mmu.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "x86.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. char *audit_point_name[] = {
  58. "pre page fault",
  59. "post page fault",
  60. "pre pte write",
  61. "post pte write",
  62. "pre sync",
  63. "post sync"
  64. };
  65. #undef MMU_DEBUG
  66. #ifdef MMU_DEBUG
  67. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  68. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  69. #else
  70. #define pgprintk(x...) do { } while (0)
  71. #define rmap_printk(x...) do { } while (0)
  72. #endif
  73. #ifdef MMU_DEBUG
  74. static int dbg = 0;
  75. module_param(dbg, bool, 0644);
  76. #endif
  77. static int oos_shadow = 1;
  78. module_param(oos_shadow, bool, 0644);
  79. #ifndef MMU_DEBUG
  80. #define ASSERT(x) do { } while (0)
  81. #else
  82. #define ASSERT(x) \
  83. if (!(x)) { \
  84. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  85. __FILE__, __LINE__, #x); \
  86. }
  87. #endif
  88. #define PTE_PREFETCH_NUM 8
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define PT64_LEVEL_BITS 9
  92. #define PT64_LEVEL_SHIFT(level) \
  93. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94. #define PT64_INDEX(address, level)\
  95. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  96. #define PT32_LEVEL_BITS 10
  97. #define PT32_LEVEL_SHIFT(level) \
  98. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  99. #define PT32_LVL_OFFSET_MASK(level) \
  100. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT32_LEVEL_BITS))) - 1))
  102. #define PT32_INDEX(address, level)\
  103. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  104. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  105. #define PT64_DIR_BASE_ADDR_MASK \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  107. #define PT64_LVL_ADDR_MASK(level) \
  108. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT64_LEVEL_BITS))) - 1))
  110. #define PT64_LVL_OFFSET_MASK(level) \
  111. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  112. * PT64_LEVEL_BITS))) - 1))
  113. #define PT32_BASE_ADDR_MASK PAGE_MASK
  114. #define PT32_DIR_BASE_ADDR_MASK \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  116. #define PT32_LVL_ADDR_MASK(level) \
  117. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  118. * PT32_LEVEL_BITS))) - 1))
  119. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  120. | PT64_NX_MASK)
  121. #define PTE_LIST_EXT 4
  122. #define ACC_EXEC_MASK 1
  123. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  124. #define ACC_USER_MASK PT_USER_MASK
  125. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  126. #include <trace/events/kvm.h>
  127. #define CREATE_TRACE_POINTS
  128. #include "mmutrace.h"
  129. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  130. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  131. struct pte_list_desc {
  132. u64 *sptes[PTE_LIST_EXT];
  133. struct pte_list_desc *more;
  134. };
  135. struct kvm_shadow_walk_iterator {
  136. u64 addr;
  137. hpa_t shadow_addr;
  138. int level;
  139. u64 *sptep;
  140. unsigned index;
  141. };
  142. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  143. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  144. shadow_walk_okay(&(_walker)); \
  145. shadow_walk_next(&(_walker)))
  146. static struct kmem_cache *pte_list_desc_cache;
  147. static struct kmem_cache *mmu_page_header_cache;
  148. static struct percpu_counter kvm_total_used_mmu_pages;
  149. static u64 __read_mostly shadow_trap_nonpresent_pte;
  150. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  151. static u64 __read_mostly shadow_nx_mask;
  152. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  153. static u64 __read_mostly shadow_user_mask;
  154. static u64 __read_mostly shadow_accessed_mask;
  155. static u64 __read_mostly shadow_dirty_mask;
  156. static inline u64 rsvd_bits(int s, int e)
  157. {
  158. return ((1ULL << (e - s + 1)) - 1) << s;
  159. }
  160. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  161. {
  162. shadow_trap_nonpresent_pte = trap_pte;
  163. shadow_notrap_nonpresent_pte = notrap_pte;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  166. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  167. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  168. {
  169. shadow_user_mask = user_mask;
  170. shadow_accessed_mask = accessed_mask;
  171. shadow_dirty_mask = dirty_mask;
  172. shadow_nx_mask = nx_mask;
  173. shadow_x_mask = x_mask;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  176. static bool is_write_protection(struct kvm_vcpu *vcpu)
  177. {
  178. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  179. }
  180. static int is_cpuid_PSE36(void)
  181. {
  182. return 1;
  183. }
  184. static int is_nx(struct kvm_vcpu *vcpu)
  185. {
  186. return vcpu->arch.efer & EFER_NX;
  187. }
  188. static int is_shadow_present_pte(u64 pte)
  189. {
  190. return pte != shadow_trap_nonpresent_pte
  191. && pte != shadow_notrap_nonpresent_pte;
  192. }
  193. static int is_large_pte(u64 pte)
  194. {
  195. return pte & PT_PAGE_SIZE_MASK;
  196. }
  197. static int is_writable_pte(unsigned long pte)
  198. {
  199. return pte & PT_WRITABLE_MASK;
  200. }
  201. static int is_dirty_gpte(unsigned long pte)
  202. {
  203. return pte & PT_DIRTY_MASK;
  204. }
  205. static int is_rmap_spte(u64 pte)
  206. {
  207. return is_shadow_present_pte(pte);
  208. }
  209. static int is_last_spte(u64 pte, int level)
  210. {
  211. if (level == PT_PAGE_TABLE_LEVEL)
  212. return 1;
  213. if (is_large_pte(pte))
  214. return 1;
  215. return 0;
  216. }
  217. static pfn_t spte_to_pfn(u64 pte)
  218. {
  219. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  220. }
  221. static gfn_t pse36_gfn_delta(u32 gpte)
  222. {
  223. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  224. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  225. }
  226. static void __set_spte(u64 *sptep, u64 spte)
  227. {
  228. set_64bit(sptep, spte);
  229. }
  230. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  231. {
  232. #ifdef CONFIG_X86_64
  233. return xchg(sptep, new_spte);
  234. #else
  235. u64 old_spte;
  236. do {
  237. old_spte = *sptep;
  238. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  239. return old_spte;
  240. #endif
  241. }
  242. static bool spte_has_volatile_bits(u64 spte)
  243. {
  244. if (!shadow_accessed_mask)
  245. return false;
  246. if (!is_shadow_present_pte(spte))
  247. return false;
  248. if ((spte & shadow_accessed_mask) &&
  249. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  250. return false;
  251. return true;
  252. }
  253. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  254. {
  255. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  256. }
  257. static void update_spte(u64 *sptep, u64 new_spte)
  258. {
  259. u64 mask, old_spte = *sptep;
  260. WARN_ON(!is_rmap_spte(new_spte));
  261. new_spte |= old_spte & shadow_dirty_mask;
  262. mask = shadow_accessed_mask;
  263. if (is_writable_pte(old_spte))
  264. mask |= shadow_dirty_mask;
  265. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  266. __set_spte(sptep, new_spte);
  267. else
  268. old_spte = __xchg_spte(sptep, new_spte);
  269. if (!shadow_accessed_mask)
  270. return;
  271. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  272. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  273. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  274. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  275. }
  276. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  277. struct kmem_cache *base_cache, int min)
  278. {
  279. void *obj;
  280. if (cache->nobjs >= min)
  281. return 0;
  282. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  283. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  284. if (!obj)
  285. return -ENOMEM;
  286. cache->objects[cache->nobjs++] = obj;
  287. }
  288. return 0;
  289. }
  290. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  291. struct kmem_cache *cache)
  292. {
  293. while (mc->nobjs)
  294. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  295. }
  296. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  297. int min)
  298. {
  299. void *page;
  300. if (cache->nobjs >= min)
  301. return 0;
  302. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  303. page = (void *)__get_free_page(GFP_KERNEL);
  304. if (!page)
  305. return -ENOMEM;
  306. cache->objects[cache->nobjs++] = page;
  307. }
  308. return 0;
  309. }
  310. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  311. {
  312. while (mc->nobjs)
  313. free_page((unsigned long)mc->objects[--mc->nobjs]);
  314. }
  315. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  316. {
  317. int r;
  318. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  319. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  320. if (r)
  321. goto out;
  322. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  323. if (r)
  324. goto out;
  325. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  326. mmu_page_header_cache, 4);
  327. out:
  328. return r;
  329. }
  330. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  331. {
  332. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  333. pte_list_desc_cache);
  334. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  335. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  336. mmu_page_header_cache);
  337. }
  338. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  339. size_t size)
  340. {
  341. void *p;
  342. BUG_ON(!mc->nobjs);
  343. p = mc->objects[--mc->nobjs];
  344. return p;
  345. }
  346. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  347. {
  348. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  349. sizeof(struct pte_list_desc));
  350. }
  351. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  352. {
  353. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  354. }
  355. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  356. {
  357. if (!sp->role.direct)
  358. return sp->gfns[index];
  359. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  360. }
  361. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  362. {
  363. if (sp->role.direct)
  364. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  365. else
  366. sp->gfns[index] = gfn;
  367. }
  368. /*
  369. * Return the pointer to the large page information for a given gfn,
  370. * handling slots that are not large page aligned.
  371. */
  372. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  373. struct kvm_memory_slot *slot,
  374. int level)
  375. {
  376. unsigned long idx;
  377. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  378. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  379. return &slot->lpage_info[level - 2][idx];
  380. }
  381. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  382. {
  383. struct kvm_memory_slot *slot;
  384. struct kvm_lpage_info *linfo;
  385. int i;
  386. slot = gfn_to_memslot(kvm, gfn);
  387. for (i = PT_DIRECTORY_LEVEL;
  388. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  389. linfo = lpage_info_slot(gfn, slot, i);
  390. linfo->write_count += 1;
  391. }
  392. kvm->arch.indirect_shadow_pages++;
  393. }
  394. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  395. {
  396. struct kvm_memory_slot *slot;
  397. struct kvm_lpage_info *linfo;
  398. int i;
  399. slot = gfn_to_memslot(kvm, gfn);
  400. for (i = PT_DIRECTORY_LEVEL;
  401. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  402. linfo = lpage_info_slot(gfn, slot, i);
  403. linfo->write_count -= 1;
  404. WARN_ON(linfo->write_count < 0);
  405. }
  406. kvm->arch.indirect_shadow_pages--;
  407. }
  408. static int has_wrprotected_page(struct kvm *kvm,
  409. gfn_t gfn,
  410. int level)
  411. {
  412. struct kvm_memory_slot *slot;
  413. struct kvm_lpage_info *linfo;
  414. slot = gfn_to_memslot(kvm, gfn);
  415. if (slot) {
  416. linfo = lpage_info_slot(gfn, slot, level);
  417. return linfo->write_count;
  418. }
  419. return 1;
  420. }
  421. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  422. {
  423. unsigned long page_size;
  424. int i, ret = 0;
  425. page_size = kvm_host_page_size(kvm, gfn);
  426. for (i = PT_PAGE_TABLE_LEVEL;
  427. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  428. if (page_size >= KVM_HPAGE_SIZE(i))
  429. ret = i;
  430. else
  431. break;
  432. }
  433. return ret;
  434. }
  435. static struct kvm_memory_slot *
  436. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  437. bool no_dirty_log)
  438. {
  439. struct kvm_memory_slot *slot;
  440. slot = gfn_to_memslot(vcpu->kvm, gfn);
  441. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  442. (no_dirty_log && slot->dirty_bitmap))
  443. slot = NULL;
  444. return slot;
  445. }
  446. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  447. {
  448. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  449. }
  450. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  451. {
  452. int host_level, level, max_level;
  453. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  454. if (host_level == PT_PAGE_TABLE_LEVEL)
  455. return host_level;
  456. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  457. kvm_x86_ops->get_lpage_level() : host_level;
  458. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  459. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  460. break;
  461. return level - 1;
  462. }
  463. /*
  464. * Pte mapping structures:
  465. *
  466. * If pte_list bit zero is zero, then pte_list point to the spte.
  467. *
  468. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  469. * pte_list_desc containing more mappings.
  470. *
  471. * Returns the number of pte entries before the spte was added or zero if
  472. * the spte was not added.
