af9035.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * Afatech AF9035 DVB USB driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9035.h"
  22. #include "af9033.h"
  23. #include "tua9001.h"
  24. #include "fc0011.h"
  25. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  26. static DEFINE_MUTEX(af9035_usb_mutex);
  27. static struct config af9035_config;
  28. static struct dvb_usb_device_properties af9035_properties[1];
  29. static int af9035_properties_count = ARRAY_SIZE(af9035_properties);
  30. static struct af9033_config af9035_af9033_config[] = {
  31. {
  32. .ts_mode = AF9033_TS_MODE_USB,
  33. }, {
  34. .ts_mode = AF9033_TS_MODE_SERIAL,
  35. }
  36. };
  37. static u16 af9035_checksum(const u8 *buf, size_t len)
  38. {
  39. size_t i;
  40. u16 checksum = 0;
  41. for (i = 1; i < len; i++) {
  42. if (i % 2)
  43. checksum += buf[i] << 8;
  44. else
  45. checksum += buf[i];
  46. }
  47. checksum = ~checksum;
  48. return checksum;
  49. }
  50. static int af9035_ctrl_msg(struct usb_device *udev, struct usb_req *req)
  51. {
  52. #define BUF_LEN 63
  53. #define REQ_HDR_LEN 4 /* send header size */
  54. #define ACK_HDR_LEN 3 /* rece header size */
  55. #define CHECKSUM_LEN 2
  56. #define USB_TIMEOUT 2000
  57. int ret, act_len;
  58. u8 buf[BUF_LEN];
  59. u32 msg_len;
  60. static u8 seq; /* packet sequence number */
  61. u16 checksum, tmpsum;
  62. /* buffer overflow check */
  63. if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
  64. req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
  65. pr_debug("%s: too much data wlen=%d rlen=%d\n", __func__,
  66. req->wlen, req->rlen);
  67. return -EINVAL;
  68. }
  69. if (mutex_lock_interruptible(&af9035_usb_mutex) < 0)
  70. return -EAGAIN;
  71. buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
  72. buf[1] = req->mbox;
  73. buf[2] = req->cmd;
  74. buf[3] = seq++;
  75. if (req->wlen)
  76. memcpy(&buf[4], req->wbuf, req->wlen);
  77. /* calc and add checksum */
  78. checksum = af9035_checksum(buf, buf[0] - 1);
  79. buf[buf[0]-1] = (checksum >> 8);
  80. buf[buf[0]-0] = (checksum & 0xff);
  81. msg_len = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN ;
  82. /* send req */
  83. ret = usb_bulk_msg(udev, usb_sndbulkpipe(udev, 0x02), buf, msg_len,
  84. &act_len, USB_TIMEOUT);
  85. if (ret < 0)
  86. err("bulk message failed=%d (%d/%d)", ret, msg_len, act_len);
  87. else
  88. if (act_len != msg_len)
  89. ret = -EIO; /* all data is not send */
  90. if (ret < 0)
  91. goto err_mutex_unlock;
  92. /* no ack for those packets */
  93. if (req->cmd == CMD_FW_DL)
  94. goto exit_mutex_unlock;
  95. /* receive ack and data if read req */
  96. msg_len = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
  97. ret = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, 0x81), buf, msg_len,
  98. &act_len, USB_TIMEOUT);
  99. if (ret < 0) {
  100. err("recv bulk message failed=%d", ret);
  101. ret = -EIO;
  102. goto err_mutex_unlock;
  103. }
  104. if (act_len != msg_len) {
  105. err("recv bulk message truncated (%d != %u)\n",
  106. act_len, (unsigned int)msg_len);
  107. ret = -EIO;
  108. goto err_mutex_unlock;
  109. }
  110. /* verify checksum */
  111. checksum = af9035_checksum(buf, act_len - 2);
  112. tmpsum = (buf[act_len - 2] << 8) | buf[act_len - 1];
  113. if (tmpsum != checksum) {
  114. err("%s: command=%02X checksum mismatch (%04X != %04X)\n",
