ehci-q.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457
  1. /*
  2. * Copyright (C) 2001-2004 by David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation; either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. * for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software Foundation,
  16. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. /* this file is part of ehci-hcd.c */
  19. /*-------------------------------------------------------------------------*/
  20. /*
  21. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  22. *
  23. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  24. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  25. * buffers needed for the larger number). We use one QH per endpoint, queue
  26. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  27. *
  28. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  29. * interrupts) needs careful scheduling. Performance improvements can be
  30. * an ongoing challenge. That's in "ehci-sched.c".
  31. *
  32. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  33. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  34. * (b) special fields in qh entries or (c) split iso entries. TTs will
  35. * buffer low/full speed data so the host collects it at high speed.
  36. */
  37. /*-------------------------------------------------------------------------*/
  38. /* fill a qtd, returning how much of the buffer we were able to queue up */
  39. static int
  40. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  41. size_t len, int token, int maxpacket)
  42. {
  43. int i, count;
  44. u64 addr = buf;
  45. /* one buffer entry per 4K ... first might be short or unaligned */
  46. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  47. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  48. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  49. if (likely (len < count)) /* ... iff needed */
  50. count = len;
  51. else {
  52. buf += 0x1000;
  53. buf &= ~0x0fff;
  54. /* per-qtd limit: from 16K to 20K (best alignment) */
  55. for (i = 1; count < len && i < 5; i++) {
  56. addr = buf;
  57. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  58. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  59. (u32)(addr >> 32));
  60. buf += 0x1000;
  61. if ((count + 0x1000) < len)
  62. count += 0x1000;
  63. else
  64. count = len;
  65. }
  66. /* short packets may only terminate transfers */
  67. if (count != len)
  68. count -= (count % maxpacket);
  69. }
  70. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  71. qtd->length = count;
  72. return count;
  73. }
  74. /*-------------------------------------------------------------------------*/
  75. static inline void
  76. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  77. {
  78. struct ehci_qh_hw *hw = qh->hw;
  79. /* writes to an active overlay are unsafe */
  80. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  81. hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  82. hw->hw_alt_next = EHCI_LIST_END(ehci);
  83. /* Except for control endpoints, we make hardware maintain data
  84. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  85. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  86. * ever clear it.
  87. */
  88. if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
  89. unsigned is_out, epnum;
  90. is_out = qh->is_out;
  91. epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
  92. if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
  93. hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  94. usb_settoggle(qh->ps.udev, epnum, is_out, 1);
  95. }
  96. }
  97. hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  98. }
  99. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  100. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  101. * recovery (including urb dequeue) would need software changes to a QH...
  102. */
  103. static void
  104. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  105. {
  106. struct ehci_qtd *qtd;
  107. qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
  108. /*
  109. * first qtd may already be partially processed.
  110. * If we come here during unlink, the QH overlay region
  111. * might have reference to the just unlinked qtd. The
  112. * qtd is updated in qh_completions(). Update the QH
  113. * overlay here.
  114. */
  115. if (qh->hw->hw_token & ACTIVE_BIT(ehci))
  116. qh->hw->hw_qtd_next = qtd->hw_next;
  117. else
  118. qh_update(ehci, qh, qtd);
  119. }
  120. /*-------------------------------------------------------------------------*/
  121. static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  122. static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
  123. struct usb_host_endpoint *ep)
  124. {
  125. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  126. struct ehci_qh *qh = ep->hcpriv;
  127. unsigned long flags;
  128. spin_lock_irqsave(&ehci->lock, flags);
  129. qh->clearing_tt = 0;
  130. if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
  131. && ehci->rh_state == EHCI_RH_RUNNING)
  132. qh_link_async(ehci, qh);
  133. spin_unlock_irqrestore(&ehci->lock, flags);
  134. }
  135. static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
  136. struct urb *urb, u32 token)
  137. {
  138. /* If an async split transaction gets an error or is unlinked,
  139. * the TT buffer may be left in an indeterminate state. We
  140. * have to clear the TT buffer.
  141. *
  142. * Note: this routine is never called for Isochronous transfers.
  143. */
  144. if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
  145. #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
  146. struct usb_device *tt = urb->dev->tt->hub;
  147. dev_dbg(&tt->dev,
  148. "clear tt buffer port %d, a%d ep%d t%08x\n",
  149. urb->dev->ttport, urb->dev->devnum,
  150. usb_pipeendpoint(urb->pipe), token);
  151. #endif /* DEBUG || CONFIG_DYNAMIC_DEBUG */
  152. if (!ehci_is_TDI(ehci)
  153. || urb->dev->tt->hub !=
  154. ehci_to_hcd(ehci)->self.root_hub) {
  155. if (usb_hub_clear_tt_buffer(urb) == 0)
  156. qh->clearing_tt = 1;
  157. } else {
  158. /* REVISIT ARC-derived cores don't clear the root
  159. * hub TT buffer in this way...
  160. */
  161. }
  162. }
  163. }
  164. static int qtd_copy_status (
  165. struct ehci_hcd *ehci,
  166. struct urb *urb,
  167. size_t length,
  168. u32 token
  169. )
  170. {
  171. int status = -EINPROGRESS;
  172. /* count IN/OUT bytes, not SETUP (even short packets) */
  173. if (likely (QTD_PID (token) != 2))
  174. urb->actual_length += length - QTD_LENGTH (token);
  175. /* don't modify error codes */
  176. if (unlikely(urb->unlinked))
  177. return status;
  178. /* force cleanup after short read; not always an error */
  179. if (unlikely (IS_SHORT_READ (token)))
  180. status = -EREMOTEIO;
  181. /* serious "can't proceed" faults reported by the hardware */
  182. if (token & QTD_STS_HALT) {
  183. if (token & QTD_STS_BABBLE) {
  184. /* FIXME "must" disable babbling device's port too */
  185. status = -EOVERFLOW;
  186. /* CERR nonzero + halt --> stall */
  187. } else if (QTD_CERR(token)) {
  188. status = -EPIPE;
  189. /* In theory, more than one of the following bits can be set
  190. * since they are sticky and the transaction is retried.
