xc5000.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. /*
  2. * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
  3. *
  4. * Copyright (c) 2007 Xceive Corporation
  5. * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. *
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/videodev2.h>
  25. #include <linux/delay.h>
  26. #include <linux/dvb/frontend.h>
  27. #include <linux/i2c.h>
  28. #include "dvb_frontend.h"
  29. #include "xc5000.h"
  30. static int debug;
  31. module_param(debug, int, 0644);
  32. MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
  33. static int xc5000_load_fw_on_attach;
  34. module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
  35. MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");
  36. #define dprintk(level,fmt, arg...) if (debug >= level) \
  37. printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
  38. #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
  39. #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
  40. struct xc5000_priv {
  41. struct xc5000_config *cfg;
  42. struct i2c_adapter *i2c;
  43. u32 freq_hz;
  44. u32 bandwidth;
  45. u8 video_standard;
  46. u8 rf_mode;
  47. void *devptr;
  48. };
  49. /* Misc Defines */
  50. #define MAX_TV_STANDARD 23
  51. #define XC_MAX_I2C_WRITE_LENGTH 64
  52. /* Signal Types */
  53. #define XC_RF_MODE_AIR 0
  54. #define XC_RF_MODE_CABLE 1
  55. /* Result codes */
  56. #define XC_RESULT_SUCCESS 0
  57. #define XC_RESULT_RESET_FAILURE 1
  58. #define XC_RESULT_I2C_WRITE_FAILURE 2
  59. #define XC_RESULT_I2C_READ_FAILURE 3
  60. #define XC_RESULT_OUT_OF_RANGE 5
  61. /* Product id */
  62. #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
  63. #define XC_PRODUCT_ID_FW_LOADED 0x1388
  64. /* Registers */
  65. #define XREG_INIT 0x00
  66. #define XREG_VIDEO_MODE 0x01
  67. #define XREG_AUDIO_MODE 0x02
  68. #define XREG_RF_FREQ 0x03
  69. #define XREG_D_CODE 0x04
  70. #define XREG_IF_OUT 0x05
  71. #define XREG_SEEK_MODE 0x07
  72. #define XREG_POWER_DOWN 0x0A
  73. #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
  74. #define XREG_SMOOTHEDCVBS 0x0E
  75. #define XREG_XTALFREQ 0x0F
  76. #define XREG_FINERFFREQ 0x10
  77. #define XREG_DDIMODE 0x11
  78. #define XREG_ADC_ENV 0x00
  79. #define XREG_QUALITY 0x01
  80. #define XREG_FRAME_LINES 0x02
  81. #define XREG_HSYNC_FREQ 0x03
  82. #define XREG_LOCK 0x04
  83. #define XREG_FREQ_ERROR 0x05
  84. #define XREG_SNR 0x06
  85. #define XREG_VERSION 0x07
  86. #define XREG_PRODUCT_ID 0x08
  87. #define XREG_BUSY 0x09
  88. /*
  89. Basic firmware description. This will remain with
  90. the driver for documentation purposes.
  91. This represents an I2C firmware file encoded as a
  92. string of unsigned char. Format is as follows:
  93. char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
  94. char[1 ]=len0_LSB -> length of first write transaction
  95. char[2 ]=data0 -> first byte to be sent
  96. char[3 ]=data1
  97. char[4 ]=data2
  98. char[ ]=...
  99. char[M ]=dataN -> last byte to be sent
  100. char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
  101. char[M+2]=len1_LSB -> length of second write transaction
  102. char[M+3]=data0
  103. char[M+4]=data1
  104. ...
  105. etc.
  106. The [len] value should be interpreted as follows:
  107. len= len_MSB _ len_LSB
  108. len=1111_1111_1111_1111 : End of I2C_SEQUENCE
  109. len=0000_0000_0000_0000 : Reset command: Do hardware reset
  110. len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
  111. len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
  112. For the RESET and WAIT commands, the two following bytes will contain
  113. immediately the length of the following transaction.
