++) {
  1426. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1427. if (!list_empty(&ring->gpu_write_list)) {
  1428. struct drm_i915_gem_request *request;
  1429. int ret;
  1430. ret = i915_gem_flush_ring(ring,
  1431. 0, I915_GEM_GPU_DOMAINS);
  1432. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1433. if (ret || request == NULL ||
  1434. i915_add_request(ring, NULL, request))
  1435. kfree(request);
  1436. }
  1437. idle &= list_empty(&ring->request_list);
  1438. }
  1439. if (!dev_priv->mm.suspended && !idle)
  1440. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1441. mutex_unlock(&dev->struct_mutex);
  1442. }
  1443. /**
  1444. * Waits for a sequence number to be signaled, and cleans up the
  1445. * request and object lists appropriately for that event.
  1446. */
  1447. int
  1448. i915_wait_request(struct intel_ring_buffer *ring,
  1449. uint32_t seqno,
  1450. bool do_retire)
  1451. {
  1452. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1453. u32 ier;
  1454. int ret = 0;
  1455. BUG_ON(seqno == 0);
  1456. if (atomic_read(&dev_priv->mm.wedged)) {
  1457. struct completion *x = &dev_priv->error_completion;
  1458. bool recovery_complete;
  1459. unsigned long flags;
  1460. /* Give the error handler a chance to run. */
  1461. spin_lock_irqsave(&x->wait.lock, flags);
  1462. recovery_complete = x->done > 0;
  1463. spin_unlock_irqrestore(&x->wait.lock, flags);
  1464. return recovery_complete ? -EIO : -EAGAIN;
  1465. }
  1466. if (seqno == ring->outstanding_lazy_request) {
  1467. struct drm_i915_gem_request *request;
  1468. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1469. if (request == NULL)
  1470. return -ENOMEM;
  1471. ret = i915_add_request(ring, NULL, request);
  1472. if (ret) {
  1473. kfree(request);
  1474. return ret;
  1475. }
  1476. seqno = request->seqno;
  1477. }
  1478. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1479. if (HAS_PCH_SPLIT(ring->dev))
  1480. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1481. else
  1482. ier = I915_READ(IER);
  1483. if (!ier) {
  1484. DRM_ERROR("something (likely vbetool) disabled "
  1485. "interrupts, re-enabling\n");
  1486. ring->dev->driver->irq_preinstall(ring->dev);
  1487. ring->dev->driver->irq_postinstall(ring->dev);
  1488. }
  1489. trace_i915_gem_request_wait_begin(ring, seqno);
  1490. ring->waiting_seqno = seqno;
  1491. if (ring->irq_get(ring)) {
  1492. if (dev_priv->mm.interruptible)
  1493. ret = wait_event_interruptible(ring->irq_queue,
  1494. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1495. || atomic_read(&dev_priv->mm.wedged));
  1496. else
  1497. wait_event(ring->irq_queue,
  1498. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1499. || atomic_read(&dev_priv->mm.wedged));
  1500. ring->irq_put(ring);
  1501. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1502. seqno) ||
  1503. atomic_read(&dev_priv->mm.wedged), 3000))
  1504. ret = -EBUSY;
  1505. ring->waiting_seqno = 0;
  1506. trace_i915_gem_request_wait_end(ring, seqno);
  1507. }
  1508. if (atomic_read(&dev_priv->mm.wedged))
  1509. ret = -EAGAIN;
  1510. /* Directly dispatch request retiring. While we have the work queue
  1511. * to handle this, the waiter on a request often wants an associated
  1512. * buffer to have made it to the inactive list, and we would need
  1513. * a separate wait queue to handle that.
  1514. */
  1515. if (ret == 0 && do_retire)
  1516. i915_gem_retire_requests_ring(ring);
  1517. return ret;
  1518. }
  1519. /**
  1520. * Ensures that all rendering to the object has completed and the object is
  1521. * safe to unbind from the GTT or access from the CPU.
  1522. */
  1523. int
  1524. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1525. {
  1526. int ret;
  1527. /* This function only exists to support waiting for existing rendering,
  1528. * not for emitting required flushes.
  1529. */
  1530. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1531. /* If there is rendering queued on the buffer being evicted, wait for
  1532. * it.
  1533. */
  1534. if (obj->active) {
  1535. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1536. true);
  1537. if (ret)
  1538. return ret;
  1539. }
  1540. return 0;
  1541. }
  1542. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1543. {
  1544. u32 old_write_domain, old_read_domains;
  1545. /* Act a barrier for all accesses through the GTT */
  1546. mb();
  1547. /* Force a pagefault for domain tracking on next user access */
  1548. i915_gem_release_mmap(obj);
  1549. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1550. return;
  1551. old_read_domains = obj->base.read_domains;
  1552. old_write_domain = obj->base.write_domain;
  1553. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1554. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1555. trace_i915_gem_object_change_domain(obj,
  1556. old_read_domains,
  1557. old_write_domain);
  1558. }
  1559. /**
  1560. * Unbinds an object from the GTT aperture.
  1561. */
  1562. int
  1563. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1564. {
  1565. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1566. int ret = 0;
  1567. if (obj->gtt_space == NULL)
  1568. return 0;
  1569. if (obj->pin_count != 0) {
  1570. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1571. return -EINVAL;
  1572. }
  1573. ret = i915_gem_object_finish_gpu(obj);
  1574. if (ret == -ERESTARTSYS)
  1575. return ret;
  1576. /* Continue on if we fail due to EIO, the GPU is hung so we
  1577. * should be safe and we need to cleanup or else we might
  1578. * cause memory corruption through use-after-free.
  1579. */
  1580. i915_gem_object_finish_gtt(obj);
  1581. /* Move the object to the CPU domain to ensure that
  1582. * any possible CPU writes while it's not in the GTT
  1583. * are flushed when we go to remap it.
  1584. */
  1585. if (ret == 0)
  1586. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1587. if (ret == -ERESTARTSYS)
  1588. return ret;
  1589. if (ret) {
  1590. /* In the event of a disaster, abandon all caches and
  1591. * hope for the best.
