vmx.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include "kvm_cache_regs.h"
  29. #include "x86.h"
  30. #include <asm/io.h>
  31. #include <asm/desc.h>
  32. #include <asm/vmx.h>
  33. #include <asm/virtext.h>
  34. #include <asm/mce.h>
  35. #include "trace.h"
  36. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. static int __read_mostly bypass_guest_pf = 1;
  40. module_param(bypass_guest_pf, bool, S_IRUGO);
  41. static int __read_mostly enable_vpid = 1;
  42. module_param_named(vpid, enable_vpid, bool, 0444);
  43. static int __read_mostly flexpriority_enabled = 1;
  44. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  45. static int __read_mostly enable_ept = 1;
  46. module_param_named(ept, enable_ept, bool, S_IRUGO);
  47. static int __read_mostly enable_unrestricted_guest = 1;
  48. module_param_named(unrestricted_guest,
  49. enable_unrestricted_guest, bool, S_IRUGO);
  50. static int __read_mostly emulate_invalid_guest_state = 0;
  51. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  52. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  53. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  54. #define KVM_GUEST_CR0_MASK \
  55. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  56. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  57. (X86_CR0_WP | X86_CR0_NE)
  58. #define KVM_VM_CR0_ALWAYS_ON \
  59. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  60. #define KVM_CR4_GUEST_OWNED_BITS \
  61. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  62. | X86_CR4_OSXMMEXCPT)
  63. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  64. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  65. /*
  66. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  67. * ple_gap: upper bound on the amount of time between two successive
  68. * executions of PAUSE in a loop. Also indicate if ple enabled.
  69. * According to test, this time is usually small than 41 cycles.
  70. * ple_window: upper bound on the amount of time a guest is allowed to execute
  71. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  72. * less than 2^12 cycles
  73. * Time is measured based on a counter that runs at the same rate as the TSC,
  74. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  75. */
  76. #define KVM_VMX_DEFAULT_PLE_GAP 41
  77. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  78. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  79. module_param(ple_gap, int, S_IRUGO);
  80. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  81. module_param(ple_window, int, S_IRUGO);
  82. struct vmcs {
  83. u32 revision_id;
  84. u32 abort;
  85. char data[0];
  86. };
  87. struct shared_msr_entry {
  88. unsigned index;
  89. u64 data;
  90. u64 mask;
  91. };
  92. struct vcpu_vmx {
  93. struct kvm_vcpu vcpu;
  94. struct list_head local_vcpus_link;
  95. unsigned long host_rsp;
  96. int launched;
  97. u8 fail;
  98. u32 idt_vectoring_info;
  99. struct shared_msr_entry *guest_msrs;
  100. int nmsrs;
  101. int save_nmsrs;
  102. #ifdef CONFIG_X86_64
  103. u64 msr_host_kernel_gs_base;
  104. u64 msr_guest_kernel_gs_base;
  105. #endif
  106. struct vmcs *vmcs;
  107. struct {
  108. int loaded;
  109. u16 fs_sel, gs_sel, ldt_sel;
  110. int gs_ldt_reload_needed;
  111. int fs_reload_needed;
  112. } host_state;
  113. struct {
  114. int vm86_active;
  115. u8 save_iopl;
  116. struct kvm_save_segment {
  117. u16 selector;
  118. unsigned long base;
  119. u32 limit;
  120. u32 ar;
  121. } tr, es, ds, fs, gs;
  122. struct {
  123. bool pending;
  124. u8 vector;
  125. unsigned rip;
  126. } irq;
  127. } rmode;
  128. int vpid;
  129. bool emulation_required;
  130. /* Support for vnmi-less CPUs */
  131. int soft_vnmi_blocked;
  132. ktime_t entry_time;
  133. s64 vnmi_blocked_time;
  134. u32 exit_reason;
  135. bool rdtscp_enabled;
  136. };
  137. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  138. {
  139. return container_of(vcpu, struct vcpu_vmx, vcpu);
  140. }
  141. static int init_rmode(struct kvm *kvm);
  142. static u64 construct_eptp(unsigned long root_hpa);
  143. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  144. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  145. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  146. static unsigned long *vmx_io_bitmap_a;
  147. static unsigned long *vmx_io_bitmap_b;
  148. static unsigned long *vmx_msr_bitmap_legacy;
  149. static unsigned long *vmx_msr_bitmap_longmode;
  150. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  151. static DEFINE_SPINLOCK(vmx_vpid_lock);
  152. static struct vmcs_config {
  153. int size;
  154. int order;
  155. u32 revision_id;
  156. u32 pin_based_exec_ctrl;
  157. u32 cpu_based_exec_ctrl;
  158. u32 cpu_based_2nd_exec_ctrl;
  159. u32 vmexit_ctrl;
  160. u32 vmentry_ctrl;
  161. } vmcs_config;
  162. static struct vmx_capability {
  163. u32 ept;
  164. u32 vpid;
  165. } vmx_capability;
  166. #define VMX_SEGMENT_FIELD(seg) \
  167. [VCPU_SREG_##seg] = { \
  168. .selector = GUEST_##seg##_SELECTOR, \
  169. .base = GUEST_##seg##_BASE, \
  170. .limit = GUEST_##seg##_LIMIT, \
  171. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  172. }
  173. static struct kvm_vmx_segment_field {
  174. unsigned selector;
  175. unsigned base;
  176. unsigned limit;
  177. unsigned ar_bytes;
  178. } kvm_vmx_segment_fields[] = {
  179. VMX_SEGMENT_FIELD(CS),
  180. VMX_SEGMENT_FIELD(DS),
  181. VMX_SEGMENT_FIELD(ES),
  182. VMX_SEGMENT_FIELD(FS),
  183. VMX_SEGMENT_FIELD(GS),
  184. VMX_SEGMENT_FIELD(SS),
  185. VMX_SEGMENT_FIELD(TR),
  186. VMX_SEGMENT_FIELD(LDTR),
  187. };
  188. static u64 host_efer;
  189. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  190. /*
  191. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  192. * away by decrementing the array size.
  193. */
  194. static const u32 vmx_msr_index[] = {
  195. #ifdef CONFIG_X86_64
  196. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  197. #endif
  198. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  199. };
  200. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  201. static inline int is_page_fault(u32 intr_info)
  202. {
  203. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  204. INTR_INFO_VALID_MASK)) ==
  205. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  206. }
  207. static inline int is_no_device(u32 intr_info)
  208. {
  209. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  210. INTR_INFO_VALID_MASK)) ==
  211. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  212. }
  213. static inline int is_invalid_opcode(u32 intr_info)
  214. {
  215. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  216. INTR_INFO_VALID_MASK)) ==
  217. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  218. }
  219. static inline int is_external_interrupt(u32 intr_info)
  220. {
  221. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  222. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  223. }
  224. static inline int is_machine_check(u32 intr_info)
  225. {
  226. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  227. INTR_INFO_VALID_MASK)) ==
  228. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  229. }
  230. static inline int cpu_has_vmx_msr_bitmap(void)
  231. {
  232. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  233. }
  234. static inline int cpu_has_vmx_tpr_shadow(void)
  235. {
  236. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  237. }
  238. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  239. {
  240. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  241. }
  242. static inline int cpu_has_secondary_exec_ctrls(void)
  243. {
  244. return vmcs_config.cpu_based_exec_ctrl &
  245. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  246. }
  247. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  248. {
  249. return vmcs_config.cpu_based_2nd_exec_ctrl &
  250. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  251. }
  252. static inline bool cpu_has_vmx_flexpriority(void)
  253. {
  254. return cpu_has_vmx_tpr_shadow() &&
  255. cpu_has_vmx_virtualize_apic_accesses();
  256. }
  257. static inline bool cpu_has_vmx_ept_execute_only(void)
  258. {
  259. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  260. }
  261. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  262. {
  263. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  264. }
  265. static inline bool cpu_has_vmx_eptp_writeback(void)
  266. {
  267. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  268. }
  269. static inline bool cpu_has_vmx_ept_2m_page(void)
  270. {
  271. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  272. }
  273. static inline bool cpu_has_vmx_ept_1g_page(void)
  274. {
  275. return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
  276. }
  277. static inline int cpu_has_vmx_invept_individual_addr(void)
  278. {
  279. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  280. }
  281. static inline int cpu_has_vmx_invept_context(void)
  282. {
  283. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  284. }
  285. static inline int cpu_has_vmx_invept_global(void)
  286. {
  287. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  288. }
  289. static inline int cpu_has_vmx_ept(void)
  290. {
  291. return vmcs_config.cpu_based_2nd_exec_ctrl &
  292. SECONDARY_EXEC_ENABLE_EPT;
  293. }
  294. static inline int cpu_has_vmx_unrestricted_guest(void)
  295. {
  296. return vmcs_config.cpu_based_2nd_exec_ctrl &
  297. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  298. }
  299. static inline int cpu_has_vmx_ple(void)
  300. {
  301. return vmcs_config.cpu_based_2nd_exec_ctrl &
  302. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  303. }
  304. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  305. {
  306. return flexpriority_enabled && irqchip_in_kernel(kvm);
  307. }
  308. static inline int cpu_has_vmx_vpid(void)
  309. {
  310. return vmcs_config.cpu_based_2nd_exec_ctrl &
  311. SECONDARY_EXEC_ENABLE_VPID;
  312. }
  313. static inline int cpu_has_vmx_rdtscp(void)
  314. {
  315. return vmcs_config.cpu_based_2nd_exec_ctrl &
  316. SECONDARY_EXEC_RDTSCP;
  317. }
  318. static inline int cpu_has_virtual_nmis(void)
  319. {
  320. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  321. }
  322. static inline bool report_flexpriority(void)
  323. {
  324. return flexpriority_enabled;
  325. }
  326. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  327. {
  328. int i;
  329. for (i = 0; i < vmx->nmsrs; ++i)
  330. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  331. return i;
  332. return -1;
  333. }
  334. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  335. {
  336. struct {
  337. u64 vpid : 16;
  338. u64 rsvd : 48;
  339. u64 gva;
  340. } operand = { vpid, 0, gva };
  341. asm volatile (__ex(ASM_VMX_INVVPID)
  342. /* CF==1 or ZF==1 --> rc = -1 */
  343. "; ja 1f ; ud2 ; 1:"
  344. : : "a"(&operand), "c"(ext) : "cc", "memory");
  345. }
  346. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  347. {
  348. struct {
  349. u64 eptp, gpa;
  350. } operand = {eptp, gpa};
  351. asm volatile (__ex(ASM_VMX_INVEPT)
  352. /* CF==1 or ZF==1 --> rc = -1 */
  353. "; ja 1f ; ud2 ; 1:\n"
  354. : : "a" (&operand), "c" (ext) : "cc", "memory");
  355. }
  356. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  357. {
  358. int i;
  359. i = __find_msr_index(vmx, msr);
  360. if (i >= 0)
  361. return &vmx->guest_msrs[i];
  362. return NULL;
  363. }
  364. static void vmcs_clear(struct vmcs *vmcs)
  365. {
  366. u64 phys_addr = __pa(vmcs);
  367. u8 error;
  368. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  369. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  370. : "cc", "memory");
  371. if (error)
  372. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  373. vmcs, phys_addr);
  374. }
  375. static void __vcpu_clear(void *arg)
  376. {
  377. struct vcpu_vmx *vmx = arg;
  378. int cpu = raw_smp_processor_id();
  379. if (vmx->vcpu.cpu == cpu)
  380. vmcs_clear(vmx->vmcs);
  381. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  382. per_cpu(current_vmcs, cpu) = NULL;
  383. rdtscll(vmx->vcpu.arch.host_tsc);
  384. list_del(&vmx->local_vcpus_link);
  385. vmx->vcpu.cpu = -1;
  386. vmx->launched = 0;
  387. }
  388. static void vcpu_clear(struct vcpu_vmx *vmx)
  389. {
  390. if (vmx->vcpu.cpu == -1)
  391. return;
  392. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  393. }
  394. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  395. {
  396. if (vmx->vpid == 0)
  397. return;
  398. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  399. }
  400. static inline void ept_sync_global(void)
  401. {
  402. if (cpu_has_vmx_invept_global())
  403. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  404. }
  405. static inline void ept_sync_context(u64 eptp)
  406. {
  407. if (enable_ept) {
  408. if (cpu_has_vmx_invept_context())
  409. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  410. else
  411. ept_sync_global();
  412. }
  413. }
  414. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  415. {
  416. if (enable_ept) {
  417. if (cpu_has_vmx_invept_individual_addr())
  418. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  419. eptp, gpa);
  420. else
  421. ept_sync_context(eptp);
  422. }
  423. }
  424. static unsigned long vmcs_readl(unsigned long field)
  425. {
  426. unsigned long value;
  427. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  428. : "=a"(value) : "d"(field) : "cc");
  429. return value;
  430. }
  431. static u16 vmcs_read16(unsigned long field)
  432. {
  433. return vmcs_readl(field);
  434. }
  435. static u32 vmcs_read32(unsigned long field)
  436. {
  437. return vmcs_readl(field);
  438. }
  439. static u64 vmcs_read64(unsigned long field)
  440. {
  441. #ifdef CONFIG_X86_64
  442. return vmcs_readl(field);
  443. #else
  444. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  445. #endif
  446. }
  447. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  448. {
  449. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  450. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  451. dump_stack();
  452. }
  453. static void vmcs_writel(unsigned long field, unsigned long value)
  454. {
  455. u8 error;
  456. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  457. : "=q"(error) : "a"(value), "d"(field) : "cc");
  458. if (unlikely(error))
  459. vmwrite_error(field, value);
  460. }
  461. static void vmcs_write16(unsigned long field, u16 value)
  462. {
  463. vmcs_writel(field, value);
  464. }
  465. static void vmcs_write32(unsigned long field, u32 value)
  466. {
  467. vmcs_writel(field, value);
  468. }
  469. static void vmcs_write64(unsigned long field, u64 value)
  470. {
  471. vmcs_writel(field, value);
  472. #ifndef CONFIG_X86_64
  473. asm volatile ("");
  474. vmcs_writel(field+1, value >> 32);
  475. #endif
  476. }
  477. static void vmcs_clear_bits(unsigned long field, u32 mask)
  478. {
  479. vmcs_writel(field, vmcs_readl(field) & ~mask);
  480. }
  481. static void vmcs_set_bits(unsigned long field, u32 mask)
  482. {
  483. vmcs_writel(field, vmcs_readl(field) | mask);
  484. }
  485. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  486. {
  487. u32 eb;
  488. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  489. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  490. if ((vcpu->guest_debug &
  491. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  492. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  493. eb |= 1u << BP_VECTOR;
  494. if (to_vmx(vcpu)->rmode.vm86_active)
  495. eb = ~0;
  496. if (enable_ept)
  497. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  498. if (vcpu->fpu_active)
  499. eb &= ~(1u << NM_VECTOR);
  500. vmcs_write32(EXCEPTION_BITMAP, eb);
  501. }
  502. static void reload_tss(void)
  503. {
  504. /*
  505. * VT restores TR but not its size. Useless.