  191. * Which to test first is rather arbitrary.
  192. */
  193. } else if (token & QTD_STS_MMF) {
  194. /* fs/ls interrupt xfer missed the complete-split */
  195. status = -EPROTO;
  196. } else if (token & QTD_STS_DBE) {
  197. status = (QTD_PID (token) == 1) /* IN ? */
  198. ? -ENOSR /* hc couldn't read data */
  199. : -ECOMM; /* hc couldn't write data */
  200. } else if (token & QTD_STS_XACT) {
  201. /* timeout, bad CRC, wrong PID, etc */
  202. ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
  203. urb->dev->devpath,
  204. usb_pipeendpoint(urb->pipe),
  205. usb_pipein(urb->pipe) ? "in" : "out");
  206. status = -EPROTO;
  207. } else { /* unknown */
  208. status = -EPROTO;
  209. }
  210. }
  211. return status;
  212. }
  213. static void
  214. ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
  215. {
  216. if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
  217. /* ... update hc-wide periodic stats */
  218. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  219. }
  220. if (unlikely(urb->unlinked)) {
  221. COUNT(ehci->stats.unlink);
  222. } else {
  223. /* report non-error and short read status as zero */
  224. if (status == -EINPROGRESS || status == -EREMOTEIO)
  225. status = 0;
  226. COUNT(ehci->stats.complete);
  227. }
  228. #ifdef EHCI_URB_TRACE
  229. ehci_dbg (ehci,
  230. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  231. __func__, urb->dev->devpath, urb,
  232. usb_pipeendpoint (urb->pipe),
  233. usb_pipein (urb->pipe) ? "in" : "out",
  234. status,
  235. urb->actual_length, urb->transfer_buffer_length);
  236. #endif
  237. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  238. usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
  239. }
  240. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  241. /*
  242. * Process and free completed qtds for a qh, returning URBs to drivers.
  243. * Chases up to qh->hw_current. Returns nonzero if the caller should
  244. * unlink qh.
  245. */
  246. static unsigned
  247. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  248. {
  249. struct ehci_qtd *last, *end = qh->dummy;
  250. struct list_head *entry, *tmp;
  251. int last_status;
  252. int stopped;
  253. u8 state;
  254. struct ehci_qh_hw *hw = qh->hw;
  255. /* completions (or tasks on other cpus) must never clobber HALT
  256. * till we've gone through and cleaned everything up, even when
  257. * they add urbs to this qh's queue or mark them for unlinking.
  258. *
  259. * NOTE: unlinking expects to be done in queue order.
  260. *
  261. * It's a bug for qh->qh_state to be anything other than
  262. * QH_STATE_IDLE, unless our caller is scan_async() or
  263. * scan_intr().
  264. */
  265. state = qh->qh_state;
  266. qh->qh_state = QH_STATE_COMPLETING;
  267. stopped = (state == QH_STATE_IDLE);
  268. rescan:
  269. last = NULL;
  270. last_status = -EINPROGRESS;
  271. qh->dequeue_during_giveback = 0;
  272. /* remove de-activated QTDs from front of queue.
  273. * after faults (including short reads), cleanup this urb
  274. * then let the queue advance.
  275. * if queue is stopped, handles unlinks.
  276. */
  277. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  278. struct ehci_qtd *qtd;
  279. struct urb *urb;
  280. u32 token = 0;
  281. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  282. urb = qtd->urb;
  283. /* clean up any state from previous QTD ...*/
  284. if (last) {
  285. if (likely (last->urb != urb)) {
  286. ehci_urb_done(ehci, last->urb, last_status);
  287. last_status = -EINPROGRESS;
  288. }
  289. ehci_qtd_free (ehci, last);
  290. last = NULL;
  291. }
  292. /* ignore urbs submitted during completions we reported */
  293. if (qtd == end)
  294. break;
  295. /* hardware copies qtd out of qh overlay */
  296. rmb ();
  297. token = hc32_to_cpu(ehci, qtd->hw_token);
  298. /* always clean up qtds the hc de-activated */
  299. retry_xacterr:
  300. if ((token & QTD_STS_ACTIVE) == 0) {
  301. /* Report Data Buffer Error: non-fatal but useful */
  302. if (token & QTD_STS_DBE)
  303. ehci_dbg(ehci,
  304. "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  305. urb,
  306. usb_endpoint_num(&urb->ep->desc),
  307. usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
  308. urb->transfer_buffer_length,
  309. qtd,
  310. qh);
  311. /* on STALL, error, and short reads this urb must
  312. * complete and all its qtds must be recycled.
  313. */
  314. if ((token & QTD_STS_HALT) != 0) {
  315. /* retry transaction errors until we
  316. * reach the software xacterr limit
  317. */
  318. if ((token & QTD_STS_XACT) &&
  319. QTD_CERR(token) == 0 &&
  320. ++qh->xacterrs < QH_XACTERR_MAX &&
  321. !urb->unlinked) {
  322. ehci_dbg(ehci,
  323. "detected XactErr len %zu/%zu retry %d\n",
  324. qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
  325. /* reset the token in the qtd and the
  326. * qh overlay (which still contains
  327. * the qtd) so that we pick up from
  328. * where we left off
  329. */
  330. token &= ~QTD_STS_HALT;
  331. token |= QTD_STS_ACTIVE |
  332. (EHCI_TUNE_CERR << 10);
  333. qtd->hw_token = cpu_to_hc32(ehci,
  334. token);
  335. wmb();
  336. hw->hw_token = cpu_to_hc32(ehci,
  337. token);
  338. goto retry_xacterr;
  339. }
  340. stopped = 1;
  341. /* magic dummy for some short reads; qh won't advance.
  342. * that silicon quirk can kick in with this dummy too.
  343. *
  344. * other short reads won't stop the queue, including
  345. * control transfers (status stage handles that) or
  346. * most other single-qtd reads ... the queue stops if
  347. * URB_SHORT_NOT_OK was set so the driver submitting
  348. * the urbs could clean it up.