  473. *
  474. */
  475. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  476. unsigned long *pte_list)
  477. {
  478. struct pte_list_desc *desc;
  479. int i, count = 0;
  480. if (!*pte_list) {
  481. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  482. *pte_list = (unsigned long)spte;
  483. } else if (!(*pte_list & 1)) {
  484. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  485. desc = mmu_alloc_pte_list_desc(vcpu);
  486. desc->sptes[0] = (u64 *)*pte_list;
  487. desc->sptes[1] = spte;
  488. *pte_list = (unsigned long)desc | 1;
  489. ++count;
  490. } else {
  491. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  492. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  493. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  494. desc = desc->more;
  495. count += PTE_LIST_EXT;
  496. }
  497. if (desc->sptes[PTE_LIST_EXT-1]) {
  498. desc->more = mmu_alloc_pte_list_desc(vcpu);
  499. desc = desc->more;
  500. }
  501. for (i = 0; desc->sptes[i]; ++i)
  502. ++count;
  503. desc->sptes[i] = spte;
  504. }
  505. return count;
  506. }
  507. static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
  508. {
  509. struct pte_list_desc *desc;
  510. u64 *prev_spte;
  511. int i;
  512. if (!*pte_list)
  513. return NULL;
  514. else if (!(*pte_list & 1)) {
  515. if (!spte)
  516. return (u64 *)*pte_list;
  517. return NULL;
  518. }
  519. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  520. prev_spte = NULL;
  521. while (desc) {
  522. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  523. if (prev_spte == spte)
  524. return desc->sptes[i];
  525. prev_spte = desc->sptes[i];
  526. }
  527. desc = desc->more;
  528. }
  529. return NULL;
  530. }
  531. static void
  532. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  533. int i, struct pte_list_desc *prev_desc)
  534. {
  535. int j;
  536. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  537. ;
  538. desc->sptes[i] = desc->sptes[j];
  539. desc->sptes[j] = NULL;
  540. if (j != 0)
  541. return;
  542. if (!prev_desc && !desc->more)
  543. *pte_list = (unsigned long)desc->sptes[0];
  544. else
  545. if (prev_desc)
  546. prev_desc->more = desc->more;
  547. else
  548. *pte_list = (unsigned long)desc->more | 1;
  549. mmu_free_pte_list_desc(desc);
  550. }
  551. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  552. {
  553. struct pte_list_desc *desc;
  554. struct pte_list_desc *prev_desc;
  555. int i;
  556. if (!*pte_list) {
  557. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  558. BUG();
  559. } else if (!(*pte_list & 1)) {
  560. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  561. if ((u64 *)*pte_list != spte) {
  562. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  563. BUG();
  564. }
  565. *pte_list = 0;
  566. } else {
  567. rmap_printk("pte_list_remove: %p many->many\n", spte);
  568. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  569. prev_desc = NULL;
  570. while (desc) {
  571. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  572. if (desc->sptes[i] == spte) {
  573. pte_list_desc_remove_entry(pte_list,
  574. desc, i,
  575. prev_desc);
  576. return;
  577. }
  578. prev_desc = desc;
  579. desc = desc->more;
  580. }
  581. pr_err("pte_list_remove: %p many->many\n", spte);
  582. BUG();
  583. }
  584. }
  585. typedef void (*pte_list_walk_fn) (u64 *spte);
  586. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  587. {
  588. struct pte_list_desc *desc;
  589. int i;
  590. if (!*pte_list)
  591. return;
  592. if (!(*pte_list & 1))
  593. return fn((u64 *)*pte_list);
  594. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  595. while (desc) {
  596. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  597. fn(desc->sptes[i]);
  598. desc = desc->more;
  599. }
  600. }
  601. /*
  602. * Take gfn and return the reverse mapping to it.
  603. */
  604. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. slot = gfn_to_memslot(kvm, gfn);
  609. if (likely(level == PT_PAGE_TABLE_LEVEL))
  610. return &slot->rmap[gfn - slot->base_gfn];
  611. linfo = lpage_info_slot(gfn, slot, level);
  612. return &linfo->rmap_pde;
  613. }
  614. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  615. {
  616. struct kvm_mmu_page *sp;
  617. unsigned long *rmapp;
  618. sp = page_header(__pa(spte));
  619. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  620. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  621. return pte_list_add(vcpu, spte, rmapp);
  622. }
  623. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  624. {
  625. return pte_list_next(rmapp, spte);
  626. }
  627. static void rmap_remove(struct kvm *kvm, u64 *spte)
  628. {
  629. struct kvm_mmu_page *sp;
  630. gfn_t gfn;
  631. unsigned long *rmapp;
  632. sp = page_header(__pa(spte));
  633. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  634. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  635. pte_list_remove(spte, rmapp);
  636. }
  637. static int set_spte_track_bits(u64 *sptep, u64 new_spte)
  638. {
  639. pfn_t pfn;
  640. u64 old_spte = *sptep;
  641. if (!spte_has_volatile_bits(old_spte))
  642. __set_spte(sptep, new_spte);
  643. else
  644. old_spte = __xchg_spte(sptep, new_spte);
  645. if (!is_rmap_spte(old_spte))
  646. return 0;
  647. pfn = spte_to_pfn(old_spte);
  648. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  649. kvm_set_pfn_accessed(pfn);
  650. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  651. kvm_set_pfn_dirty(pfn);
  652. return 1;
  653. }
  654. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  655. {
  656. if (set_spte_track_bits(sptep, new_spte))
  657. rmap_remove(kvm, sptep);
  658. }
  659. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  660. {
  661. unsigned long *rmapp;
  662. u64 *spte;
  663. int i, write_protected = 0;
  664. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  665. spte = rmap_next(kvm, rmapp, NULL);
  666. while (spte) {
  667. BUG_ON(!spte);
  668. BUG_ON(!(*spte & PT_PRESENT_MASK));
  669. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  670. if (is_writable_pte(*spte)) {
  671. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  672. write_protected = 1;
  673. }
  674. spte = rmap_next(kvm, rmapp, spte);
  675. }
  676. /* check for huge page mappings */
  677. for (i = PT_DIRECTORY_LEVEL;
  678. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  679. rmapp = gfn_to_rmap(kvm, gfn, i);
  680. spte = rmap_next(kvm, rmapp, NULL);
  681. while (spte) {
  682. BUG_ON(!spte);
  683. BUG_ON(!(*spte & PT_PRESENT_MASK));
  684. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  685. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  686. if (is_writable_pte(*spte)) {
  687. drop_spte(kvm, spte,
  688. shadow_trap_nonpresent_pte);
  689. --kvm->stat.lpages;
  690. spte = NULL;
  691. write_protected = 1;
  692. }
  693. spte = rmap_next(kvm, rmapp, spte);
  694. }
  695. }
  696. return write_protected;
  697. }
  698. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  699. unsigned long data)
  700. {
  701. u64 *spte;
  702. int need_tlb_flush = 0;
  703. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  704. BUG_ON(!(*spte & PT_PRESENT_MASK));
  705. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  706. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  707. need_tlb_flush = 1;
  708. }
  709. return need_tlb_flush;
  710. }
  711. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  712. unsigned long data)
  713. {
  714. int need_flush = 0;
  715. u64 *spte, new_spte;
  716. pte_t *ptep = (pte_t *)data;
  717. pfn_t new_pfn;
  718. WARN_ON(pte_huge(*ptep));
  719. new_pfn = pte_pfn(*ptep);
  720. spte = rmap_next(kvm, rmapp, NULL);
  721. while (spte) {
  722. BUG_ON(!is_shadow_present_pte(*spte));
  723. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  724. need_flush = 1;
  725. if (pte_write(*ptep)) {
  726. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  727. spte = rmap_next(kvm, rmapp, NULL);
  728. } else {
  729. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  730. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  731. new_spte &= ~PT_WRITABLE_MASK;
  732. new_spte &= ~SPTE_HOST_WRITEABLE;
  733. new_spte &= ~shadow_accessed_mask;
  734. set_spte_track_bits(spte, new_spte);
  735. spte = rmap_next(kvm, rmapp, spte);
  736. }
  737. }
  738. if (need_flush)
  739. kvm_flush_remote_tlbs(kvm);
  740. return 0;
  741. }
  742. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  743. unsigned long data,
  744. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  745. unsigned long data))
  746. {
  747. int i, j;
  748. int ret;
  749. int retval = 0;
  750. struct kvm_memslots *slots;
  751. slots = kvm_memslots(kvm);
  752. for (i = 0; i < slots->nmemslots; i++) {
  753. struct kvm_memory_slot *memslot = &slots->memslots[i];
  754. unsigned long start = memslot->userspace_addr;
  755. unsigned long end;
  756. end = start + (memslot->npages << PAGE_SHIFT);
  757. if (hva >= start && hva < end) {
  758. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  759. gfn_t gfn = memslot->base_gfn + gfn_offset;
  760. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  761. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  762. struct kvm_lpage_info *linfo;
  763. linfo = lpage_info_slot(gfn, memslot,
  764. PT_DIRECTORY_LEVEL + j);
  765. ret |= handler(kvm, &linfo->rmap_pde, data);
  766. }
  767. trace_kvm_age_page(hva, memslot, ret);
  768. retval |= ret;
  769. }
  770. }
  771. return retval;
  772. }
  773. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  774. {
  775. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  776. }
  777. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  778. {
  779. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  780. }
  781. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  782. unsigned long data)
  783. {
  784. u64 *spte;
  785. int young = 0;
  786. /*
  787. * Emulate the accessed bit for EPT, by checking if this page has
  788. * an EPT mapping, and clearing it if it does. On the next access,
  789. * a new EPT mapping will be established.
  790. * This has some overhead, but not as much as the cost of swapping
  791. * out actively used pages or breaking up actively used hugepages.
  792. */
  793. if (!shadow_accessed_mask)
  794. return kvm_unmap_rmapp(kvm, rmapp, data);
  795. spte = rmap_next(kvm, rmapp, NULL);
  796. while (spte) {
  797. int _young;
  798. u64 _spte = *spte;
  799. BUG_ON(!(_spte & PT_PRESENT_MASK));
  800. _young = _spte & PT_ACCESSED_MASK;
  801. if (_young) {
  802. young = 1;
  803. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  804. }
  805. spte = rmap_next(kvm, rmapp, spte);
  806. }
  807. return young;
  808. }
  809. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  810. unsigned long data)
  811. {
  812. u64 *spte;
  813. int young = 0;
  814. /*
  815. * If there's no access bit in the secondary pte set by the
  816. * hardware it's up to gup-fast/gup to set the access bit in
  817. * the primary pte or in the page structure.