  1592. */
  1593. i915_gem_clflush_object(obj);
  1594. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1595. }
  1596. /* release the fence reg _after_ flushing */
  1597. ret = i915_gem_object_put_fence(obj);
  1598. if (ret == -ERESTARTSYS)
  1599. return ret;
  1600. trace_i915_gem_object_unbind(obj);
  1601. if (obj->has_global_gtt_mapping)
  1602. i915_gem_gtt_unbind_object(obj);
  1603. if (obj->has_aliasing_ppgtt_mapping) {
  1604. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1605. obj->has_aliasing_ppgtt_mapping = 0;
  1606. }
  1607. i915_gem_gtt_finish_object(obj);
  1608. i915_gem_object_put_pages_gtt(obj);
  1609. list_del_init(&obj->gtt_list);
  1610. list_del_init(&obj->mm_list);
  1611. /* Avoid an unnecessary call to unbind on rebind. */
  1612. obj->map_and_fenceable = true;
  1613. drm_mm_put_block(obj->gtt_space);
  1614. obj->gtt_space = NULL;
  1615. obj->gtt_offset = 0;
  1616. if (i915_gem_object_is_purgeable(obj))
  1617. i915_gem_object_truncate(obj);
  1618. return ret;
  1619. }
  1620. int
  1621. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1622. uint32_t invalidate_domains,
  1623. uint32_t flush_domains)
  1624. {
  1625. int ret;
  1626. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1627. return 0;
  1628. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1629. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1630. if (ret)
  1631. return ret;
  1632. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1633. i915_gem_process_flushing_list(ring, flush_domains);
  1634. return 0;
  1635. }
  1636. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1637. {
  1638. int ret;
  1639. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1640. return 0;
  1641. if (!list_empty(&ring->gpu_write_list)) {
  1642. ret = i915_gem_flush_ring(ring,
  1643. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1644. if (ret)
  1645. return ret;
  1646. }
  1647. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1648. do_retire);
  1649. }
  1650. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1651. {
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. int ret, i;
  1654. /* Flush everything onto the inactive list. */
  1655. for (i = 0; i < I915_NUM_RINGS; i++) {
  1656. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1657. if (ret)
  1658. return ret;
  1659. }
  1660. return 0;
  1661. }
  1662. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1663. struct intel_ring_buffer *pipelined)
  1664. {
  1665. struct drm_device *dev = obj->base.dev;
  1666. drm_i915_private_t *dev_priv = dev->dev_private;
  1667. u32 size = obj->gtt_space->size;
  1668. int regnum = obj->fence_reg;
  1669. uint64_t val;
  1670. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1671. 0xfffff000) << 32;
  1672. val |= obj->gtt_offset & 0xfffff000;
  1673. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1674. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1675. if (obj->tiling_mode == I915_TILING_Y)
  1676. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1677. val |= I965_FENCE_REG_VALID;
  1678. if (pipelined) {
  1679. int ret = intel_ring_begin(pipelined, 6);
  1680. if (ret)
  1681. return ret;
  1682. intel_ring_emit(pipelined, MI_NOOP);
  1683. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1684. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1685. intel_ring_emit(pipelined, (u32)val);
  1686. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1687. intel_ring_emit(pipelined, (u32)(val >> 32));
  1688. intel_ring_advance(pipelined);
  1689. } else
  1690. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1691. return 0;
  1692. }
  1693. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1694. struct intel_ring_buffer *pipelined)
  1695. {
  1696. struct drm_device *dev = obj->base.dev;
  1697. drm_i915_private_t *dev_priv = dev->dev_private;
  1698. u32 size = obj->gtt_space->size;
  1699. int regnum = obj->fence_reg;
  1700. uint64_t val;
  1701. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1702. 0xfffff000) << 32;
  1703. val |= obj->gtt_offset & 0xfffff000;
  1704. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1705. if (obj->tiling_mode == I915_TILING_Y)
  1706. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1707. val |= I965_FENCE_REG_VALID;
  1708. if (pipelined) {
  1709. int ret = intel_ring_begin(pipelined, 6);
  1710. if (ret)
  1711. return ret;
  1712. intel_ring_emit(pipelined, MI_NOOP);
  1713. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1714. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1715. intel_ring_emit(pipelined, (u32)val);
  1716. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1717. intel_ring_emit(pipelined, (u32)(val >> 32));
  1718. intel_ring_advance(pipelined);
  1719. } else
  1720. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1721. return 0;
  1722. }
  1723. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1724. struct intel_ring_buffer *pipelined)
  1725. {
  1726. struct drm_device *dev = obj->base.dev;
  1727. drm_i915_private_t *dev_priv = dev->dev_private;
  1728. u32 size = obj->gtt_space->size;
  1729. u32 fence_reg, val, pitch_val;
  1730. int tile_width;
  1731. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1732. (size & -size) != size ||
  1733. (obj->gtt_offset & (size - 1)),
  1734. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1735. obj->gtt_offset, obj->map_and_fenceable, size))
  1736. return -EINVAL;
  1737. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1738. tile_width = 128;
  1739. else
  1740. tile_width = 512;
  1741. /* Note: pitch better be a power of two tile widths */
  1742. pitch_val = obj->stride / tile_width;
  1743. pitch_val = ffs(pitch_val) - 1;
  1744. val = obj->gtt_offset;
  1745. if (obj->tiling_mode == I915_TILING_Y)
  1746. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1747. val |= I915_FENCE_SIZE_BITS(size);
  1748. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1749. val |= I830_FENCE_REG_VALID;
  1750. fence_reg = obj->fence_reg;
  1751. if (fence_reg < 8)
  1752. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1753. else
  1754. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1755. if (pipelined) {
  1756. int ret = intel_ring_begin(pipelined, 4);
  1757. if (ret)
  1758. return ret;
  1759. intel_ring_emit(pipelined, MI_NOOP);
  1760. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1761. intel_ring_emit(pipelined, fence_reg);
  1762. intel_ring_emit(pipelined, val);
  1763. intel_ring_advance(pipelined);
  1764. } else
  1765. I915_WRITE(fence_reg, val);
  1766. return 0;
  1767. }
  1768. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1769. struct intel_ring_buffer *pipelined)
  1770. {
  1771. struct drm_device *dev = obj->base.dev;
  1772. drm_i915_private_t *dev_priv = dev->dev_private;
  1773. u32 size = obj->gtt_space->size;
  1774. int regnum = obj->fence_reg;
  1775. uint32_t val;
  1776. uint32_t pitch_val;
  1777. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1778. (size & -size) != size ||
  1779. (obj->gtt_offset & (size - 1)),
  1780. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1781. obj->gtt_offset, size))
  1782. return -EINVAL;
  1783. pitch_val = obj->stride / 128;
  1784. pitch_val = ffs(pitch_val) - 1;
  1785. val = obj->gtt_offset;
  1786. if (obj->tiling_mode == I915_TILING_Y)
  1787. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1788. val |= I830_FENCE_SIZE_BITS(size);
  1789. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1790. val |= I830_FENCE_REG_VALID;
  1791. if (pipelined) {
  1792. int ret = intel_ring_begin(pipelined, 4);
  1793. if (ret)
  1794. return ret;
  1795. intel_ring_emit(pipelined, MI_NOOP);
  1796. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1797. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1798. intel_ring_emit(pipelined, val);
  1799. intel_ring_advance(pipelined);
  1800. } else
  1801. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1802. return 0;
  1803. }
  1804. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1805. {
  1806. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1807. }
  1808. static int
  1809. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1810. struct intel_ring_buffer *pipelined)
  1811. {
  1812. int ret;
  1813. if (obj->fenced_gpu_access) {
  1814. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1815. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1816. 0, obj->base.write_domain);
  1817. if (ret)
  1818. return ret;
  1819. }
  1820. obj->fenced_gpu_access = false;
  1821. }
  1822. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1823. if (!ring_passed_seqno(obj->last_fenced_ring,
  1824. obj->last_fenced_seqno)) {
  1825. ret = i915_wait_request(obj->last_fenced_ring,
  1826. obj->last_fenced_seqno,
  1827. true);
  1828. if (ret)
  1829. return ret;
  1830. }
  1831. obj->last_fenced_seqno = 0;
  1832. obj->last_fenced_ring = NULL;
  1833. }
  1834. /* Ensure that all CPU reads are completed before installing a fence
  1835. * and all writes before removing the fence.
  1836. */
  1837. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1838. mb();
  1839. return 0;
  1840. }
  1841. int
  1842. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1843. {
  1844. int ret;
  1845. if (obj->tiling_mode)
  1846. i915_gem_release_mmap(obj);
  1847. ret = i915_gem_object_flush_fence(obj, NULL);
  1848. if (ret)
  1849. return ret;
  1850. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1851. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1852. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1853. i915_gem_clear_fence_reg(obj->base.dev,
  1854. &dev_priv->fence_regs[obj->fence_reg]);
  1855. obj->fence_reg = I915_FENCE_REG_NONE;
  1856. }
  1857. return 0;
  1858. }
  1859. static struct drm_i915_fence_reg *
  1860. i915_find_fence_reg(struct drm_device *dev,
  1861. struct intel_ring_buffer *pipelined)
  1862. {
  1863. struct drm_i915_private *dev_priv = dev->dev_private;
  1864. struct drm_i915_fence_reg *reg, *first, *avail;
  1865. int i;
  1866. /* First try to find a free reg */
  1867. avail = NULL;
  1868. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1869. reg = &dev_priv->fence_regs[i];
  1870. if (!reg->obj)
  1871. return reg;
  1872. if (!reg->pin_count)
  1873. avail = reg;
  1874. }
  1875. if (avail == NULL)
  1876. return NULL;
  1877. /* None available, try to steal one or wait for a user to finish */
  1878. avail = first = NULL;
  1879. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1880. if (reg->pin_count)
  1881. continue;
  1882. if (first == NULL)
  1883. first = reg;
  1884. if (!pipelined ||
  1885. !reg->obj->last_fenced_ring ||
  1886. reg->obj->last_fenced_ring == pipelined) {
  1887. avail = reg;
  1888. break;
  1889. }
  1890. }
  1891. if (avail == NULL)
  1892. avail = first;
  1893. return avail;
  1894. }
  1895. /**
  1896. * i915_gem_object_get_fence - set up a fence reg for an object
  1897. * @obj: object to map through a fence reg
  1898. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1899. * @interruptible: must we wait uninterruptibly for the register to retire?