  349. */
  350. } else if (IS_SHORT_READ (token)
  351. && !(qtd->hw_alt_next
  352. & EHCI_LIST_END(ehci))) {
  353. stopped = 1;
  354. }
  355. /* stop scanning when we reach qtds the hc is using */
  356. } else if (likely (!stopped
  357. && ehci->rh_state >= EHCI_RH_RUNNING)) {
  358. break;
  359. /* scan the whole queue for unlinks whenever it stops */
  360. } else {
  361. stopped = 1;
  362. /* cancel everything if we halt, suspend, etc */
  363. if (ehci->rh_state < EHCI_RH_RUNNING)
  364. last_status = -ESHUTDOWN;
  365. /* this qtd is active; skip it unless a previous qtd
  366. * for its urb faulted, or its urb was canceled.
  367. */
  368. else if (last_status == -EINPROGRESS && !urb->unlinked)
  369. continue;
  370. /*
  371. * If this was the active qtd when the qh was unlinked
  372. * and the overlay's token is active, then the overlay
  373. * hasn't been written back to the qtd yet so use its
  374. * token instead of the qtd's. After the qtd is
  375. * processed and removed, the overlay won't be valid
  376. * any more.
  377. */
  378. if (state == QH_STATE_IDLE &&
  379. qh->qtd_list.next == &qtd->qtd_list &&
  380. (hw->hw_token & ACTIVE_BIT(ehci))) {
  381. token = hc32_to_cpu(ehci, hw->hw_token);
  382. hw->hw_token &= ~ACTIVE_BIT(ehci);
  383. /* An unlink may leave an incomplete
  384. * async transaction in the TT buffer.
  385. * We have to clear it.
  386. */
  387. ehci_clear_tt_buffer(ehci, qh, urb, token);
  388. }
  389. }
  390. /* unless we already know the urb's status, collect qtd status
  391. * and update count of bytes transferred. in common short read
  392. * cases with only one data qtd (including control transfers),
  393. * queue processing won't halt. but with two or more qtds (for
  394. * example, with a 32 KB transfer), when the first qtd gets a
  395. * short read the second must be removed by hand.
  396. */
  397. if (last_status == -EINPROGRESS) {
  398. last_status = qtd_copy_status(ehci, urb,
  399. qtd->length, token);
  400. if (last_status == -EREMOTEIO
  401. && (qtd->hw_alt_next
  402. & EHCI_LIST_END(ehci)))
  403. last_status = -EINPROGRESS;
  404. /* As part of low/full-speed endpoint-halt processing
  405. * we must clear the TT buffer (11.17.5).
  406. */
  407. if (unlikely(last_status != -EINPROGRESS &&
  408. last_status != -EREMOTEIO)) {
  409. /* The TT's in some hubs malfunction when they
  410. * receive this request following a STALL (they
  411. * stop sending isochronous packets). Since a
  412. * STALL can't leave the TT buffer in a busy
  413. * state (if you believe Figures 11-48 - 11-51
  414. * in the USB 2.0 spec), we won't clear the TT
  415. * buffer in this case. Strictly speaking this
  416. * is a violation of the spec.
  417. */
  418. if (last_status != -EPIPE)
  419. ehci_clear_tt_buffer(ehci, qh, urb,
  420. token);
  421. }
  422. }
  423. /* if we're removing something not at the queue head,
  424. * patch the hardware queue pointer.
  425. */
  426. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  427. last = list_entry (qtd->qtd_list.prev,
  428. struct ehci_qtd, qtd_list);
  429. last->hw_next = qtd->hw_next;
  430. }
  431. /* remove qtd; it's recycled after possible urb completion */
  432. list_del (&qtd->qtd_list);
  433. last = qtd;
  434. /* reinit the xacterr counter for the next qtd */
  435. qh->xacterrs = 0;
  436. }
  437. /* last urb's completion might still need calling */
  438. if (likely (last != NULL)) {
  439. ehci_urb_done(ehci, last->urb, last_status);
  440. ehci_qtd_free (ehci, last);
  441. }
  442. /* Do we need to rescan for URBs dequeued during a giveback? */
  443. if (unlikely(qh->dequeue_during_giveback)) {
  444. /* If the QH is already unlinked, do the rescan now. */
  445. if (state == QH_STATE_IDLE)
  446. goto rescan;
  447. /* Otherwise the caller must unlink the QH. */
  448. }
  449. /* restore original state; caller must unlink or relink */
  450. qh->qh_state = state;
  451. /* be sure the hardware's done with the qh before refreshing
  452. * it after fault cleanup, or recovering from silicon wrongly
  453. * overlaying the dummy qtd (which reduces DMA chatter).
  454. *
  455. * We won't refresh a QH that's linked (after the HC
  456. * stopped the queue). That avoids a race:
  457. * - HC reads first part of QH;
  458. * - CPU updates that first part and the token;
  459. * - HC reads rest of that QH, including token
  460. * Result: HC gets an inconsistent image, and then
  461. * DMAs to/from the wrong memory (corrupting it).
  462. *
  463. * That should be rare for interrupt transfers,
  464. * except maybe high bandwidth ...
  465. */
  466. if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
  467. qh->exception = 1;
  468. /* Let the caller know if the QH needs to be unlinked. */
  469. return qh->exception;
  470. }
  471. /*-------------------------------------------------------------------------*/
  472. // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
  473. #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
  474. // ... and packet size, for any kind of endpoint descriptor
  475. #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
  476. /*
  477. * reverse of qh_urb_transaction: free a list of TDs.
  478. * used for cleanup after errors, before HC sees an URB's TDs.
  479. */
  480. static void qtd_list_free (
  481. struct ehci_hcd *ehci,
  482. struct urb *urb,
  483. struct list_head *qtd_list
  484. ) {
  485. struct list_head *entry, *temp;
  486. list_for_each_safe (entry, temp, qtd_list) {
  487. struct ehci_qtd *qtd;
  488. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  489. list_del (&qtd->qtd_list);
  490. ehci_qtd_free (ehci, qtd);
  491. }
  492. }
  493. /*
  494. * create a list of filled qtds for this URB; won't link into qh.