  506. */
  507. struct descriptor_table gdt;
  508. struct desc_struct *descs;
  509. kvm_get_gdt(&gdt);
  510. descs = (void *)gdt.base;
  511. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  512. load_TR_desc();
  513. }
  514. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  515. {
  516. u64 guest_efer;
  517. u64 ignore_bits;
  518. guest_efer = vmx->vcpu.arch.efer;
  519. /*
  520. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  521. * outside long mode
  522. */
  523. ignore_bits = EFER_NX | EFER_SCE;
  524. #ifdef CONFIG_X86_64
  525. ignore_bits |= EFER_LMA | EFER_LME;
  526. /* SCE is meaningful only in long mode on Intel */
  527. if (guest_efer & EFER_LMA)
  528. ignore_bits &= ~(u64)EFER_SCE;
  529. #endif
  530. guest_efer &= ~ignore_bits;
  531. guest_efer |= host_efer & ignore_bits;
  532. vmx->guest_msrs[efer_offset].data = guest_efer;
  533. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  534. return true;
  535. }
  536. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  537. {
  538. struct vcpu_vmx *vmx = to_vmx(vcpu);
  539. int i;
  540. if (vmx->host_state.loaded)
  541. return;
  542. vmx->host_state.loaded = 1;
  543. /*
  544. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  545. * allow segment selectors with cpl > 0 or ti == 1.
  546. */
  547. vmx->host_state.ldt_sel = kvm_read_ldt();
  548. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  549. vmx->host_state.fs_sel = kvm_read_fs();
  550. if (!(vmx->host_state.fs_sel & 7)) {
  551. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  552. vmx->host_state.fs_reload_needed = 0;
  553. } else {
  554. vmcs_write16(HOST_FS_SELECTOR, 0);
  555. vmx->host_state.fs_reload_needed = 1;
  556. }
  557. vmx->host_state.gs_sel = kvm_read_gs();
  558. if (!(vmx->host_state.gs_sel & 7))
  559. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  560. else {
  561. vmcs_write16(HOST_GS_SELECTOR, 0);
  562. vmx->host_state.gs_ldt_reload_needed = 1;
  563. }
  564. #ifdef CONFIG_X86_64
  565. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  566. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  567. #else
  568. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  569. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  570. #endif
  571. #ifdef CONFIG_X86_64
  572. if (is_long_mode(&vmx->vcpu)) {
  573. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  574. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  575. }
  576. #endif
  577. for (i = 0; i < vmx->save_nmsrs; ++i)
  578. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  579. vmx->guest_msrs[i].data,
  580. vmx->guest_msrs[i].mask);
  581. }
  582. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  583. {
  584. unsigned long flags;
  585. if (!vmx->host_state.loaded)
  586. return;
  587. ++vmx->vcpu.stat.host_state_reload;
  588. vmx->host_state.loaded = 0;
  589. if (vmx->host_state.fs_reload_needed)
  590. kvm_load_fs(vmx->host_state.fs_sel);
  591. if (vmx->host_state.gs_ldt_reload_needed) {
  592. kvm_load_ldt(vmx->host_state.ldt_sel);
  593. /*
  594. * If we have to reload gs, we must take care to
  595. * preserve our gs base.
  596. */
  597. local_irq_save(flags);
  598. kvm_load_gs(vmx->host_state.gs_sel);
  599. #ifdef CONFIG_X86_64
  600. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  601. #endif
  602. local_irq_restore(flags);
  603. }
  604. reload_tss();
  605. #ifdef CONFIG_X86_64
  606. if (is_long_mode(&vmx->vcpu)) {
  607. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  608. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  609. }
  610. #endif
  611. }
  612. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  613. {
  614. preempt_disable();
  615. __vmx_load_host_state(vmx);
  616. preempt_enable();
  617. }
  618. /*
  619. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  620. * vcpu mutex is already taken.
  621. */
  622. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  623. {
  624. struct vcpu_vmx *vmx = to_vmx(vcpu);
  625. u64 phys_addr = __pa(vmx->vmcs);
  626. u64 tsc_this, delta, new_offset;
  627. if (vcpu->cpu != cpu) {
  628. vcpu_clear(vmx);
  629. kvm_migrate_timers(vcpu);
  630. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  631. local_irq_disable();
  632. list_add(&vmx->local_vcpus_link,
  633. &per_cpu(vcpus_on_cpu, cpu));
  634. local_irq_enable();
  635. }
  636. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  637. u8 error;
  638. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  639. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  640. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  641. : "cc");
  642. if (error)
  643. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  644. vmx->vmcs, phys_addr);
  645. }
  646. if (vcpu->cpu != cpu) {
  647. struct descriptor_table dt;
  648. unsigned long sysenter_esp;
  649. vcpu->cpu = cpu;
  650. /*
  651. * Linux uses per-cpu TSS and GDT, so set these when switching
  652. * processors.
  653. */
  654. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  655. kvm_get_gdt(&dt);
  656. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  657. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  658. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  659. /*
  660. * Make sure the time stamp counter is monotonous.
  661. */
  662. rdtscll(tsc_this);
  663. if (tsc_this < vcpu->arch.host_tsc) {
  664. delta = vcpu->arch.host_tsc - tsc_this;
  665. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  666. vmcs_write64(TSC_OFFSET, new_offset);
  667. }
  668. }
  669. }
  670. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  671. {
  672. __vmx_load_host_state(to_vmx(vcpu));
  673. }
  674. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  675. {
  676. ulong cr0;
  677. if (vcpu->fpu_active)
  678. return;
  679. vcpu->fpu_active = 1;
  680. cr0 = vmcs_readl(GUEST_CR0);
  681. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  682. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  683. vmcs_writel(GUEST_CR0, cr0);
  684. update_exception_bitmap(vcpu);
  685. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  686. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  687. }
  688. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  689. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  690. {
  691. vmx_decache_cr0_guest_bits(vcpu);
  692. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  693. update_exception_bitmap(vcpu);
  694. vcpu->arch.cr0_guest_owned_bits = 0;
  695. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  696. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  697. }
  698. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  699. {
  700. unsigned long rflags;
  701. rflags = vmcs_readl(GUEST_RFLAGS);
  702. if (to_vmx(vcpu)->rmode.vm86_active)
  703. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  704. return rflags;
  705. }
  706. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  707. {
  708. if (to_vmx(vcpu)->rmode.vm86_active)
  709. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  710. vmcs_writel(GUEST_RFLAGS, rflags);
  711. }
  712. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  713. {
  714. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  715. int ret = 0;
  716. if (interruptibility & GUEST_INTR_STATE_STI)
  717. ret |= X86_SHADOW_INT_STI;
  718. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  719. ret |= X86_SHADOW_INT_MOV_SS;
  720. return ret & mask;
  721. }
  722. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  723. {
  724. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  725. u32 interruptibility = interruptibility_old;
  726. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  727. if (mask & X86_SHADOW_INT_MOV_SS)
  728. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  729. if (mask & X86_SHADOW_INT_STI)
  730. interruptibility |= GUEST_INTR_STATE_STI;
  731. if ((interruptibility != interruptibility_old))
  732. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  733. }
  734. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  735. {
  736. unsigned long rip;
  737. rip = kvm_rip_read(vcpu);
  738. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  739. kvm_rip_write(vcpu, rip);
  740. /* skipping an emulated instruction also counts */
  741. vmx_set_interrupt_shadow(vcpu, 0);
  742. }
  743. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  744. bool has_error_code, u32 error_code)
  745. {
  746. struct vcpu_vmx *vmx = to_vmx(vcpu);
  747. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  748. if (has_error_code) {
  749. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  750. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  751. }
  752. if (vmx->rmode.vm86_active) {
  753. vmx->rmode.irq.pending = true;
  754. vmx->rmode.irq.vector = nr;
  755. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  756. if (kvm_exception_is_soft(nr))
  757. vmx->rmode.irq.rip +=
  758. vmx->vcpu.arch.event_exit_inst_len;
  759. intr_info |= INTR_TYPE_SOFT_INTR;
  760. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  761. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  762. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  763. return;
  764. }
  765. if (kvm_exception_is_soft(nr)) {
  766. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  767. vmx->vcpu.arch.event_exit_inst_len);
  768. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  769. } else
  770. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  771. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  772. }
  773. static bool vmx_rdtscp_supported(void)
  774. {
  775. return cpu_has_vmx_rdtscp();
  776. }
  777. /*
  778. * Swap MSR entry in host/guest MSR entry array.
  779. */
  780. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  781. {
  782. struct shared_msr_entry tmp;
  783. tmp = vmx->guest_msrs[to];
  784. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  785. vmx->guest_msrs[from] = tmp;
  786. }
  787. /*
  788. * Set up the vmcs to automatically save and restore system
  789. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  790. * mode, as fiddling with msrs is very expensive.
  791. */
  792. static void setup_msrs(struct vcpu_vmx *vmx)
  793. {
  794. int save_nmsrs, index;
  795. unsigned long *msr_bitmap;
  796. vmx_load_host_state(vmx);
  797. save_nmsrs = 0;
  798. #ifdef CONFIG_X86_64
  799. if (is_long_mode(&vmx->vcpu)) {
  800. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  801. if (index >= 0)
  802. move_msr_up(vmx, index, save_nmsrs++);
  803. index = __find_msr_index(vmx, MSR_LSTAR);
  804. if (index >= 0)
  805. move_msr_up(vmx, index, save_nmsrs++);
  806. index = __find_msr_index(vmx, MSR_CSTAR);
  807. if (index >= 0)
  808. move_msr_up(vmx, index, save_nmsrs++);
  809. index = __find_msr_index(vmx, MSR_TSC_AUX);
  810. if (index >= 0 && vmx->rdtscp_enabled)
  811. move_msr_up(vmx, index, save_nmsrs++);
  812. /*
  813. * MSR_K6_STAR is only needed on long mode guests, and only
  814. * if efer.sce is enabled.