  1900. *
  1901. * When mapping objects through the GTT, userspace wants to be able to write
  1902. * to them without having to worry about swizzling if the object is tiled.
  1903. *
  1904. * This function walks the fence regs looking for a free one for @obj,
  1905. * stealing one if it can't find any.
  1906. *
  1907. * It then sets up the reg based on the object's properties: address, pitch
  1908. * and tiling format.
  1909. */
  1910. int
  1911. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1912. struct intel_ring_buffer *pipelined)
  1913. {
  1914. struct drm_device *dev = obj->base.dev;
  1915. struct drm_i915_private *dev_priv = dev->dev_private;
  1916. struct drm_i915_fence_reg *reg;
  1917. int ret;
  1918. /* XXX disable pipelining. There are bugs. Shocking. */
  1919. pipelined = NULL;
  1920. /* Just update our place in the LRU if our fence is getting reused. */
  1921. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1922. reg = &dev_priv->fence_regs[obj->fence_reg];
  1923. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1924. if (obj->tiling_changed) {
  1925. ret = i915_gem_object_flush_fence(obj, pipelined);
  1926. if (ret)
  1927. return ret;
  1928. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  1929. pipelined = NULL;
  1930. if (pipelined) {
  1931. reg->setup_seqno =
  1932. i915_gem_next_request_seqno(pipelined);
  1933. obj->last_fenced_seqno = reg->setup_seqno;
  1934. obj->last_fenced_ring = pipelined;
  1935. }
  1936. goto update;
  1937. }
  1938. if (!pipelined) {
  1939. if (reg->setup_seqno) {
  1940. if (!ring_passed_seqno(obj->last_fenced_ring,
  1941. reg->setup_seqno)) {
  1942. ret = i915_wait_request(obj->last_fenced_ring,
  1943. reg->setup_seqno,
  1944. true);
  1945. if (ret)
  1946. return ret;
  1947. }
  1948. reg->setup_seqno = 0;
  1949. }
  1950. } else if (obj->last_fenced_ring &&
  1951. obj->last_fenced_ring != pipelined) {
  1952. ret = i915_gem_object_flush_fence(obj, pipelined);
  1953. if (ret)
  1954. return ret;
  1955. }
  1956. return 0;
  1957. }
  1958. reg = i915_find_fence_reg(dev, pipelined);
  1959. if (reg == NULL)
  1960. return -EDEADLK;
  1961. ret = i915_gem_object_flush_fence(obj, pipelined);
  1962. if (ret)
  1963. return ret;
  1964. if (reg->obj) {
  1965. struct drm_i915_gem_object *old = reg->obj;
  1966. drm_gem_object_reference(&old->base);
  1967. if (old->tiling_mode)
  1968. i915_gem_release_mmap(old);
  1969. ret = i915_gem_object_flush_fence(old, pipelined);
  1970. if (ret) {
  1971. drm_gem_object_unreference(&old->base);
  1972. return ret;
  1973. }
  1974. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  1975. pipelined = NULL;
  1976. old->fence_reg = I915_FENCE_REG_NONE;
  1977. old->last_fenced_ring = pipelined;
  1978. old->last_fenced_seqno =
  1979. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  1980. drm_gem_object_unreference(&old->base);
  1981. } else if (obj->last_fenced_seqno == 0)
  1982. pipelined = NULL;
  1983. reg->obj = obj;
  1984. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1985. obj->fence_reg = reg - dev_priv->fence_regs;
  1986. obj->last_fenced_ring = pipelined;
  1987. reg->setup_seqno =
  1988. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  1989. obj->last_fenced_seqno = reg->setup_seqno;
  1990. update:
  1991. obj->tiling_changed = false;
  1992. switch (INTEL_INFO(dev)->gen) {
  1993. case 7:
  1994. case 6:
  1995. ret = sandybridge_write_fence_reg(obj, pipelined);
  1996. break;
  1997. case 5:
  1998. case 4:
  1999. ret = i965_write_fence_reg(obj, pipelined);
  2000. break;
  2001. case 3:
  2002. ret = i915_write_fence_reg(obj, pipelined);
  2003. break;
  2004. case 2:
  2005. ret = i830_write_fence_reg(obj, pipelined);
  2006. break;
  2007. }
  2008. return ret;
  2009. }
  2010. /**
  2011. * i915_gem_clear_fence_reg - clear out fence register info
  2012. * @obj: object to clear
  2013. *
  2014. * Zeroes out the fence register itself and clears out the associated
  2015. * data structures in dev_priv and obj.
  2016. */
  2017. static void
  2018. i915_gem_clear_fence_reg(struct drm_device *dev,
  2019. struct drm_i915_fence_reg *reg)
  2020. {
  2021. drm_i915_private_t *dev_priv = dev->dev_private;
  2022. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2023. switch (INTEL_INFO(dev)->gen) {
  2024. case 7:
  2025. case 6:
  2026. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2027. break;
  2028. case 5:
  2029. case 4:
  2030. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2031. break;
  2032. case 3:
  2033. if (fence_reg >= 8)
  2034. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2035. else
  2036. case 2:
  2037. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2038. I915_WRITE(fence_reg, 0);
  2039. break;
  2040. }
  2041. list_del_init(&reg->lru_list);
  2042. reg->obj = NULL;
  2043. reg->setup_seqno = 0;
  2044. reg->pin_count = 0;
  2045. }
  2046. /**
  2047. * Finds free space in the GTT aperture and binds the object there.
  2048. */
  2049. static int
  2050. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2051. unsigned alignment,
  2052. bool map_and_fenceable)
  2053. {
  2054. struct drm_device *dev = obj->base.dev;
  2055. drm_i915_private_t *dev_priv = dev->dev_private;
  2056. struct drm_mm_node *free_space;
  2057. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2058. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2059. bool mappable, fenceable;
  2060. int ret;
  2061. if (obj->madv != I915_MADV_WILLNEED) {
  2062. DRM_ERROR("Attempting to bind a purgeable object\n");
  2063. return -EINVAL;
  2064. }
  2065. fence_size = i915_gem_get_gtt_size(dev,
  2066. obj->base.size,
  2067. obj->tiling_mode);
  2068. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2069. obj->base.size,
  2070. obj->tiling_mode);
  2071. unfenced_alignment =
  2072. i915_gem_get_unfenced_gtt_alignment(dev,
  2073. obj->base.size,
  2074. obj->tiling_mode);
  2075. if (alignment == 0)
  2076. alignment = map_and_fenceable ? fence_alignment :
  2077. unfenced_alignment;
  2078. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2079. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2080. return -EINVAL;
  2081. }
  2082. size = map_and_fenceable ? fence_size : obj->base.size;
  2083. /* If the object is bigger than the entire aperture, reject it early
  2084. * before evicting everything in a vain attempt to find space.
  2085. */
  2086. if (obj->base.size >
  2087. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2088. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2089. return -E2BIG;
  2090. }
  2091. search_free:
  2092. if (map_and_fenceable)
  2093. free_space =
  2094. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2095. size, alignment, 0,
  2096. dev_priv->mm.gtt_mappable_end,
  2097. 0);
  2098. else
  2099. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2100. size, alignment, 0);
  2101. if (free_space != NULL) {
  2102. if (map_and_fenceable)
  2103. obj->gtt_space =
  2104. drm_mm_get_block_range_generic(free_space,
  2105. size, alignment, 0,
  2106. dev_priv->mm.gtt_mappable_end,
  2107. 0);
  2108. else
  2109. obj->gtt_space =
  2110. drm_mm_get_block(free_space, size, alignment);
  2111. }
  2112. if (obj->gtt_space == NULL) {
  2113. /* If the gtt is empty and we're still having trouble
  2114. * fitting our object in, we're out of memory.