  495. */
  496. static struct list_head *
  497. qh_urb_transaction (
  498. struct ehci_hcd *ehci,
  499. struct urb *urb,
  500. struct list_head *head,
  501. gfp_t flags
  502. ) {
  503. struct ehci_qtd *qtd, *qtd_prev;
  504. dma_addr_t buf;
  505. int len, this_sg_len, maxpacket;
  506. int is_input;
  507. u32 token;
  508. int i;
  509. struct scatterlist *sg;
  510. /*
  511. * URBs map to sequences of QTDs: one logical transaction
  512. */
  513. qtd = ehci_qtd_alloc (ehci, flags);
  514. if (unlikely (!qtd))
  515. return NULL;
  516. list_add_tail (&qtd->qtd_list, head);
  517. qtd->urb = urb;
  518. token = QTD_STS_ACTIVE;
  519. token |= (EHCI_TUNE_CERR << 10);
  520. /* for split transactions, SplitXState initialized to zero */
  521. len = urb->transfer_buffer_length;
  522. is_input = usb_pipein (urb->pipe);
  523. if (usb_pipecontrol (urb->pipe)) {
  524. /* SETUP pid */
  525. qtd_fill(ehci, qtd, urb->setup_dma,
  526. sizeof (struct usb_ctrlrequest),
  527. token | (2 /* "setup" */ << 8), 8);
  528. /* ... and always at least one more pid */
  529. token ^= QTD_TOGGLE;
  530. qtd_prev = qtd;
  531. qtd = ehci_qtd_alloc (ehci, flags);
  532. if (unlikely (!qtd))
  533. goto cleanup;
  534. qtd->urb = urb;
  535. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  536. list_add_tail (&qtd->qtd_list, head);
  537. /* for zero length DATA stages, STATUS is always IN */
  538. if (len == 0)
  539. token |= (1 /* "in" */ << 8);
  540. }
  541. /*
  542. * data transfer stage: buffer setup
  543. */
  544. i = urb->num_mapped_sgs;
  545. if (len > 0 && i > 0) {
  546. sg = urb->sg;
  547. buf = sg_dma_address(sg);
  548. /* urb->transfer_buffer_length may be smaller than the
  549. * size of the scatterlist (or vice versa)
  550. */
  551. this_sg_len = min_t(int, sg_dma_len(sg), len);
  552. } else {
  553. sg = NULL;
  554. buf = urb->transfer_dma;
  555. this_sg_len = len;
  556. }
  557. if (is_input)
  558. token |= (1 /* "in" */ << 8);
  559. /* else it's already initted to "out" pid (0 << 8) */
  560. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
  561. /*
  562. * buffer gets wrapped in one or more qtds;
  563. * last one may be "short" (including zero len)
  564. * and may serve as a control status ack
  565. */
  566. for (;;) {
  567. int this_qtd_len;
  568. this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
  569. maxpacket);
  570. this_sg_len -= this_qtd_len;
  571. len -= this_qtd_len;
  572. buf += this_qtd_len;
  573. /*
  574. * short reads advance to a "magic" dummy instead of the next
  575. * qtd ... that forces the queue to stop, for manual cleanup.
  576. * (this will usually be overridden later.)
  577. */
  578. if (is_input)
  579. qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
  580. /* qh makes control packets use qtd toggle; maybe switch it */
  581. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  582. token ^= QTD_TOGGLE;
  583. if (likely(this_sg_len <= 0)) {
  584. if (--i <= 0 || len <= 0)
  585. break;
  586. sg = sg_next(sg);
  587. buf = sg_dma_address(sg);
  588. this_sg_len = min_t(int, sg_dma_len(sg), len);
  589. }
  590. qtd_prev = qtd;
  591. qtd = ehci_qtd_alloc (ehci, flags);
  592. if (unlikely (!qtd))
  593. goto cleanup;
  594. qtd->urb = urb;
  595. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  596. list_add_tail (&qtd->qtd_list, head);
  597. }
  598. /*
  599. * unless the caller requires manual cleanup after short reads,
  600. * have the alt_next mechanism keep the queue running after the
  601. * last data qtd (the only one, for control and most other cases).
  602. */
  603. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  604. || usb_pipecontrol (urb->pipe)))
  605. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  606. /*
  607. * control requests may need a terminating data "status" ack;
  608. * other OUT ones may need a terminating short packet
  609. * (zero length).
  610. */
  611. if (likely (urb->transfer_buffer_length != 0)) {
  612. int one_more = 0;
  613. if (usb_pipecontrol (urb->pipe)) {
  614. one_more = 1;
  615. token ^= 0x0100; /* "in" <--> "out" */
  616. token |= QTD_TOGGLE; /* force DATA1 */
  617. } else if (usb_pipeout(urb->pipe)
  618. && (urb->transfer_flags & URB_ZERO_PACKET)
  619. && !(urb->transfer_buffer_length % maxpacket)) {
  620. one_more = 1;
  621. }
  622. if (one_more) {
  623. qtd_prev = qtd;
  624. qtd = ehci_qtd_alloc (ehci, flags);
  625. if (unlikely (!qtd))
  626. goto cleanup;
  627. qtd->urb = urb;
  628. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  629. list_add_tail (&qtd->qtd_list, head);
  630. /* never any data in such packets */
  631. qtd_fill(ehci, qtd, 0, 0, token, 0);
  632. }
  633. }
  634. /* by default, enable interrupt on urb completion */
  635. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  636. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  637. return head;
  638. cleanup:
  639. qtd_list_free (ehci, urb, head);
  640. return NULL;
  641. }
  642. /*-------------------------------------------------------------------------*/
  643. // Would be best to create all qh's from config descriptors,
  644. // when each interface/altsetting is established. Unlink
  645. // any previous qh and cancel its urbs first; endpoints are
  646. // implicitly reset then (data toggle too).