  115. __func__, req->cmd,
  116. (unsigned int)tmpsum, (unsigned int)checksum);
  117. ret = -EIO;
  118. goto err_mutex_unlock;
  119. }
  120. /* check status */
  121. if (buf[2]) {
  122. pr_debug("%s: command=%02x failed fw error=%d\n", __func__,
  123. req->cmd, buf[2]);
  124. ret = -EIO;
  125. goto err_mutex_unlock;
  126. }
  127. /* read request, copy returned data to return buf */
  128. if (req->rlen)
  129. memcpy(req->rbuf, &buf[ACK_HDR_LEN], req->rlen);
  130. err_mutex_unlock:
  131. exit_mutex_unlock:
  132. mutex_unlock(&af9035_usb_mutex);
  133. return ret;
  134. }
  135. /* write multiple registers */
  136. static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  137. {
  138. u8 wbuf[6 + len];
  139. u8 mbox = (reg >> 16) & 0xff;
  140. struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL };
  141. wbuf[0] = len;
  142. wbuf[1] = 2;
  143. wbuf[2] = 0;
  144. wbuf[3] = 0;
  145. wbuf[4] = (reg >> 8) & 0xff;
  146. wbuf[5] = (reg >> 0) & 0xff;
  147. memcpy(&wbuf[6], val, len);
  148. return af9035_ctrl_msg(d->udev, &req);
  149. }
  150. /* read multiple registers */
  151. static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  152. {
  153. u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
  154. u8 mbox = (reg >> 16) & 0xff;
  155. struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
  156. return af9035_ctrl_msg(d->udev, &req);
  157. }
  158. /* write single register */
  159. static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
  160. {
  161. return af9035_wr_regs(d, reg, &val, 1);
  162. }
  163. /* read single register */
  164. static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
  165. {
  166. return af9035_rd_regs(d, reg, val, 1);
  167. }
  168. /* write single register with mask */
  169. static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
  170. u8 mask)
  171. {
  172. int ret;
  173. u8 tmp;
  174. /* no need for read if whole reg is written */
  175. if (mask != 0xff) {
  176. ret = af9035_rd_regs(d, reg, &tmp, 1);
  177. if (ret)
  178. return ret;
  179. val &= mask;
  180. tmp &= ~mask;
  181. val |= tmp;
  182. }
  183. return af9035_wr_regs(d, reg, &val, 1);
  184. }
  185. static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
  186. struct i2c_msg msg[], int num)
  187. {
  188. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  189. int ret;
  190. if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
  191. return -EAGAIN;
  192. if (num == 2 && !(msg[0].flags & I2C_M_RD) &&
  193. (msg[1].flags & I2C_M_RD)) {
  194. if (msg[0].len > 40 || msg[1].len > 40) {
  195. /* TODO: correct limits > 40 */
  196. ret = -EOPNOTSUPP;
  197. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  198. /* integrated demod */
  199. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  200. msg[0].buf[2];
  201. ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
  202. msg[1].len);
  203. } else {
  204. /* I2C */
  205. u8 buf[4 + msg[0].len];
  206. struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
  207. buf, msg[1].len, msg[1].buf };
  208. buf[0] = msg[1].len;
  209. buf[1] = msg[0].addr << 1;
  210. buf[2] = 0x01;
  211. buf[3] = 0x00;
  212. memcpy(&buf[4], msg[0].buf, msg[0].len);
  213. ret = af9035_ctrl_msg(d->udev, &req);
  214. }
  215. } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) {
  216. if (msg[0].len > 40) {
  217. /* TODO: correct limits > 40 */