  818. */
  819. if (!shadow_accessed_mask)
  820. goto out;
  821. spte = rmap_next(kvm, rmapp, NULL);
  822. while (spte) {
  823. u64 _spte = *spte;
  824. BUG_ON(!(_spte & PT_PRESENT_MASK));
  825. young = _spte & PT_ACCESSED_MASK;
  826. if (young) {
  827. young = 1;
  828. break;
  829. }
  830. spte = rmap_next(kvm, rmapp, spte);
  831. }
  832. out:
  833. return young;
  834. }
  835. #define RMAP_RECYCLE_THRESHOLD 1000
  836. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  837. {
  838. unsigned long *rmapp;
  839. struct kvm_mmu_page *sp;
  840. sp = page_header(__pa(spte));
  841. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  842. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  843. kvm_flush_remote_tlbs(vcpu->kvm);
  844. }
  845. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  846. {
  847. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  848. }
  849. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  850. {
  851. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  852. }
  853. #ifdef MMU_DEBUG
  854. static int is_empty_shadow_page(u64 *spt)
  855. {
  856. u64 *pos;
  857. u64 *end;
  858. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  859. if (is_shadow_present_pte(*pos)) {
  860. printk(KERN_ERR "%s: %p %llx\n", __func__,
  861. pos, *pos);
  862. return 0;
  863. }
  864. return 1;
  865. }
  866. #endif
  867. /*
  868. * This value is the sum of all of the kvm instances's
  869. * kvm->arch.n_used_mmu_pages values. We need a global,
  870. * aggregate version in order to make the slab shrinker
  871. * faster
  872. */
  873. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  874. {
  875. kvm->arch.n_used_mmu_pages += nr;
  876. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  877. }
  878. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  879. {
  880. ASSERT(is_empty_shadow_page(sp->spt));
  881. hlist_del(&sp->hash_link);
  882. list_del(&sp->link);
  883. free_page((unsigned long)sp->spt);
  884. if (!sp->role.direct)
  885. free_page((unsigned long)sp->gfns);
  886. kmem_cache_free(mmu_page_header_cache, sp);
  887. kvm_mod_used_mmu_pages(kvm, -1);
  888. }
  889. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  890. {
  891. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  892. }
  893. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  894. struct kvm_mmu_page *sp, u64 *parent_pte)
  895. {
  896. if (!parent_pte)
  897. return;
  898. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  899. }
  900. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  901. u64 *parent_pte)
  902. {
  903. pte_list_remove(parent_pte, &sp->parent_ptes);
  904. }
  905. static void drop_parent_pte(struct kvm_mmu_page *sp,
  906. u64 *parent_pte)
  907. {
  908. mmu_page_remove_parent_pte(sp, parent_pte);
  909. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  910. }
  911. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  912. u64 *parent_pte, int direct)
  913. {
  914. struct kvm_mmu_page *sp;
  915. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  916. sizeof *sp);
  917. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  918. if (!direct)
  919. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  920. PAGE_SIZE);
  921. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  922. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  923. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  924. sp->parent_ptes = 0;
  925. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  926. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  927. return sp;
  928. }
  929. static void mark_unsync(u64 *spte);
  930. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  931. {
  932. pte_list_walk(&sp->parent_ptes, mark_unsync);
  933. }
  934. static void mark_unsync(u64 *spte)
  935. {
  936. struct kvm_mmu_page *sp;
  937. unsigned int index;
  938. sp = page_header(__pa(spte));
  939. index = spte - sp->spt;
  940. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  941. return;
  942. if (sp->unsync_children++)
  943. return;
  944. kvm_mmu_mark_parents_unsync(sp);
  945. }
  946. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  947. struct kvm_mmu_page *sp)
  948. {
  949. int i;
  950. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  951. sp->spt[i] = shadow_trap_nonpresent_pte;
  952. }
  953. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  954. struct kvm_mmu_page *sp)
  955. {
  956. return 1;
  957. }
  958. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  959. {
  960. }
  961. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  962. struct kvm_mmu_page *sp, u64 *spte,
  963. const void *pte)
  964. {
  965. WARN_ON(1);
  966. }
  967. #define KVM_PAGE_ARRAY_NR 16
  968. struct kvm_mmu_pages {
  969. struct mmu_page_and_offset {
  970. struct kvm_mmu_page *sp;
  971. unsigned int idx;
  972. } page[KVM_PAGE_ARRAY_NR];
  973. unsigned int nr;
  974. };
  975. #define for_each_unsync_children(bitmap, idx) \
  976. for (idx = find_first_bit(bitmap, 512); \
  977. idx < 512; \
  978. idx = find_next_bit(bitmap, 512, idx+1))
  979. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  980. int idx)
  981. {
  982. int i;
  983. if (sp->unsync)
  984. for (i=0; i < pvec->nr; i++)
  985. if (pvec->page[i].sp == sp)
  986. return 0;
  987. pvec->page[pvec->nr].sp = sp;
  988. pvec->page[pvec->nr].idx = idx;
  989. pvec->nr++;
  990. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  991. }
  992. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  993. struct kvm_mmu_pages *pvec)
  994. {
  995. int i, ret, nr_unsync_leaf = 0;
  996. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  997. struct kvm_mmu_page *child;
  998. u64 ent = sp->spt[i];
  999. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1000. goto clear_child_bitmap;
  1001. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1002. if (child->unsync_children) {
  1003. if (mmu_pages_add(pvec, child, i))
  1004. return -ENOSPC;
  1005. ret = __mmu_unsync_walk(child, pvec);
  1006. if (!ret)
  1007. goto clear_child_bitmap;
  1008. else if (ret > 0)
  1009. nr_unsync_leaf += ret;
  1010. else
  1011. return ret;
  1012. } else if (child->unsync) {
  1013. nr_unsync_leaf++;
  1014. if (mmu_pages_add(pvec, child, i))
  1015. return -ENOSPC;
  1016. } else
  1017. goto clear_child_bitmap;
  1018. continue;
  1019. clear_child_bitmap:
  1020. __clear_bit(i, sp->unsync_child_bitmap);
  1021. sp->unsync_children--;
  1022. WARN_ON((int)sp->unsync_children < 0);
  1023. }
  1024. return nr_unsync_leaf;
  1025. }
  1026. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1027. struct kvm_mmu_pages *pvec)
  1028. {
  1029. if (!sp->unsync_children)
  1030. return 0;
  1031. mmu_pages_add(pvec, sp, 0);
  1032. return __mmu_unsync_walk(sp, pvec);
  1033. }
  1034. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1035. {
  1036. WARN_ON(!sp->unsync);
  1037. trace_kvm_mmu_sync_page(sp);
  1038. sp->unsync = 0;
  1039. --kvm->stat.mmu_unsync;
  1040. }
  1041. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1042. struct list_head *invalid_list);
  1043. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1044. struct list_head *invalid_list);
  1045. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1046. hlist_for_each_entry(sp, pos, \
  1047. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1048. if ((sp)->gfn != (gfn)) {} else
  1049. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1050. hlist_for_each_entry(sp, pos, \
  1051. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1052. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1053. (sp)->role.invalid) {} else
  1054. /* @sp->gfn should be write-protected at the call site */
  1055. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1056. struct list_head *invalid_list, bool clear_unsync)
  1057. {
  1058. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1059. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1060. return 1;
  1061. }
  1062. if (clear_unsync)
  1063. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1064. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1065. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1066. return 1;
  1067. }
  1068. kvm_mmu_flush_tlb(vcpu);
  1069. return 0;
  1070. }
  1071. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1072. struct kvm_mmu_page *sp)
  1073. {
  1074. LIST_HEAD(invalid_list);
  1075. int ret;
  1076. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1077. if (ret)
  1078. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1079. return ret;
  1080. }
  1081. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1082. struct list_head *invalid_list)
  1083. {
  1084. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1085. }
  1086. /* @gfn should be write-protected at the call site */
  1087. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1088. {
  1089. struct kvm_mmu_page *s;
  1090. struct hlist_node *node;
  1091. LIST_HEAD(invalid_list);
  1092. bool flush = false;
  1093. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1094. if (!s->unsync)
  1095. continue;
  1096. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1097. kvm_unlink_unsync_page(vcpu->kvm, s);
  1098. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1099. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1100. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1101. continue;
  1102. }
  1103. flush = true;
  1104. }
  1105. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1106. if (flush)
  1107. kvm_mmu_flush_tlb(vcpu);
  1108. }
  1109. struct mmu_page_path {
  1110. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1111. unsigned int idx[PT64_ROOT_LEVEL-1];
  1112. };
  1113. #define for_each_sp(pvec, sp, parents, i) \
  1114. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1115. sp = pvec.page[i].sp; \
  1116. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1117. i = mmu_pages_next(&pvec, &parents, i))
  1118. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1119. struct mmu_page_path *parents,
  1120. int i)
  1121. {
  1122. int n;
  1123. for (n = i+1; n < pvec->nr; n++) {
  1124. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1125. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1126. parents->idx[0] = pvec->page[n].idx;
  1127. return n;
  1128. }
  1129. parents->parent[sp->role.level-2] = sp;
  1130. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1131. }
  1132. return n;
  1133. }
  1134. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1135. {
  1136. struct kvm_mmu_page *sp;
  1137. unsigned int level = 0;
  1138. do {
  1139. unsigned int idx = parents->idx[level];
  1140. sp = parents->parent[level];
  1141. if (!sp)
  1142. return;
  1143. --sp->unsync_children;
  1144. WARN_ON((int)sp->unsync_children < 0);
  1145. __clear_bit(idx, sp->unsync_child_bitmap);
  1146. level++;
  1147. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1148. }
  1149. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1150. struct mmu_page_path *parents,
  1151. struct kvm_mmu_pages *pvec)
  1152. {
  1153. parents->parent[parent->role.level-1] = NULL;
  1154. pvec->nr = 0;
  1155. }
  1156. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1157. struct kvm_mmu_page *parent)
  1158. {
  1159. int i;
  1160. struct kvm_mmu_page *sp;
  1161. struct mmu_page_path parents;
  1162. struct kvm_mmu_pages pages;
  1163. LIST_HEAD(invalid_list);
  1164. kvm_mmu_pages_init(parent, &parents, &pages);
  1165. while (mmu_unsync_walk(parent, &pages)) {
  1166. int protected = 0;
  1167. for_each_sp(pages, sp, parents, i)
  1168. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1169. if (protected)
  1170. kvm_flush_remote_tlbs(vcpu->kvm);
  1171. for_each_sp(pages, sp, parents, i) {
  1172. kvm_sync_page(vcpu, sp, &invalid_list);
  1173. mmu_pages_clear_parents(&parents);
  1174. }
  1175. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1176. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1177. kvm_mmu_pages_init(parent, &parents, &pages);
  1178. }
  1179. }
  1180. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1181. gfn_t gfn,
  1182. gva_t gaddr,
  1183. unsigned level,
  1184. int direct,
  1185. unsigned access,
  1186. u64 *parent_pte)
  1187. {
  1188. union kvm_mmu_page_role role;
  1189. unsigned quadrant;
  1190. struct kvm_mmu_page *sp;
  1191. struct hlist_node *node;
  1192. bool need_sync = false;
  1193. role = vcpu->arch.mmu.base_role;
  1194. role.level = level;
  1195. role.direct = direct;
  1196. if (role.direct)
  1197. role.cr4_pae = 0;
  1198. role.access = access;
  1199. if (!vcpu->arch.mmu.direct_map
  1200. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1201. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1202. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1203. role.quadrant = quadrant;
  1204. }
  1205. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1206. if (!need_sync && sp->unsync)
  1207. need_sync = true;
  1208. if (sp->role.word != role.word)
  1209. continue;
  1210. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1211. break;
  1212. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1213. if (sp->unsync_children) {
  1214. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1215. kvm_mmu_mark_parents_unsync(sp);
  1216. } else if (sp->unsync)
  1217. kvm_mmu_mark_parents_unsync(sp);
  1218. trace_kvm_mmu_get_page(sp, false);
  1219. return sp;
  1220. }
  1221. ++vcpu->kvm->stat.mmu_cache_miss;
  1222. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1223. if (!sp)
  1224. return sp;
  1225. sp->gfn = gfn;
  1226. sp->role = role;
  1227. hlist_add_head(&sp->hash_link,
  1228. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1229. if (!direct) {
  1230. if (rmap_write_protect(vcpu->kvm, gfn))
  1231. kvm_flush_remote_tlbs(vcpu->kvm);
  1232. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1233. kvm_sync_pages(vcpu, gfn);
  1234. account_shadowed(vcpu->kvm, gfn);
  1235. }
  1236. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1237. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1238. else
  1239. nonpaging_prefetch_page(vcpu, sp);
  1240. trace_kvm_mmu_get_page(sp, true);
  1241. return sp;
  1242. }
  1243. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1244. struct kvm_vcpu *vcpu, u64 addr)
  1245. {
  1246. iterator->addr = addr;
  1247. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1248. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1249. if (iterator->level == PT64_ROOT_LEVEL &&
  1250. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1251. !vcpu->arch.mmu.direct_map)
  1252. --iterator->level;
  1253. if (iterator->level == PT32E_ROOT_LEVEL) {
  1254. iterator->shadow_addr
  1255. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1256. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1257. --iterator->level;
  1258. if (!iterator->shadow_addr)
  1259. iterator->level = 0;
  1260. }
  1261. }
  1262. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1263. {
  1264. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1265. return false;
  1266. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1267. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1268. return true;
  1269. }
  1270. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1271. {
  1272. if (is_last_spte(*iterator->sptep, iterator->level)) {
  1273. iterator->level = 0;
  1274. return;
  1275. }
  1276. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1277. --iterator->level;
  1278. }
  1279. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1280. {
  1281. u64 spte;
  1282. spte = __pa(sp->spt)
  1283. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1284. | PT_WRITABLE_MASK | PT_USER_MASK;
  1285. __set_spte(sptep, spte);
  1286. }
  1287. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1288. {
  1289. if (is_large_pte(*sptep)) {
  1290. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1291. kvm_flush_remote_tlbs(vcpu->kvm);
  1292. }
  1293. }
  1294. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1295. unsigned direct_access)
  1296. {
  1297. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1298. struct kvm_mmu_page *child;
  1299. /*
  1300. * For the direct sp, if the guest pte's dirty bit
  1301. * changed form clean to dirty, it will corrupt the
  1302. * sp's access: allow writable in the read-only sp,
  1303. * so we should update the spte at this point to get
  1304. * a new sp with the correct access.