  647. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  648. /*
  649. * Each QH holds a qtd list; a QH is used for everything except iso.
  650. *
  651. * For interrupt urbs, the scheduler must set the microframe scheduling
  652. * mask(s) each time the QH gets scheduled. For highspeed, that's
  653. * just one microframe in the s-mask. For split interrupt transactions
  654. * there are additional complications: c-mask, maybe FSTNs.
  655. */
  656. static struct ehci_qh *
  657. qh_make (
  658. struct ehci_hcd *ehci,
  659. struct urb *urb,
  660. gfp_t flags
  661. ) {
  662. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  663. u32 info1 = 0, info2 = 0;
  664. int is_input, type;
  665. int maxp = 0;
  666. struct usb_tt *tt = urb->dev->tt;
  667. struct ehci_qh_hw *hw;
  668. if (!qh)
  669. return qh;
  670. /*
  671. * init endpoint/device data for this QH
  672. */
  673. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  674. info1 |= usb_pipedevice (urb->pipe) << 0;
  675. is_input = usb_pipein (urb->pipe);
  676. type = usb_pipetype (urb->pipe);
  677. maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
  678. /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
  679. * acts like up to 3KB, but is built from smaller packets.
  680. */
  681. if (max_packet(maxp) > 1024) {
  682. ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
  683. goto done;
  684. }
  685. /* Compute interrupt scheduling parameters just once, and save.
  686. * - allowing for high bandwidth, how many nsec/uframe are used?
  687. * - split transactions need a second CSPLIT uframe; same question
  688. * - splits also need a schedule gap (for full/low speed I/O)
  689. * - qh has a polling interval
  690. *
  691. * For control/bulk requests, the HC or TT handles these.
  692. */
  693. if (type == PIPE_INTERRUPT) {
  694. qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
  695. is_input, 0,
  696. hb_mult(maxp) * max_packet(maxp)));
  697. qh->ps.phase = NO_FRAME;
  698. if (urb->dev->speed == USB_SPEED_HIGH) {
  699. qh->ps.c_usecs = 0;
  700. qh->gap_uf = 0;
  701. if (urb->interval > 1 && urb->interval < 8) {
  702. /* NOTE interval 2 or 4 uframes could work.
  703. * But interval 1 scheduling is simpler, and
  704. * includes high bandwidth.
  705. */
  706. urb->interval = 1;
  707. } else if (urb->interval > ehci->periodic_size << 3) {
  708. urb->interval = ehci->periodic_size << 3;
  709. }
  710. qh->ps.period = urb->interval >> 3;
  711. } else {
  712. int think_time;
  713. /* gap is f(FS/LS transfer times) */
  714. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  715. is_input, 0, maxp) / (125 * 1000);
  716. /* FIXME this just approximates SPLIT/CSPLIT times */
  717. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  718. qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
  719. qh->ps.usecs = HS_USECS(1);
  720. } else { // SPLIT+DATA, gap, CSPLIT
  721. qh->ps.usecs += HS_USECS(1);
  722. qh->ps.c_usecs = HS_USECS(0);
  723. }
  724. think_time = tt ? tt->think_time : 0;
  725. qh->ps.tt_usecs = NS_TO_US(think_time +
  726. usb_calc_bus_time (urb->dev->speed,
  727. is_input, 0, max_packet (maxp)));
  728. if (urb->interval > ehci->periodic_size)
  729. urb->interval = ehci->periodic_size;
  730. qh->ps.period = urb->interval;
  731. }
  732. }
  733. /* support for tt scheduling, and access to toggles */
  734. qh->ps.udev = urb->dev;
  735. qh->ps.ep = urb->ep;
  736. /* using TT? */
  737. switch (urb->dev->speed) {
  738. case USB_SPEED_LOW:
  739. info1 |= QH_LOW_SPEED;
  740. /* FALL THROUGH */
  741. case USB_SPEED_FULL:
  742. /* EPS 0 means "full" */
  743. if (type != PIPE_INTERRUPT)
  744. info1 |= (EHCI_TUNE_RL_TT << 28);
  745. if (type == PIPE_CONTROL) {
  746. info1 |= QH_CONTROL_EP; /* for TT */
  747. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  748. }
  749. info1 |= maxp << 16;
  750. info2 |= (EHCI_TUNE_MULT_TT << 30);
  751. /* Some Freescale processors have an erratum in which the
  752. * port number in the queue head was 0..N-1 instead of 1..N.
  753. */
  754. if (ehci_has_fsl_portno_bug(ehci))
  755. info2 |= (urb->dev->ttport-1) << 23;
  756. else
  757. info2 |= urb->dev->ttport << 23;
  758. /* set the address of the TT; for TDI's integrated
  759. * root hub tt, leave it zeroed.
  760. */
  761. if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
  762. info2 |= tt->hub->devnum << 16;
  763. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  764. break;
  765. case USB_SPEED_HIGH: /* no TT involved */
  766. info1 |= QH_HIGH_SPEED;
  767. if (type == PIPE_CONTROL) {
  768. info1 |= (EHCI_TUNE_RL_HS << 28);
  769. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  770. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  771. info2 |= (EHCI_TUNE_MULT_HS << 30);
  772. } else if (type == PIPE_BULK) {
  773. info1 |= (EHCI_TUNE_RL_HS << 28);
  774. /* The USB spec says that high speed bulk endpoints
  775. * always use 512 byte maxpacket. But some device
  776. * vendors decided to ignore that, and MSFT is happy
  777. * to help them do so. So now people expect to use
  778. * such nonconformant devices with Linux too; sigh.