  218. ret = -EOPNOTSUPP;
  219. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  220. /* integrated demod */
  221. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  222. msg[0].buf[2];
  223. ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
  224. msg[0].len - 3);
  225. } else {
  226. /* I2C */
  227. u8 buf[4 + msg[0].len];
  228. struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf,
  229. 0, NULL };
  230. buf[0] = msg[0].len;
  231. buf[1] = msg[0].addr << 1;
  232. buf[2] = 0x01;
  233. buf[3] = 0x00;
  234. memcpy(&buf[4], msg[0].buf, msg[0].len);
  235. ret = af9035_ctrl_msg(d->udev, &req);
  236. }
  237. } else {
  238. /*
  239. * We support only two kind of I2C transactions:
  240. * 1) 1 x read + 1 x write
  241. * 2) 1 x write
  242. */
  243. ret = -EOPNOTSUPP;
  244. }
  245. mutex_unlock(&d->i2c_mutex);
  246. if (ret < 0)
  247. return ret;
  248. else
  249. return num;
  250. }
  251. static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
  252. {
  253. return I2C_FUNC_I2C;
  254. }
  255. static struct i2c_algorithm af9035_i2c_algo = {
  256. .master_xfer = af9035_i2c_master_xfer,
  257. .functionality = af9035_i2c_functionality,
  258. };
  259. static int af9035_init(struct dvb_usb_device *d)
  260. {
  261. int ret, i;
  262. u16 frame_size = 87 * 188 / 4;
  263. u8 packet_size = 512 / 4;
  264. struct reg_val_mask tab[] = {
  265. { 0x80f99d, 0x01, 0x01 },
  266. { 0x80f9a4, 0x01, 0x01 },
  267. { 0x00dd11, 0x00, 0x20 },
  268. { 0x00dd11, 0x00, 0x40 },
  269. { 0x00dd13, 0x00, 0x20 },
  270. { 0x00dd13, 0x00, 0x40 },
  271. { 0x00dd11, 0x20, 0x20 },
  272. { 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
  273. { 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
  274. { 0x00dd0c, packet_size, 0xff},
  275. { 0x00dd11, af9035_config.dual_mode << 6, 0x40 },
  276. { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
  277. { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
  278. { 0x00dd0d, packet_size, 0xff },
  279. { 0x80f9a3, 0x00, 0x01 },
  280. { 0x80f9cd, 0x00, 0x01 },
  281. { 0x80f99d, 0x00, 0x01 },
  282. { 0x80f9a4, 0x00, 0x01 },
  283. };
  284. pr_debug("%s: USB speed=%d frame_size=%04x packet_size=%02x\n",
  285. __func__, d->udev->speed, frame_size, packet_size);
  286. /* init endpoints */
  287. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  288. ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
  289. tab[i].mask);
  290. if (ret < 0)
  291. goto err;
  292. }
  293. return 0;
  294. err:
  295. pr_debug("%s: failed=%d\n", __func__, ret);
  296. return ret;
  297. }
  298. static int af9035_identify_state(struct usb_device *udev,
  299. struct dvb_usb_device_properties *props,
  300. struct dvb_usb_device_description **desc,
  301. int *cold)
  302. {
  303. int ret;
  304. u8 wbuf[1] = { 1 };
  305. u8 rbuf[4];
  306. struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
  307. sizeof(rbuf), rbuf };
  308. ret = af9035_ctrl_msg(udev, &req);
  309. if (ret < 0)
  310. goto err;
  311. pr_debug("%s: reply=%02x %02x %02x %02x\n", __func__,
  312. rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
  313. if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
  314. *cold = 0;
  315. else
  316. *cold = 1;
  317. return 0;
  318. err:
  319. pr_debug("%s: failed=%d\n", __func__, ret);
  320. return ret;
  321. }
  322. static int af9035_download_firmware(struct usb_device *udev,