  815. */
  816. index = __find_msr_index(vmx, MSR_K6_STAR);
  817. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  818. move_msr_up(vmx, index, save_nmsrs++);
  819. }
  820. #endif
  821. index = __find_msr_index(vmx, MSR_EFER);
  822. if (index >= 0 && update_transition_efer(vmx, index))
  823. move_msr_up(vmx, index, save_nmsrs++);
  824. vmx->save_nmsrs = save_nmsrs;
  825. if (cpu_has_vmx_msr_bitmap()) {
  826. if (is_long_mode(&vmx->vcpu))
  827. msr_bitmap = vmx_msr_bitmap_longmode;
  828. else
  829. msr_bitmap = vmx_msr_bitmap_legacy;
  830. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  831. }
  832. }
  833. /*
  834. * reads and returns guest's timestamp counter "register"
  835. * guest_tsc = host_tsc + tsc_offset -- 21.3
  836. */
  837. static u64 guest_read_tsc(void)
  838. {
  839. u64 host_tsc, tsc_offset;
  840. rdtscll(host_tsc);
  841. tsc_offset = vmcs_read64(TSC_OFFSET);
  842. return host_tsc + tsc_offset;
  843. }
  844. /*
  845. * writes 'guest_tsc' into guest's timestamp counter "register"
  846. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  847. */
  848. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  849. {
  850. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  851. }
  852. /*
  853. * Reads an msr value (of 'msr_index') into 'pdata'.
  854. * Returns 0 on success, non-0 otherwise.
  855. * Assumes vcpu_load() was already called.
  856. */
  857. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  858. {
  859. u64 data;
  860. struct shared_msr_entry *msr;
  861. if (!pdata) {
  862. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  863. return -EINVAL;
  864. }
  865. switch (msr_index) {
  866. #ifdef CONFIG_X86_64
  867. case MSR_FS_BASE:
  868. data = vmcs_readl(GUEST_FS_BASE);
  869. break;
  870. case MSR_GS_BASE:
  871. data = vmcs_readl(GUEST_GS_BASE);
  872. break;
  873. case MSR_KERNEL_GS_BASE:
  874. vmx_load_host_state(to_vmx(vcpu));
  875. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  876. break;
  877. #endif
  878. case MSR_EFER:
  879. return kvm_get_msr_common(vcpu, msr_index, pdata);
  880. case MSR_IA32_TSC:
  881. data = guest_read_tsc();
  882. break;
  883. case MSR_IA32_SYSENTER_CS:
  884. data = vmcs_read32(GUEST_SYSENTER_CS);
  885. break;
  886. case MSR_IA32_SYSENTER_EIP:
  887. data = vmcs_readl(GUEST_SYSENTER_EIP);
  888. break;
  889. case MSR_IA32_SYSENTER_ESP:
  890. data = vmcs_readl(GUEST_SYSENTER_ESP);
  891. break;
  892. case MSR_TSC_AUX:
  893. if (!to_vmx(vcpu)->rdtscp_enabled)
  894. return 1;
  895. /* Otherwise falls through */
  896. default:
  897. vmx_load_host_state(to_vmx(vcpu));
  898. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  899. if (msr) {
  900. vmx_load_host_state(to_vmx(vcpu));
  901. data = msr->data;
  902. break;
  903. }
  904. return kvm_get_msr_common(vcpu, msr_index, pdata);
  905. }
  906. *pdata = data;
  907. return 0;
  908. }
  909. /*
  910. * Writes msr value into into the appropriate "register".
  911. * Returns 0 on success, non-0 otherwise.
  912. * Assumes vcpu_load() was already called.
  913. */
  914. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  915. {
  916. struct vcpu_vmx *vmx = to_vmx(vcpu);
  917. struct shared_msr_entry *msr;
  918. u64 host_tsc;
  919. int ret = 0;
  920. switch (msr_index) {
  921. case MSR_EFER:
  922. vmx_load_host_state(vmx);
  923. ret = kvm_set_msr_common(vcpu, msr_index, data);
  924. break;
  925. #ifdef CONFIG_X86_64
  926. case MSR_FS_BASE:
  927. vmcs_writel(GUEST_FS_BASE, data);
  928. break;
  929. case MSR_GS_BASE:
  930. vmcs_writel(GUEST_GS_BASE, data);
  931. break;
  932. case MSR_KERNEL_GS_BASE:
  933. vmx_load_host_state(vmx);
  934. vmx->msr_guest_kernel_gs_base = data;
  935. break;
  936. #endif
  937. case MSR_IA32_SYSENTER_CS:
  938. vmcs_write32(GUEST_SYSENTER_CS, data);
  939. break;
  940. case MSR_IA32_SYSENTER_EIP:
  941. vmcs_writel(GUEST_SYSENTER_EIP, data);
  942. break;
  943. case MSR_IA32_SYSENTER_ESP:
  944. vmcs_writel(GUEST_SYSENTER_ESP, data);
  945. break;
  946. case MSR_IA32_TSC:
  947. rdtscll(host_tsc);
  948. guest_write_tsc(data, host_tsc);
  949. break;
  950. case MSR_IA32_CR_PAT:
  951. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  952. vmcs_write64(GUEST_IA32_PAT, data);
  953. vcpu->arch.pat = data;
  954. break;
  955. }
  956. ret = kvm_set_msr_common(vcpu, msr_index, data);
  957. break;
  958. case MSR_TSC_AUX:
  959. if (!vmx->rdtscp_enabled)
  960. return 1;
  961. /* Check reserved bit, higher 32 bits should be zero */
  962. if ((data >> 32) != 0)
  963. return 1;
  964. /* Otherwise falls through */
  965. default:
  966. msr = find_msr_entry(vmx, msr_index);
  967. if (msr) {
  968. vmx_load_host_state(vmx);
  969. msr->data = data;
  970. break;
  971. }
  972. ret = kvm_set_msr_common(vcpu, msr_index, data);
  973. }
  974. return ret;
  975. }
  976. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  977. {
  978. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  979. switch (reg) {
  980. case VCPU_REGS_RSP:
  981. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  982. break;
  983. case VCPU_REGS_RIP:
  984. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  985. break;
  986. case VCPU_EXREG_PDPTR:
  987. if (enable_ept)
  988. ept_save_pdptrs(vcpu);
  989. break;
  990. default:
  991. break;
  992. }
  993. }
  994. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  995. {
  996. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  997. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  998. else
  999. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1000. update_exception_bitmap(vcpu);
  1001. }
  1002. static __init int cpu_has_kvm_support(void)
  1003. {
  1004. return cpu_has_vmx();
  1005. }
  1006. static __init int vmx_disabled_by_bios(void)
  1007. {
  1008. u64 msr;
  1009. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1010. return (msr & (FEATURE_CONTROL_LOCKED |
  1011. FEATURE_CONTROL_VMXON_ENABLED))
  1012. == FEATURE_CONTROL_LOCKED;
  1013. /* locked but not enabled */
  1014. }
  1015. static int hardware_enable(void *garbage)
  1016. {
  1017. int cpu = raw_smp_processor_id();
  1018. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1019. u64 old;
  1020. if (read_cr4() & X86_CR4_VMXE)
  1021. return -EBUSY;
  1022. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1023. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1024. if ((old & (FEATURE_CONTROL_LOCKED |
  1025. FEATURE_CONTROL_VMXON_ENABLED))
  1026. != (FEATURE_CONTROL_LOCKED |
  1027. FEATURE_CONTROL_VMXON_ENABLED))
  1028. /* enable and lock */
  1029. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1030. FEATURE_CONTROL_LOCKED |
  1031. FEATURE_CONTROL_VMXON_ENABLED);
  1032. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1033. asm volatile (ASM_VMX_VMXON_RAX
  1034. : : "a"(&phys_addr), "m"(phys_addr)
  1035. : "memory", "cc");
  1036. ept_sync_global();
  1037. return 0;
  1038. }
  1039. static void vmclear_local_vcpus(void)
  1040. {
  1041. int cpu = raw_smp_processor_id();
  1042. struct vcpu_vmx *vmx, *n;
  1043. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1044. local_vcpus_link)
  1045. __vcpu_clear(vmx);
  1046. }
  1047. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1048. * tricks.
  1049. */
  1050. static void kvm_cpu_vmxoff(void)
  1051. {
  1052. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1053. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1054. }
  1055. static void hardware_disable(void *garbage)
  1056. {
  1057. vmclear_local_vcpus();
  1058. kvm_cpu_vmxoff();
  1059. }
  1060. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1061. u32 msr, u32 *result)
  1062. {
  1063. u32 vmx_msr_low, vmx_msr_high;
  1064. u32 ctl = ctl_min | ctl_opt;
  1065. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1066. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1067. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1068. /* Ensure minimum (required) set of control bits are supported. */
  1069. if (ctl_min & ~ctl)
  1070. return -EIO;
  1071. *result = ctl;
  1072. return 0;
  1073. }
  1074. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1075. {
  1076. u32 vmx_msr_low, vmx_msr_high;
  1077. u32 min, opt, min2, opt2;
  1078. u32 _pin_based_exec_control = 0;
  1079. u32 _cpu_based_exec_control = 0;
  1080. u32 _cpu_based_2nd_exec_control = 0;
  1081. u32 _vmexit_control = 0;
  1082. u32 _vmentry_control = 0;
  1083. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1084. opt = PIN_BASED_VIRTUAL_NMIS;
  1085. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1086. &_pin_based_exec_control) < 0)
  1087. return -EIO;
  1088. min = CPU_BASED_HLT_EXITING |
  1089. #ifdef CONFIG_X86_64
  1090. CPU_BASED_CR8_LOAD_EXITING |
  1091. CPU_BASED_CR8_STORE_EXITING |
  1092. #endif
  1093. CPU_BASED_CR3_LOAD_EXITING |
  1094. CPU_BASED_CR3_STORE_EXITING |
  1095. CPU_BASED_USE_IO_BITMAPS |
  1096. CPU_BASED_MOV_DR_EXITING |
  1097. CPU_BASED_USE_TSC_OFFSETING |
  1098. CPU_BASED_MWAIT_EXITING |
  1099. CPU_BASED_MONITOR_EXITING |
  1100. CPU_BASED_INVLPG_EXITING;
  1101. opt = CPU_BASED_TPR_SHADOW |
  1102. CPU_BASED_USE_MSR_BITMAPS |
  1103. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1104. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1105. &_cpu_based_exec_control) < 0)
  1106. return -EIO;
  1107. #ifdef CONFIG_X86_64
  1108. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1109. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1110. ~CPU_BASED_CR8_STORE_EXITING;
  1111. #endif
  1112. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1113. min2 = 0;
  1114. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1115. SECONDARY_EXEC_WBINVD_EXITING |
  1116. SECONDARY_EXEC_ENABLE_VPID |
  1117. SECONDARY_EXEC_ENABLE_EPT |
  1118. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1119. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1120. SECONDARY_EXEC_RDTSCP;
  1121. if (adjust_vmx_controls(min2, opt2,
  1122. MSR_IA32_VMX_PROCBASED_CTLS2,
  1123. &_cpu_based_2nd_exec_control) < 0)
  1124. return -EIO;
  1125. }
  1126. #ifndef CONFIG_X86_64
  1127. if (!(_cpu_based_2nd_exec_control &
  1128. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1129. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1130. #endif
  1131. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1132. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1133. enabled */
  1134. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1135. CPU_BASED_CR3_STORE_EXITING |
  1136. CPU_BASED_INVLPG_EXITING);
  1137. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1138. vmx_capability.ept, vmx_capability.vpid);
  1139. }
  1140. min = 0;
  1141. #ifdef CONFIG_X86_64
  1142. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1143. #endif
  1144. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1145. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1146. &_vmexit_control) < 0)
  1147. return -EIO;
  1148. min = 0;
  1149. opt = VM_ENTRY_LOAD_IA32_PAT;
  1150. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1151. &_vmentry_control) < 0)
  1152. return -EIO;
  1153. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1154. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1155. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1156. return -EIO;
  1157. #ifdef CONFIG_X86_64
  1158. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1159. if (vmx_msr_high & (1u<<16))
  1160. return -EIO;
  1161. #endif
  1162. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1163. if (((vmx_msr_high >> 18) & 15) != 6)
  1164. return -EIO;
  1165. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1166. vmcs_conf->order = get_order(vmcs_config.size);
  1167. vmcs_conf->revision_id = vmx_msr_low;
  1168. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1169. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1170. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1171. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1172. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1173. return 0;
  1174. }
  1175. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1176. {
  1177. int node = cpu_to_node(cpu);
  1178. struct page *pages;
  1179. struct vmcs *vmcs;
  1180. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1181. if (!pages)
  1182. return NULL;
  1183. vmcs = page_address(pages);
  1184. memset(vmcs, 0, vmcs_config.size);
  1185. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1186. return vmcs;
  1187. }
  1188. static struct vmcs *alloc_vmcs(void)
  1189. {
  1190. return alloc_vmcs_cpu(raw_smp_processor_id());
  1191. }
  1192. static void free_vmcs(struct vmcs *vmcs)
  1193. {
  1194. free_pages((unsigned long)vmcs, vmcs_config.order);
  1195. }
  1196. static void free_kvm_area(void)
  1197. {
  1198. int cpu;
  1199. for_each_possible_cpu(cpu) {
  1200. free_vmcs(per_cpu(vmxarea, cpu));
  1201. per_cpu(vmxarea, cpu) = NULL;
  1202. }
  1203. }
  1204. static __init int alloc_kvm_area(void)
  1205. {
  1206. int cpu;
  1207. for_each_possible_cpu(cpu) {
  1208. struct vmcs *vmcs;
  1209. vmcs = alloc_vmcs_cpu(cpu);
  1210. if (!vmcs) {
  1211. free_kvm_area();
  1212. return -ENOMEM;
  1213. }
  1214. per_cpu(vmxarea, cpu) = vmcs;
  1215. }
  1216. return 0;
  1217. }
  1218. static __init int hardware_setup(void)
  1219. {
  1220. if (setup_vmcs_config(&vmcs_config) < 0)
  1221. return -EIO;
  1222. if (boot_cpu_has(X86_FEATURE_NX))
  1223. kvm_enable_efer_bits(EFER_NX);
  1224. if (!cpu_has_vmx_vpid())
  1225. enable_vpid = 0;
  1226. if (!cpu_has_vmx_ept()) {
  1227. enable_ept = 0;
  1228. enable_unrestricted_guest = 0;
  1229. }
  1230. if (!cpu_has_vmx_unrestricted_guest())
  1231. enable_unrestricted_guest = 0;
  1232. if (!cpu_has_vmx_flexpriority())
  1233. flexpriority_enabled = 0;
  1234. if (!cpu_has_vmx_tpr_shadow())
  1235. kvm_x86_ops->update_cr8_intercept = NULL;
  1236. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1237. kvm_disable_largepages();