  114. */
  115. typedef struct {
  116. char *Name;
  117. u16 AudioMode;
  118. u16 VideoMode;
  119. } XC_TV_STANDARD;
  120. /* Tuner standards */
  121. #define MN_NTSC_PAL_BTSC 0
  122. #define MN_NTSC_PAL_A2 1
  123. #define MN_NTSC_PAL_EIAJ 2
  124. #define MN_NTSC_PAL_Mono 3
  125. #define BG_PAL_A2 4
  126. #define BG_PAL_NICAM 5
  127. #define BG_PAL_MONO 6
  128. #define I_PAL_NICAM 7
  129. #define I_PAL_NICAM_MONO 8
  130. #define DK_PAL_A2 9
  131. #define DK_PAL_NICAM 10
  132. #define DK_PAL_MONO 11
  133. #define DK_SECAM_A2DK1 12
  134. #define DK_SECAM_A2LDK3 13
  135. #define DK_SECAM_A2MONO 14
  136. #define L_SECAM_NICAM 15
  137. #define LC_SECAM_NICAM 16
  138. #define DTV6 17
  139. #define DTV8 18
  140. #define DTV7_8 19
  141. #define DTV7 20
  142. #define FM_Radio_INPUT2 21
  143. #define FM_Radio_INPUT1 22
  144. static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
  145. {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
  146. {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
  147. {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
  148. {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
  149. {"B/G-PAL-A2", 0x0A00, 0x8049},
  150. {"B/G-PAL-NICAM", 0x0C04, 0x8049},
  151. {"B/G-PAL-MONO", 0x0878, 0x8059},
  152. {"I-PAL-NICAM", 0x1080, 0x8009},
  153. {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
  154. {"D/K-PAL-A2", 0x1600, 0x8009},
  155. {"D/K-PAL-NICAM", 0x0E80, 0x8009},
  156. {"D/K-PAL-MONO", 0x1478, 0x8009},
  157. {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
  158. {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
  159. {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
  160. {"L-SECAM-NICAM", 0x8E82, 0x0009},
  161. {"L'-SECAM-NICAM", 0x8E82, 0x4009},
  162. {"DTV6", 0x00C0, 0x8002},
  163. {"DTV8", 0x00C0, 0x800B},
  164. {"DTV7/8", 0x00C0, 0x801B},
  165. {"DTV7", 0x00C0, 0x8007},
  166. {"FM Radio-INPUT2", 0x9802, 0x9002},
  167. {"FM Radio-INPUT1", 0x0208, 0x9002}
  168. };
  169. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
  170. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  171. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  172. static void xc5000_TunerReset(struct dvb_frontend *fe);
  173. static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  174. {
  175. return xc5000_writeregs(priv, buf, len)
  176. ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
  177. }
  178. static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  179. {
  180. return xc5000_readregs(priv, buf, len)
  181. ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
  182. }
  183. static int xc_reset(struct dvb_frontend *fe)
  184. {
  185. xc5000_TunerReset(fe);
  186. return XC_RESULT_SUCCESS;
  187. }
  188. static void xc_wait(int wait_ms)
  189. {
  190. msleep(wait_ms);
  191. }
  192. static void xc5000_TunerReset(struct dvb_frontend *fe)
  193. {
  194. struct xc5000_priv *priv = fe->tuner_priv;
  195. int ret;
  196. dprintk(1, "%s()\n", __func__);
  197. if (priv->cfg->tuner_callback) {
  198. ret = priv->cfg->tuner_callback(priv->devptr,
  199. XC5000_TUNER_RESET, 0);
  200. if (ret)
  201. printk(KERN_ERR "xc5000: reset failed\n");
  202. } else
  203. printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
  204. }
  205. static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
  206. {
  207. u8 buf[4];
  208. int WatchDogTimer = 5;
  209. int result;
  210. buf[0] = (regAddr >> 8) & 0xFF;
  211. buf[1] = regAddr & 0xFF;
  212. buf[2] = (i2cData >> 8) & 0xFF;
  213. buf[3] = i2cData & 0xFF;