  1305. */
  1306. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1307. if (child->role.access == direct_access)
  1308. return;
  1309. drop_parent_pte(child, sptep);
  1310. kvm_flush_remote_tlbs(vcpu->kvm);
  1311. }
  1312. }
  1313. static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1314. u64 *spte)
  1315. {
  1316. u64 pte;
  1317. struct kvm_mmu_page *child;
  1318. pte = *spte;
  1319. if (is_shadow_present_pte(pte)) {
  1320. if (is_last_spte(pte, sp->role.level))
  1321. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  1322. else {
  1323. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1324. drop_parent_pte(child, spte);
  1325. }
  1326. }
  1327. __set_spte(spte, shadow_trap_nonpresent_pte);
  1328. if (is_large_pte(pte))
  1329. --kvm->stat.lpages;
  1330. }
  1331. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1332. struct kvm_mmu_page *sp)
  1333. {
  1334. unsigned i;
  1335. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1336. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1337. }
  1338. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1339. {
  1340. mmu_page_remove_parent_pte(sp, parent_pte);
  1341. }
  1342. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1343. {
  1344. int i;
  1345. struct kvm_vcpu *vcpu;
  1346. kvm_for_each_vcpu(i, vcpu, kvm)
  1347. vcpu->arch.last_pte_updated = NULL;
  1348. }
  1349. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1350. {
  1351. u64 *parent_pte;
  1352. while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
  1353. drop_parent_pte(sp, parent_pte);
  1354. }
  1355. static int mmu_zap_unsync_children(struct kvm *kvm,
  1356. struct kvm_mmu_page *parent,
  1357. struct list_head *invalid_list)
  1358. {
  1359. int i, zapped = 0;
  1360. struct mmu_page_path parents;
  1361. struct kvm_mmu_pages pages;
  1362. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1363. return 0;
  1364. kvm_mmu_pages_init(parent, &parents, &pages);
  1365. while (mmu_unsync_walk(parent, &pages)) {
  1366. struct kvm_mmu_page *sp;
  1367. for_each_sp(pages, sp, parents, i) {
  1368. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1369. mmu_pages_clear_parents(&parents);
  1370. zapped++;
  1371. }
  1372. kvm_mmu_pages_init(parent, &parents, &pages);
  1373. }
  1374. return zapped;
  1375. }
  1376. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1377. struct list_head *invalid_list)
  1378. {
  1379. int ret;
  1380. trace_kvm_mmu_prepare_zap_page(sp);
  1381. ++kvm->stat.mmu_shadow_zapped;
  1382. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1383. kvm_mmu_page_unlink_children(kvm, sp);
  1384. kvm_mmu_unlink_parents(kvm, sp);
  1385. if (!sp->role.invalid && !sp->role.direct)
  1386. unaccount_shadowed(kvm, sp->gfn);
  1387. if (sp->unsync)
  1388. kvm_unlink_unsync_page(kvm, sp);
  1389. if (!sp->root_count) {
  1390. /* Count self */
  1391. ret++;
  1392. list_move(&sp->link, invalid_list);
  1393. } else {
  1394. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1395. kvm_reload_remote_mmus(kvm);
  1396. }
  1397. sp->role.invalid = 1;
  1398. kvm_mmu_reset_last_pte_updated(kvm);
  1399. return ret;
  1400. }
  1401. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1402. struct list_head *invalid_list)
  1403. {
  1404. struct kvm_mmu_page *sp;
  1405. if (list_empty(invalid_list))
  1406. return;
  1407. kvm_flush_remote_tlbs(kvm);
  1408. do {
  1409. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1410. WARN_ON(!sp->role.invalid || sp->root_count);
  1411. kvm_mmu_free_page(kvm, sp);
  1412. } while (!list_empty(invalid_list));
  1413. }
  1414. /*
  1415. * Changing the number of mmu pages allocated to the vm
  1416. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1417. */
  1418. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1419. {
  1420. LIST_HEAD(invalid_list);
  1421. /*
  1422. * If we set the number of mmu pages to be smaller be than the
  1423. * number of actived pages , we must to free some mmu pages before we
  1424. * change the value
  1425. */
  1426. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1427. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1428. !list_empty(&kvm->arch.active_mmu_pages)) {
  1429. struct kvm_mmu_page *page;
  1430. page = container_of(kvm->arch.active_mmu_pages.prev,
  1431. struct kvm_mmu_page, link);
  1432. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1433. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1434. }
  1435. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1436. }
  1437. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1438. }
  1439. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1440. {
  1441. struct kvm_mmu_page *sp;
  1442. struct hlist_node *node;
  1443. LIST_HEAD(invalid_list);
  1444. int r;
  1445. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1446. r = 0;
  1447. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1448. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1449. sp->role.word);
  1450. r = 1;
  1451. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1452. }
  1453. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1454. return r;
  1455. }
  1456. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1457. {
  1458. struct kvm_mmu_page *sp;
  1459. struct hlist_node *node;
  1460. LIST_HEAD(invalid_list);
  1461. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1462. pgprintk("%s: zap %llx %x\n",
  1463. __func__, gfn, sp->role.word);
  1464. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1465. }
  1466. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1467. }
  1468. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1469. {
  1470. int slot = memslot_id(kvm, gfn);
  1471. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1472. __set_bit(slot, sp->slot_bitmap);
  1473. }
  1474. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1475. {
  1476. int i;
  1477. u64 *pt = sp->spt;
  1478. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1479. return;
  1480. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1481. if (pt[i] == shadow_notrap_nonpresent_pte)
  1482. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1483. }
  1484. }
  1485. /*
  1486. * The function is based on mtrr_type_lookup() in
  1487. * arch/x86/kernel/cpu/mtrr/generic.c
  1488. */
  1489. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1490. u64 start, u64 end)
  1491. {
  1492. int i;
  1493. u64 base, mask;
  1494. u8 prev_match, curr_match;
  1495. int num_var_ranges = KVM_NR_VAR_MTRR;
  1496. if (!mtrr_state->enabled)
  1497. return 0xFF;
  1498. /* Make end inclusive end, instead of exclusive */
  1499. end--;
  1500. /* Look in fixed ranges. Just return the type as per start */
  1501. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1502. int idx;
  1503. if (start < 0x80000) {
  1504. idx = 0;
  1505. idx += (start >> 16);
  1506. return mtrr_state->fixed_ranges[idx];
  1507. } else if (start < 0xC0000) {
  1508. idx = 1 * 8;
  1509. idx += ((start - 0x80000) >> 14);
  1510. return mtrr_state->fixed_ranges[idx];
  1511. } else if (start < 0x1000000) {
  1512. idx = 3 * 8;
  1513. idx += ((start - 0xC0000) >> 12);
  1514. return mtrr_state->fixed_ranges[idx];
  1515. }
  1516. }
  1517. /*
  1518. * Look in variable ranges
  1519. * Look of multiple ranges matching this address and pick type
  1520. * as per MTRR precedence
  1521. */
  1522. if (!(mtrr_state->enabled & 2))
  1523. return mtrr_state->def_type;
  1524. prev_match = 0xFF;
  1525. for (i = 0; i < num_var_ranges; ++i) {
  1526. unsigned short start_state, end_state;
  1527. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1528. continue;
  1529. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1530. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1531. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1532. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1533. start_state = ((start & mask) == (base & mask));
  1534. end_state = ((end & mask) == (base & mask));
  1535. if (start_state != end_state)
  1536. return 0xFE;
  1537. if ((start & mask) != (base & mask))
  1538. continue;
  1539. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1540. if (prev_match == 0xFF) {
  1541. prev_match = curr_match;
  1542. continue;
  1543. }
  1544. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1545. curr_match == MTRR_TYPE_UNCACHABLE)
  1546. return MTRR_TYPE_UNCACHABLE;
  1547. if ((prev_match == MTRR_TYPE_WRBACK &&
  1548. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1549. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1550. curr_match == MTRR_TYPE_WRBACK)) {
  1551. prev_match = MTRR_TYPE_WRTHROUGH;
  1552. curr_match = MTRR_TYPE_WRTHROUGH;
  1553. }
  1554. if (prev_match != curr_match)
  1555. return MTRR_TYPE_UNCACHABLE;
  1556. }
  1557. if (prev_match != 0xFF)
  1558. return prev_match;
  1559. return mtrr_state->def_type;
  1560. }
  1561. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1562. {
  1563. u8 mtrr;
  1564. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1565. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1566. if (mtrr == 0xfe || mtrr == 0xff)
  1567. mtrr = MTRR_TYPE_WRBACK;
  1568. return mtrr;
  1569. }
  1570. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1571. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1572. {
  1573. trace_kvm_mmu_unsync_page(sp);
  1574. ++vcpu->kvm->stat.mmu_unsync;
  1575. sp->unsync = 1;
  1576. kvm_mmu_mark_parents_unsync(sp);
  1577. mmu_convert_notrap(sp);
  1578. }
  1579. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1580. {
  1581. struct kvm_mmu_page *s;
  1582. struct hlist_node *node;
  1583. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1584. if (s->unsync)
  1585. continue;
  1586. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1587. __kvm_unsync_page(vcpu, s);
  1588. }
  1589. }
  1590. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1591. bool can_unsync)
  1592. {
  1593. struct kvm_mmu_page *s;
  1594. struct hlist_node *node;
  1595. bool need_unsync = false;
  1596. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1597. if (!can_unsync)
  1598. return 1;
  1599. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1600. return 1;
  1601. if (!need_unsync && !s->unsync) {
  1602. if (!oos_shadow)
  1603. return 1;
  1604. need_unsync = true;
  1605. }
  1606. }
  1607. if (need_unsync)
  1608. kvm_unsync_pages(vcpu, gfn);
  1609. return 0;
  1610. }
  1611. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1612. unsigned pte_access, int user_fault,
  1613. int write_fault, int dirty, int level,
  1614. gfn_t gfn, pfn_t pfn, bool speculative,
  1615. bool can_unsync, bool host_writable)
  1616. {
  1617. u64 spte, entry = *sptep;
  1618. int ret = 0;
  1619. /*
  1620. * We don't set the accessed bit, since we sometimes want to see
  1621. * whether the guest actually used the pte (in order to detect
  1622. * demand paging).
  1623. */
  1624. spte = PT_PRESENT_MASK;
  1625. if (!speculative)
  1626. spte |= shadow_accessed_mask;
  1627. if (!dirty)
  1628. pte_access &= ~ACC_WRITE_MASK;
  1629. if (pte_access & ACC_EXEC_MASK)
  1630. spte |= shadow_x_mask;
  1631. else
  1632. spte |= shadow_nx_mask;
  1633. if (pte_access & ACC_USER_MASK)
  1634. spte |= shadow_user_mask;
  1635. if (level > PT_PAGE_TABLE_LEVEL)
  1636. spte |= PT_PAGE_SIZE_MASK;
  1637. if (tdp_enabled)
  1638. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1639. kvm_is_mmio_pfn(pfn));
  1640. if (host_writable)
  1641. spte |= SPTE_HOST_WRITEABLE;
  1642. else
  1643. pte_access &= ~ACC_WRITE_MASK;
  1644. spte |= (u64)pfn << PAGE_SHIFT;
  1645. if ((pte_access & ACC_WRITE_MASK)
  1646. || (!vcpu->arch.mmu.direct_map && write_fault
  1647. && !is_write_protection(vcpu) && !user_fault)) {
  1648. if (level > PT_PAGE_TABLE_LEVEL &&
  1649. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1650. ret = 1;
  1651. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1652. goto done;
  1653. }
  1654. spte |= PT_WRITABLE_MASK;
  1655. if (!vcpu->arch.mmu.direct_map
  1656. && !(pte_access & ACC_WRITE_MASK)) {
  1657. spte &= ~PT_USER_MASK;
  1658. /*
  1659. * If we converted a user page to a kernel page,
  1660. * so that the kernel can write to it when cr0.wp=0,
  1661. * then we should prevent the kernel from executing it
  1662. * if SMEP is enabled.