  1238. if (!cpu_has_vmx_ple())
  1239. ple_gap = 0;
  1240. return alloc_kvm_area();
  1241. }
  1242. static __exit void hardware_unsetup(void)
  1243. {
  1244. free_kvm_area();
  1245. }
  1246. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1247. {
  1248. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1249. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1250. vmcs_write16(sf->selector, save->selector);
  1251. vmcs_writel(sf->base, save->base);
  1252. vmcs_write32(sf->limit, save->limit);
  1253. vmcs_write32(sf->ar_bytes, save->ar);
  1254. } else {
  1255. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1256. << AR_DPL_SHIFT;
  1257. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1258. }
  1259. }
  1260. static void enter_pmode(struct kvm_vcpu *vcpu)
  1261. {
  1262. unsigned long flags;
  1263. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1264. vmx->emulation_required = 1;
  1265. vmx->rmode.vm86_active = 0;
  1266. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1267. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1268. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1269. flags = vmcs_readl(GUEST_RFLAGS);
  1270. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1271. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1272. vmcs_writel(GUEST_RFLAGS, flags);
  1273. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1274. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1275. update_exception_bitmap(vcpu);
  1276. if (emulate_invalid_guest_state)
  1277. return;
  1278. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1279. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1280. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1281. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1282. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1283. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1284. vmcs_write16(GUEST_CS_SELECTOR,
  1285. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1286. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1287. }
  1288. static gva_t rmode_tss_base(struct kvm *kvm)
  1289. {
  1290. if (!kvm->arch.tss_addr) {
  1291. struct kvm_memslots *slots;
  1292. gfn_t base_gfn;
  1293. slots = rcu_dereference(kvm->memslots);
  1294. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1295. kvm->memslots->memslots[0].npages - 3;
  1296. return base_gfn << PAGE_SHIFT;
  1297. }
  1298. return kvm->arch.tss_addr;
  1299. }
  1300. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1301. {
  1302. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1303. save->selector = vmcs_read16(sf->selector);
  1304. save->base = vmcs_readl(sf->base);
  1305. save->limit = vmcs_read32(sf->limit);
  1306. save->ar = vmcs_read32(sf->ar_bytes);
  1307. vmcs_write16(sf->selector, save->base >> 4);
  1308. vmcs_write32(sf->base, save->base & 0xfffff);
  1309. vmcs_write32(sf->limit, 0xffff);
  1310. vmcs_write32(sf->ar_bytes, 0xf3);
  1311. }
  1312. static void enter_rmode(struct kvm_vcpu *vcpu)
  1313. {
  1314. unsigned long flags;
  1315. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1316. if (enable_unrestricted_guest)
  1317. return;
  1318. vmx->emulation_required = 1;
  1319. vmx->rmode.vm86_active = 1;
  1320. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1321. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1322. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1323. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1324. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1325. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1326. flags = vmcs_readl(GUEST_RFLAGS);
  1327. vmx->rmode.save_iopl
  1328. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1329. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1330. vmcs_writel(GUEST_RFLAGS, flags);
  1331. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1332. update_exception_bitmap(vcpu);
  1333. if (emulate_invalid_guest_state)
  1334. goto continue_rmode;
  1335. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1336. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1337. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1338. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1339. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1340. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1341. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1342. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1343. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1344. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1345. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1346. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1347. continue_rmode:
  1348. kvm_mmu_reset_context(vcpu);
  1349. init_rmode(vcpu->kvm);
  1350. }
  1351. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1352. {
  1353. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1354. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1355. if (!msr)
  1356. return;
  1357. /*
  1358. * Force kernel_gs_base reloading before EFER changes, as control
  1359. * of this msr depends on is_long_mode().
  1360. */
  1361. vmx_load_host_state(to_vmx(vcpu));
  1362. vcpu->arch.efer = efer;
  1363. if (efer & EFER_LMA) {
  1364. vmcs_write32(VM_ENTRY_CONTROLS,
  1365. vmcs_read32(VM_ENTRY_CONTROLS) |
  1366. VM_ENTRY_IA32E_MODE);
  1367. msr->data = efer;
  1368. } else {
  1369. vmcs_write32(VM_ENTRY_CONTROLS,
  1370. vmcs_read32(VM_ENTRY_CONTROLS) &
  1371. ~VM_ENTRY_IA32E_MODE);
  1372. msr->data = efer & ~EFER_LME;
  1373. }
  1374. setup_msrs(vmx);
  1375. }
  1376. #ifdef CONFIG_X86_64
  1377. static void enter_lmode(struct kvm_vcpu *vcpu)
  1378. {
  1379. u32 guest_tr_ar;
  1380. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1381. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1382. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1383. __func__);
  1384. vmcs_write32(GUEST_TR_AR_BYTES,
  1385. (guest_tr_ar & ~AR_TYPE_MASK)
  1386. | AR_TYPE_BUSY_64_TSS);
  1387. }
  1388. vcpu->arch.efer |= EFER_LMA;
  1389. vmx_set_efer(vcpu, vcpu->arch.efer);
  1390. }
  1391. static void exit_lmode(struct kvm_vcpu *vcpu)
  1392. {
  1393. vcpu->arch.efer &= ~EFER_LMA;
  1394. vmcs_write32(VM_ENTRY_CONTROLS,
  1395. vmcs_read32(VM_ENTRY_CONTROLS)
  1396. & ~VM_ENTRY_IA32E_MODE);
  1397. }
  1398. #endif
  1399. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1400. {
  1401. vpid_sync_vcpu_all(to_vmx(vcpu));
  1402. if (enable_ept)
  1403. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1404. }
  1405. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1406. {
  1407. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1408. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1409. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1410. }
  1411. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1412. {
  1413. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1414. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1415. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1416. }
  1417. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1418. {
  1419. if (!test_bit(VCPU_EXREG_PDPTR,
  1420. (unsigned long *)&vcpu->arch.regs_dirty))
  1421. return;
  1422. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1423. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1424. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1425. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1426. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1427. }
  1428. }
  1429. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1430. {
  1431. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1432. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1433. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1434. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1435. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1436. }
  1437. __set_bit(VCPU_EXREG_PDPTR,
  1438. (unsigned long *)&vcpu->arch.regs_avail);
  1439. __set_bit(VCPU_EXREG_PDPTR,
  1440. (unsigned long *)&vcpu->arch.regs_dirty);
  1441. }
  1442. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1443. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1444. unsigned long cr0,
  1445. struct kvm_vcpu *vcpu)
  1446. {
  1447. if (!(cr0 & X86_CR0_PG)) {
  1448. /* From paging/starting to nonpaging */
  1449. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1450. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1451. (CPU_BASED_CR3_LOAD_EXITING |
  1452. CPU_BASED_CR3_STORE_EXITING));
  1453. vcpu->arch.cr0 = cr0;
  1454. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1455. } else if (!is_paging(vcpu)) {
  1456. /* From nonpaging to paging */
  1457. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1458. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1459. ~(CPU_BASED_CR3_LOAD_EXITING |
  1460. CPU_BASED_CR3_STORE_EXITING));
  1461. vcpu->arch.cr0 = cr0;
  1462. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1463. }
  1464. if (!(cr0 & X86_CR0_WP))
  1465. *hw_cr0 &= ~X86_CR0_WP;
  1466. }
  1467. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1468. {
  1469. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1470. unsigned long hw_cr0;
  1471. if (enable_unrestricted_guest)
  1472. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1473. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1474. else
  1475. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1476. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1477. enter_pmode(vcpu);
  1478. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1479. enter_rmode(vcpu);
  1480. #ifdef CONFIG_X86_64
  1481. if (vcpu->arch.efer & EFER_LME) {
  1482. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1483. enter_lmode(vcpu);
  1484. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1485. exit_lmode(vcpu);
  1486. }
  1487. #endif
  1488. if (enable_ept)
  1489. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1490. if (!vcpu->fpu_active)
  1491. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1492. vmcs_writel(CR0_READ_SHADOW, cr0);
  1493. vmcs_writel(GUEST_CR0, hw_cr0);
  1494. vcpu->arch.cr0 = cr0;
  1495. }
  1496. static u64 construct_eptp(unsigned long root_hpa)
  1497. {
  1498. u64 eptp;
  1499. /* TODO write the value reading from MSR */
  1500. eptp = VMX_EPT_DEFAULT_MT |
  1501. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1502. eptp |= (root_hpa & PAGE_MASK);
  1503. return eptp;
  1504. }
  1505. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1506. {
  1507. unsigned long guest_cr3;
  1508. u64 eptp;
  1509. guest_cr3 = cr3;
  1510. if (enable_ept) {
  1511. eptp = construct_eptp(cr3);
  1512. vmcs_write64(EPT_POINTER, eptp);
  1513. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1514. vcpu->kvm->arch.ept_identity_map_addr;
  1515. ept_load_pdptrs(vcpu);
  1516. }
  1517. vmx_flush_tlb(vcpu);
  1518. vmcs_writel(GUEST_CR3, guest_cr3);
  1519. }
  1520. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1521. {
  1522. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1523. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1524. vcpu->arch.cr4 = cr4;
  1525. if (enable_ept) {
  1526. if (!is_paging(vcpu)) {
  1527. hw_cr4 &= ~X86_CR4_PAE;
  1528. hw_cr4 |= X86_CR4_PSE;
  1529. } else if (!(cr4 & X86_CR4_PAE)) {
  1530. hw_cr4 &= ~X86_CR4_PAE;
  1531. }
  1532. }
  1533. vmcs_writel(CR4_READ_SHADOW, cr4);
  1534. vmcs_writel(GUEST_CR4, hw_cr4);
  1535. }
  1536. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1537. {
  1538. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1539. return vmcs_readl(sf->base);
  1540. }
  1541. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1542. struct kvm_segment *var, int seg)
  1543. {
  1544. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1545. u32 ar;
  1546. var->base = vmcs_readl(sf->base);
  1547. var->limit = vmcs_read32(sf->limit);
  1548. var->selector = vmcs_read16(sf->selector);
  1549. ar = vmcs_read32(sf->ar_bytes);
  1550. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1551. ar = 0;
  1552. var->type = ar & 15;
  1553. var->s = (ar >> 4) & 1;
  1554. var->dpl = (ar >> 5) & 3;
  1555. var->present = (ar >> 7) & 1;
  1556. var->avl = (ar >> 12) & 1;
  1557. var->l = (ar >> 13) & 1;
  1558. var->db = (ar >> 14) & 1;
  1559. var->g = (ar >> 15) & 1;
  1560. var->unusable = (ar >> 16) & 1;
  1561. }
  1562. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1563. {
  1564. if (!is_protmode(vcpu))
  1565. return 0;
  1566. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1567. return 3;
  1568. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1569. }
  1570. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1571. {
  1572. u32 ar;
  1573. if (var->unusable)
  1574. ar = 1 << 16;
  1575. else {
  1576. ar = var->type & 15;
  1577. ar |= (var->s & 1) << 4;
  1578. ar |= (var->dpl & 3) << 5;
  1579. ar |= (var->present & 1) << 7;
  1580. ar |= (var->avl & 1) << 12;
  1581. ar |= (var->l & 1) << 13;
  1582. ar |= (var->db & 1) << 14;
  1583. ar |= (var->g & 1) << 15;
  1584. }
  1585. if (ar == 0) /* a 0 value means unusable */
  1586. ar = AR_UNUSABLE_MASK;
  1587. return ar;
  1588. }
  1589. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1590. struct kvm_segment *var, int seg)
  1591. {
  1592. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1593. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1594. u32 ar;
  1595. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1596. vmx->rmode.tr.selector = var->selector;
  1597. vmx->rmode.tr.base = var->base;
  1598. vmx->rmode.tr.limit = var->limit;
  1599. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1600. return;
  1601. }
  1602. vmcs_writel(sf->base, var->base);
  1603. vmcs_write32(sf->limit, var->limit);
  1604. vmcs_write16(sf->selector, var->selector);
  1605. if (vmx->rmode.vm86_active && var->s) {
  1606. /*
  1607. * Hack real-mode segments into vm86 compatibility.