  214. result = xc_send_i2c_data(priv, buf, 4);
  215. if (result == XC_RESULT_SUCCESS) {
  216. /* wait for busy flag to clear */
  217. while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
  218. buf[0] = 0;
  219. buf[1] = XREG_BUSY;
  220. result = xc_send_i2c_data(priv, buf, 2);
  221. if (result == XC_RESULT_SUCCESS) {
  222. result = xc_read_i2c_data(priv, buf, 2);
  223. if (result == XC_RESULT_SUCCESS) {
  224. if ((buf[0] == 0) && (buf[1] == 0)) {
  225. /* busy flag cleared */
  226. break;
  227. } else {
  228. xc_wait(100); /* wait 5 ms */
  229. WatchDogTimer--;
  230. }
  231. }
  232. }
  233. }
  234. }
  235. if (WatchDogTimer < 0)
  236. result = XC_RESULT_I2C_WRITE_FAILURE;
  237. return result;
  238. }
  239. static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
  240. {
  241. u8 buf[2];
  242. int result;
  243. buf[0] = (regAddr >> 8) & 0xFF;
  244. buf[1] = regAddr & 0xFF;
  245. result = xc_send_i2c_data(priv, buf, 2);
  246. if (result != XC_RESULT_SUCCESS)
  247. return result;
  248. result = xc_read_i2c_data(priv, buf, 2);
  249. if (result != XC_RESULT_SUCCESS)
  250. return result;
  251. *i2cData = buf[0] * 256 + buf[1];
  252. return result;
  253. }
  254. static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
  255. {
  256. struct xc5000_priv *priv = fe->tuner_priv;
  257. int i, nbytes_to_send, result;
  258. unsigned int len, pos, index;
  259. u8 buf[XC_MAX_I2C_WRITE_LENGTH];
  260. index=0;
  261. while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
  262. len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
  263. if (len == 0x0000) {
  264. /* RESET command */
  265. result = xc_reset(fe);
  266. index += 2;
  267. if (result != XC_RESULT_SUCCESS)
  268. return result;
  269. } else if (len & 0x8000) {
  270. /* WAIT command */
  271. xc_wait(len & 0x7FFF);
  272. index += 2;
  273. } else {
  274. /* Send i2c data whilst ensuring individual transactions
  275. * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
  276. */
  277. index += 2;
  278. buf[0] = i2c_sequence[index];
  279. buf[1] = i2c_sequence[index + 1];
  280. pos = 2;
  281. while (pos < len) {
  282. if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
  283. nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
  284. } else {
  285. nbytes_to_send = (len - pos + 2);
  286. }
  287. for (i=2; i<nbytes_to_send; i++) {
  288. buf[i] = i2c_sequence[index + pos + i - 2];
  289. }
  290. result = xc_send_i2c_data(priv, buf, nbytes_to_send);
  291. if (result != XC_RESULT_SUCCESS)
  292. return result;
  293. pos += nbytes_to_send - 2;
  294. }
  295. index += len;
  296. }
  297. }
  298. return XC_RESULT_SUCCESS;
  299. }
  300. static int xc_initialize(struct xc5000_priv *priv)
  301. {
  302. dprintk(1, "%s()\n", __func__);
  303. return xc_write_reg(priv, XREG_INIT, 0);
  304. }
  305. static int xc_SetTVStandard(struct xc5000_priv *priv,
  306. u16 VideoMode, u16 AudioMode)
  307. {
  308. int ret;
  309. dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
  310. dprintk(1, "%s() Standard = %s\n",
  311. __func__,
  312. XC5000_Standard[priv->video_standard].Name);
  313. ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
  314. if (ret == XC_RESULT_SUCCESS)
  315. ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
  316. return ret;
  317. }
  318. static int xc_shutdown(struct xc5000_priv *priv)
  319. {
  320. return XC_RESULT_SUCCESS;
  321. /* Fixme: cannot bring tuner back alive once shutdown
  322. * without reloading the driver modules.