  1663. */
  1664. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1665. spte |= PT64_NX_MASK;
  1666. }
  1667. /*
  1668. * Optimization: for pte sync, if spte was writable the hash
  1669. * lookup is unnecessary (and expensive). Write protection
  1670. * is responsibility of mmu_get_page / kvm_sync_page.
  1671. * Same reasoning can be applied to dirty page accounting.
  1672. */
  1673. if (!can_unsync && is_writable_pte(*sptep))
  1674. goto set_pte;
  1675. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1676. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1677. __func__, gfn);
  1678. ret = 1;
  1679. pte_access &= ~ACC_WRITE_MASK;
  1680. if (is_writable_pte(spte))
  1681. spte &= ~PT_WRITABLE_MASK;
  1682. }
  1683. }
  1684. if (pte_access & ACC_WRITE_MASK)
  1685. mark_page_dirty(vcpu->kvm, gfn);
  1686. set_pte:
  1687. update_spte(sptep, spte);
  1688. /*
  1689. * If we overwrite a writable spte with a read-only one we
  1690. * should flush remote TLBs. Otherwise rmap_write_protect
  1691. * will find a read-only spte, even though the writable spte
  1692. * might be cached on a CPU's TLB.
  1693. */
  1694. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1695. kvm_flush_remote_tlbs(vcpu->kvm);
  1696. done:
  1697. return ret;
  1698. }
  1699. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1700. unsigned pt_access, unsigned pte_access,
  1701. int user_fault, int write_fault, int dirty,
  1702. int *ptwrite, int level, gfn_t gfn,
  1703. pfn_t pfn, bool speculative,
  1704. bool host_writable)
  1705. {
  1706. int was_rmapped = 0;
  1707. int rmap_count;
  1708. pgprintk("%s: spte %llx access %x write_fault %d"
  1709. " user_fault %d gfn %llx\n",
  1710. __func__, *sptep, pt_access,
  1711. write_fault, user_fault, gfn);
  1712. if (is_rmap_spte(*sptep)) {
  1713. /*
  1714. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1715. * the parent of the now unreachable PTE.
  1716. */
  1717. if (level > PT_PAGE_TABLE_LEVEL &&
  1718. !is_large_pte(*sptep)) {
  1719. struct kvm_mmu_page *child;
  1720. u64 pte = *sptep;
  1721. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1722. drop_parent_pte(child, sptep);
  1723. kvm_flush_remote_tlbs(vcpu->kvm);
  1724. } else if (pfn != spte_to_pfn(*sptep)) {
  1725. pgprintk("hfn old %llx new %llx\n",
  1726. spte_to_pfn(*sptep), pfn);
  1727. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1728. kvm_flush_remote_tlbs(vcpu->kvm);
  1729. } else
  1730. was_rmapped = 1;
  1731. }
  1732. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1733. dirty, level, gfn, pfn, speculative, true,
  1734. host_writable)) {
  1735. if (write_fault)
  1736. *ptwrite = 1;
  1737. kvm_mmu_flush_tlb(vcpu);
  1738. }
  1739. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1740. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1741. is_large_pte(*sptep)? "2MB" : "4kB",
  1742. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1743. *sptep, sptep);
  1744. if (!was_rmapped && is_large_pte(*sptep))
  1745. ++vcpu->kvm->stat.lpages;
  1746. if (is_shadow_present_pte(*sptep)) {
  1747. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1748. if (!was_rmapped) {
  1749. rmap_count = rmap_add(vcpu, sptep, gfn);
  1750. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1751. rmap_recycle(vcpu, sptep, gfn);
  1752. }
  1753. }
  1754. kvm_release_pfn_clean(pfn);
  1755. if (speculative) {
  1756. vcpu->arch.last_pte_updated = sptep;
  1757. vcpu->arch.last_pte_gfn = gfn;
  1758. }
  1759. }
  1760. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1761. {
  1762. }
  1763. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1764. bool no_dirty_log)
  1765. {
  1766. struct kvm_memory_slot *slot;
  1767. unsigned long hva;
  1768. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1769. if (!slot) {
  1770. get_page(bad_page);
  1771. return page_to_pfn(bad_page);
  1772. }
  1773. hva = gfn_to_hva_memslot(slot, gfn);
  1774. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1775. }
  1776. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1777. struct kvm_mmu_page *sp,
  1778. u64 *start, u64 *end)
  1779. {
  1780. struct page *pages[PTE_PREFETCH_NUM];
  1781. unsigned access = sp->role.access;
  1782. int i, ret;
  1783. gfn_t gfn;
  1784. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1785. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1786. return -1;
  1787. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1788. if (ret <= 0)
  1789. return -1;
  1790. for (i = 0; i < ret; i++, gfn++, start++)
  1791. mmu_set_spte(vcpu, start, ACC_ALL,
  1792. access, 0, 0, 1, NULL,
  1793. sp->role.level, gfn,
  1794. page_to_pfn(pages[i]), true, true);
  1795. return 0;
  1796. }
  1797. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1798. struct kvm_mmu_page *sp, u64 *sptep)
  1799. {
  1800. u64 *spte, *start = NULL;
  1801. int i;
  1802. WARN_ON(!sp->role.direct);
  1803. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1804. spte = sp->spt + i;
  1805. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1806. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1807. if (!start)
  1808. continue;
  1809. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1810. break;
  1811. start = NULL;
  1812. } else if (!start)
  1813. start = spte;
  1814. }
  1815. }
  1816. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1817. {
  1818. struct kvm_mmu_page *sp;
  1819. /*
  1820. * Since it's no accessed bit on EPT, it's no way to
  1821. * distinguish between actually accessed translations
  1822. * and prefetched, so disable pte prefetch if EPT is
  1823. * enabled.
  1824. */
  1825. if (!shadow_accessed_mask)
  1826. return;
  1827. sp = page_header(__pa(sptep));
  1828. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1829. return;
  1830. __direct_pte_prefetch(vcpu, sp, sptep);
  1831. }
  1832. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1833. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  1834. bool prefault)
  1835. {
  1836. struct kvm_shadow_walk_iterator iterator;
  1837. struct kvm_mmu_page *sp;
  1838. int pt_write = 0;
  1839. gfn_t pseudo_gfn;
  1840. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1841. if (iterator.level == level) {
  1842. unsigned pte_access = ACC_ALL;
  1843. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  1844. 0, write, 1, &pt_write,
  1845. level, gfn, pfn, prefault, map_writable);
  1846. direct_pte_prefetch(vcpu, iterator.sptep);
  1847. ++vcpu->stat.pf_fixed;
  1848. break;
  1849. }
  1850. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1851. u64 base_addr = iterator.addr;
  1852. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1853. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1854. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1855. iterator.level - 1,
  1856. 1, ACC_ALL, iterator.sptep);
  1857. if (!sp) {
  1858. pgprintk("nonpaging_map: ENOMEM\n");
  1859. kvm_release_pfn_clean(pfn);
  1860. return -ENOMEM;
  1861. }
  1862. __set_spte(iterator.sptep,
  1863. __pa(sp->spt)
  1864. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1865. | shadow_user_mask | shadow_x_mask
  1866. | shadow_accessed_mask);
  1867. }
  1868. }
  1869. return pt_write;
  1870. }
  1871. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  1872. {
  1873. siginfo_t info;
  1874. info.si_signo = SIGBUS;
  1875. info.si_errno = 0;
  1876. info.si_code = BUS_MCEERR_AR;
  1877. info.si_addr = (void __user *)address;
  1878. info.si_addr_lsb = PAGE_SHIFT;
  1879. send_sig_info(SIGBUS, &info, tsk);
  1880. }
  1881. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1882. {
  1883. kvm_release_pfn_clean(pfn);
  1884. if (is_hwpoison_pfn(pfn)) {
  1885. kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
  1886. return 0;
  1887. } else if (is_fault_pfn(pfn))
  1888. return -EFAULT;
  1889. return 1;
  1890. }
  1891. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  1892. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  1893. {
  1894. pfn_t pfn = *pfnp;
  1895. gfn_t gfn = *gfnp;
  1896. int level = *levelp;
  1897. /*
  1898. * Check if it's a transparent hugepage. If this would be an
  1899. * hugetlbfs page, level wouldn't be set to
  1900. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  1901. * here.
  1902. */
  1903. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  1904. level == PT_PAGE_TABLE_LEVEL &&
  1905. PageTransCompound(pfn_to_page(pfn)) &&
  1906. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  1907. unsigned long mask;
  1908. /*
  1909. * mmu_notifier_retry was successful and we hold the
  1910. * mmu_lock here, so the pmd can't become splitting
  1911. * from under us, and in turn
  1912. * __split_huge_page_refcount() can't run from under
  1913. * us and we can safely transfer the refcount from
  1914. * PG_tail to PG_head as we switch the pfn to tail to
  1915. * head.
  1916. */
  1917. *levelp = level = PT_DIRECTORY_LEVEL;
  1918. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  1919. VM_BUG_ON((gfn & mask) != (pfn & mask));
  1920. if (pfn & mask) {
  1921. gfn &= ~mask;
  1922. *gfnp = gfn;
  1923. kvm_release_pfn_clean(pfn);
  1924. pfn &= ~mask;
  1925. if (!get_page_unless_zero(pfn_to_page(pfn)))
  1926. BUG();
  1927. *pfnp = pfn;
  1928. }
  1929. }
  1930. }
  1931. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  1932. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  1933. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  1934. bool prefault)
  1935. {
  1936. int r;
  1937. int level;
  1938. int force_pt_level;
  1939. pfn_t pfn;
  1940. unsigned long mmu_seq;
  1941. bool map_writable;
  1942. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  1943. if (likely(!force_pt_level)) {
  1944. level = mapping_level(vcpu, gfn);
  1945. /*
  1946. * This path builds a PAE pagetable - so we can map
  1947. * 2mb pages at maximum. Therefore check if the level
  1948. * is larger than that.