  2115. */
  2116. ret = i915_gem_evict_something(dev, size, alignment,
  2117. map_and_fenceable);
  2118. if (ret)
  2119. return ret;
  2120. goto search_free;
  2121. }
  2122. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2123. if (ret) {
  2124. drm_mm_put_block(obj->gtt_space);
  2125. obj->gtt_space = NULL;
  2126. if (ret == -ENOMEM) {
  2127. /* first try to reclaim some memory by clearing the GTT */
  2128. ret = i915_gem_evict_everything(dev, false);
  2129. if (ret) {
  2130. /* now try to shrink everyone else */
  2131. if (gfpmask) {
  2132. gfpmask = 0;
  2133. goto search_free;
  2134. }
  2135. return -ENOMEM;
  2136. }
  2137. goto search_free;
  2138. }
  2139. return ret;
  2140. }
  2141. ret = i915_gem_gtt_prepare_object(obj);
  2142. if (ret) {
  2143. i915_gem_object_put_pages_gtt(obj);
  2144. drm_mm_put_block(obj->gtt_space);
  2145. obj->gtt_space = NULL;
  2146. if (i915_gem_evict_everything(dev, false))
  2147. return ret;
  2148. goto search_free;
  2149. }
  2150. if (!dev_priv->mm.aliasing_ppgtt)
  2151. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2152. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2153. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2154. /* Assert that the object is not currently in any GPU domain. As it
  2155. * wasn't in the GTT, there shouldn't be any way it could have been in
  2156. * a GPU cache
  2157. */
  2158. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2159. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2160. obj->gtt_offset = obj->gtt_space->start;
  2161. fenceable =
  2162. obj->gtt_space->size == fence_size &&
  2163. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2164. mappable =
  2165. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2166. obj->map_and_fenceable = mappable && fenceable;
  2167. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2168. return 0;
  2169. }
  2170. void
  2171. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2172. {
  2173. /* If we don't have a page list set up, then we're not pinned
  2174. * to GPU, and we can ignore the cache flush because it'll happen
  2175. * again at bind time.
  2176. */
  2177. if (obj->pages == NULL)
  2178. return;
  2179. /* If the GPU is snooping the contents of the CPU cache,
  2180. * we do not need to manually clear the CPU cache lines. However,
  2181. * the caches are only snooped when the render cache is
  2182. * flushed/invalidated. As we always have to emit invalidations
  2183. * and flushes when moving into and out of the RENDER domain, correct
  2184. * snooping behaviour occurs naturally as the result of our domain
  2185. * tracking.
  2186. */
  2187. if (obj->cache_level != I915_CACHE_NONE)
  2188. return;
  2189. trace_i915_gem_object_clflush(obj);
  2190. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2191. }
  2192. /** Flushes any GPU write domain for the object if it's dirty. */
  2193. static int
  2194. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2195. {
  2196. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2197. return 0;
  2198. /* Queue the GPU write cache flushing we need. */
  2199. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2200. }
  2201. /** Flushes the GTT write domain for the object if it's dirty. */
  2202. static void
  2203. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2204. {
  2205. uint32_t old_write_domain;
  2206. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2207. return;
  2208. /* No actual flushing is required for the GTT write domain. Writes
  2209. * to it immediately go to main memory as far as we know, so there's
  2210. * no chipset flush. It also doesn't land in render cache.
  2211. *
  2212. * However, we do have to enforce the order so that all writes through
  2213. * the GTT land before any writes to the device, such as updates to
  2214. * the GATT itself.
  2215. */
  2216. wmb();
  2217. old_write_domain = obj->base.write_domain;
  2218. obj->base.write_domain = 0;
  2219. trace_i915_gem_object_change_domain(obj,
  2220. obj->base.read_domains,
  2221. old_write_domain);
  2222. }
  2223. /** Flushes the CPU write domain for the object if it's dirty. */
  2224. static void
  2225. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2226. {
  2227. uint32_t old_write_domain;
  2228. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2229. return;
  2230. i915_gem_clflush_object(obj);
  2231. intel_gtt_chipset_flush();
  2232. old_write_domain = obj->base.write_domain;
  2233. obj->base.write_domain = 0;
  2234. trace_i915_gem_object_change_domain(obj,
  2235. obj->base.read_domains,
  2236. old_write_domain);
  2237. }
  2238. /**
  2239. * Moves a single object to the GTT read, and possibly write domain.
  2240. *
  2241. * This function returns when the move is complete, including waiting on
  2242. * flushes to occur.
  2243. */
  2244. int
  2245. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2246. {
  2247. uint32_t old_write_domain, old_read_domains;
  2248. int ret;
  2249. /* Not valid to be called on unbound objects. */
  2250. if (obj->gtt_space == NULL)
  2251. return -EINVAL;
  2252. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2253. return 0;
  2254. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2255. if (ret)
  2256. return ret;
  2257. if (obj->pending_gpu_write || write) {
  2258. ret = i915_gem_object_wait_rendering(obj);
  2259. if (ret)
  2260. return ret;
  2261. }
  2262. i915_gem_object_flush_cpu_write_domain(obj);
  2263. old_write_domain = obj->base.write_domain;
  2264. old_read_domains = obj->base.read_domains;
  2265. /* It should now be out of any other write domains, and we can update
  2266. * the domain values for our changes.
  2267. */
  2268. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2269. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2270. if (write) {
  2271. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2272. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2273. obj->dirty = 1;
  2274. }
  2275. trace_i915_gem_object_change_domain(obj,
  2276. old_read_domains,
  2277. old_write_domain);
  2278. return 0;
  2279. }
  2280. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2281. enum i915_cache_level cache_level)
  2282. {
  2283. struct drm_device *dev = obj->base.dev;
  2284. drm_i915_private_t *dev_priv = dev->dev_private;
  2285. int ret;
  2286. if (obj->cache_level == cache_level)
  2287. return 0;
  2288. if (obj->pin_count) {
  2289. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2290. return -EBUSY;
  2291. }
  2292. if (obj->gtt_space) {
  2293. ret = i915_gem_object_finish_gpu(obj);
  2294. if (ret)
  2295. return ret;
  2296. i915_gem_object_finish_gtt(obj);
  2297. /* Before SandyBridge, you could not use tiling or fence
  2298. * registers with snooped memory, so relinquish any fences
  2299. * currently pointing to our region in the aperture.
  2300. */
  2301. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2302. ret = i915_gem_object_put_fence(obj);
  2303. if (ret)
  2304. return ret;
  2305. }
  2306. if (obj->has_global_gtt_mapping)
  2307. i915_gem_gtt_bind_object(obj, cache_level);
  2308. if (obj->has_aliasing_ppgtt_mapping)
  2309. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2310. obj, cache_level);
  2311. }
  2312. if (cache_level == I915_CACHE_NONE) {
  2313. u32 old_read_domains, old_write_domain;
  2314. /* If we're coming from LLC cached, then we haven't
  2315. * actually been tracking whether the data is in the
  2316. * CPU cache or not, since we only allow one bit set
  2317. * in obj->write_domain and have been skipping the clflushes.
  2318. * Just set it to the CPU cache for now.
  2319. */
  2320. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2321. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2322. old_read_domains = obj->base.read_domains;
  2323. old_write_domain = obj->base.write_domain;
  2324. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2325. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2326. trace_i915_gem_object_change_domain(obj,
  2327. old_read_domains,
  2328. old_write_domain);
  2329. }
  2330. obj->cache_level = cache_level;
  2331. return 0;
  2332. }
  2333. /*
  2334. * Prepare buffer for display plane (scanout, cursors, etc).
  2335. * Can be called from an uninterruptible phase (modesetting) and allows
  2336. * any flushes to be pipelined (for pageflips).
  2337. *
  2338. * For the display plane, we want to be in the GTT but out of any write
  2339. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2340. * ability to pipeline the waits, pinning and any additional subtleties
  2341. * that may differentiate the display plane from ordinary buffers.
  2342. */
  2343. int
  2344. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2345. u32 alignment,
  2346. struct intel_ring_buffer *pipelined)
  2347. {
  2348. u32 old_read_domains, old_write_domain;
  2349. int ret;
  2350. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2351. if (ret)
  2352. return ret;
  2353. if (pipelined != obj->ring) {
  2354. ret = i915_gem_object_wait_rendering(obj);
  2355. if (ret == -ERESTARTSYS)
  2356. return ret;
  2357. }
  2358. /* The display engine is not coherent with the LLC cache on gen6. As
  2359. * a result, we make sure that the pinning that is about to occur is
  2360. * done with uncached PTEs. This is lowest common denominator for all
  2361. * chipsets.