  1608. */
  1609. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1610. vmcs_writel(sf->base, 0xf0000);
  1611. ar = 0xf3;
  1612. } else
  1613. ar = vmx_segment_access_rights(var);
  1614. /*
  1615. * Fix the "Accessed" bit in AR field of segment registers for older
  1616. * qemu binaries.
  1617. * IA32 arch specifies that at the time of processor reset the
  1618. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1619. * is setting it to 0 in the usedland code. This causes invalid guest
  1620. * state vmexit when "unrestricted guest" mode is turned on.
  1621. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1622. * tree. Newer qemu binaries with that qemu fix would not need this
  1623. * kvm hack.
  1624. */
  1625. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1626. ar |= 0x1; /* Accessed */
  1627. vmcs_write32(sf->ar_bytes, ar);
  1628. }
  1629. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1630. {
  1631. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1632. *db = (ar >> 14) & 1;
  1633. *l = (ar >> 13) & 1;
  1634. }
  1635. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1636. {
  1637. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1638. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1639. }
  1640. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1641. {
  1642. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1643. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1644. }
  1645. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1646. {
  1647. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1648. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1649. }
  1650. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1651. {
  1652. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1653. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1654. }
  1655. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1656. {
  1657. struct kvm_segment var;
  1658. u32 ar;
  1659. vmx_get_segment(vcpu, &var, seg);
  1660. ar = vmx_segment_access_rights(&var);
  1661. if (var.base != (var.selector << 4))
  1662. return false;
  1663. if (var.limit != 0xffff)
  1664. return false;
  1665. if (ar != 0xf3)
  1666. return false;
  1667. return true;
  1668. }
  1669. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1670. {
  1671. struct kvm_segment cs;
  1672. unsigned int cs_rpl;
  1673. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1674. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1675. if (cs.unusable)
  1676. return false;
  1677. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1678. return false;
  1679. if (!cs.s)
  1680. return false;
  1681. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1682. if (cs.dpl > cs_rpl)
  1683. return false;
  1684. } else {
  1685. if (cs.dpl != cs_rpl)
  1686. return false;
  1687. }
  1688. if (!cs.present)
  1689. return false;
  1690. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1691. return true;
  1692. }
  1693. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1694. {
  1695. struct kvm_segment ss;
  1696. unsigned int ss_rpl;
  1697. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1698. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1699. if (ss.unusable)
  1700. return true;
  1701. if (ss.type != 3 && ss.type != 7)
  1702. return false;
  1703. if (!ss.s)
  1704. return false;
  1705. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1706. return false;
  1707. if (!ss.present)
  1708. return false;
  1709. return true;
  1710. }
  1711. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1712. {
  1713. struct kvm_segment var;
  1714. unsigned int rpl;
  1715. vmx_get_segment(vcpu, &var, seg);
  1716. rpl = var.selector & SELECTOR_RPL_MASK;
  1717. if (var.unusable)
  1718. return true;
  1719. if (!var.s)
  1720. return false;
  1721. if (!var.present)
  1722. return false;
  1723. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1724. if (var.dpl < rpl) /* DPL < RPL */
  1725. return false;
  1726. }
  1727. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1728. * rights flags
  1729. */
  1730. return true;
  1731. }
  1732. static bool tr_valid(struct kvm_vcpu *vcpu)
  1733. {
  1734. struct kvm_segment tr;
  1735. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1736. if (tr.unusable)
  1737. return false;
  1738. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1739. return false;
  1740. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1741. return false;
  1742. if (!tr.present)
  1743. return false;
  1744. return true;
  1745. }
  1746. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1747. {
  1748. struct kvm_segment ldtr;
  1749. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1750. if (ldtr.unusable)
  1751. return true;
  1752. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1753. return false;
  1754. if (ldtr.type != 2)
  1755. return false;
  1756. if (!ldtr.present)
  1757. return false;
  1758. return true;
  1759. }
  1760. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1761. {
  1762. struct kvm_segment cs, ss;
  1763. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1764. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1765. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1766. (ss.selector & SELECTOR_RPL_MASK));
  1767. }
  1768. /*
  1769. * Check if guest state is valid. Returns true if valid, false if
  1770. * not.
  1771. * We assume that registers are always usable
  1772. */
  1773. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1774. {
  1775. /* real mode guest state checks */
  1776. if (!is_protmode(vcpu)) {
  1777. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1778. return false;
  1779. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1780. return false;
  1781. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1782. return false;
  1783. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1784. return false;
  1785. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1786. return false;
  1787. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1788. return false;
  1789. } else {
  1790. /* protected mode guest state checks */
  1791. if (!cs_ss_rpl_check(vcpu))
  1792. return false;
  1793. if (!code_segment_valid(vcpu))
  1794. return false;
  1795. if (!stack_segment_valid(vcpu))
  1796. return false;
  1797. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1798. return false;
  1799. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1800. return false;
  1801. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1802. return false;
  1803. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1804. return false;
  1805. if (!tr_valid(vcpu))
  1806. return false;
  1807. if (!ldtr_valid(vcpu))
  1808. return false;
  1809. }
  1810. /* TODO:
  1811. * - Add checks on RIP
  1812. * - Add checks on RFLAGS
  1813. */
  1814. return true;
  1815. }
  1816. static int init_rmode_tss(struct kvm *kvm)
  1817. {
  1818. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1819. u16 data = 0;
  1820. int ret = 0;
  1821. int r;
  1822. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1823. if (r < 0)
  1824. goto out;
  1825. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1826. r = kvm_write_guest_page(kvm, fn++, &data,
  1827. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1828. if (r < 0)
  1829. goto out;
  1830. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1831. if (r < 0)
  1832. goto out;
  1833. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1834. if (r < 0)
  1835. goto out;
  1836. data = ~0;
  1837. r = kvm_write_guest_page(kvm, fn, &data,
  1838. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1839. sizeof(u8));
  1840. if (r < 0)
  1841. goto out;
  1842. ret = 1;
  1843. out:
  1844. return ret;
  1845. }
  1846. static int init_rmode_identity_map(struct kvm *kvm)
  1847. {
  1848. int i, r, ret;
  1849. pfn_t identity_map_pfn;
  1850. u32 tmp;
  1851. if (!enable_ept)
  1852. return 1;
  1853. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1854. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1855. "haven't been allocated!\n");
  1856. return 0;
  1857. }
  1858. if (likely(kvm->arch.ept_identity_pagetable_done))
  1859. return 1;
  1860. ret = 0;
  1861. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1862. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1863. if (r < 0)
  1864. goto out;
  1865. /* Set up identity-mapping pagetable for EPT in real mode */
  1866. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1867. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1868. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1869. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1870. &tmp, i * sizeof(tmp), sizeof(tmp));
  1871. if (r < 0)
  1872. goto out;
  1873. }
  1874. kvm->arch.ept_identity_pagetable_done = true;
  1875. ret = 1;
  1876. out:
  1877. return ret;
  1878. }
  1879. static void seg_setup(int seg)
  1880. {
  1881. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1882. unsigned int ar;
  1883. vmcs_write16(sf->selector, 0);
  1884. vmcs_writel(sf->base, 0);
  1885. vmcs_write32(sf->limit, 0xffff);
  1886. if (enable_unrestricted_guest) {
  1887. ar = 0x93;
  1888. if (seg == VCPU_SREG_CS)
  1889. ar |= 0x08; /* code segment */
  1890. } else
  1891. ar = 0xf3;
  1892. vmcs_write32(sf->ar_bytes, ar);
  1893. }
  1894. static int alloc_apic_access_page(struct kvm *kvm)
  1895. {
  1896. struct kvm_userspace_memory_region kvm_userspace_mem;
  1897. int r = 0;
  1898. mutex_lock(&kvm->slots_lock);
  1899. if (kvm->arch.apic_access_page)
  1900. goto out;
  1901. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1902. kvm_userspace_mem.flags = 0;
  1903. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1904. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1905. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1906. if (r)
  1907. goto out;
  1908. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1909. out:
  1910. mutex_unlock(&kvm->slots_lock);
  1911. return r;
  1912. }
  1913. static int alloc_identity_pagetable(struct kvm *kvm)
  1914. {
  1915. struct kvm_userspace_memory_region kvm_userspace_mem;
  1916. int r = 0;
  1917. mutex_lock(&kvm->slots_lock);
  1918. if (kvm->arch.ept_identity_pagetable)
  1919. goto out;
  1920. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1921. kvm_userspace_mem.flags = 0;
  1922. kvm_userspace_mem.guest_phys_addr =
  1923. kvm->arch.ept_identity_map_addr;
  1924. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1925. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1926. if (r)
  1927. goto out;
  1928. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1929. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1930. out:
  1931. mutex_unlock(&kvm->slots_lock);
  1932. return r;
  1933. }
  1934. static void allocate_vpid(struct vcpu_vmx *vmx)
  1935. {
  1936. int vpid;
  1937. vmx->vpid = 0;
  1938. if (!enable_vpid)
  1939. return;
  1940. spin_lock(&vmx_vpid_lock);
  1941. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1942. if (vpid < VMX_NR_VPIDS) {
  1943. vmx->vpid = vpid;
  1944. __set_bit(vpid, vmx_vpid_bitmap);
  1945. }
  1946. spin_unlock(&vmx_vpid_lock);
  1947. }
  1948. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1949. {
  1950. int f = sizeof(unsigned long);
  1951. if (!cpu_has_vmx_msr_bitmap())
  1952. return;
  1953. /*
  1954. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1955. * have the write-low and read-high bitmap offsets the wrong way round.
  1956. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1957. */
  1958. if (msr <= 0x1fff) {
  1959. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1960. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1961. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1962. msr &= 0x1fff;
  1963. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1964. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1965. }
  1966. }
  1967. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1968. {
  1969. if (!longmode_only)
  1970. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1971. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1972. }
  1973. /*
  1974. * Sets up the vmcs for emulated real mode.