  1949. */
  1950. if (level > PT_DIRECTORY_LEVEL)
  1951. level = PT_DIRECTORY_LEVEL;
  1952. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1953. } else
  1954. level = PT_PAGE_TABLE_LEVEL;
  1955. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1956. smp_rmb();
  1957. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  1958. return 0;
  1959. /* mmio */
  1960. if (is_error_pfn(pfn))
  1961. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1962. spin_lock(&vcpu->kvm->mmu_lock);
  1963. if (mmu_notifier_retry(vcpu, mmu_seq))
  1964. goto out_unlock;
  1965. kvm_mmu_free_some_pages(vcpu);
  1966. if (likely(!force_pt_level))
  1967. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  1968. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  1969. prefault);
  1970. spin_unlock(&vcpu->kvm->mmu_lock);
  1971. return r;
  1972. out_unlock:
  1973. spin_unlock(&vcpu->kvm->mmu_lock);
  1974. kvm_release_pfn_clean(pfn);
  1975. return 0;
  1976. }
  1977. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1978. {
  1979. int i;
  1980. struct kvm_mmu_page *sp;
  1981. LIST_HEAD(invalid_list);
  1982. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1983. return;
  1984. spin_lock(&vcpu->kvm->mmu_lock);
  1985. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  1986. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  1987. vcpu->arch.mmu.direct_map)) {
  1988. hpa_t root = vcpu->arch.mmu.root_hpa;
  1989. sp = page_header(root);
  1990. --sp->root_count;
  1991. if (!sp->root_count && sp->role.invalid) {
  1992. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1993. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1994. }
  1995. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1996. spin_unlock(&vcpu->kvm->mmu_lock);
  1997. return;
  1998. }
  1999. for (i = 0; i < 4; ++i) {
  2000. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2001. if (root) {
  2002. root &= PT64_BASE_ADDR_MASK;
  2003. sp = page_header(root);
  2004. --sp->root_count;
  2005. if (!sp->root_count && sp->role.invalid)
  2006. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2007. &invalid_list);
  2008. }
  2009. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2010. }
  2011. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2012. spin_unlock(&vcpu->kvm->mmu_lock);
  2013. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2014. }
  2015. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2016. {
  2017. int ret = 0;
  2018. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2019. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2020. ret = 1;
  2021. }
  2022. return ret;
  2023. }
  2024. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2025. {
  2026. struct kvm_mmu_page *sp;
  2027. unsigned i;
  2028. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2029. spin_lock(&vcpu->kvm->mmu_lock);
  2030. kvm_mmu_free_some_pages(vcpu);
  2031. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2032. 1, ACC_ALL, NULL);
  2033. ++sp->root_count;
  2034. spin_unlock(&vcpu->kvm->mmu_lock);
  2035. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2036. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2037. for (i = 0; i < 4; ++i) {
  2038. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2039. ASSERT(!VALID_PAGE(root));
  2040. spin_lock(&vcpu->kvm->mmu_lock);
  2041. kvm_mmu_free_some_pages(vcpu);
  2042. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2043. i << 30,
  2044. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2045. NULL);
  2046. root = __pa(sp->spt);
  2047. ++sp->root_count;
  2048. spin_unlock(&vcpu->kvm->mmu_lock);
  2049. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2050. }
  2051. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2052. } else
  2053. BUG();
  2054. return 0;
  2055. }
  2056. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2057. {
  2058. struct kvm_mmu_page *sp;
  2059. u64 pdptr, pm_mask;
  2060. gfn_t root_gfn;
  2061. int i;
  2062. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2063. if (mmu_check_root(vcpu, root_gfn))
  2064. return 1;
  2065. /*
  2066. * Do we shadow a long mode page table? If so we need to
  2067. * write-protect the guests page table root.
  2068. */
  2069. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2070. hpa_t root = vcpu->arch.mmu.root_hpa;
  2071. ASSERT(!VALID_PAGE(root));
  2072. spin_lock(&vcpu->kvm->mmu_lock);
  2073. kvm_mmu_free_some_pages(vcpu);
  2074. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2075. 0, ACC_ALL, NULL);
  2076. root = __pa(sp->spt);
  2077. ++sp->root_count;
  2078. spin_unlock(&vcpu->kvm->mmu_lock);
  2079. vcpu->arch.mmu.root_hpa = root;
  2080. return 0;
  2081. }
  2082. /*
  2083. * We shadow a 32 bit page table. This may be a legacy 2-level
  2084. * or a PAE 3-level page table. In either case we need to be aware that
  2085. * the shadow page table may be a PAE or a long mode page table.
  2086. */
  2087. pm_mask = PT_PRESENT_MASK;
  2088. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2089. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2090. for (i = 0; i < 4; ++i) {
  2091. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2092. ASSERT(!VALID_PAGE(root));
  2093. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2094. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2095. if (!is_present_gpte(pdptr)) {
  2096. vcpu->arch.mmu.pae_root[i] = 0;
  2097. continue;
  2098. }
  2099. root_gfn = pdptr >> PAGE_SHIFT;
  2100. if (mmu_check_root(vcpu, root_gfn))
  2101. return 1;
  2102. }
  2103. spin_lock(&vcpu->kvm->mmu_lock);
  2104. kvm_mmu_free_some_pages(vcpu);
  2105. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2106. PT32_ROOT_LEVEL, 0,
  2107. ACC_ALL, NULL);
  2108. root = __pa(sp->spt);
  2109. ++sp->root_count;
  2110. spin_unlock(&vcpu->kvm->mmu_lock);
  2111. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2112. }
  2113. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2114. /*
  2115. * If we shadow a 32 bit page table with a long mode page
  2116. * table we enter this path.
  2117. */
  2118. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2119. if (vcpu->arch.mmu.lm_root == NULL) {
  2120. /*
  2121. * The additional page necessary for this is only
  2122. * allocated on demand.
  2123. */
  2124. u64 *lm_root;
  2125. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2126. if (lm_root == NULL)
  2127. return 1;
  2128. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2129. vcpu->arch.mmu.lm_root = lm_root;
  2130. }
  2131. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2132. }
  2133. return 0;
  2134. }
  2135. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2136. {
  2137. if (vcpu->arch.mmu.direct_map)
  2138. return mmu_alloc_direct_roots(vcpu);
  2139. else
  2140. return mmu_alloc_shadow_roots(vcpu);
  2141. }
  2142. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2143. {
  2144. int i;
  2145. struct kvm_mmu_page *sp;
  2146. if (vcpu->arch.mmu.direct_map)
  2147. return;
  2148. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2149. return;
  2150. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2151. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2152. hpa_t root = vcpu->arch.mmu.root_hpa;
  2153. sp = page_header(root);
  2154. mmu_sync_children(vcpu, sp);
  2155. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2156. return;
  2157. }
  2158. for (i = 0; i < 4; ++i) {
  2159. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2160. if (root && VALID_PAGE(root)) {
  2161. root &= PT64_BASE_ADDR_MASK;
  2162. sp = page_header(root);
  2163. mmu_sync_children(vcpu, sp);
  2164. }
  2165. }
  2166. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2167. }
  2168. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2169. {
  2170. spin_lock(&vcpu->kvm->mmu_lock);
  2171. mmu_sync_roots(vcpu);
  2172. spin_unlock(&vcpu->kvm->mmu_lock);
  2173. }
  2174. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2175. u32 access, struct x86_exception *exception)
  2176. {
  2177. if (exception)
  2178. exception->error_code = 0;
  2179. return vaddr;
  2180. }
  2181. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2182. u32 access,
  2183. struct x86_exception *exception)
  2184. {
  2185. if (exception)
  2186. exception->error_code = 0;
  2187. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2188. }
  2189. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2190. u32 error_code, bool prefault)
  2191. {
  2192. gfn_t gfn;
  2193. int r;
  2194. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2195. r = mmu_topup_memory_caches(vcpu);
  2196. if (r)
  2197. return r;
  2198. ASSERT(vcpu);
  2199. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2200. gfn = gva >> PAGE_SHIFT;
  2201. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2202. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2203. }
  2204. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2205. {
  2206. struct kvm_arch_async_pf arch;
  2207. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2208. arch.gfn = gfn;
  2209. arch.direct_map = vcpu->arch.mmu.direct_map;
  2210. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2211. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2212. }
  2213. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2214. {
  2215. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2216. kvm_event_needs_reinjection(vcpu)))
  2217. return false;
  2218. return kvm_x86_ops->interrupt_allowed(vcpu);
  2219. }
  2220. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2221. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2222. {
  2223. bool async;
  2224. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2225. if (!async)
  2226. return false; /* *pfn has correct page already */
  2227. put_page(pfn_to_page(*pfn));
  2228. if (!prefault && can_do_async_pf(vcpu)) {
  2229. trace_kvm_try_async_get_page(gva, gfn);
  2230. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2231. trace_kvm_async_pf_doublefault(gva, gfn);
  2232. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2233. return true;
  2234. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2235. return true;
  2236. }
  2237. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2238. return false;
  2239. }
  2240. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2241. bool prefault)
  2242. {
  2243. pfn_t pfn;
  2244. int r;
  2245. int level;
  2246. int force_pt_level;
  2247. gfn_t gfn = gpa >> PAGE_SHIFT;
  2248. unsigned long mmu_seq;
  2249. int write = error_code & PFERR_WRITE_MASK;
  2250. bool map_writable;
  2251. ASSERT(vcpu);
  2252. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2253. r = mmu_topup_memory_caches(vcpu);
  2254. if (r)
  2255. return r;
  2256. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2257. if (likely(!force_pt_level)) {
  2258. level = mapping_level(vcpu, gfn);
  2259. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2260. } else
  2261. level = PT_PAGE_TABLE_LEVEL;
  2262. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2263. smp_rmb();
  2264. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2265. return 0;
  2266. /* mmio */
  2267. if (is_error_pfn(pfn))
  2268. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2269. spin_lock(&vcpu->kvm->mmu_lock);
  2270. if (mmu_notifier_retry(vcpu, mmu_seq))
  2271. goto out_unlock;
  2272. kvm_mmu_free_some_pages(vcpu);
  2273. if (likely(!force_pt_level))
  2274. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2275. r = __direct_map(vcpu, gpa, write, map_writable,
  2276. level, gfn, pfn, prefault);
  2277. spin_unlock(&vcpu->kvm->mmu_lock);
  2278. return r;
  2279. out_unlock:
  2280. spin_unlock(&vcpu->kvm->mmu_lock);
  2281. kvm_release_pfn_clean(pfn);
  2282. return 0;
  2283. }
  2284. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2285. {
  2286. mmu_free_roots(vcpu);
  2287. }
  2288. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2289. struct kvm_mmu *context)
  2290. {
  2291. context->new_cr3 = nonpaging_new_cr3;
  2292. context->page_fault = nonpaging_page_fault;
  2293. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2294. context->free = nonpaging_free;
  2295. context->prefetch_page = nonpaging_prefetch_page;
  2296. context->sync_page = nonpaging_sync_page;
  2297. context->invlpg = nonpaging_invlpg;
  2298. context->update_pte = nonpaging_update_pte;
  2299. context->root_level = 0;
  2300. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2301. context->root_hpa = INVALID_PAGE;
  2302. context->direct_map = true;
  2303. context->nx = false;
  2304. return 0;
  2305. }
  2306. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2307. {
  2308. ++vcpu->stat.tlb_flush;
  2309. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2310. }
  2311. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2312. {
  2313. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2314. mmu_free_roots(vcpu);
  2315. }
  2316. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2317. {
  2318. return kvm_read_cr3(vcpu);
  2319. }
  2320. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2321. struct x86_exception *fault)
  2322. {
  2323. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2324. }
  2325. static void paging_free(struct kvm_vcpu *vcpu)
  2326. {
  2327. nonpaging_free(vcpu);
  2328. }
  2329. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2330. {
  2331. int bit7;
  2332. bit7 = (gpte >> 7) & 1;
  2333. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2334. }
  2335. #define PTTYPE 64
  2336. #include "paging_tmpl.h"
  2337. #undef PTTYPE
  2338. #define PTTYPE 32
  2339. #include "paging_tmpl.h"
  2340. #undef PTTYPE
  2341. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2342. struct kvm_mmu *context,
  2343. int level)
  2344. {
  2345. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2346. u64 exb_bit_rsvd = 0;
  2347. if (!context->nx)
  2348. exb_bit_rsvd = rsvd_bits(63, 63);
  2349. switch (level) {
  2350. case PT32_ROOT_LEVEL:
  2351. /* no rsvd bits for 2 level 4K page table entries */
  2352. context->rsvd_bits_mask[0][1] = 0;
  2353. context->rsvd_bits_mask[0][0] = 0;
  2354. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2355. if (!is_pse(vcpu)) {
  2356. context->rsvd_bits_mask[1][1] = 0;
  2357. break;
  2358. }
  2359. if (is_cpuid_PSE36())
  2360. /* 36bits PSE 4MB page */