  779. */
  780. info1 |= max_packet(maxp) << 16;
  781. info2 |= (EHCI_TUNE_MULT_HS << 30);
  782. } else { /* PIPE_INTERRUPT */
  783. info1 |= max_packet (maxp) << 16;
  784. info2 |= hb_mult (maxp) << 30;
  785. }
  786. break;
  787. default:
  788. ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
  789. urb->dev->speed);
  790. done:
  791. qh_destroy(ehci, qh);
  792. return NULL;
  793. }
  794. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  795. /* init as live, toggle clear */
  796. qh->qh_state = QH_STATE_IDLE;
  797. hw = qh->hw;
  798. hw->hw_info1 = cpu_to_hc32(ehci, info1);
  799. hw->hw_info2 = cpu_to_hc32(ehci, info2);
  800. qh->is_out = !is_input;
  801. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  802. return qh;
  803. }
  804. /*-------------------------------------------------------------------------*/
  805. static void enable_async(struct ehci_hcd *ehci)
  806. {
  807. if (ehci->async_count++)
  808. return;
  809. /* Stop waiting to turn off the async schedule */
  810. ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
  811. /* Don't start the schedule until ASS is 0 */
  812. ehci_poll_ASS(ehci);
  813. turn_on_io_watchdog(ehci);
  814. }
  815. static void disable_async(struct ehci_hcd *ehci)
  816. {
  817. if (--ehci->async_count)
  818. return;
  819. /* The async schedule and unlink lists are supposed to be empty */
  820. WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
  821. !list_empty(&ehci->async_idle));
  822. /* Don't turn off the schedule until ASS is 1 */
  823. ehci_poll_ASS(ehci);
  824. }
  825. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  826. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  827. {
  828. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  829. struct ehci_qh *head;
  830. /* Don't link a QH if there's a Clear-TT-Buffer pending */
  831. if (unlikely(qh->clearing_tt))
  832. return;
  833. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  834. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  835. qh_refresh(ehci, qh);
  836. /* splice right after start */
  837. head = ehci->async;
  838. qh->qh_next = head->qh_next;
  839. qh->hw->hw_next = head->hw->hw_next;
  840. wmb ();
  841. head->qh_next.qh = qh;
  842. head->hw->hw_next = dma;
  843. qh->qh_state = QH_STATE_LINKED;
  844. qh->xacterrs = 0;
  845. qh->exception = 0;
  846. /* qtd completions reported later by interrupt */
  847. enable_async(ehci);
  848. }
  849. /*-------------------------------------------------------------------------*/
  850. /*
  851. * For control/bulk/interrupt, return QH with these TDs appended.
  852. * Allocates and initializes the QH if necessary.
  853. * Returns null if it can't allocate a QH it needs to.
  854. * If the QH has TDs (urbs) already, that's great.
  855. */
  856. static struct ehci_qh *qh_append_tds (
  857. struct ehci_hcd *ehci,
  858. struct urb *urb,
  859. struct list_head *qtd_list,
  860. int epnum,
  861. void **ptr
  862. )
  863. {
  864. struct ehci_qh *qh = NULL;
  865. __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  866. qh = (struct ehci_qh *) *ptr;
  867. if (unlikely (qh == NULL)) {
  868. /* can't sleep here, we have ehci->lock... */
  869. qh = qh_make (ehci, urb, GFP_ATOMIC);
  870. *ptr = qh;
  871. }
  872. if (likely (qh != NULL)) {
  873. struct ehci_qtd *qtd;
  874. if (unlikely (list_empty (qtd_list)))
  875. qtd = NULL;
  876. else
  877. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  878. qtd_list);
  879. /* control qh may need patching ... */
  880. if (unlikely (epnum == 0)) {
  881. /* usb_reset_device() briefly reverts to address 0 */
  882. if (usb_pipedevice (urb->pipe) == 0)
  883. qh->hw->hw_info1 &= ~qh_addr_mask;
  884. }
  885. /* just one way to queue requests: swap with the dummy qtd.
  886. * only hc or qh_refresh() ever modify the overlay.
  887. */
  888. if (likely (qtd != NULL)) {
  889. struct ehci_qtd *dummy;
  890. dma_addr_t dma;
  891. __hc32 token;
  892. /* to avoid racing the HC, use the dummy td instead of
  893. * the first td of our list (becomes new dummy). both
  894. * tds stay deactivated until we're done, when the
  895. * HC is allowed to fetch the old dummy (4.10.2).
  896. */
  897. token = qtd->hw_token;
  898. qtd->hw_token = HALT_BIT(ehci);
  899. dummy = qh->dummy;
  900. dma = dummy->qtd_dma;
  901. *dummy = *qtd;
  902. dummy->qtd_dma = dma;
  903. list_del (&qtd->qtd_list);
  904. list_add (&dummy->qtd_list, qtd_list);
  905. list_splice_tail(qtd_list, &qh->qtd_list);
  906. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  907. qh->dummy = qtd;
  908. /* hc must see the new dummy at list end */
  909. dma = qtd->qtd_dma;
  910. qtd = list_entry (qh->qtd_list.prev,
  911. struct ehci_qtd, qtd_list);
  912. qtd->hw_next = QTD_NEXT(ehci, dma);
  913. /* let the hc process these next qtds */
  914. wmb ();
  915. dummy->hw_token = token;
  916. urb->hcpriv = qh;
  917. }
  918. }
  919. return qh;
  920. }
  921. /*-------------------------------------------------------------------------*/
  922. static int
  923. submit_async (
  924. struct ehci_hcd *ehci,
  925. struct urb *urb,
  926. struct list_head *qtd_list,
  927. gfp_t mem_flags
  928. ) {
  929. int epnum;
  930. unsigned long flags;
  931. struct ehci_qh *qh = NULL;
  932. int rc;
  933. epnum = urb->ep->desc.bEndpointAddress;
  934. #ifdef EHCI_URB_TRACE
  935. {
  936. struct ehci_qtd *qtd;
  937. qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
  938. ehci_dbg(ehci,
  939. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  940. __func__, urb->dev->devpath, urb,
  941. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  942. urb->transfer_buffer_length,
  943. qtd, urb->ep->hcpriv);
  944. }
  945. #endif
  946. spin_lock_irqsave (&ehci->lock, flags);
  947. if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
  948. rc = -ESHUTDOWN;
  949. goto done;
  950. }
  951. rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
  952. if (unlikely(rc))
  953. goto done;
  954. qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
  955. if (unlikely(qh == NULL)) {
  956. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  957. rc = -ENOMEM;
  958. goto done;
  959. }
  960. /* Control/bulk operations through TTs don't need scheduling,
  961. * the HC and TT handle it when the TT has a buffer ready.