  323. * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
  324. */
  325. }
  326. static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
  327. {
  328. dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
  329. rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
  330. if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
  331. {
  332. rf_mode = XC_RF_MODE_CABLE;
  333. printk(KERN_ERR
  334. "%s(), Invalid mode, defaulting to CABLE",
  335. __func__);
  336. }
  337. return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
  338. }
  339. static const struct dvb_tuner_ops xc5000_tuner_ops;
  340. static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
  341. {
  342. u16 freq_code;
  343. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  344. if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
  345. (freq_hz < xc5000_tuner_ops.info.frequency_min))
  346. return XC_RESULT_OUT_OF_RANGE;
  347. freq_code = (u16)(freq_hz / 15625);
  348. return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
  349. }
  350. static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
  351. {
  352. u32 freq_code = (freq_khz * 1024)/1000;
  353. dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
  354. __func__, freq_khz, freq_code);
  355. return xc_write_reg(priv, XREG_IF_OUT, freq_code);
  356. }
  357. static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
  358. {
  359. return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
  360. }
  361. static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
  362. {
  363. int result;
  364. u16 regData;
  365. u32 tmp;
  366. result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
  367. if (result)
  368. return result;
  369. tmp = (u32)regData;
  370. (*freq_error_hz) = (tmp * 15625) / 1000;
  371. return result;
  372. }
  373. static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
  374. {
  375. return xc_read_reg(priv, XREG_LOCK, lock_status);
  376. }
  377. static int xc_get_version(struct xc5000_priv *priv,
  378. u8 *hw_majorversion, u8 *hw_minorversion,
  379. u8 *fw_majorversion, u8 *fw_minorversion)
  380. {
  381. u16 data;
  382. int result;
  383. result = xc_read_reg(priv, XREG_VERSION, &data);
  384. if (result)
  385. return result;
  386. (*hw_majorversion) = (data >> 12) & 0x0F;
  387. (*hw_minorversion) = (data >> 8) & 0x0F;
  388. (*fw_majorversion) = (data >> 4) & 0x0F;
  389. (*fw_minorversion) = data & 0x0F;
  390. return 0;
  391. }
  392. static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
  393. {
  394. u16 regData;
  395. int result;
  396. result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
  397. if (result)
  398. return result;
  399. (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
  400. return result;
  401. }
  402. static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
  403. {
  404. return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
  405. }
  406. static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
  407. {
  408. return xc_read_reg(priv, XREG_QUALITY, quality);
  409. }
  410. static u16 WaitForLock(struct xc5000_priv *priv)
  411. {
  412. u16 lockState = 0;
  413. int watchDogCount = 40;
  414. while ((lockState == 0) && (watchDogCount > 0)) {
  415. xc_get_lock_status(priv, &lockState);
  416. if (lockState != 1) {
  417. xc_wait(5);
  418. watchDogCount--;
  419. }
  420. }
  421. return lockState;
  422. }
  423. static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
  424. {
  425. int found = 0;
  426. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  427. if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
  428. return 0;
  429. if (WaitForLock(priv) == 1)
  430. found = 1;
  431. return found;
  432. }
  433. static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
  434. {
  435. u8 buf[2] = { reg >> 8, reg & 0xff };
  436. u8 bval[2] = { 0, 0 };
  437. struct i2c_msg msg[2] = {
  438. { .addr = priv->cfg->i2c_address,
  439. .flags = 0, .buf = &buf[0], .len = 2 },
  440. { .addr = priv->cfg->i2c_address,
  441. .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
  442. };
  443. if (i2c_transfer(priv->i2c, msg, 2) != 2) {
  444. printk(KERN_WARNING "xc5000: I2C read failed\n");
  445. return -EREMOTEIO;
  446. }
  447. *val = (bval[0] << 8) | bval[1];
  448. return 0;
  449. }
  450. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  451. {
  452. struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
  453. .flags = 0, .buf = buf, .len = len };
  454. if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
  455. printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
  456. (int)len);
  457. return -EREMOTEIO;
  458. }
  459. return 0;
  460. }
  461. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  462. {
  463. struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
  464. .flags = I2C_M_RD, .buf = buf, .len = len };
  465. if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
  466. printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
  467. return -EREMOTEIO;
  468. }
  469. return 0;
  470. }
  471. static int xc5000_fwupload(struct dvb_frontend* fe)
  472. {
  473. struct xc5000_priv *priv = fe->tuner_priv;
  474. const struct firmware *fw;
  475. int ret;
  476. /* request the firmware, this will block and timeout */
  477. printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
  478. XC5000_DEFAULT_FIRMWARE);
  479. ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c->dev);
  480. if (ret) {
  481. printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
  482. ret = XC_RESULT_RESET_FAILURE;
  483. goto out;
  484. } else {
  485. printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
  486. fw->size);
  487. ret = XC_RESULT_SUCCESS;
  488. }
  489. if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
  490. printk(KERN_ERR "xc5000: firmware incorrect size\n");
  491. ret = XC_RESULT_RESET_FAILURE;
  492. } else {
  493. printk(KERN_INFO "xc5000: firmware upload\n");
  494. ret = xc_load_i2c_sequence(fe, fw->data );
  495. }
  496. out:
  497. release_firmware(fw);
  498. return ret;
  499. }
  500. static void xc_debug_dump(struct xc5000_priv *priv)
  501. {
  502. u16 adc_envelope;
  503. u32 freq_error_hz = 0;
  504. u16 lock_status;
  505. u32 hsync_freq_hz = 0;
  506. u16 frame_lines;
  507. u16 quality;
  508. u8 hw_majorversion = 0, hw_minorversion = 0;
  509. u8 fw_majorversion = 0, fw_minorversion = 0;
  510. /* Wait for stats to stabilize.