  2362. *
  2363. * However for gen6+, we could do better by using the GFDT bit instead
  2364. * of uncaching, which would allow us to flush all the LLC-cached data
  2365. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2366. */
  2367. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2368. if (ret)
  2369. return ret;
  2370. /* As the user may map the buffer once pinned in the display plane
  2371. * (e.g. libkms for the bootup splash), we have to ensure that we
  2372. * always use map_and_fenceable for all scanout buffers.
  2373. */
  2374. ret = i915_gem_object_pin(obj, alignment, true);
  2375. if (ret)
  2376. return ret;
  2377. i915_gem_object_flush_cpu_write_domain(obj);
  2378. old_write_domain = obj->base.write_domain;
  2379. old_read_domains = obj->base.read_domains;
  2380. /* It should now be out of any other write domains, and we can update
  2381. * the domain values for our changes.
  2382. */
  2383. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2384. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2385. trace_i915_gem_object_change_domain(obj,
  2386. old_read_domains,
  2387. old_write_domain);
  2388. return 0;
  2389. }
  2390. int
  2391. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2392. {
  2393. int ret;
  2394. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2395. return 0;
  2396. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2397. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2398. if (ret)
  2399. return ret;
  2400. }
  2401. ret = i915_gem_object_wait_rendering(obj);
  2402. if (ret)
  2403. return ret;
  2404. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2405. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2406. return 0;
  2407. }
  2408. /**
  2409. * Moves a single object to the CPU read, and possibly write domain.
  2410. *
  2411. * This function returns when the move is complete, including waiting on
  2412. * flushes to occur.
  2413. */
  2414. int
  2415. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2416. {
  2417. uint32_t old_write_domain, old_read_domains;
  2418. int ret;
  2419. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2420. return 0;
  2421. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2422. if (ret)
  2423. return ret;
  2424. ret = i915_gem_object_wait_rendering(obj);
  2425. if (ret)
  2426. return ret;
  2427. i915_gem_object_flush_gtt_write_domain(obj);
  2428. old_write_domain = obj->base.write_domain;
  2429. old_read_domains = obj->base.read_domains;
  2430. /* Flush the CPU cache if it's still invalid. */
  2431. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2432. i915_gem_clflush_object(obj);
  2433. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2434. }
  2435. /* It should now be out of any other write domains, and we can update
  2436. * the domain values for our changes.
  2437. */
  2438. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2439. /* If we're writing through the CPU, then the GPU read domains will
  2440. * need to be invalidated at next use.
  2441. */
  2442. if (write) {
  2443. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2444. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2445. }
  2446. trace_i915_gem_object_change_domain(obj,
  2447. old_read_domains,
  2448. old_write_domain);
  2449. return 0;
  2450. }
  2451. /* Throttle our rendering by waiting until the ring has completed our requests
  2452. * emitted over 20 msec ago.
  2453. *
  2454. * Note that if we were to use the current jiffies each time around the loop,
  2455. * we wouldn't escape the function with any frames outstanding if the time to
  2456. * render a frame was over 20ms.
  2457. *
  2458. * This should get us reasonable parallelism between CPU and GPU but also
  2459. * relatively low latency when blocking on a particular request to finish.
  2460. */
  2461. static int
  2462. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2463. {
  2464. struct drm_i915_private *dev_priv = dev->dev_private;
  2465. struct drm_i915_file_private *file_priv = file->driver_priv;
  2466. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2467. struct drm_i915_gem_request *request;
  2468. struct intel_ring_buffer *ring = NULL;
  2469. u32 seqno = 0;
  2470. int ret;
  2471. if (atomic_read(&dev_priv->mm.wedged))
  2472. return -EIO;
  2473. spin_lock(&file_priv->mm.lock);
  2474. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2475. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2476. break;
  2477. ring = request->ring;
  2478. seqno = request->seqno;
  2479. }
  2480. spin_unlock(&file_priv->mm.lock);
  2481. if (seqno == 0)
  2482. return 0;
  2483. ret = 0;
  2484. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2485. /* And wait for the seqno passing without holding any locks and
  2486. * causing extra latency for others. This is safe as the irq
  2487. * generation is designed to be run atomically and so is
  2488. * lockless.
  2489. */
  2490. if (ring->irq_get(ring)) {
  2491. ret = wait_event_interruptible(ring->irq_queue,
  2492. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2493. || atomic_read(&dev_priv->mm.wedged));
  2494. ring->irq_put(ring);
  2495. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2496. ret = -EIO;
  2497. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2498. seqno) ||
  2499. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2500. ret = -EBUSY;
  2501. }
  2502. }
  2503. if (ret == 0)
  2504. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2505. return ret;
  2506. }
  2507. int
  2508. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2509. uint32_t alignment,
  2510. bool map_and_fenceable)
  2511. {
  2512. struct drm_device *dev = obj->base.dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. int ret;
  2515. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2516. WARN_ON(i915_verify_lists(dev));
  2517. if (obj->gtt_space != NULL) {
  2518. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2519. (map_and_fenceable && !obj->map_and_fenceable)) {
  2520. WARN(obj->pin_count,
  2521. "bo is already pinned with incorrect alignment:"
  2522. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2523. " obj->map_and_fenceable=%d\n",
  2524. obj->gtt_offset, alignment,
  2525. map_and_fenceable,
  2526. obj->map_and_fenceable);
  2527. ret = i915_gem_object_unbind(obj);
  2528. if (ret)
  2529. return ret;
  2530. }
  2531. }
  2532. if (obj->gtt_space == NULL) {
  2533. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2534. map_and_fenceable);
  2535. if (ret)
  2536. return ret;
  2537. }
  2538. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2539. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2540. if (obj->pin_count++ == 0) {
  2541. if (!obj->active)
  2542. list_move_tail(&obj->mm_list,
  2543. &dev_priv->mm.pinned_list);
  2544. }
  2545. obj->pin_mappable |= map_and_fenceable;
  2546. WARN_ON(i915_verify_lists(dev));
  2547. return 0;
  2548. }
  2549. void
  2550. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2551. {
  2552. struct drm_device *dev = obj->base.dev;
  2553. drm_i915_private_t *dev_priv = dev->dev_private;
  2554. WARN_ON(i915_verify_lists(dev));
  2555. BUG_ON(obj->pin_count == 0);
  2556. BUG_ON(obj->gtt_space == NULL);
  2557. if (--obj->pin_count == 0) {
  2558. if (!obj->active)
  2559. list_move_tail(&obj->mm_list,
  2560. &dev_priv->mm.inactive_list);
  2561. obj->pin_mappable = false;
  2562. }
  2563. WARN_ON(i915_verify_lists(dev));
  2564. }
  2565. int
  2566. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2567. struct drm_file *file)
  2568. {
  2569. struct drm_i915_gem_pin *args = data;
  2570. struct drm_i915_gem_object *obj;
  2571. int ret;
  2572. ret = i915_mutex_lock_interruptible(dev);
  2573. if (ret)
  2574. return ret;
  2575. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2576. if (&obj->base == NULL) {
  2577. ret = -ENOENT;
  2578. goto unlock;
  2579. }
  2580. if (obj->madv != I915_MADV_WILLNEED) {
  2581. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2582. ret = -EINVAL;
  2583. goto out;
  2584. }
  2585. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2586. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2587. args->handle);
  2588. ret = -EINVAL;
  2589. goto out;
  2590. }
  2591. obj->user_pin_count++;
  2592. obj->pin_filp = file;
  2593. if (obj->user_pin_count == 1) {
  2594. ret = i915_gem_object_pin(obj, args->alignment, true);
  2595. if (ret)
  2596. goto out;
  2597. }
  2598. /* XXX - flush the CPU caches for pinned objects
  2599. * as the X server doesn't manage domains yet
  2600. */
  2601. i915_gem_object_flush_cpu_write_domain(obj);
  2602. args->offset = obj->gtt_offset;
  2603. out:
  2604. drm_gem_object_unreference(&obj->base);
  2605. unlock:
  2606. mutex_unlock(&dev->struct_mutex);
  2607. return ret;
  2608. }
  2609. int
  2610. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2611. struct drm_file *file)
  2612. {
  2613. struct drm_i915_gem_pin *args = data;
  2614. struct drm_i915_gem_object *obj;
  2615. int ret;
  2616. ret = i915_mutex_lock_interruptible(dev);
  2617. if (ret)
  2618. return ret;
  2619. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2620. if (&obj->base == NULL) {
  2621. ret = -ENOENT;
  2622. goto unlock;
  2623. }
  2624. if (obj->pin_filp != file) {
  2625. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2626. args->handle);
  2627. ret = -EINVAL;
  2628. goto out;
  2629. }
  2630. obj->user_pin_count--;
  2631. if (obj->user_pin_count == 0) {
  2632. obj->pin_filp = NULL;
  2633. i915_gem_object_unpin(obj);
  2634. }
  2635. out:
  2636. drm_gem_object_unreference(&obj->base);
  2637. unlock:
  2638. mutex_unlock(&dev->struct_mutex);
  2639. return ret;
  2640. }
  2641. int
  2642. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2643. struct drm_file *file)
  2644. {
  2645. struct drm_i915_gem_busy *args = data;
  2646. struct drm_i915_gem_object *obj;
  2647. int ret;
  2648. ret = i915_mutex_lock_interruptible(dev);
  2649. if (ret)
  2650. return ret;
  2651. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2652. if (&obj->base == NULL) {
  2653. ret = -ENOENT;
  2654. goto unlock;
  2655. }
  2656. /* Count all active objects as busy, even if they are currently not used
  2657. * by the gpu. Users of this interface expect objects to eventually
  2658. * become non-busy without any further actions, therefore emit any
  2659. * necessary flushes here.