  323. const struct firmware *fw)
  324. {
  325. int ret, i, j, len;
  326. u8 wbuf[1];
  327. u8 rbuf[4];
  328. struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
  329. struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
  330. struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
  331. u8 hdr_core;
  332. u16 hdr_addr, hdr_data_len, hdr_checksum;
  333. #define MAX_DATA 57
  334. #define HDR_SIZE 7
  335. /*
  336. * Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
  337. *
  338. * byte 0: MCS 51 core
  339. * There are two inside the AF9035 (1=Link and 2=OFDM) with separate
  340. * address spaces
  341. * byte 1-2: Big endian destination address
  342. * byte 3-4: Big endian number of data bytes following the header
  343. * byte 5-6: Big endian header checksum, apparently ignored by the chip
  344. * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
  345. */
  346. for (i = fw->size; i > HDR_SIZE;) {
  347. hdr_core = fw->data[fw->size - i + 0];
  348. hdr_addr = fw->data[fw->size - i + 1] << 8;
  349. hdr_addr |= fw->data[fw->size - i + 2] << 0;
  350. hdr_data_len = fw->data[fw->size - i + 3] << 8;
  351. hdr_data_len |= fw->data[fw->size - i + 4] << 0;
  352. hdr_checksum = fw->data[fw->size - i + 5] << 8;
  353. hdr_checksum |= fw->data[fw->size - i + 6] << 0;
  354. pr_debug("%s: core=%d addr=%04x data_len=%d checksum=%04x\n",
  355. __func__, hdr_core, hdr_addr, hdr_data_len,
  356. hdr_checksum);
  357. if (((hdr_core != 1) && (hdr_core != 2)) ||
  358. (hdr_data_len > i)) {
  359. pr_debug("%s: bad firmware\n", __func__);
  360. break;
  361. }
  362. /* download begin packet */
  363. req.cmd = CMD_FW_DL_BEGIN;
  364. ret = af9035_ctrl_msg(udev, &req);
  365. if (ret < 0)
  366. goto err;
  367. /* download firmware packet(s) */
  368. for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
  369. len = j;
  370. if (len > MAX_DATA)
  371. len = MAX_DATA;
  372. req_fw_dl.wlen = len;
  373. req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
  374. HDR_SIZE + hdr_data_len - j];
  375. ret = af9035_ctrl_msg(udev, &req_fw_dl);
  376. if (ret < 0)
  377. goto err;
  378. }
  379. /* download end packet */
  380. req.cmd = CMD_FW_DL_END;
  381. ret = af9035_ctrl_msg(udev, &req);
  382. if (ret < 0)
  383. goto err;
  384. i -= hdr_data_len + HDR_SIZE;
  385. pr_debug("%s: data uploaded=%zu\n", __func__, fw->size - i);
  386. }
  387. /* firmware loaded, request boot */
  388. req.cmd = CMD_FW_BOOT;
  389. ret = af9035_ctrl_msg(udev, &req);
  390. if (ret < 0)
  391. goto err;
  392. /* ensure firmware starts */
  393. wbuf[0] = 1;
  394. ret = af9035_ctrl_msg(udev, &req_fw_ver);
  395. if (ret < 0)
  396. goto err;
  397. if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
  398. info("firmware did not run");
  399. ret = -ENODEV;
  400. goto err;
  401. }
  402. info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2],
  403. rbuf[3]);
  404. return 0;
  405. err:
  406. pr_debug("%s: failed=%d\n", __func__, ret);
  407. return ret;
  408. }
  409. /* abuse that callback as there is no better one for reading eeprom */
  410. static int af9035_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
  411. {
  412. int ret, i, eeprom_shift = 0;
  413. u8 tmp;
  414. u16 tmp16;
  415. /* check if there is dual tuners */
  416. ret = af9035_rd_reg(d, EEPROM_DUAL_MODE, &tmp);
  417. if (ret < 0)
  418. goto err;
  419. af9035_config.dual_mode = tmp;