  511. * Frame Lines needs two frame times after initial lock
  512. * before it is valid.
  513. */
  514. xc_wait(100);
  515. xc_get_ADC_Envelope(priv, &adc_envelope);
  516. dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
  517. xc_get_frequency_error(priv, &freq_error_hz);
  518. dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
  519. xc_get_lock_status(priv, &lock_status);
  520. dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
  521. lock_status);
  522. xc_get_version(priv, &hw_majorversion, &hw_minorversion,
  523. &fw_majorversion, &fw_minorversion);
  524. dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
  525. hw_majorversion, hw_minorversion,
  526. fw_majorversion, fw_minorversion);
  527. xc_get_hsync_freq(priv, &hsync_freq_hz);
  528. dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
  529. xc_get_frame_lines(priv, &frame_lines);
  530. dprintk(1, "*** Frame lines = %d\n", frame_lines);
  531. xc_get_quality(priv, &quality);
  532. dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
  533. }
  534. static int xc5000_set_params(struct dvb_frontend *fe,
  535. struct dvb_frontend_parameters *params)
  536. {
  537. struct xc5000_priv *priv = fe->tuner_priv;
  538. int ret;
  539. dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
  540. switch(params->u.vsb.modulation) {
  541. case VSB_8:
  542. case VSB_16:
  543. dprintk(1, "%s() VSB modulation\n", __func__);
  544. priv->rf_mode = XC_RF_MODE_AIR;
  545. priv->freq_hz = params->frequency - 1750000;
  546. priv->bandwidth = BANDWIDTH_6_MHZ;
  547. priv->video_standard = DTV6;
  548. break;
  549. case QAM_64:
  550. case QAM_256:
  551. case QAM_AUTO:
  552. dprintk(1, "%s() QAM modulation\n", __func__);
  553. priv->rf_mode = XC_RF_MODE_CABLE;
  554. priv->freq_hz = params->frequency - 1750000;
  555. priv->bandwidth = BANDWIDTH_6_MHZ;
  556. priv->video_standard = DTV6;
  557. break;
  558. default:
  559. return -EINVAL;
  560. }
  561. dprintk(1, "%s() frequency=%d (compensated)\n",
  562. __func__, priv->freq_hz);
  563. ret = xc_SetSignalSource(priv, priv->rf_mode);
  564. if (ret != XC_RESULT_SUCCESS) {
  565. printk(KERN_ERR
  566. "xc5000: xc_SetSignalSource(%d) failed\n",
  567. priv->rf_mode);
  568. return -EREMOTEIO;
  569. }
  570. ret = xc_SetTVStandard(priv,
  571. XC5000_Standard[priv->video_standard].VideoMode,
  572. XC5000_Standard[priv->video_standard].AudioMode);
  573. if (ret != XC_RESULT_SUCCESS) {
  574. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  575. return -EREMOTEIO;
  576. }
  577. ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
  578. if (ret != XC_RESULT_SUCCESS) {
  579. printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
  580. priv->cfg->if_khz);
  581. return -EIO;
  582. }
  583. xc_tune_channel(priv, priv->freq_hz);
  584. if (debug)
  585. xc_debug_dump(priv);
  586. return 0;
  587. }
  588. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
  589. {
  590. struct xc5000_priv *priv = fe->tuner_priv;
  591. int ret;
  592. u16 id;
  593. ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
  594. if (ret == XC_RESULT_SUCCESS) {
  595. if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
  596. ret = XC_RESULT_RESET_FAILURE;
  597. else
  598. ret = XC_RESULT_SUCCESS;
  599. }
  600. dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
  601. ret == XC_RESULT_SUCCESS ? "True" : "False", id);
  602. return ret;
  603. }
  604. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
  605. static int xc5000_set_analog_params(struct dvb_frontend *fe,
  606. struct analog_parameters *params)
  607. {
  608. struct xc5000_priv *priv = fe->tuner_priv;
  609. int ret;
  610. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
  611. xc_load_fw_and_init_tuner(fe);
  612. dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
  613. __func__, params->frequency);
  614. priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
  615. /* params->frequency is in units of 62.5khz */
  616. priv->freq_hz = params->frequency * 62500;
  617. /* FIX ME: Some video standards may have several possible audio
  618. standards. We simply default to one of them here.