  1975. */
  1976. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1977. {
  1978. u32 host_sysenter_cs, msr_low, msr_high;
  1979. u32 junk;
  1980. u64 host_pat, tsc_this, tsc_base;
  1981. unsigned long a;
  1982. struct descriptor_table dt;
  1983. int i;
  1984. unsigned long kvm_vmx_return;
  1985. u32 exec_control;
  1986. /* I/O */
  1987. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1988. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1989. if (cpu_has_vmx_msr_bitmap())
  1990. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1991. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1992. /* Control */
  1993. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1994. vmcs_config.pin_based_exec_ctrl);
  1995. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1996. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1997. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1998. #ifdef CONFIG_X86_64
  1999. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2000. CPU_BASED_CR8_LOAD_EXITING;
  2001. #endif
  2002. }
  2003. if (!enable_ept)
  2004. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2005. CPU_BASED_CR3_LOAD_EXITING |
  2006. CPU_BASED_INVLPG_EXITING;
  2007. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2008. if (cpu_has_secondary_exec_ctrls()) {
  2009. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2010. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2011. exec_control &=
  2012. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2013. if (vmx->vpid == 0)
  2014. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2015. if (!enable_ept) {
  2016. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2017. enable_unrestricted_guest = 0;
  2018. }
  2019. if (!enable_unrestricted_guest)
  2020. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2021. if (!ple_gap)
  2022. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2023. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2024. }
  2025. if (ple_gap) {
  2026. vmcs_write32(PLE_GAP, ple_gap);
  2027. vmcs_write32(PLE_WINDOW, ple_window);
  2028. }
  2029. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2030. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2031. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2032. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2033. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2034. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2035. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2036. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2037. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2038. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2039. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2040. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2041. #ifdef CONFIG_X86_64
  2042. rdmsrl(MSR_FS_BASE, a);
  2043. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2044. rdmsrl(MSR_GS_BASE, a);
  2045. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2046. #else
  2047. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2048. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2049. #endif
  2050. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2051. kvm_get_idt(&dt);
  2052. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2053. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2054. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2055. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2056. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2057. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2058. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2059. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2060. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2061. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2062. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2063. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2064. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2065. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2066. host_pat = msr_low | ((u64) msr_high << 32);
  2067. vmcs_write64(HOST_IA32_PAT, host_pat);
  2068. }
  2069. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2070. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2071. host_pat = msr_low | ((u64) msr_high << 32);
  2072. /* Write the default value follow host pat */
  2073. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2074. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2075. vmx->vcpu.arch.pat = host_pat;
  2076. }
  2077. for (i = 0; i < NR_VMX_MSR; ++i) {
  2078. u32 index = vmx_msr_index[i];
  2079. u32 data_low, data_high;
  2080. int j = vmx->nmsrs;
  2081. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2082. continue;
  2083. if (wrmsr_safe(index, data_low, data_high) < 0)
  2084. continue;
  2085. vmx->guest_msrs[j].index = i;
  2086. vmx->guest_msrs[j].data = 0;
  2087. vmx->guest_msrs[j].mask = -1ull;
  2088. ++vmx->nmsrs;
  2089. }
  2090. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2091. /* 22.2.1, 20.8.1 */
  2092. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2093. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2094. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2095. if (enable_ept)
  2096. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2097. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2098. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2099. rdtscll(tsc_this);
  2100. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2101. tsc_base = tsc_this;
  2102. guest_write_tsc(0, tsc_base);
  2103. return 0;
  2104. }
  2105. static int init_rmode(struct kvm *kvm)
  2106. {
  2107. if (!init_rmode_tss(kvm))
  2108. return 0;
  2109. if (!init_rmode_identity_map(kvm))
  2110. return 0;
  2111. return 1;
  2112. }
  2113. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2114. {
  2115. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2116. u64 msr;
  2117. int ret, idx;
  2118. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2119. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2120. if (!init_rmode(vmx->vcpu.kvm)) {
  2121. ret = -ENOMEM;
  2122. goto out;
  2123. }
  2124. vmx->rmode.vm86_active = 0;
  2125. vmx->soft_vnmi_blocked = 0;
  2126. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2127. kvm_set_cr8(&vmx->vcpu, 0);
  2128. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2129. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2130. msr |= MSR_IA32_APICBASE_BSP;
  2131. kvm_set_apic_base(&vmx->vcpu, msr);
  2132. fx_init(&vmx->vcpu);
  2133. seg_setup(VCPU_SREG_CS);
  2134. /*
  2135. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2136. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2137. */
  2138. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2139. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2140. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2141. } else {
  2142. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2143. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2144. }
  2145. seg_setup(VCPU_SREG_DS);
  2146. seg_setup(VCPU_SREG_ES);
  2147. seg_setup(VCPU_SREG_FS);
  2148. seg_setup(VCPU_SREG_GS);
  2149. seg_setup(VCPU_SREG_SS);
  2150. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2151. vmcs_writel(GUEST_TR_BASE, 0);
  2152. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2153. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2154. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2155. vmcs_writel(GUEST_LDTR_BASE, 0);
  2156. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2157. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2158. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2159. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2160. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2161. vmcs_writel(GUEST_RFLAGS, 0x02);
  2162. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2163. kvm_rip_write(vcpu, 0xfff0);
  2164. else
  2165. kvm_rip_write(vcpu, 0);
  2166. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2167. vmcs_writel(GUEST_DR7, 0x400);
  2168. vmcs_writel(GUEST_GDTR_BASE, 0);
  2169. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2170. vmcs_writel(GUEST_IDTR_BASE, 0);
  2171. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2172. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2173. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2174. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2175. /* Special registers */
  2176. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2177. setup_msrs(vmx);
  2178. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2179. if (cpu_has_vmx_tpr_shadow()) {
  2180. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2181. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2182. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2183. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2184. vmcs_write32(TPR_THRESHOLD, 0);
  2185. }
  2186. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2187. vmcs_write64(APIC_ACCESS_ADDR,
  2188. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2189. if (vmx->vpid != 0)
  2190. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2191. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2192. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2193. vmx_set_cr4(&vmx->vcpu, 0);
  2194. vmx_set_efer(&vmx->vcpu, 0);
  2195. vmx_fpu_activate(&vmx->vcpu);
  2196. update_exception_bitmap(&vmx->vcpu);
  2197. vpid_sync_vcpu_all(vmx);
  2198. ret = 0;
  2199. /* HACK: Don't enable emulation on guest boot/reset */
  2200. vmx->emulation_required = 0;
  2201. out:
  2202. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2203. return ret;
  2204. }
  2205. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2206. {
  2207. u32 cpu_based_vm_exec_control;
  2208. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2209. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2210. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2211. }
  2212. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2213. {
  2214. u32 cpu_based_vm_exec_control;
  2215. if (!cpu_has_virtual_nmis()) {
  2216. enable_irq_window(vcpu);
  2217. return;
  2218. }
  2219. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2220. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2221. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2222. }
  2223. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2224. {
  2225. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2226. uint32_t intr;
  2227. int irq = vcpu->arch.interrupt.nr;
  2228. trace_kvm_inj_virq(irq);
  2229. ++vcpu->stat.irq_injections;
  2230. if (vmx->rmode.vm86_active) {
  2231. vmx->rmode.irq.pending = true;
  2232. vmx->rmode.irq.vector = irq;
  2233. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2234. if (vcpu->arch.interrupt.soft)
  2235. vmx->rmode.irq.rip +=
  2236. vmx->vcpu.arch.event_exit_inst_len;
  2237. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2238. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2239. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2240. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2241. return;
  2242. }
  2243. intr = irq | INTR_INFO_VALID_MASK;
  2244. if (vcpu->arch.interrupt.soft) {
  2245. intr |= INTR_TYPE_SOFT_INTR;
  2246. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2247. vmx->vcpu.arch.event_exit_inst_len);
  2248. } else
  2249. intr |= INTR_TYPE_EXT_INTR;
  2250. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2251. }
  2252. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2253. {
  2254. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2255. if (!cpu_has_virtual_nmis()) {
  2256. /*
  2257. * Tracking the NMI-blocked state in software is built upon
  2258. * finding the next open IRQ window. This, in turn, depends on
  2259. * well-behaving guests: They have to keep IRQs disabled at
  2260. * least as long as the NMI handler runs. Otherwise we may
  2261. * cause NMI nesting, maybe breaking the guest. But as this is
  2262. * highly unlikely, we can live with the residual risk.
  2263. */
  2264. vmx->soft_vnmi_blocked = 1;
  2265. vmx->vnmi_blocked_time = 0;
  2266. }
  2267. ++vcpu->stat.nmi_injections;
  2268. if (vmx->rmode.vm86_active) {
  2269. vmx->rmode.irq.pending = true;
  2270. vmx->rmode.irq.vector = NMI_VECTOR;
  2271. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2272. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2273. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2274. INTR_INFO_VALID_MASK);
  2275. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2276. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2277. return;
  2278. }
  2279. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2280. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2281. }
  2282. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2283. {
  2284. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2285. return 0;
  2286. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2287. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2288. GUEST_INTR_STATE_NMI));
  2289. }
  2290. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2291. {
  2292. if (!cpu_has_virtual_nmis())
  2293. return to_vmx(vcpu)->soft_vnmi_blocked;
  2294. else
  2295. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2296. GUEST_INTR_STATE_NMI);
  2297. }
  2298. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2299. {
  2300. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2301. if (!cpu_has_virtual_nmis()) {
  2302. if (vmx->soft_vnmi_blocked != masked) {
  2303. vmx->soft_vnmi_blocked = masked;
  2304. vmx->vnmi_blocked_time = 0;
  2305. }
  2306. } else {
  2307. if (masked)
  2308. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2309. GUEST_INTR_STATE_NMI);
  2310. else
  2311. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2312. GUEST_INTR_STATE_NMI);
  2313. }
  2314. }
  2315. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2316. {
  2317. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2318. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2319. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2320. }
  2321. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2322. {
  2323. int ret;
  2324. struct kvm_userspace_memory_region tss_mem = {
  2325. .slot = TSS_PRIVATE_MEMSLOT,
  2326. .guest_phys_addr = addr,
  2327. .memory_size = PAGE_SIZE * 3,
  2328. .flags = 0,
  2329. };
  2330. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2331. if (ret)
  2332. return ret;
  2333. kvm->arch.tss_addr = addr;
  2334. return 0;
  2335. }
  2336. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2337. int vec, u32 err_code)
  2338. {
  2339. /*
  2340. * Instruction with address size override prefix opcode 0x67
  2341. * Cause the #SS fault with 0 error code in VM86 mode.
  2342. */
  2343. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2344. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2345. return 1;
  2346. /*
  2347. * Forward all other exceptions that are valid in real mode.
  2348. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2349. * the required debugging infrastructure rework.
  2350. */
  2351. switch (vec) {
  2352. case DB_VECTOR:
  2353. if (vcpu->guest_debug &
  2354. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2355. return 0;
  2356. kvm_queue_exception(vcpu, vec);
  2357. return 1;
  2358. case BP_VECTOR:
  2359. /*
  2360. * Update instruction length as we may reinject the exception
  2361. * from user space while in guest debugging mode.
  2362. */
  2363. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2364. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2365. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2366. return 0;
  2367. /* fall through */
  2368. case DE_VECTOR:
  2369. case OF_VECTOR:
  2370. case BR_VECTOR:
  2371. case UD_VECTOR:
  2372. case DF_VECTOR:
  2373. case SS_VECTOR:
  2374. case GP_VECTOR:
  2375. case MF_VECTOR:
  2376. kvm_queue_exception(vcpu, vec);
  2377. return 1;
  2378. }
  2379. return 0;
  2380. }
  2381. /*
  2382. * Trigger machine check on the host. We assume all the MSRs are already set up
  2383. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2384. * We pass a fake environment to the machine check handler because we want
  2385. * the guest to be always treated like user space, no matter what context
  2386. * it used internally.
  2387. */
  2388. static void kvm_machine_check(void)
  2389. {
  2390. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2391. struct pt_regs regs = {
  2392. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2393. .flags = X86_EFLAGS_IF,
  2394. };
  2395. do_machine_check(&regs, 0);
  2396. #endif
  2397. }
  2398. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2399. {
  2400. /* already handled by vcpu_run */
  2401. return 1;
  2402. }
  2403. static int handle_exception(struct kvm_vcpu *vcpu)
  2404. {
  2405. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2406. struct kvm_run *kvm_run = vcpu->run;
  2407. u32 intr_info, ex_no, error_code;
  2408. unsigned long cr2, rip, dr6;
  2409. u32 vect_info;
  2410. enum emulation_result er;
  2411. vect_info = vmx->idt_vectoring_info;
  2412. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2413. if (is_machine_check(intr_info))
  2414. return handle_machine_check(vcpu);
  2415. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2416. !is_page_fault(intr_info)) {
  2417. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2418. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2419. vcpu->run->internal.ndata = 2;
  2420. vcpu->run->internal.data[0] = vect_info;
  2421. vcpu->run->internal.data[1] = intr_info;
  2422. return 0;
  2423. }
  2424. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2425. return 1; /* already handled by vmx_vcpu_run() */
  2426. if (is_no_device(intr_info)) {
  2427. vmx_fpu_activate(vcpu);
  2428. return 1;
  2429. }
  2430. if (is_invalid_opcode(intr_info)) {
  2431. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2432. if (er != EMULATE_DONE)
  2433. kvm_queue_exception(vcpu, UD_VECTOR);
  2434. return 1;
  2435. }
  2436. error_code = 0;
  2437. rip = kvm_rip_read(vcpu);
  2438. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2439. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2440. if (is_page_fault(intr_info)) {
  2441. /* EPT won't cause page fault directly */
  2442. if (enable_ept)
  2443. BUG();
  2444. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2445. trace_kvm_page_fault(cr2, error_code);
  2446. if (kvm_event_needs_reinjection(vcpu))
  2447. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2448. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2449. }
  2450. if (vmx->rmode.vm86_active &&
  2451. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2452. error_code)) {
  2453. if (vcpu->arch.halt_request) {
  2454. vcpu->arch.halt_request = 0;
  2455. return kvm_emulate_halt(vcpu);
  2456. }
  2457. return 1;
  2458. }
  2459. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2460. switch (ex_no) {
  2461. case DB_VECTOR:
  2462. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2463. if (!(vcpu->guest_debug &
  2464. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2465. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2466. kvm_queue_exception(vcpu, DB_VECTOR);
  2467. return 1;
  2468. }
  2469. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2470. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2471. /* fall through */
  2472. case BP_VECTOR:
  2473. /*
  2474. * Update instruction length as we may reinject #BP from
  2475. * user space while in guest debugging mode. Reading it for
  2476. * #DB as well causes no harm, it is not used in that case.