  2361. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2362. else
  2363. /* 32 bits PSE 4MB page */
  2364. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2365. break;
  2366. case PT32E_ROOT_LEVEL:
  2367. context->rsvd_bits_mask[0][2] =
  2368. rsvd_bits(maxphyaddr, 63) |
  2369. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2370. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2371. rsvd_bits(maxphyaddr, 62); /* PDE */
  2372. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2373. rsvd_bits(maxphyaddr, 62); /* PTE */
  2374. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2375. rsvd_bits(maxphyaddr, 62) |
  2376. rsvd_bits(13, 20); /* large page */
  2377. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2378. break;
  2379. case PT64_ROOT_LEVEL:
  2380. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2381. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2382. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2383. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2384. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2385. rsvd_bits(maxphyaddr, 51);
  2386. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2387. rsvd_bits(maxphyaddr, 51);
  2388. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2389. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2390. rsvd_bits(maxphyaddr, 51) |
  2391. rsvd_bits(13, 29);
  2392. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2393. rsvd_bits(maxphyaddr, 51) |
  2394. rsvd_bits(13, 20); /* large page */
  2395. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2396. break;
  2397. }
  2398. }
  2399. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2400. struct kvm_mmu *context,
  2401. int level)
  2402. {
  2403. context->nx = is_nx(vcpu);
  2404. reset_rsvds_bits_mask(vcpu, context, level);
  2405. ASSERT(is_pae(vcpu));
  2406. context->new_cr3 = paging_new_cr3;
  2407. context->page_fault = paging64_page_fault;
  2408. context->gva_to_gpa = paging64_gva_to_gpa;
  2409. context->prefetch_page = paging64_prefetch_page;
  2410. context->sync_page = paging64_sync_page;
  2411. context->invlpg = paging64_invlpg;
  2412. context->update_pte = paging64_update_pte;
  2413. context->free = paging_free;
  2414. context->root_level = level;
  2415. context->shadow_root_level = level;
  2416. context->root_hpa = INVALID_PAGE;
  2417. context->direct_map = false;
  2418. return 0;
  2419. }
  2420. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2421. struct kvm_mmu *context)
  2422. {
  2423. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2424. }
  2425. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2426. struct kvm_mmu *context)
  2427. {
  2428. context->nx = false;
  2429. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2430. context->new_cr3 = paging_new_cr3;
  2431. context->page_fault = paging32_page_fault;
  2432. context->gva_to_gpa = paging32_gva_to_gpa;
  2433. context->free = paging_free;
  2434. context->prefetch_page = paging32_prefetch_page;
  2435. context->sync_page = paging32_sync_page;
  2436. context->invlpg = paging32_invlpg;
  2437. context->update_pte = paging32_update_pte;
  2438. context->root_level = PT32_ROOT_LEVEL;
  2439. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2440. context->root_hpa = INVALID_PAGE;
  2441. context->direct_map = false;
  2442. return 0;
  2443. }
  2444. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2445. struct kvm_mmu *context)
  2446. {
  2447. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2448. }
  2449. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2450. {
  2451. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2452. context->base_role.word = 0;
  2453. context->new_cr3 = nonpaging_new_cr3;
  2454. context->page_fault = tdp_page_fault;
  2455. context->free = nonpaging_free;
  2456. context->prefetch_page = nonpaging_prefetch_page;
  2457. context->sync_page = nonpaging_sync_page;
  2458. context->invlpg = nonpaging_invlpg;
  2459. context->update_pte = nonpaging_update_pte;
  2460. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2461. context->root_hpa = INVALID_PAGE;
  2462. context->direct_map = true;
  2463. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2464. context->get_cr3 = get_cr3;
  2465. context->inject_page_fault = kvm_inject_page_fault;
  2466. context->nx = is_nx(vcpu);
  2467. if (!is_paging(vcpu)) {
  2468. context->nx = false;
  2469. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2470. context->root_level = 0;
  2471. } else if (is_long_mode(vcpu)) {
  2472. context->nx = is_nx(vcpu);
  2473. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2474. context->gva_to_gpa = paging64_gva_to_gpa;
  2475. context->root_level = PT64_ROOT_LEVEL;
  2476. } else if (is_pae(vcpu)) {
  2477. context->nx = is_nx(vcpu);
  2478. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2479. context->gva_to_gpa = paging64_gva_to_gpa;
  2480. context->root_level = PT32E_ROOT_LEVEL;
  2481. } else {
  2482. context->nx = false;
  2483. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2484. context->gva_to_gpa = paging32_gva_to_gpa;
  2485. context->root_level = PT32_ROOT_LEVEL;
  2486. }
  2487. return 0;
  2488. }
  2489. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2490. {
  2491. int r;
  2492. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2493. ASSERT(vcpu);
  2494. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2495. if (!is_paging(vcpu))
  2496. r = nonpaging_init_context(vcpu, context);
  2497. else if (is_long_mode(vcpu))
  2498. r = paging64_init_context(vcpu, context);
  2499. else if (is_pae(vcpu))
  2500. r = paging32E_init_context(vcpu, context);
  2501. else
  2502. r = paging32_init_context(vcpu, context);
  2503. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2504. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2505. vcpu->arch.mmu.base_role.smep_andnot_wp
  2506. = smep && !is_write_protection(vcpu);
  2507. return r;
  2508. }
  2509. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2510. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2511. {
  2512. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2513. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2514. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2515. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2516. return r;
  2517. }
  2518. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2519. {
  2520. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2521. g_context->get_cr3 = get_cr3;
  2522. g_context->inject_page_fault = kvm_inject_page_fault;
  2523. /*
  2524. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2525. * translation of l2_gpa to l1_gpa addresses is done using the
  2526. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2527. * functions between mmu and nested_mmu are swapped.
  2528. */
  2529. if (!is_paging(vcpu)) {
  2530. g_context->nx = false;
  2531. g_context->root_level = 0;
  2532. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2533. } else if (is_long_mode(vcpu)) {
  2534. g_context->nx = is_nx(vcpu);
  2535. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2536. g_context->root_level = PT64_ROOT_LEVEL;
  2537. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2538. } else if (is_pae(vcpu)) {
  2539. g_context->nx = is_nx(vcpu);
  2540. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2541. g_context->root_level = PT32E_ROOT_LEVEL;
  2542. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2543. } else {
  2544. g_context->nx = false;
  2545. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2546. g_context->root_level = PT32_ROOT_LEVEL;
  2547. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2548. }
  2549. return 0;
  2550. }
  2551. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2552. {
  2553. if (mmu_is_nested(vcpu))
  2554. return init_kvm_nested_mmu(vcpu);
  2555. else if (tdp_enabled)
  2556. return init_kvm_tdp_mmu(vcpu);
  2557. else
  2558. return init_kvm_softmmu(vcpu);
  2559. }
  2560. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2561. {
  2562. ASSERT(vcpu);
  2563. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2564. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2565. vcpu->arch.mmu.free(vcpu);
  2566. }
  2567. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2568. {
  2569. destroy_kvm_mmu(vcpu);
  2570. return init_kvm_mmu(vcpu);
  2571. }
  2572. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2573. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2574. {
  2575. int r;
  2576. r = mmu_topup_memory_caches(vcpu);
  2577. if (r)
  2578. goto out;
  2579. r = mmu_alloc_roots(vcpu);
  2580. spin_lock(&vcpu->kvm->mmu_lock);
  2581. mmu_sync_roots(vcpu);
  2582. spin_unlock(&vcpu->kvm->mmu_lock);
  2583. if (r)
  2584. goto out;
  2585. /* set_cr3() should ensure TLB has been flushed */
  2586. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2587. out:
  2588. return r;
  2589. }
  2590. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2591. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2592. {
  2593. mmu_free_roots(vcpu);
  2594. }
  2595. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2596. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2597. struct kvm_mmu_page *sp, u64 *spte,
  2598. const void *new)
  2599. {
  2600. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2601. ++vcpu->kvm->stat.mmu_pde_zapped;
  2602. return;
  2603. }
  2604. ++vcpu->kvm->stat.mmu_pte_updated;
  2605. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2606. }
  2607. static bool need_remote_flush(u64 old, u64 new)
  2608. {
  2609. if (!is_shadow_present_pte(old))
  2610. return false;
  2611. if (!is_shadow_present_pte(new))
  2612. return true;
  2613. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2614. return true;
  2615. old ^= PT64_NX_MASK;
  2616. new ^= PT64_NX_MASK;
  2617. return (old & ~new & PT64_PERM_MASK) != 0;
  2618. }
  2619. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2620. bool remote_flush, bool local_flush)
  2621. {
  2622. if (zap_page)
  2623. return;
  2624. if (remote_flush)
  2625. kvm_flush_remote_tlbs(vcpu->kvm);
  2626. else if (local_flush)
  2627. kvm_mmu_flush_tlb(vcpu);
  2628. }
  2629. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2630. {
  2631. u64 *spte = vcpu->arch.last_pte_updated;
  2632. return !!(spte && (*spte & shadow_accessed_mask));
  2633. }
  2634. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2635. {
  2636. u64 *spte = vcpu->arch.last_pte_updated;
  2637. if (spte
  2638. && vcpu->arch.last_pte_gfn == gfn
  2639. && shadow_accessed_mask
  2640. && !(*spte & shadow_accessed_mask)
  2641. && is_shadow_present_pte(*spte))
  2642. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2643. }
  2644. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2645. const u8 *new, int bytes,
  2646. bool guest_initiated)
  2647. {
  2648. gfn_t gfn = gpa >> PAGE_SHIFT;
  2649. union kvm_mmu_page_role mask = { .word = 0 };
  2650. struct kvm_mmu_page *sp;
  2651. struct hlist_node *node;
  2652. LIST_HEAD(invalid_list);
  2653. u64 entry, gentry, *spte;
  2654. unsigned pte_size, page_offset, misaligned, quadrant, offset;
  2655. int level, npte, invlpg_counter, r, flooded = 0;
  2656. bool remote_flush, local_flush, zap_page;
  2657. /*
  2658. * If we don't have indirect shadow pages, it means no page is
  2659. * write-protected, so we can exit simply.
  2660. */
  2661. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  2662. return;
  2663. zap_page = remote_flush = local_flush = false;
  2664. offset = offset_in_page(gpa);
  2665. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2666. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2667. /*
  2668. * Assume that the pte write on a page table of the same type
  2669. * as the current vcpu paging mode since we update the sptes only
  2670. * when they have the same mode.
  2671. */
  2672. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2673. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2674. if (is_pae(vcpu)) {
  2675. gpa &= ~(gpa_t)7;
  2676. bytes = 8;
  2677. }
  2678. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2679. if (r)
  2680. gentry = 0;
  2681. new = (const u8 *)&gentry;
  2682. }
  2683. switch (bytes) {
  2684. case 4:
  2685. gentry = *(const u32 *)new;
  2686. break;
  2687. case 8:
  2688. gentry = *(const u64 *)new;
  2689. break;
  2690. default:
  2691. gentry = 0;
  2692. break;
  2693. }
  2694. spin_lock(&vcpu->kvm->mmu_lock);
  2695. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2696. gentry = 0;
  2697. kvm_mmu_free_some_pages(vcpu);
  2698. ++vcpu->kvm->stat.mmu_pte_write;
  2699. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2700. if (guest_initiated) {
  2701. kvm_mmu_access_page(vcpu, gfn);
  2702. if (gfn == vcpu->arch.last_pt_write_gfn
  2703. && !last_updated_pte_accessed(vcpu)) {
  2704. ++vcpu->arch.last_pt_write_count;
  2705. if (vcpu->arch.last_pt_write_count >= 3)
  2706. flooded = 1;
  2707. } else {
  2708. vcpu->arch.last_pt_write_gfn = gfn;
  2709. vcpu->arch.last_pt_write_count = 1;
  2710. vcpu->arch.last_pte_updated = NULL;
  2711. }
  2712. }
  2713. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2714. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2715. pte_size = sp->role.cr4_pae ? 8 : 4;
  2716. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2717. misaligned |= bytes < 4;
  2718. if (misaligned || flooded) {
  2719. /*
  2720. * Misaligned accesses are too much trouble to fix
  2721. * up; also, they usually indicate a page is not used
  2722. * as a page table.
  2723. *
  2724. * If we're seeing too many writes to a page,
  2725. * it may no longer be a page table, or we may be
  2726. * forking, in which case it is better to unmap the
  2727. * page.
  2728. */
  2729. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2730. gpa, bytes, sp->role.word);
  2731. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2732. &invalid_list);
  2733. ++vcpu->kvm->stat.mmu_flooded;
  2734. continue;
  2735. }
  2736. page_offset = offset;
  2737. level = sp->role.level;
  2738. npte = 1;
  2739. if (!sp->role.cr4_pae) {
  2740. page_offset <<= 1; /* 32->64 */
  2741. /*
  2742. * A 32-bit pde maps 4MB while the shadow pdes map
  2743. * only 2MB. So we need to double the offset again
  2744. * and zap two pdes instead of one.