  2660. */
  2661. args->busy = obj->active;
  2662. if (args->busy) {
  2663. /* Unconditionally flush objects, even when the gpu still uses this
  2664. * object. Userspace calling this function indicates that it wants to
  2665. * use this buffer rather sooner than later, so issuing the required
  2666. * flush earlier is beneficial.
  2667. */
  2668. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2669. ret = i915_gem_flush_ring(obj->ring,
  2670. 0, obj->base.write_domain);
  2671. } else if (obj->ring->outstanding_lazy_request ==
  2672. obj->last_rendering_seqno) {
  2673. struct drm_i915_gem_request *request;
  2674. /* This ring is not being cleared by active usage,
  2675. * so emit a request to do so.
  2676. */
  2677. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2678. if (request) {
  2679. ret = i915_add_request(obj->ring, NULL, request);
  2680. if (ret)
  2681. kfree(request);
  2682. } else
  2683. ret = -ENOMEM;
  2684. }
  2685. /* Update the active list for the hardware's current position.
  2686. * Otherwise this only updates on a delayed timer or when irqs
  2687. * are actually unmasked, and our working set ends up being
  2688. * larger than required.
  2689. */
  2690. i915_gem_retire_requests_ring(obj->ring);
  2691. args->busy = obj->active;
  2692. }
  2693. drm_gem_object_unreference(&obj->base);
  2694. unlock:
  2695. mutex_unlock(&dev->struct_mutex);
  2696. return ret;
  2697. }
  2698. int
  2699. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2700. struct drm_file *file_priv)
  2701. {
  2702. return i915_gem_ring_throttle(dev, file_priv);
  2703. }
  2704. int
  2705. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2706. struct drm_file *file_priv)
  2707. {
  2708. struct drm_i915_gem_madvise *args = data;
  2709. struct drm_i915_gem_object *obj;
  2710. int ret;
  2711. switch (args->madv) {
  2712. case I915_MADV_DONTNEED:
  2713. case I915_MADV_WILLNEED:
  2714. break;
  2715. default:
  2716. return -EINVAL;
  2717. }
  2718. ret = i915_mutex_lock_interruptible(dev);
  2719. if (ret)
  2720. return ret;
  2721. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2722. if (&obj->base == NULL) {
  2723. ret = -ENOENT;
  2724. goto unlock;
  2725. }
  2726. if (obj->pin_count) {
  2727. ret = -EINVAL;
  2728. goto out;
  2729. }
  2730. if (obj->madv != __I915_MADV_PURGED)
  2731. obj->madv = args->madv;
  2732. /* if the object is no longer bound, discard its backing storage */
  2733. if (i915_gem_object_is_purgeable(obj) &&
  2734. obj->gtt_space == NULL)
  2735. i915_gem_object_truncate(obj);
  2736. args->retained = obj->madv != __I915_MADV_PURGED;
  2737. out:
  2738. drm_gem_object_unreference(&obj->base);
  2739. unlock:
  2740. mutex_unlock(&dev->struct_mutex);
  2741. return ret;
  2742. }
  2743. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2744. size_t size)
  2745. {
  2746. struct drm_i915_private *dev_priv = dev->dev_private;
  2747. struct drm_i915_gem_object *obj;
  2748. struct address_space *mapping;
  2749. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2750. if (obj == NULL)
  2751. return NULL;
  2752. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2753. kfree(obj);
  2754. return NULL;
  2755. }
  2756. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2757. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2758. i915_gem_info_add_obj(dev_priv, size);
  2759. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2760. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2761. if (HAS_LLC(dev)) {
  2762. /* On some devices, we can have the GPU use the LLC (the CPU
  2763. * cache) for about a 10% performance improvement
  2764. * compared to uncached. Graphics requests other than
  2765. * display scanout are coherent with the CPU in
  2766. * accessing this cache. This means in this mode we
  2767. * don't need to clflush on the CPU side, and on the
  2768. * GPU side we only need to flush internal caches to
  2769. * get data visible to the CPU.
  2770. *
  2771. * However, we maintain the display planes as UC, and so
  2772. * need to rebind when first used as such.
  2773. */
  2774. obj->cache_level = I915_CACHE_LLC;
  2775. } else
  2776. obj->cache_level = I915_CACHE_NONE;
  2777. obj->base.driver_private = NULL;
  2778. obj->fence_reg = I915_FENCE_REG_NONE;
  2779. INIT_LIST_HEAD(&obj->mm_list);
  2780. INIT_LIST_HEAD(&obj->gtt_list);
  2781. INIT_LIST_HEAD(&obj->ring_list);
  2782. INIT_LIST_HEAD(&obj->exec_list);
  2783. INIT_LIST_HEAD(&obj->gpu_write_list);
  2784. obj->madv = I915_MADV_WILLNEED;
  2785. /* Avoid an unnecessary call to unbind on the first bind. */
  2786. obj->map_and_fenceable = true;
  2787. return obj;
  2788. }
  2789. int i915_gem_init_object(struct drm_gem_object *obj)
  2790. {
  2791. BUG();
  2792. return 0;
  2793. }
  2794. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2795. {
  2796. struct drm_device *dev = obj->base.dev;
  2797. drm_i915_private_t *dev_priv = dev->dev_private;
  2798. int ret;
  2799. ret = i915_gem_object_unbind(obj);
  2800. if (ret == -ERESTARTSYS) {
  2801. list_move(&obj->mm_list,
  2802. &dev_priv->mm.deferred_free_list);
  2803. return;
  2804. }
  2805. trace_i915_gem_object_destroy(obj);
  2806. if (obj->base.map_list.map)
  2807. drm_gem_free_mmap_offset(&obj->base);
  2808. drm_gem_object_release(&obj->base);
  2809. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2810. kfree(obj->bit_17);
  2811. kfree(obj);
  2812. }
  2813. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2814. {
  2815. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2816. struct drm_device *dev = obj->base.dev;
  2817. while (obj->pin_count > 0)
  2818. i915_gem_object_unpin(obj);
  2819. if (obj->phys_obj)
  2820. i915_gem_detach_phys_object(dev, obj);
  2821. i915_gem_free_object_tail(obj);
  2822. }
  2823. int
  2824. i915_gem_idle(struct drm_device *dev)
  2825. {
  2826. drm_i915_private_t *dev_priv = dev->dev_private;
  2827. int ret;
  2828. mutex_lock(&dev->struct_mutex);
  2829. if (dev_priv->mm.suspended) {
  2830. mutex_unlock(&dev->struct_mutex);
  2831. return 0;
  2832. }
  2833. ret = i915_gpu_idle(dev, true);
  2834. if (ret) {
  2835. mutex_unlock(&dev->struct_mutex);
  2836. return ret;
  2837. }
  2838. /* Under UMS, be paranoid and evict. */
  2839. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2840. ret = i915_gem_evict_inactive(dev, false);
  2841. if (ret) {
  2842. mutex_unlock(&dev->struct_mutex);
  2843. return ret;
  2844. }
  2845. }
  2846. i915_gem_reset_fences(dev);
  2847. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2848. * We need to replace this with a semaphore, or something.