  420. pr_debug("%s: dual mode=%d\n", __func__, af9035_config.dual_mode);
  421. for (i = 0; i < af9035_properties[0].num_adapters; i++) {
  422. /* tuner */
  423. ret = af9035_rd_reg(d, EEPROM_1_TUNER_ID + eeprom_shift, &tmp);
  424. if (ret < 0)
  425. goto err;
  426. af9035_af9033_config[i].tuner = tmp;
  427. pr_debug("%s: [%d]tuner=%02x\n", __func__, i, tmp);
  428. switch (tmp) {
  429. case AF9033_TUNER_TUA9001:
  430. case AF9033_TUNER_FC0011:
  431. af9035_af9033_config[i].spec_inv = 1;
  432. break;
  433. default:
  434. af9035_config.hw_not_supported = true;
  435. warn("tuner ID=%02x not supported, please report!",
  436. tmp);
  437. };
  438. /* tuner IF frequency */
  439. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_L + eeprom_shift, &tmp);
  440. if (ret < 0)
  441. goto err;
  442. tmp16 = tmp;
  443. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_H + eeprom_shift, &tmp);
  444. if (ret < 0)
  445. goto err;
  446. tmp16 |= tmp << 8;
  447. pr_debug("%s: [%d]IF=%d\n", __func__, i, tmp16);
  448. eeprom_shift = 0x10; /* shift for the 2nd tuner params */
  449. }
  450. /* get demod clock */
  451. ret = af9035_rd_reg(d, 0x00d800, &tmp);
  452. if (ret < 0)
  453. goto err;
  454. tmp = (tmp >> 0) & 0x0f;
  455. for (i = 0; i < af9035_properties[0].num_adapters; i++)
  456. af9035_af9033_config[i].clock = clock_lut[tmp];
  457. return 0;
  458. err:
  459. pr_debug("%s: failed=%d\n", __func__, ret);
  460. return ret;
  461. }
  462. static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d,
  463. int cmd, int arg)
  464. {
  465. int err;
  466. switch (cmd) {
  467. case FC0011_FE_CALLBACK_POWER:
  468. /* Tuner enable */
  469. err = af9035_wr_reg_mask(d, 0xd8eb, 1, 1);
  470. if (err)
  471. return err;
  472. err = af9035_wr_reg_mask(d, 0xd8ec, 1, 1);
  473. if (err)
  474. return err;
  475. err = af9035_wr_reg_mask(d, 0xd8ed, 1, 1);
  476. if (err)
  477. return err;
  478. /* LED */
  479. err = af9035_wr_reg_mask(d, 0xd8d0, 1, 1);
  480. if (err)
  481. return err;
  482. err = af9035_wr_reg_mask(d, 0xd8d1, 1, 1);
  483. if (err)
  484. return err;
  485. msleep(10);
  486. break;
  487. case FC0011_FE_CALLBACK_RESET:
  488. err = af9035_wr_reg(d, 0xd8e9, 1);
  489. if (err)
  490. return err;
  491. err = af9035_wr_reg(d, 0xd8e8, 1);
  492. if (err)
  493. return err;
  494. err = af9035_wr_reg(d, 0xd8e7, 1);
  495. if (err)
  496. return err;
  497. msleep(10);
  498. err = af9035_wr_reg(d, 0xd8e7, 0);
  499. if (err)
  500. return err;
  501. msleep(10);
  502. break;
  503. default:
  504. return -EINVAL;
  505. }
  506. return 0;
  507. }
  508. static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg)
  509. {
  510. switch (af9035_af9033_config[0].tuner) {
  511. case AF9033_TUNER_FC0011:
  512. return af9035_fc0011_tuner_callback(d, cmd, arg);
  513. default:
  514. break;
  515. }
  516. return -ENODEV;
  517. }
  518. static int af9035_frontend_callback(void *adapter_priv, int component,
  519. int cmd, int arg)
  520. {
  521. struct i2c_adapter *adap = adapter_priv;
  522. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  523. switch (component) {
  524. case DVB_FRONTEND_COMPONENT_TUNER:
  525. return af9035_tuner_callback(d, cmd, arg);
  526. default:
  527. break;
  528. }
  529. return -EINVAL;
  530. }
  531. static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
  532. {
  533. int ret;