  619. */
  620. if(params->std & V4L2_STD_MN) {
  621. /* default to BTSC audio standard */
  622. priv->video_standard = MN_NTSC_PAL_BTSC;
  623. goto tune_channel;
  624. }
  625. if(params->std & V4L2_STD_PAL_BG) {
  626. /* default to NICAM audio standard */
  627. priv->video_standard = BG_PAL_NICAM;
  628. goto tune_channel;
  629. }
  630. if(params->std & V4L2_STD_PAL_I) {
  631. /* default to NICAM audio standard */
  632. priv->video_standard = I_PAL_NICAM;
  633. goto tune_channel;
  634. }
  635. if(params->std & V4L2_STD_PAL_DK) {
  636. /* default to NICAM audio standard */
  637. priv->video_standard = DK_PAL_NICAM;
  638. goto tune_channel;
  639. }
  640. if(params->std & V4L2_STD_SECAM_DK) {
  641. /* default to A2 DK1 audio standard */
  642. priv->video_standard = DK_SECAM_A2DK1;
  643. goto tune_channel;
  644. }
  645. if(params->std & V4L2_STD_SECAM_L) {
  646. priv->video_standard = L_SECAM_NICAM;
  647. goto tune_channel;
  648. }
  649. if(params->std & V4L2_STD_SECAM_LC) {
  650. priv->video_standard = LC_SECAM_NICAM;
  651. goto tune_channel;
  652. }
  653. tune_channel:
  654. ret = xc_SetSignalSource(priv, priv->rf_mode);
  655. if (ret != XC_RESULT_SUCCESS) {
  656. printk(KERN_ERR
  657. "xc5000: xc_SetSignalSource(%d) failed\n",
  658. priv->rf_mode);
  659. return -EREMOTEIO;
  660. }
  661. ret = xc_SetTVStandard(priv,
  662. XC5000_Standard[priv->video_standard].VideoMode,
  663. XC5000_Standard[priv->video_standard].AudioMode);
  664. if (ret != XC_RESULT_SUCCESS) {
  665. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  666. return -EREMOTEIO;
  667. }
  668. xc_tune_channel(priv, priv->freq_hz);
  669. if (debug)
  670. xc_debug_dump(priv);
  671. return 0;
  672. }
  673. static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
  674. {
  675. struct xc5000_priv *priv = fe->tuner_priv;
  676. dprintk(1, "%s()\n", __func__);
  677. *freq = priv->freq_hz;
  678. return 0;
  679. }
  680. static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
  681. {
  682. struct xc5000_priv *priv = fe->tuner_priv;
  683. dprintk(1, "%s()\n", __func__);
  684. *bw = priv->bandwidth;
  685. return 0;
  686. }
  687. static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
  688. {
  689. struct xc5000_priv *priv = fe->tuner_priv;
  690. u16 lock_status = 0;
  691. xc_get_lock_status(priv, &lock_status);
  692. dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
  693. *status = lock_status;
  694. return 0;
  695. }
  696. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
  697. {
  698. struct xc5000_priv *priv = fe->tuner_priv;
  699. int ret = 0;
  700. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
  701. ret = xc5000_fwupload(fe);
  702. if (ret != XC_RESULT_SUCCESS)
  703. return ret;
  704. }
  705. /* Start the tuner self-calibration process */
  706. ret |= xc_initialize(priv);
  707. /* Wait for calibration to complete.
  708. * We could continue but XC5000 will clock stretch subsequent
  709. * I2C transactions until calibration is complete. This way we
  710. * don't have to rely on clock stretching working.