  2477. */
  2478. vmx->vcpu.arch.event_exit_inst_len =
  2479. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2480. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2481. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2482. kvm_run->debug.arch.exception = ex_no;
  2483. break;
  2484. default:
  2485. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2486. kvm_run->ex.exception = ex_no;
  2487. kvm_run->ex.error_code = error_code;
  2488. break;
  2489. }
  2490. return 0;
  2491. }
  2492. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2493. {
  2494. ++vcpu->stat.irq_exits;
  2495. return 1;
  2496. }
  2497. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2498. {
  2499. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2500. return 0;
  2501. }
  2502. static int handle_io(struct kvm_vcpu *vcpu)
  2503. {
  2504. unsigned long exit_qualification;
  2505. int size, in, string;
  2506. unsigned port;
  2507. ++vcpu->stat.io_exits;
  2508. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2509. string = (exit_qualification & 16) != 0;
  2510. if (string) {
  2511. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2512. return 0;
  2513. return 1;
  2514. }
  2515. size = (exit_qualification & 7) + 1;
  2516. in = (exit_qualification & 8) != 0;
  2517. port = exit_qualification >> 16;
  2518. skip_emulated_instruction(vcpu);
  2519. return kvm_emulate_pio(vcpu, in, size, port);
  2520. }
  2521. static void
  2522. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2523. {
  2524. /*
  2525. * Patch in the VMCALL instruction:
  2526. */
  2527. hypercall[0] = 0x0f;
  2528. hypercall[1] = 0x01;
  2529. hypercall[2] = 0xc1;
  2530. }
  2531. static int handle_cr(struct kvm_vcpu *vcpu)
  2532. {
  2533. unsigned long exit_qualification, val;
  2534. int cr;
  2535. int reg;
  2536. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2537. cr = exit_qualification & 15;
  2538. reg = (exit_qualification >> 8) & 15;
  2539. switch ((exit_qualification >> 4) & 3) {
  2540. case 0: /* mov to cr */
  2541. val = kvm_register_read(vcpu, reg);
  2542. trace_kvm_cr_write(cr, val);
  2543. switch (cr) {
  2544. case 0:
  2545. kvm_set_cr0(vcpu, val);
  2546. skip_emulated_instruction(vcpu);
  2547. return 1;
  2548. case 3:
  2549. kvm_set_cr3(vcpu, val);
  2550. skip_emulated_instruction(vcpu);
  2551. return 1;
  2552. case 4:
  2553. kvm_set_cr4(vcpu, val);
  2554. skip_emulated_instruction(vcpu);
  2555. return 1;
  2556. case 8: {
  2557. u8 cr8_prev = kvm_get_cr8(vcpu);
  2558. u8 cr8 = kvm_register_read(vcpu, reg);
  2559. kvm_set_cr8(vcpu, cr8);
  2560. skip_emulated_instruction(vcpu);
  2561. if (irqchip_in_kernel(vcpu->kvm))
  2562. return 1;
  2563. if (cr8_prev <= cr8)
  2564. return 1;
  2565. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2566. return 0;
  2567. }
  2568. };
  2569. break;
  2570. case 2: /* clts */
  2571. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2572. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2573. skip_emulated_instruction(vcpu);
  2574. vmx_fpu_activate(vcpu);
  2575. return 1;
  2576. case 1: /*mov from cr*/
  2577. switch (cr) {
  2578. case 3:
  2579. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2580. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2581. skip_emulated_instruction(vcpu);
  2582. return 1;
  2583. case 8:
  2584. val = kvm_get_cr8(vcpu);
  2585. kvm_register_write(vcpu, reg, val);
  2586. trace_kvm_cr_read(cr, val);
  2587. skip_emulated_instruction(vcpu);
  2588. return 1;
  2589. }
  2590. break;
  2591. case 3: /* lmsw */
  2592. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2593. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2594. kvm_lmsw(vcpu, val);
  2595. skip_emulated_instruction(vcpu);
  2596. return 1;
  2597. default:
  2598. break;
  2599. }
  2600. vcpu->run->exit_reason = 0;
  2601. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2602. (int)(exit_qualification >> 4) & 3, cr);
  2603. return 0;
  2604. }
  2605. static int check_dr_alias(struct kvm_vcpu *vcpu)
  2606. {
  2607. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  2608. kvm_queue_exception(vcpu, UD_VECTOR);
  2609. return -1;
  2610. }
  2611. return 0;
  2612. }
  2613. static int handle_dr(struct kvm_vcpu *vcpu)
  2614. {
  2615. unsigned long exit_qualification;
  2616. unsigned long val;
  2617. int dr, reg;
  2618. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2619. if (!kvm_require_cpl(vcpu, 0))
  2620. return 1;
  2621. dr = vmcs_readl(GUEST_DR7);
  2622. if (dr & DR7_GD) {
  2623. /*
  2624. * As the vm-exit takes precedence over the debug trap, we
  2625. * need to emulate the latter, either for the host or the
  2626. * guest debugging itself.
  2627. */
  2628. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2629. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2630. vcpu->run->debug.arch.dr7 = dr;
  2631. vcpu->run->debug.arch.pc =
  2632. vmcs_readl(GUEST_CS_BASE) +
  2633. vmcs_readl(GUEST_RIP);
  2634. vcpu->run->debug.arch.exception = DB_VECTOR;
  2635. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2636. return 0;
  2637. } else {
  2638. vcpu->arch.dr7 &= ~DR7_GD;
  2639. vcpu->arch.dr6 |= DR6_BD;
  2640. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2641. kvm_queue_exception(vcpu, DB_VECTOR);
  2642. return 1;
  2643. }
  2644. }
  2645. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2646. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2647. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2648. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2649. switch (dr) {
  2650. case 0 ... 3:
  2651. val = vcpu->arch.db[dr];
  2652. break;
  2653. case 4:
  2654. if (check_dr_alias(vcpu) < 0)
  2655. return 1;
  2656. /* fall through */
  2657. case 6:
  2658. val = vcpu->arch.dr6;
  2659. break;
  2660. case 5:
  2661. if (check_dr_alias(vcpu) < 0)
  2662. return 1;
  2663. /* fall through */
  2664. default: /* 7 */
  2665. val = vcpu->arch.dr7;
  2666. break;
  2667. }
  2668. kvm_register_write(vcpu, reg, val);
  2669. } else {
  2670. val = vcpu->arch.regs[reg];
  2671. switch (dr) {
  2672. case 0 ... 3:
  2673. vcpu->arch.db[dr] = val;
  2674. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2675. vcpu->arch.eff_db[dr] = val;
  2676. break;
  2677. case 4:
  2678. if (check_dr_alias(vcpu) < 0)
  2679. return 1;
  2680. /* fall through */
  2681. case 6:
  2682. if (val & 0xffffffff00000000ULL) {
  2683. kvm_inject_gp(vcpu, 0);
  2684. return 1;
  2685. }
  2686. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2687. break;
  2688. case 5:
  2689. if (check_dr_alias(vcpu) < 0)
  2690. return 1;
  2691. /* fall through */
  2692. default: /* 7 */
  2693. if (val & 0xffffffff00000000ULL) {
  2694. kvm_inject_gp(vcpu, 0);
  2695. return 1;
  2696. }
  2697. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2698. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2699. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2700. vcpu->arch.switch_db_regs =
  2701. (val & DR7_BP_EN_MASK);
  2702. }
  2703. break;
  2704. }
  2705. }
  2706. skip_emulated_instruction(vcpu);
  2707. return 1;
  2708. }
  2709. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2710. {
  2711. kvm_emulate_cpuid(vcpu);
  2712. return 1;
  2713. }
  2714. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2715. {
  2716. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2717. u64 data;
  2718. if (vmx_get_msr(vcpu, ecx, &data)) {
  2719. trace_kvm_msr_read_ex(ecx);
  2720. kvm_inject_gp(vcpu, 0);
  2721. return 1;
  2722. }
  2723. trace_kvm_msr_read(ecx, data);
  2724. /* FIXME: handling of bits 32:63 of rax, rdx */
  2725. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2726. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2727. skip_emulated_instruction(vcpu);
  2728. return 1;
  2729. }
  2730. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2731. {
  2732. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2733. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2734. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2735. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2736. trace_kvm_msr_write_ex(ecx, data);
  2737. kvm_inject_gp(vcpu, 0);
  2738. return 1;
  2739. }
  2740. trace_kvm_msr_write(ecx, data);
  2741. skip_emulated_instruction(vcpu);
  2742. return 1;
  2743. }
  2744. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2745. {
  2746. return 1;
  2747. }
  2748. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2749. {
  2750. u32 cpu_based_vm_exec_control;
  2751. /* clear pending irq */
  2752. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2753. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2754. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2755. ++vcpu->stat.irq_window_exits;
  2756. /*
  2757. * If the user space waits to inject interrupts, exit as soon as
  2758. * possible
  2759. */
  2760. if (!irqchip_in_kernel(vcpu->kvm) &&
  2761. vcpu->run->request_interrupt_window &&
  2762. !kvm_cpu_has_interrupt(vcpu)) {
  2763. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2764. return 0;
  2765. }
  2766. return 1;
  2767. }
  2768. static int handle_halt(struct kvm_vcpu *vcpu)
  2769. {
  2770. skip_emulated_instruction(vcpu);
  2771. return kvm_emulate_halt(vcpu);
  2772. }
  2773. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2774. {
  2775. skip_emulated_instruction(vcpu);
  2776. kvm_emulate_hypercall(vcpu);
  2777. return 1;
  2778. }
  2779. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2780. {
  2781. kvm_queue_exception(vcpu, UD_VECTOR);
  2782. return 1;
  2783. }
  2784. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2785. {
  2786. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2787. kvm_mmu_invlpg(vcpu, exit_qualification);
  2788. skip_emulated_instruction(vcpu);
  2789. return 1;
  2790. }
  2791. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2792. {
  2793. skip_emulated_instruction(vcpu);
  2794. /* TODO: Add support for VT-d/pass-through device */
  2795. return 1;
  2796. }
  2797. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2798. {
  2799. unsigned long exit_qualification;
  2800. enum emulation_result er;
  2801. unsigned long offset;
  2802. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2803. offset = exit_qualification & 0xffful;
  2804. er = emulate_instruction(vcpu, 0, 0, 0);
  2805. if (er != EMULATE_DONE) {
  2806. printk(KERN_ERR
  2807. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2808. offset);
  2809. return -ENOEXEC;
  2810. }
  2811. return 1;
  2812. }
  2813. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2814. {
  2815. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2816. unsigned long exit_qualification;
  2817. u16 tss_selector;
  2818. int reason, type, idt_v;
  2819. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2820. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2821. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2822. reason = (u32)exit_qualification >> 30;
  2823. if (reason == TASK_SWITCH_GATE && idt_v) {
  2824. switch (type) {
  2825. case INTR_TYPE_NMI_INTR:
  2826. vcpu->arch.nmi_injected = false;
  2827. if (cpu_has_virtual_nmis())
  2828. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2829. GUEST_INTR_STATE_NMI);
  2830. break;
  2831. case INTR_TYPE_EXT_INTR:
  2832. case INTR_TYPE_SOFT_INTR:
  2833. kvm_clear_interrupt_queue(vcpu);
  2834. break;
  2835. case INTR_TYPE_HARD_EXCEPTION:
  2836. case INTR_TYPE_SOFT_EXCEPTION:
  2837. kvm_clear_exception_queue(vcpu);
  2838. break;
  2839. default:
  2840. break;
  2841. }
  2842. }
  2843. tss_selector = exit_qualification;
  2844. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2845. type != INTR_TYPE_EXT_INTR &&
  2846. type != INTR_TYPE_NMI_INTR))
  2847. skip_emulated_instruction(vcpu);
  2848. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2849. return 0;
  2850. /* clear all local breakpoint enable flags */
  2851. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2852. /*
  2853. * TODO: What about debug traps on tss switch?