  534. if (af9035_config.hw_not_supported) {
  535. ret = -ENODEV;
  536. goto err;
  537. }
  538. if (adap->id == 0) {
  539. ret = af9035_wr_reg(adap->dev, 0x00417f,
  540. af9035_af9033_config[1].i2c_addr);
  541. if (ret < 0)
  542. goto err;
  543. ret = af9035_wr_reg(adap->dev, 0x00d81a,
  544. af9035_config.dual_mode);
  545. if (ret < 0)
  546. goto err;
  547. }
  548. /* attach demodulator */
  549. adap->fe_adap[0].fe = dvb_attach(af9033_attach,
  550. &af9035_af9033_config[adap->id], &adap->dev->i2c_adap);
  551. if (adap->fe_adap[0].fe == NULL) {
  552. ret = -ENODEV;
  553. goto err;
  554. }
  555. adap->fe_adap[0].fe->callback = af9035_frontend_callback;
  556. return 0;
  557. err:
  558. pr_debug("%s: failed=%d\n", __func__, ret);
  559. return ret;
  560. }
  561. static struct tua9001_config af9035_tua9001_config = {
  562. .i2c_addr = 0x60,
  563. };
  564. static const struct fc0011_config af9035_fc0011_config = {
  565. .i2c_address = 0x60,
  566. };
  567. static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
  568. {
  569. int ret;
  570. struct dvb_frontend *fe;
  571. switch (af9035_af9033_config[adap->id].tuner) {
  572. case AF9033_TUNER_TUA9001:
  573. /* AF9035 gpiot3 = TUA9001 RESETN
  574. AF9035 gpiot2 = TUA9001 RXEN */
  575. /* configure gpiot2 and gpiot2 as output */
  576. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ec, 0x01, 0x01);
  577. if (ret < 0)
  578. goto err;
  579. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ed, 0x01, 0x01);
  580. if (ret < 0)
  581. goto err;
  582. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e8, 0x01, 0x01);
  583. if (ret < 0)
  584. goto err;
  585. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e9, 0x01, 0x01);
  586. if (ret < 0)
  587. goto err;
  588. /* reset tuner */
  589. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x00, 0x01);
  590. if (ret < 0)
  591. goto err;
  592. usleep_range(2000, 20000);
  593. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x01, 0x01);
  594. if (ret < 0)
  595. goto err;
  596. /* activate tuner RX */
  597. /* TODO: use callback for TUA9001 RXEN */
  598. ret = af9035_wr_reg_mask(adap->dev, 0x00d8eb, 0x01, 0x01);
  599. if (ret < 0)
  600. goto err;
  601. /* attach tuner */
  602. fe = dvb_attach(tua9001_attach, adap->fe_adap[0].fe,
  603. &adap->dev->i2c_adap, &af9035_tua9001_config);
  604. break;
  605. case AF9033_TUNER_FC0011:
  606. fe = dvb_attach(fc0011_attach, adap->fe_adap[0].fe,
  607. &adap->dev->i2c_adap, &af9035_fc0011_config);
  608. break;
  609. default:
  610. fe = NULL;
  611. }
  612. if (fe == NULL) {
  613. ret = -ENODEV;
  614. goto err;
  615. }
  616. return 0;
  617. err:
  618. pr_debug("%s: failed=%d\n", __func__, ret);
  619. return ret;
  620. }
  621. enum af9035_id_entry {
  622. AF9035_0CCD_0093,
  623. };
  624. static struct usb_device_id af9035_id[] = {
  625. [AF9035_0CCD_0093] = {
  626. USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK)},
  627. {},
  628. };
  629. MODULE_DEVICE_TABLE(usb, af9035_id);
  630. static struct dvb_usb_device_properties af9035_properties[] = {
  631. {
  632. .caps = DVB_USB_IS_AN_I2C_ADAPTER,
  633. .usb_ctrl = DEVICE_SPECIFIC,
  634. .download_firmware = af9035_download_firmware,
  635. .firmware = "dvb-usb-af9035-02.fw",
  636. .no_reconnect = 1,
  637. .num_adapters = 1,
  638. .adapter = {
  639. {
  640. .num_frontends = 1,
  641. .fe = {
  642. {