  962. */
  963. if (likely (qh->qh_state == QH_STATE_IDLE))
  964. qh_link_async(ehci, qh);
  965. done:
  966. spin_unlock_irqrestore (&ehci->lock, flags);
  967. if (unlikely (qh == NULL))
  968. qtd_list_free (ehci, urb, qtd_list);
  969. return rc;
  970. }
  971. /*-------------------------------------------------------------------------*/
  972. #ifdef CONFIG_USB_HCD_TEST_MODE
  973. /*
  974. * This function creates the qtds and submits them for the
  975. * SINGLE_STEP_SET_FEATURE Test.
  976. * This is done in two parts: first SETUP req for GetDesc is sent then
  977. * 15 seconds later, the IN stage for GetDesc starts to req data from dev
  978. *
  979. * is_setup : i/p arguement decides which of the two stage needs to be
  980. * performed; TRUE - SETUP and FALSE - IN+STATUS
  981. * Returns 0 if success
  982. */
  983. static int submit_single_step_set_feature(
  984. struct usb_hcd *hcd,
  985. struct urb *urb,
  986. int is_setup
  987. ) {
  988. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  989. struct list_head qtd_list;
  990. struct list_head *head;
  991. struct ehci_qtd *qtd, *qtd_prev;
  992. dma_addr_t buf;
  993. int len, maxpacket;
  994. u32 token;
  995. INIT_LIST_HEAD(&qtd_list);
  996. head = &qtd_list;
  997. /* URBs map to sequences of QTDs: one logical transaction */
  998. qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
  999. if (unlikely(!qtd))
  1000. return -1;
  1001. list_add_tail(&qtd->qtd_list, head);
  1002. qtd->urb = urb;
  1003. token = QTD_STS_ACTIVE;
  1004. token |= (EHCI_TUNE_CERR << 10);
  1005. len = urb->transfer_buffer_length;
  1006. /*
  1007. * Check if the request is to perform just the SETUP stage (getDesc)
  1008. * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
  1009. * 15 secs after the setup
  1010. */
  1011. if (is_setup) {
  1012. /* SETUP pid */
  1013. qtd_fill(ehci, qtd, urb->setup_dma,
  1014. sizeof(struct usb_ctrlrequest),
  1015. token | (2 /* "setup" */ << 8), 8);
  1016. submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
  1017. return 0; /*Return now; we shall come back after 15 seconds*/
  1018. }
  1019. /*
  1020. * IN: data transfer stage: buffer setup : start the IN txn phase for
  1021. * the get_Desc SETUP which was sent 15seconds back
  1022. */
  1023. token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
  1024. buf = urb->transfer_dma;
  1025. token |= (1 /* "in" */ << 8); /*This is IN stage*/
  1026. maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
  1027. qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  1028. /*
  1029. * Our IN phase shall always be a short read; so keep the queue running
  1030. * and let it advance to the next qtd which zero length OUT status
  1031. */
  1032. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  1033. /* STATUS stage for GetDesc control request */
  1034. token ^= 0x0100; /* "in" <--> "out" */
  1035. token |= QTD_TOGGLE; /* force DATA1 */
  1036. qtd_prev = qtd;
  1037. qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
  1038. if (unlikely(!qtd))
  1039. goto cleanup;
  1040. qtd->urb = urb;
  1041. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  1042. list_add_tail(&qtd->qtd_list, head);
  1043. /* dont fill any data in such packets */
  1044. qtd_fill(ehci, qtd, 0, 0, token, 0);
  1045. /* by default, enable interrupt on urb completion */
  1046. if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
  1047. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  1048. submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
  1049. return 0;
  1050. cleanup:
  1051. qtd_list_free(ehci, urb, head);
  1052. return -1;
  1053. }
  1054. #endif /* CONFIG_USB_HCD_TEST_MODE */
  1055. /*-------------------------------------------------------------------------*/
  1056. static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1057. {
  1058. struct ehci_qh *prev;
  1059. /* Add to the end of the list of QHs waiting for the next IAAD */
  1060. qh->qh_state = QH_STATE_UNLINK_WAIT;
  1061. list_add_tail(&qh->unlink_node, &ehci->async_unlink);
  1062. /* Unlink it from the schedule */
  1063. prev = ehci->async;
  1064. while (prev->qh_next.qh != qh)
  1065. prev = prev->qh_next.qh;
  1066. prev->hw->hw_next = qh->hw->hw_next;
  1067. prev->qh_next = qh->qh_next;
  1068. if (ehci->qh_scan_next == qh)
  1069. ehci->qh_scan_next = qh->qh_next.qh;
  1070. }
  1071. static void start_iaa_cycle(struct ehci_hcd *ehci)
  1072. {
  1073. /* Do nothing if an IAA cycle is already running */
  1074. if (ehci->iaa_in_progress)
  1075. return;
  1076. ehci->iaa_in_progress = true;
  1077. /* If the controller isn't running, we don't have to wait for it */
  1078. if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
  1079. end_unlink_async(ehci);
  1080. /* Otherwise start a new IAA cycle */
  1081. } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
  1082. /* Make sure the unlinks are all visible to the hardware */
  1083. wmb();
  1084. ehci_writel(ehci, ehci->command | CMD_IAAD,
  1085. &ehci->regs->command);
  1086. ehci_readl(ehci, &ehci->regs->command);
  1087. ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
  1088. }
  1089. }
  1090. /* the async qh for the qtds being unlinked are now gone from the HC */
  1091. static void end_unlink_async(struct ehci_hcd *ehci)
  1092. {
  1093. struct ehci_qh *qh;
  1094. bool early_exit;
  1095. if (ehci->has_synopsys_hc_bug)
  1096. ehci_writel(ehci, (u32) ehci->async->qh_dma,
  1097. &ehci->regs->async_next);
  1098. /* The current IAA cycle has ended */
  1099. ehci->iaa_in_progress = false;
  1100. if (list_empty(&ehci->async_unlink))
  1101. return;
  1102. qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
  1103. unlink_node); /* QH whose IAA cycle just ended */
  1104. /*
  1105. * If async_unlinking is set then this routine is already running,
  1106. * either on the stack or on another CPU.