  2745. */
  2746. if (level == PT32_ROOT_LEVEL) {
  2747. page_offset &= ~7; /* kill rounding error */
  2748. page_offset <<= 1;
  2749. npte = 2;
  2750. }
  2751. quadrant = page_offset >> PAGE_SHIFT;
  2752. page_offset &= ~PAGE_MASK;
  2753. if (quadrant != sp->role.quadrant)
  2754. continue;
  2755. }
  2756. local_flush = true;
  2757. spte = &sp->spt[page_offset / sizeof(*spte)];
  2758. while (npte--) {
  2759. entry = *spte;
  2760. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  2761. if (gentry &&
  2762. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2763. & mask.word))
  2764. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2765. if (!remote_flush && need_remote_flush(entry, *spte))
  2766. remote_flush = true;
  2767. ++spte;
  2768. }
  2769. }
  2770. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2771. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2772. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2773. spin_unlock(&vcpu->kvm->mmu_lock);
  2774. }
  2775. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2776. {
  2777. gpa_t gpa;
  2778. int r;
  2779. if (vcpu->arch.mmu.direct_map)
  2780. return 0;
  2781. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2782. spin_lock(&vcpu->kvm->mmu_lock);
  2783. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2784. spin_unlock(&vcpu->kvm->mmu_lock);
  2785. return r;
  2786. }
  2787. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2788. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2789. {
  2790. LIST_HEAD(invalid_list);
  2791. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2792. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2793. struct kvm_mmu_page *sp;
  2794. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2795. struct kvm_mmu_page, link);
  2796. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2797. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2798. ++vcpu->kvm->stat.mmu_recycled;
  2799. }
  2800. }
  2801. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  2802. void *insn, int insn_len)
  2803. {
  2804. int r;
  2805. enum emulation_result er;
  2806. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  2807. if (r < 0)
  2808. goto out;
  2809. if (!r) {
  2810. r = 1;
  2811. goto out;
  2812. }
  2813. r = mmu_topup_memory_caches(vcpu);
  2814. if (r)
  2815. goto out;
  2816. er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
  2817. switch (er) {
  2818. case EMULATE_DONE:
  2819. return 1;
  2820. case EMULATE_DO_MMIO:
  2821. ++vcpu->stat.mmio_exits;
  2822. /* fall through */
  2823. case EMULATE_FAIL:
  2824. return 0;
  2825. default:
  2826. BUG();
  2827. }
  2828. out:
  2829. return r;
  2830. }
  2831. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2832. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2833. {
  2834. vcpu->arch.mmu.invlpg(vcpu, gva);
  2835. kvm_mmu_flush_tlb(vcpu);
  2836. ++vcpu->stat.invlpg;
  2837. }
  2838. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2839. void kvm_enable_tdp(void)
  2840. {
  2841. tdp_enabled = true;
  2842. }
  2843. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2844. void kvm_disable_tdp(void)
  2845. {
  2846. tdp_enabled = false;
  2847. }
  2848. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2849. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2850. {
  2851. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2852. if (vcpu->arch.mmu.lm_root != NULL)
  2853. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  2854. }
  2855. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2856. {
  2857. struct page *page;
  2858. int i;
  2859. ASSERT(vcpu);
  2860. /*
  2861. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2862. * Therefore we need to allocate shadow page tables in the first
  2863. * 4GB of memory, which happens to fit the DMA32 zone.
  2864. */
  2865. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2866. if (!page)
  2867. return -ENOMEM;
  2868. vcpu->arch.mmu.pae_root = page_address(page);
  2869. for (i = 0; i < 4; ++i)
  2870. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2871. return 0;
  2872. }
  2873. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2874. {
  2875. ASSERT(vcpu);
  2876. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2877. return alloc_mmu_pages(vcpu);
  2878. }
  2879. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2880. {
  2881. ASSERT(vcpu);
  2882. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2883. return init_kvm_mmu(vcpu);
  2884. }
  2885. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2886. {
  2887. struct kvm_mmu_page *sp;
  2888. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2889. int i;
  2890. u64 *pt;
  2891. if (!test_bit(slot, sp->slot_bitmap))
  2892. continue;
  2893. pt = sp->spt;
  2894. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2895. if (!is_shadow_present_pte(pt[i]) ||
  2896. !is_last_spte(pt[i], sp->role.level))
  2897. continue;
  2898. if (is_large_pte(pt[i])) {
  2899. drop_spte(kvm, &pt[i],
  2900. shadow_trap_nonpresent_pte);
  2901. --kvm->stat.lpages;
  2902. continue;
  2903. }
  2904. /* avoid RMW */
  2905. if (is_writable_pte(pt[i]))
  2906. update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
  2907. }
  2908. }
  2909. kvm_flush_remote_tlbs(kvm);
  2910. }
  2911. void kvm_mmu_zap_all(struct kvm *kvm)
  2912. {
  2913. struct kvm_mmu_page *sp, *node;
  2914. LIST_HEAD(invalid_list);
  2915. spin_lock(&kvm->mmu_lock);
  2916. restart:
  2917. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2918. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2919. goto restart;
  2920. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2921. spin_unlock(&kvm->mmu_lock);
  2922. }
  2923. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2924. struct list_head *invalid_list)
  2925. {
  2926. struct kvm_mmu_page *page;
  2927. page = container_of(kvm->arch.active_mmu_pages.prev,
  2928. struct kvm_mmu_page, link);
  2929. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2930. }
  2931. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  2932. {
  2933. struct kvm *kvm;
  2934. struct kvm *kvm_freed = NULL;
  2935. int nr_to_scan = sc->nr_to_scan;
  2936. if (nr_to_scan == 0)
  2937. goto out;
  2938. raw_spin_lock(&kvm_lock);
  2939. list_for_each_entry(kvm, &vm_list, vm_list) {
  2940. int idx, freed_pages;
  2941. LIST_HEAD(invalid_list);
  2942. idx = srcu_read_lock(&kvm->srcu);
  2943. spin_lock(&kvm->mmu_lock);
  2944. if (!kvm_freed && nr_to_scan > 0 &&
  2945. kvm->arch.n_used_mmu_pages > 0) {
  2946. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2947. &invalid_list);
  2948. kvm_freed = kvm;
  2949. }
  2950. nr_to_scan--;
  2951. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2952. spin_unlock(&kvm->mmu_lock);
  2953. srcu_read_unlock(&kvm->srcu, idx);
  2954. }
  2955. if (kvm_freed)
  2956. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2957. raw_spin_unlock(&kvm_lock);
  2958. out:
  2959. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2960. }
  2961. static struct shrinker mmu_shrinker = {
  2962. .shrink = mmu_shrink,
  2963. .seeks = DEFAULT_SEEKS * 10,
  2964. };
  2965. static void mmu_destroy_caches(void)
  2966. {
  2967. if (pte_list_desc_cache)
  2968. kmem_cache_destroy(pte_list_desc_cache);
  2969. if (mmu_page_header_cache)
  2970. kmem_cache_destroy(mmu_page_header_cache);
  2971. }
  2972. int kvm_mmu_module_init(void)
  2973. {
  2974. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  2975. sizeof(struct pte_list_desc),
  2976. 0, 0, NULL);
  2977. if (!pte_list_desc_cache)
  2978. goto nomem;
  2979. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2980. sizeof(struct kvm_mmu_page),
  2981. 0, 0, NULL);
  2982. if (!mmu_page_header_cache)
  2983. goto nomem;
  2984. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2985. goto nomem;
  2986. register_shrinker(&mmu_shrinker);
  2987. return 0;
  2988. nomem:
  2989. mmu_destroy_caches();
  2990. return -ENOMEM;
  2991. }
  2992. /*
  2993. * Caculate mmu pages needed for kvm.
  2994. */
  2995. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2996. {
  2997. int i;
  2998. unsigned int nr_mmu_pages;
  2999. unsigned int nr_pages = 0;
  3000. struct kvm_memslots *slots;
  3001. slots = kvm_memslots(kvm);
  3002. for (i = 0; i < slots->nmemslots; i++)
  3003. nr_pages += slots->memslots[i].npages;
  3004. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3005. nr_mmu_pages = max(nr_mmu_pages,
  3006. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3007. return nr_mmu_pages;
  3008. }
  3009. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3010. unsigned len)
  3011. {
  3012. if (len > buffer->len)
  3013. return NULL;
  3014. return buffer->ptr;
  3015. }
  3016. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3017. unsigned len)
  3018. {
  3019. void *ret;
  3020. ret = pv_mmu_peek_buffer(buffer, len);
  3021. if (!ret)
  3022. return ret;
  3023. buffer->ptr += len;
  3024. buffer->len -= len;
  3025. buffer->processed += len;
  3026. return ret;
  3027. }
  3028. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3029. gpa_t addr, gpa_t value)
  3030. {
  3031. int bytes = 8;
  3032. int r;
  3033. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3034. bytes = 4;
  3035. r = mmu_topup_memory_caches(vcpu);
  3036. if (r)
  3037. return r;
  3038. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3039. return -EFAULT;
  3040. return 1;
  3041. }
  3042. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3043. {
  3044. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3045. return 1;
  3046. }
  3047. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3048. {
  3049. spin_lock(&vcpu->kvm->mmu_lock);
  3050. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3051. spin_unlock(&vcpu->kvm->mmu_lock);
  3052. return 1;
  3053. }
  3054. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3055. struct kvm_pv_mmu_op_buffer *buffer)
  3056. {
  3057. struct kvm_mmu_op_header *header;
  3058. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3059. if (!header)
  3060. return 0;
  3061. switch (header->op) {
  3062. case KVM_MMU_OP_WRITE_PTE: {
  3063. struct kvm_mmu_op_write_pte *wpte;
  3064. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3065. if (!wpte)
  3066. return 0;
  3067. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3068. wpte->pte_val);
  3069. }
  3070. case KVM_MMU_OP_FLUSH_TLB: {
  3071. struct kvm_mmu_op_flush_tlb *ftlb;
  3072. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3073. if (!ftlb)
  3074. return 0;
  3075. return kvm_pv_mmu_flush_tlb(vcpu);
  3076. }
  3077. case KVM_MMU_OP_RELEASE_PT: {
  3078. struct kvm_mmu_op_release_pt *rpt;
  3079. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3080. if (!rpt)
  3081. return 0;
  3082. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3083. }
  3084. default: return 0;
  3085. }
  3086. }
  3087. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3088. gpa_t addr, unsigned long *ret)
  3089. {
  3090. int r;
  3091. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3092. buffer->ptr = buffer->buf;
  3093. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3094. buffer->processed = 0;
  3095. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3096. if (r)
  3097. goto out;
  3098. while (buffer->len) {
  3099. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3100. if (r < 0)
  3101. goto out;
  3102. if (r == 0)
  3103. break;
  3104. }
  3105. r = 1;
  3106. out:
  3107. *ret = buffer->processed;
  3108. return r;
  3109. }
  3110. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3111. {
  3112. struct kvm_shadow_walk_iterator iterator;
  3113. int nr_sptes = 0;
  3114. spin_lock(&vcpu->kvm->mmu_lock);
  3115. for_each_shadow_entry(vcpu, addr, iterator) {
  3116. sptes[iterator.level-1] = *iterator.sptep;
  3117. nr_sptes++;
  3118. if (!is_shadow_present_pte(*iterator.sptep))
  3119. break;
  3120. }
  3121. spin_unlock(&vcpu->kvm->mmu_lock);
  3122. return nr_sptes;
  3123. }
  3124. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3125. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3126. {
  3127. ASSERT(vcpu);
  3128. destroy_kvm_mmu(vcpu);
  3129. free_mmu_pages(vcpu);
  3130. mmu_free_memory_caches(vcpu);
  3131. }
  3132. #ifdef CONFIG_KVM_MMU_AUDIT
  3133. #include "mmu_audit.c"
  3134. #else
  3135. static void mmu_audit_disable(void) { }
  3136. #endif
  3137. void kvm_mmu_module_exit(void)
  3138. {
  3139. mmu_destroy_caches();
  3140. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3141. unregister_shrinker(&mmu_shrinker);
  3142. mmu_audit_disable();
  3143. }