  2849. * And not confound mm.suspended!
  2850. */
  2851. dev_priv->mm.suspended = 1;
  2852. del_timer_sync(&dev_priv->hangcheck_timer);
  2853. i915_kernel_lost_context(dev);
  2854. i915_gem_cleanup_ringbuffer(dev);
  2855. mutex_unlock(&dev->struct_mutex);
  2856. /* Cancel the retire work handler, which should be idle now. */
  2857. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2858. return 0;
  2859. }
  2860. void i915_gem_init_swizzling(struct drm_device *dev)
  2861. {
  2862. drm_i915_private_t *dev_priv = dev->dev_private;
  2863. if (INTEL_INFO(dev)->gen < 5 ||
  2864. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2865. return;
  2866. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2867. DISP_TILE_SURFACE_SWIZZLING);
  2868. if (IS_GEN5(dev))
  2869. return;
  2870. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2871. if (IS_GEN6(dev))
  2872. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2873. else
  2874. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2875. }
  2876. void i915_gem_init_ppgtt(struct drm_device *dev)
  2877. {
  2878. drm_i915_private_t *dev_priv = dev->dev_private;
  2879. uint32_t pd_offset;
  2880. struct intel_ring_buffer *ring;
  2881. int i;
  2882. if (!dev_priv->mm.aliasing_ppgtt)
  2883. return;
  2884. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  2885. pd_offset /= 64; /* in cachelines, */
  2886. pd_offset <<= 16;
  2887. if (INTEL_INFO(dev)->gen == 6) {
  2888. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2889. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2890. ECOCHK_PPGTT_CACHE64B);
  2891. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2892. } else if (INTEL_INFO(dev)->gen >= 7) {
  2893. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2894. /* GFX_MODE is per-ring on gen7+ */
  2895. }
  2896. for (i = 0; i < I915_NUM_RINGS; i++) {
  2897. ring = &dev_priv->ring[i];
  2898. if (INTEL_INFO(dev)->gen >= 7)
  2899. I915_WRITE(RING_MODE_GEN7(ring),
  2900. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2901. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2902. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2903. }
  2904. }
  2905. int
  2906. i915_gem_init_hw(struct drm_device *dev)
  2907. {
  2908. drm_i915_private_t *dev_priv = dev->dev_private;
  2909. int ret;
  2910. i915_gem_init_swizzling(dev);
  2911. ret = intel_init_render_ring_buffer(dev);
  2912. if (ret)
  2913. return ret;
  2914. if (HAS_BSD(dev)) {
  2915. ret = intel_init_bsd_ring_buffer(dev);
  2916. if (ret)
  2917. goto cleanup_render_ring;
  2918. }
  2919. if (HAS_BLT(dev)) {
  2920. ret = intel_init_blt_ring_buffer(dev);
  2921. if (ret)
  2922. goto cleanup_bsd_ring;
  2923. }
  2924. dev_priv->next_seqno = 1;
  2925. i915_gem_init_ppgtt(dev);
  2926. return 0;
  2927. cleanup_bsd_ring:
  2928. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2929. cleanup_render_ring:
  2930. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2931. return ret;
  2932. }
  2933. void
  2934. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2935. {
  2936. drm_i915_private_t *dev_priv = dev->dev_private;
  2937. int i;
  2938. for (i = 0; i < I915_NUM_RINGS; i++)
  2939. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2940. }
  2941. int
  2942. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2943. struct drm_file *file_priv)
  2944. {
  2945. drm_i915_private_t *dev_priv = dev->dev_private;
  2946. int ret, i;
  2947. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2948. return 0;
  2949. if (atomic_read(&dev_priv->mm.wedged)) {
  2950. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2951. atomic_set(&dev_priv->mm.wedged, 0);
  2952. }
  2953. mutex_lock(&dev->struct_mutex);
  2954. dev_priv->mm.suspended = 0;
  2955. ret = i915_gem_init_hw(dev);
  2956. if (ret != 0) {
  2957. mutex_unlock(&dev->struct_mutex);
  2958. return ret;
  2959. }
  2960. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2961. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  2962. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  2963. for (i = 0; i < I915_NUM_RINGS; i++) {
  2964. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  2965. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  2966. }
  2967. mutex_unlock(&dev->struct_mutex);
  2968. ret = drm_irq_install(dev);
  2969. if (ret)
  2970. goto cleanup_ringbuffer;
  2971. return 0;
  2972. cleanup_ringbuffer:
  2973. mutex_lock(&dev->struct_mutex);
  2974. i915_gem_cleanup_ringbuffer(dev);
  2975. dev_priv->mm.suspended = 1;
  2976. mutex_unlock(&dev->struct_mutex);
  2977. return ret;
  2978. }
  2979. int
  2980. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  2981. struct drm_file *file_priv)
  2982. {
  2983. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2984. return 0;
  2985. drm_irq_uninstall(dev);
  2986. return i915_gem_idle(dev);
  2987. }
  2988. void
  2989. i915_gem_lastclose(struct drm_device *dev)
  2990. {
  2991. int ret;
  2992. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2993. return;
  2994. ret = i915_gem_idle(dev);
  2995. if (ret)
  2996. DRM_ERROR("failed to idle hardware: %d\n", ret);
  2997. }
  2998. static void
  2999. init_ring_lists(struct intel_ring_buffer *ring)
  3000. {
  3001. INIT_LIST_HEAD(&ring->active_list);
  3002. INIT_LIST_HEAD(&ring->request_list);
  3003. INIT_LIST_HEAD(&ring->gpu_write_list);
  3004. }
  3005. void
  3006. i915_gem_load(struct drm_device *dev)
  3007. {
  3008. int i;
  3009. drm_i915_private_t *dev_priv = dev->dev_private;
  3010. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3011. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3012. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3013. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3014. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3015. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3016. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3017. for (i = 0; i < I915_NUM_RINGS; i++)
  3018. init_ring_lists(&dev_priv->ring[i]);
  3019. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3020. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3021. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3022. i915_gem_retire_work_handler);
  3023. init_completion(&dev_priv->error_completion);
  3024. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3025. if (IS_GEN3(dev)) {
  3026. u32 tmp = I915_READ(MI_ARB_STATE);
  3027. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3028. /* arb state is a masked write, so set bit + bit in mask */
  3029. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3030. I915_WRITE(MI_ARB_STATE, tmp);
  3031. }
  3032. }
  3033. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3034. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3035. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3036. dev_priv->fence_reg_start = 3;
  3037. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3038. dev_priv->num_fence_regs = 16;
  3039. else
  3040. dev_priv->num_fence_regs = 8;
  3041. /* Initialize fence registers to zero */
  3042. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3043. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3044. }
  3045. i915_gem_detect_bit_6_swizzle(dev);
  3046. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3047. dev_priv->mm.interruptible = true;
  3048. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3049. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3050. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3051. }
  3052. /*
  3053. * Create a physically contiguous memory object for this object
  3054. * e.g. for cursor + overlay regs
  3055. */
  3056. static int i915_gem_init_phys_object(struct drm_device *dev,
  3057. int id, int size, int align)