  1107. */
  1108. early_exit = ehci->async_unlinking;
  1109. /* If the controller isn't running, process all the waiting QHs */
  1110. if (ehci->rh_state < EHCI_RH_RUNNING)
  1111. list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
  1112. /*
  1113. * Intel (?) bug: The HC can write back the overlay region even
  1114. * after the IAA interrupt occurs. In self-defense, always go
  1115. * through two IAA cycles for each QH.
  1116. */
  1117. else if (qh->qh_state == QH_STATE_UNLINK_WAIT) {
  1118. qh->qh_state = QH_STATE_UNLINK;
  1119. early_exit = true;
  1120. }
  1121. /* Otherwise process only the first waiting QH (NVIDIA bug?) */
  1122. else
  1123. list_move_tail(&qh->unlink_node, &ehci->async_idle);
  1124. /* Start a new IAA cycle if any QHs are waiting for it */
  1125. if (!list_empty(&ehci->async_unlink))
  1126. start_iaa_cycle(ehci);
  1127. /*
  1128. * Don't allow nesting or concurrent calls,
  1129. * or wait for the second IAA cycle for the next QH.
  1130. */
  1131. if (early_exit)
  1132. return;
  1133. /* Process the idle QHs */
  1134. ehci->async_unlinking = true;
  1135. while (!list_empty(&ehci->async_idle)) {
  1136. qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
  1137. unlink_node);
  1138. list_del(&qh->unlink_node);
  1139. qh->qh_state = QH_STATE_IDLE;
  1140. qh->qh_next.qh = NULL;
  1141. if (!list_empty(&qh->qtd_list))
  1142. qh_completions(ehci, qh);
  1143. if (!list_empty(&qh->qtd_list) &&
  1144. ehci->rh_state == EHCI_RH_RUNNING)
  1145. qh_link_async(ehci, qh);
  1146. disable_async(ehci);
  1147. }
  1148. ehci->async_unlinking = false;
  1149. }
  1150. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  1151. static void unlink_empty_async(struct ehci_hcd *ehci)
  1152. {
  1153. struct ehci_qh *qh;
  1154. struct ehci_qh *qh_to_unlink = NULL;
  1155. int count = 0;
  1156. /* Find the last async QH which has been empty for a timer cycle */
  1157. for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
  1158. if (list_empty(&qh->qtd_list) &&
  1159. qh->qh_state == QH_STATE_LINKED) {
  1160. ++count;
  1161. if (qh->unlink_cycle != ehci->async_unlink_cycle)
  1162. qh_to_unlink = qh;
  1163. }
  1164. }
  1165. /* If nothing else is being unlinked, unlink the last empty QH */
  1166. if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
  1167. start_unlink_async(ehci, qh_to_unlink);
  1168. --count;
  1169. }
  1170. /* Other QHs will be handled later */
  1171. if (count > 0) {
  1172. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1173. ++ehci->async_unlink_cycle;
  1174. }
  1175. }
  1176. /* The root hub is suspended; unlink all the async QHs */
  1177. static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci)
  1178. {
  1179. struct ehci_qh *qh;
  1180. while (ehci->async->qh_next.qh) {
  1181. qh = ehci->async->qh_next.qh;
  1182. WARN_ON(!list_empty(&qh->qtd_list));
  1183. single_unlink_async(ehci, qh);
  1184. }
  1185. start_iaa_cycle(ehci);
  1186. }
  1187. /* makes sure the async qh will become idle */
  1188. /* caller must own ehci->lock */
  1189. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1190. {
  1191. /* If the QH isn't linked then there's nothing we can do. */
  1192. if (qh->qh_state != QH_STATE_LINKED)
  1193. return;
  1194. single_unlink_async(ehci, qh);
  1195. start_iaa_cycle(ehci);
  1196. }
  1197. /*-------------------------------------------------------------------------*/
  1198. static void scan_async (struct ehci_hcd *ehci)
  1199. {
  1200. struct ehci_qh *qh;
  1201. bool check_unlinks_later = false;
  1202. ehci->qh_scan_next = ehci->async->qh_next.qh;
  1203. while (ehci->qh_scan_next) {
  1204. qh = ehci->qh_scan_next;
  1205. ehci->qh_scan_next = qh->qh_next.qh;
  1206. /* clean any finished work for this qh */
  1207. if (!list_empty(&qh->qtd_list)) {
  1208. int temp;
  1209. /*
  1210. * Unlinks could happen here; completion reporting
  1211. * drops the lock. That's why ehci->qh_scan_next
  1212. * always holds the next qh to scan; if the next qh
  1213. * gets unlinked then ehci->qh_scan_next is adjusted
  1214. * in single_unlink_async().
  1215. */
  1216. temp = qh_completions(ehci, qh);
  1217. if (unlikely(temp)) {
  1218. start_unlink_async(ehci, qh);
  1219. } else if (list_empty(&qh->qtd_list)
  1220. && qh->qh_state == QH_STATE_LINKED) {
  1221. qh->unlink_cycle = ehci->async_unlink_cycle;
  1222. check_unlinks_later = true;
  1223. }
  1224. }
  1225. }
  1226. /*
  1227. * Unlink empty entries, reducing DMA usage as well
  1228. * as HCD schedule-scanning costs. Delay for any qh
  1229. * we just scanned, there's a not-unusual case that it
  1230. * doesn't stay idle for long.
  1231. */
  1232. if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
  1233. !(ehci->enabled_hrtimer_events &
  1234. BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
  1235. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1236. ++ehci->async_unlink_cycle;
  1237. }
  1238. }