  643. .frontend_attach = af9035_frontend_attach,
  644. .tuner_attach = af9035_tuner_attach,
  645. .stream = {
  646. .type = USB_BULK,
  647. .count = 6,
  648. .endpoint = 0x84,
  649. .u = {
  650. .bulk = {
  651. .buffersize = (87 * 188),
  652. }
  653. }
  654. }
  655. }
  656. }
  657. }
  658. },
  659. .identify_state = af9035_identify_state,
  660. .read_mac_address = af9035_read_mac_address,
  661. .i2c_algo = &af9035_i2c_algo,
  662. .num_device_descs = 1,
  663. .devices = {
  664. {
  665. .name = "TerraTec Cinergy T Stick",
  666. .cold_ids = {
  667. &af9035_id[AF9035_0CCD_0093],
  668. },
  669. },
  670. }
  671. },
  672. };
  673. static int af9035_usb_probe(struct usb_interface *intf,
  674. const struct usb_device_id *id)
  675. {
  676. int ret, i;
  677. struct dvb_usb_device *d = NULL;
  678. struct usb_device *udev;
  679. bool found;
  680. pr_debug("%s: interface=%d\n", __func__,
  681. intf->cur_altsetting->desc.bInterfaceNumber);
  682. /* interface 0 is used by DVB-T receiver and
  683. interface 1 is for remote controller (HID) */
  684. if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
  685. return 0;
  686. /* Dynamic USB ID support. Replaces first device ID with current one. */
  687. udev = interface_to_usbdev(intf);
  688. for (i = 0, found = false; i < ARRAY_SIZE(af9035_id) - 1; i++) {
  689. if (af9035_id[i].idVendor ==
  690. le16_to_cpu(udev->descriptor.idVendor) &&
  691. af9035_id[i].idProduct ==
  692. le16_to_cpu(udev->descriptor.idProduct)) {
  693. found = true;
  694. break;
  695. }
  696. }
  697. if (!found) {
  698. pr_debug("%s: using dynamic ID %04x:%04x\n", __func__,
  699. le16_to_cpu(udev->descriptor.idVendor),
  700. le16_to_cpu(udev->descriptor.idProduct));
  701. af9035_properties[0].devices[0].cold_ids[0]->idVendor =
  702. le16_to_cpu(udev->descriptor.idVendor);
  703. af9035_properties[0].devices[0].cold_ids[0]->idProduct =
  704. le16_to_cpu(udev->descriptor.idProduct);
  705. }
  706. for (i = 0; i < af9035_properties_count; i++) {
  707. ret = dvb_usb_device_init(intf, &af9035_properties[i],
  708. THIS_MODULE, &d, adapter_nr);
  709. if (ret == -ENODEV)
  710. continue;
  711. else
  712. break;
  713. }
  714. if (ret < 0)
  715. goto err;
  716. if (d) {
  717. ret = af9035_init(d);
  718. if (ret < 0)
  719. goto err;
  720. }
  721. return 0;
  722. err:
  723. pr_debug("%s: failed=%d\n", __func__, ret);
  724. return ret;
  725. }
  726. /* usb specific object needed to register this driver with the usb subsystem */
  727. static struct usb_driver af9035_usb_driver = {
  728. .name = "dvb_usb_af9035",
  729. .probe = af9035_usb_probe,
  730. .disconnect = dvb_usb_device_exit,
  731. .id_table = af9035_id,
  732. };
  733. /* module stuff */
  734. static int __init af9035_usb_module_init(void)
  735. {
  736. int ret;
  737. ret = usb_register(&af9035_usb_driver);
  738. if (ret < 0)
  739. goto err;
  740. return 0;
  741. err:
  742. pr_debug("%s: failed=%d\n", __func__, ret);
  743. return ret;
  744. }
  745. static void __exit af9035_usb_module_exit(void)
  746. {
  747. /* deregister this driver from the USB subsystem */
  748. usb_deregister(&af9035_usb_driver);
  749. }
  750. module_init(af9035_usb_module_init);
  751. module_exit(af9035_usb_module_exit);
  752. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  753. MODULE_DESCRIPTION("Afatech AF9035 driver");
  754. MODULE_LICENSE("GPL");