  3058. {
  3059. drm_i915_private_t *dev_priv = dev->dev_private;
  3060. struct drm_i915_gem_phys_object *phys_obj;
  3061. int ret;
  3062. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3063. return 0;
  3064. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3065. if (!phys_obj)
  3066. return -ENOMEM;
  3067. phys_obj->id = id;
  3068. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3069. if (!phys_obj->handle) {
  3070. ret = -ENOMEM;
  3071. goto kfree_obj;
  3072. }
  3073. #ifdef CONFIG_X86
  3074. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3075. #endif
  3076. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3077. return 0;
  3078. kfree_obj:
  3079. kfree(phys_obj);
  3080. return ret;
  3081. }
  3082. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3083. {
  3084. drm_i915_private_t *dev_priv = dev->dev_private;
  3085. struct drm_i915_gem_phys_object *phys_obj;
  3086. if (!dev_priv->mm.phys_objs[id - 1])
  3087. return;
  3088. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3089. if (phys_obj->cur_obj) {
  3090. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3091. }
  3092. #ifdef CONFIG_X86
  3093. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3094. #endif
  3095. drm_pci_free(dev, phys_obj->handle);
  3096. kfree(phys_obj);
  3097. dev_priv->mm.phys_objs[id - 1] = NULL;
  3098. }
  3099. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3100. {
  3101. int i;
  3102. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3103. i915_gem_free_phys_object(dev, i);
  3104. }
  3105. void i915_gem_detach_phys_object(struct drm_device *dev,
  3106. struct drm_i915_gem_object *obj)
  3107. {
  3108. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3109. char *vaddr;
  3110. int i;
  3111. int page_count;
  3112. if (!obj->phys_obj)
  3113. return;
  3114. vaddr = obj->phys_obj->handle->vaddr;
  3115. page_count = obj->base.size / PAGE_SIZE;
  3116. for (i = 0; i < page_count; i++) {
  3117. struct page *page = shmem_read_mapping_page(mapping, i);
  3118. if (!IS_ERR(page)) {
  3119. char *dst = kmap_atomic(page);
  3120. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3121. kunmap_atomic(dst);
  3122. drm_clflush_pages(&page, 1);
  3123. set_page_dirty(page);
  3124. mark_page_accessed(page);
  3125. page_cache_release(page);
  3126. }
  3127. }
  3128. intel_gtt_chipset_flush();
  3129. obj->phys_obj->cur_obj = NULL;
  3130. obj->phys_obj = NULL;
  3131. }
  3132. int
  3133. i915_gem_attach_phys_object(struct drm_device *dev,
  3134. struct drm_i915_gem_object *obj,
  3135. int id,
  3136. int align)
  3137. {
  3138. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3139. drm_i915_private_t *dev_priv = dev->dev_private;
  3140. int ret = 0;
  3141. int page_count;
  3142. int i;
  3143. if (id > I915_MAX_PHYS_OBJECT)
  3144. return -EINVAL;
  3145. if (obj->phys_obj) {
  3146. if (obj->phys_obj->id == id)
  3147. return 0;
  3148. i915_gem_detach_phys_object(dev, obj);
  3149. }
  3150. /* create a new object */
  3151. if (!dev_priv->mm.phys_objs[id - 1]) {
  3152. ret = i915_gem_init_phys_object(dev, id,
  3153. obj->base.size, align);
  3154. if (ret) {
  3155. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3156. id, obj->base.size);
  3157. return ret;
  3158. }
  3159. }
  3160. /* bind to the object */
  3161. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3162. obj->phys_obj->cur_obj = obj;
  3163. page_count = obj->base.size / PAGE_SIZE;
  3164. for (i = 0; i < page_count; i++) {
  3165. struct page *page;
  3166. char *dst, *src;
  3167. page = shmem_read_mapping_page(mapping, i);
  3168. if (IS_ERR(page))
  3169. return PTR_ERR(page);
  3170. src = kmap_atomic(page);
  3171. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3172. memcpy(dst, src, PAGE_SIZE);
  3173. kunmap_atomic(src);
  3174. mark_page_accessed(page);
  3175. page_cache_release(page);
  3176. }
  3177. return 0;
  3178. }
  3179. static int
  3180. i915_gem_phys_pwrite(struct drm_device *dev,
  3181. struct drm_i915_gem_object *obj,
  3182. struct drm_i915_gem_pwrite *args,
  3183. struct drm_file *file_priv)
  3184. {
  3185. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3186. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3187. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3188. unsigned long unwritten;
  3189. /* The physical object once assigned is fixed for the lifetime
  3190. * of the obj, so we can safely drop the lock and continue
  3191. * to access vaddr.
  3192. */
  3193. mutex_unlock(&dev->struct_mutex);
  3194. unwritten = copy_from_user(vaddr, user_data, args->size);
  3195. mutex_lock(&dev->struct_mutex);
  3196. if (unwritten)
  3197. return -EFAULT;
  3198. }
  3199. intel_gtt_chipset_flush();
  3200. return 0;
  3201. }
  3202. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3203. {
  3204. struct drm_i915_file_private *file_priv = file->driver_priv;
  3205. /* Clean up our request list when the client is going away, so that
  3206. * later retire_requests won't dereference our soon-to-be-gone
  3207. * file_priv.
  3208. */
  3209. spin_lock(&file_priv->mm.lock);
  3210. while (!list_empty(&file_priv->mm.request_list)) {
  3211. struct drm_i915_gem_request *request;
  3212. request = list_first_entry(&file_priv->mm.request_list,
  3213. struct drm_i915_gem_request,
  3214. client_list);
  3215. list_del(&request->client_list);
  3216. request->file_priv = NULL;
  3217. }
  3218. spin_unlock(&file_priv->mm.lock);
  3219. }
  3220. static int
  3221. i915_gpu_is_active(struct drm_device *dev)
  3222. {
  3223. drm_i915_private_t *dev_priv = dev->dev_private;
  3224. int lists_empty;
  3225. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3226. list_empty(&dev_priv->mm.active_list);
  3227. return !lists_empty;
  3228. }
  3229. static int
  3230. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3231. {
  3232. struct drm_i915_private *dev_priv =
  3233. container_of(shrinker,
  3234. struct drm_i915_private,
  3235. mm.inactive_shrinker);
  3236. struct drm_device *dev = dev_priv->dev;
  3237. struct drm_i915_gem_object *obj, *next;
  3238. int nr_to_scan = sc->nr_to_scan;
  3239. int cnt;
  3240. if (!mutex_trylock(&dev->struct_mutex))
  3241. return 0;
  3242. /* "fast-path" to count number of available objects */
  3243. if (nr_to_scan == 0) {
  3244. cnt = 0;
  3245. list_for_each_entry(obj,
  3246. &dev_priv->mm.inactive_list,
  3247. mm_list)
  3248. cnt++;
  3249. mutex_unlock(&dev->struct_mutex);
  3250. return cnt / 100 * sysctl_vfs_cache_pressure;
  3251. }
  3252. rescan:
  3253. /* first scan for clean buffers */
  3254. i915_gem_retire_requests(dev);
  3255. list_for_each_entry_safe(obj, next,
  3256. &dev_priv->mm.inactive_list,
  3257. mm_list) {
  3258. if (i915_gem_object_is_purgeable(obj)) {
  3259. if (i915_gem_object_unbind(obj) == 0 &&
  3260. --nr_to_scan == 0)
  3261. break;
  3262. }
  3263. }
  3264. /* second pass, evict/count anything still on the inactive list */
  3265. cnt = 0;
  3266. list_for_each_entry_safe(obj, next,
  3267. &dev_priv->mm.inactive_list,
  3268. mm_list) {
  3269. if (nr_to_scan &&
  3270. i915_gem_object_unbind(obj) == 0)
  3271. nr_to_scan--;
  3272. else
  3273. cnt++;
  3274. }
  3275. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3276. /*
  3277. * We are desperate for pages, so as a last resort, wait
  3278. * for the GPU to finish and discard whatever we can.
  3279. * This has a dramatic impact to reduce the number of
  3280. * OOM-killer events whilst running the GPU aggressively.
  3281. */
  3282. if (i915_gpu_idle(dev, true) == 0)
  3283. goto rescan;
  3284. }
  3285. mutex_unlock(&dev->struct_mutex);
  3286. return cnt / 100 * sysctl_vfs_cache_pressure;
  3287. }