  711. */
  712. xc_wait( 100 );
  713. /* Default to "CABLE" mode */
  714. ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
  715. return ret;
  716. }
  717. static int xc5000_sleep(struct dvb_frontend *fe)
  718. {
  719. struct xc5000_priv *priv = fe->tuner_priv;
  720. int ret;
  721. dprintk(1, "%s()\n", __func__);
  722. /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
  723. * once shutdown without reloading the driver. Maybe I am not
  724. * doing something right.
  725. *
  726. */
  727. ret = xc_shutdown(priv);
  728. if(ret != XC_RESULT_SUCCESS) {
  729. printk(KERN_ERR
  730. "xc5000: %s() unable to shutdown tuner\n",
  731. __func__);
  732. return -EREMOTEIO;
  733. }
  734. else {
  735. return XC_RESULT_SUCCESS;
  736. }
  737. }
  738. static int xc5000_init(struct dvb_frontend *fe)
  739. {
  740. struct xc5000_priv *priv = fe->tuner_priv;
  741. dprintk(1, "%s()\n", __func__);
  742. if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
  743. printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
  744. return -EREMOTEIO;
  745. }
  746. if (debug)
  747. xc_debug_dump(priv);
  748. return 0;
  749. }
  750. static int xc5000_release(struct dvb_frontend *fe)
  751. {
  752. dprintk(1, "%s()\n", __func__);
  753. kfree(fe->tuner_priv);
  754. fe->tuner_priv = NULL;
  755. return 0;
  756. }
  757. static const struct dvb_tuner_ops xc5000_tuner_ops = {
  758. .info = {
  759. .name = "Xceive XC5000",
  760. .frequency_min = 1000000,
  761. .frequency_max = 1023000000,
  762. .frequency_step = 50000,
  763. },
  764. .release = xc5000_release,
  765. .init = xc5000_init,
  766. .sleep = xc5000_sleep,
  767. .set_params = xc5000_set_params,
  768. .set_analog_params = xc5000_set_analog_params,
  769. .get_frequency = xc5000_get_frequency,
  770. .get_bandwidth = xc5000_get_bandwidth,
  771. .get_status = xc5000_get_status
  772. };
  773. struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
  774. struct i2c_adapter *i2c,
  775. struct xc5000_config *cfg, void *devptr)
  776. {
  777. struct xc5000_priv *priv = NULL;
  778. u16 id = 0;
  779. dprintk(1, "%s()\n", __func__);
  780. priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
  781. if (priv == NULL)
  782. return NULL;
  783. priv->cfg = cfg;
  784. priv->bandwidth = BANDWIDTH_6_MHZ;
  785. priv->i2c = i2c;
  786. priv->devptr = devptr;
  787. /* Check if firmware has been loaded. It is possible that another
  788. instance of the driver has loaded the firmware.
  789. */
  790. if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
  791. kfree(priv);
  792. return NULL;
  793. }
  794. switch(id) {
  795. case XC_PRODUCT_ID_FW_LOADED:
  796. printk(KERN_INFO
  797. "xc5000: Successfully identified at address 0x%02x\n",
  798. cfg->i2c_address);
  799. printk(KERN_INFO
  800. "xc5000: Firmware has been loaded previously\n");
  801. break;
  802. case XC_PRODUCT_ID_FW_NOT_LOADED:
  803. printk(KERN_INFO
  804. "xc5000: Successfully identified at address 0x%02x\n",
  805. cfg->i2c_address);
  806. printk(KERN_INFO
  807. "xc5000: Firmware has not been loaded previously\n");
  808. break;
  809. default:
  810. printk(KERN_ERR
  811. "xc5000: Device not found at addr 0x%02x (0x%x)\n",
  812. cfg->i2c_address, id);
  813. kfree(priv);
  814. return NULL;
  815. }
  816. memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
  817. sizeof(struct dvb_tuner_ops));
  818. fe->tuner_priv = priv;
  819. if (xc5000_load_fw_on_attach)
  820. xc5000_init(fe);
  821. return fe;
  822. }
  823. EXPORT_SYMBOL(xc5000_attach);
  824. MODULE_AUTHOR("Steven Toth");
  825. MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
  826. MODULE_LICENSE("GPL");