  2854. * Are we supposed to inject them and update dr6?
  2855. */
  2856. return 1;
  2857. }
  2858. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2859. {
  2860. unsigned long exit_qualification;
  2861. gpa_t gpa;
  2862. int gla_validity;
  2863. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2864. if (exit_qualification & (1 << 6)) {
  2865. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2866. return -EINVAL;
  2867. }
  2868. gla_validity = (exit_qualification >> 7) & 0x3;
  2869. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2870. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2871. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2872. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2873. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2874. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2875. (long unsigned int)exit_qualification);
  2876. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2877. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2878. return 0;
  2879. }
  2880. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2881. trace_kvm_page_fault(gpa, exit_qualification);
  2882. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2883. }
  2884. static u64 ept_rsvd_mask(u64 spte, int level)
  2885. {
  2886. int i;
  2887. u64 mask = 0;
  2888. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2889. mask |= (1ULL << i);
  2890. if (level > 2)
  2891. /* bits 7:3 reserved */
  2892. mask |= 0xf8;
  2893. else if (level == 2) {
  2894. if (spte & (1ULL << 7))
  2895. /* 2MB ref, bits 20:12 reserved */
  2896. mask |= 0x1ff000;
  2897. else
  2898. /* bits 6:3 reserved */
  2899. mask |= 0x78;
  2900. }
  2901. return mask;
  2902. }
  2903. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2904. int level)
  2905. {
  2906. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2907. /* 010b (write-only) */
  2908. WARN_ON((spte & 0x7) == 0x2);
  2909. /* 110b (write/execute) */
  2910. WARN_ON((spte & 0x7) == 0x6);
  2911. /* 100b (execute-only) and value not supported by logical processor */
  2912. if (!cpu_has_vmx_ept_execute_only())
  2913. WARN_ON((spte & 0x7) == 0x4);
  2914. /* not 000b */
  2915. if ((spte & 0x7)) {
  2916. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2917. if (rsvd_bits != 0) {
  2918. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2919. __func__, rsvd_bits);
  2920. WARN_ON(1);
  2921. }
  2922. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2923. u64 ept_mem_type = (spte & 0x38) >> 3;
  2924. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2925. ept_mem_type == 7) {
  2926. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2927. __func__, ept_mem_type);
  2928. WARN_ON(1);
  2929. }
  2930. }
  2931. }
  2932. }
  2933. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2934. {
  2935. u64 sptes[4];
  2936. int nr_sptes, i;
  2937. gpa_t gpa;
  2938. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2939. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2940. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2941. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2942. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2943. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2944. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2945. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2946. return 0;
  2947. }
  2948. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2949. {
  2950. u32 cpu_based_vm_exec_control;
  2951. /* clear pending NMI */
  2952. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2953. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2954. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2955. ++vcpu->stat.nmi_window_exits;
  2956. return 1;
  2957. }
  2958. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2959. {
  2960. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2961. enum emulation_result err = EMULATE_DONE;
  2962. int ret = 1;
  2963. while (!guest_state_valid(vcpu)) {
  2964. err = emulate_instruction(vcpu, 0, 0, 0);
  2965. if (err == EMULATE_DO_MMIO) {
  2966. ret = 0;
  2967. goto out;
  2968. }
  2969. if (err != EMULATE_DONE) {
  2970. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2971. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2972. vcpu->run->internal.ndata = 0;
  2973. ret = 0;
  2974. goto out;
  2975. }
  2976. if (signal_pending(current))
  2977. goto out;
  2978. if (need_resched())
  2979. schedule();
  2980. }
  2981. vmx->emulation_required = 0;
  2982. out:
  2983. return ret;
  2984. }
  2985. /*
  2986. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2987. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2988. */
  2989. static int handle_pause(struct kvm_vcpu *vcpu)
  2990. {
  2991. skip_emulated_instruction(vcpu);
  2992. kvm_vcpu_on_spin(vcpu);
  2993. return 1;
  2994. }
  2995. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2996. {
  2997. kvm_queue_exception(vcpu, UD_VECTOR);
  2998. return 1;
  2999. }
  3000. /*
  3001. * The exit handlers return 1 if the exit was handled fully and guest execution
  3002. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3003. * to be done to userspace and return 0.
  3004. */
  3005. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3006. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3007. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3008. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3009. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3010. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3011. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3012. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3013. [EXIT_REASON_CPUID] = handle_cpuid,
  3014. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3015. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3016. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3017. [EXIT_REASON_HLT] = handle_halt,
  3018. [EXIT_REASON_INVLPG] = handle_invlpg,
  3019. [EXIT_REASON_VMCALL] = handle_vmcall,
  3020. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3021. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3022. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3023. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3024. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3025. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3026. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3027. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3028. [EXIT_REASON_VMON] = handle_vmx_insn,
  3029. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3030. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3031. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3032. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3033. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3034. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3035. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3036. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3037. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3038. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3039. };
  3040. static const int kvm_vmx_max_exit_handlers =
  3041. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3042. /*
  3043. * The guest has exited. See if we can fix it or if we need userspace
  3044. * assistance.
  3045. */
  3046. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3047. {
  3048. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3049. u32 exit_reason = vmx->exit_reason;
  3050. u32 vectoring_info = vmx->idt_vectoring_info;
  3051. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  3052. /* If guest state is invalid, start emulating */
  3053. if (vmx->emulation_required && emulate_invalid_guest_state)
  3054. return handle_invalid_guest_state(vcpu);
  3055. /* Access CR3 don't cause VMExit in paging mode, so we need
  3056. * to sync with guest real CR3. */
  3057. if (enable_ept && is_paging(vcpu))
  3058. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3059. if (unlikely(vmx->fail)) {
  3060. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3061. vcpu->run->fail_entry.hardware_entry_failure_reason
  3062. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3063. return 0;
  3064. }
  3065. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3066. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3067. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3068. exit_reason != EXIT_REASON_TASK_SWITCH))
  3069. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3070. "(0x%x) and exit reason is 0x%x\n",
  3071. __func__, vectoring_info, exit_reason);
  3072. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3073. if (vmx_interrupt_allowed(vcpu)) {
  3074. vmx->soft_vnmi_blocked = 0;
  3075. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3076. vcpu->arch.nmi_pending) {
  3077. /*
  3078. * This CPU don't support us in finding the end of an
  3079. * NMI-blocked window if the guest runs with IRQs
  3080. * disabled. So we pull the trigger after 1 s of
  3081. * futile waiting, but inform the user about this.
  3082. */
  3083. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3084. "state on VCPU %d after 1 s timeout\n",
  3085. __func__, vcpu->vcpu_id);
  3086. vmx->soft_vnmi_blocked = 0;
  3087. }
  3088. }
  3089. if (exit_reason < kvm_vmx_max_exit_handlers
  3090. && kvm_vmx_exit_handlers[exit_reason])
  3091. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3092. else {
  3093. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3094. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3095. }
  3096. return 0;
  3097. }
  3098. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3099. {
  3100. if (irr == -1 || tpr < irr) {
  3101. vmcs_write32(TPR_THRESHOLD, 0);
  3102. return;
  3103. }
  3104. vmcs_write32(TPR_THRESHOLD, irr);
  3105. }
  3106. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3107. {
  3108. u32 exit_intr_info;
  3109. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3110. bool unblock_nmi;
  3111. u8 vector;
  3112. int type;
  3113. bool idtv_info_valid;
  3114. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3115. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3116. /* Handle machine checks before interrupts are enabled */
  3117. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3118. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3119. && is_machine_check(exit_intr_info)))
  3120. kvm_machine_check();
  3121. /* We need to handle NMIs before interrupts are enabled */
  3122. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3123. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3124. kvm_before_handle_nmi(&vmx->vcpu);
  3125. asm("int $2");
  3126. kvm_after_handle_nmi(&vmx->vcpu);
  3127. }
  3128. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3129. if (cpu_has_virtual_nmis()) {
  3130. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3131. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3132. /*
  3133. * SDM 3: 27.7.1.2 (September 2008)
  3134. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3135. * a guest IRET fault.
  3136. * SDM 3: 23.2.2 (September 2008)
  3137. * Bit 12 is undefined in any of the following cases:
  3138. * If the VM exit sets the valid bit in the IDT-vectoring
  3139. * information field.
  3140. * If the VM exit is due to a double fault.
  3141. */
  3142. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3143. vector != DF_VECTOR && !idtv_info_valid)
  3144. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3145. GUEST_INTR_STATE_NMI);
  3146. } else if (unlikely(vmx->soft_vnmi_blocked))
  3147. vmx->vnmi_blocked_time +=
  3148. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3149. vmx->vcpu.arch.nmi_injected = false;
  3150. kvm_clear_exception_queue(&vmx->vcpu);
  3151. kvm_clear_interrupt_queue(&vmx->vcpu);
  3152. if (!idtv_info_valid)
  3153. return;
  3154. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3155. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3156. switch (type) {
  3157. case INTR_TYPE_NMI_INTR:
  3158. vmx->vcpu.arch.nmi_injected = true;
  3159. /*
  3160. * SDM 3: 27.7.1.2 (September 2008)
  3161. * Clear bit "block by NMI" before VM entry if a NMI
  3162. * delivery faulted.
  3163. */
  3164. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3165. GUEST_INTR_STATE_NMI);
  3166. break;
  3167. case INTR_TYPE_SOFT_EXCEPTION:
  3168. vmx->vcpu.arch.event_exit_inst_len =
  3169. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3170. /* fall through */
  3171. case INTR_TYPE_HARD_EXCEPTION:
  3172. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3173. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3174. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3175. } else
  3176. kvm_queue_exception(&vmx->vcpu, vector);
  3177. break;
  3178. case INTR_TYPE_SOFT_INTR:
  3179. vmx->vcpu.arch.event_exit_inst_len =
  3180. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3181. /* fall through */
  3182. case INTR_TYPE_EXT_INTR:
  3183. kvm_queue_interrupt(&vmx->vcpu, vector,
  3184. type == INTR_TYPE_SOFT_INTR);
  3185. break;
  3186. default:
  3187. break;
  3188. }
  3189. }
  3190. /*
  3191. * Failure to inject an interrupt should give us the information
  3192. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3193. * when fetching the interrupt redirection bitmap in the real-mode
  3194. * tss, this doesn't happen. So we do it ourselves.
  3195. */
  3196. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3197. {
  3198. vmx->rmode.irq.pending = 0;
  3199. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3200. return;
  3201. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3202. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3203. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3204. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3205. return;
  3206. }
  3207. vmx->idt_vectoring_info =
  3208. VECTORING_INFO_VALID_MASK
  3209. | INTR_TYPE_EXT_INTR
  3210. | vmx->rmode.irq.vector;
  3211. }
  3212. #ifdef CONFIG_X86_64
  3213. #define R "r"
  3214. #define Q "q"
  3215. #else
  3216. #define R "e"
  3217. #define Q "l"
  3218. #endif
  3219. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3220. {
  3221. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3222. /* Record the guest's net vcpu time for enforced NMI injections. */
  3223. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3224. vmx->entry_time = ktime_get();
  3225. /* Don't enter VMX if guest state is invalid, let the exit handler
  3226. start emulation until we arrive back to a valid state */
  3227. if (vmx->emulation_required && emulate_invalid_guest_state)
  3228. return;
  3229. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3230. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3231. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3232. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3233. /* When single-stepping over STI and MOV SS, we must clear the
  3234. * corresponding interruptibility bits in the guest state. Otherwise
  3235. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3236. * exceptions being set, but that's not correct for the guest debugging
  3237. * case. */
  3238. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3239. vmx_set_interrupt_shadow(vcpu, 0);
  3240. /*
  3241. * Loading guest fpu may have cleared host cr0.ts
  3242. */
  3243. vmcs_writel(HOST_CR0, read_cr0());
  3244. asm(
  3245. /* Store host registers */
  3246. "push %%"R"dx; push %%"R"bp;"
  3247. "push %%"R"cx \n\t"
  3248. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3249. "je 1f \n\t"
  3250. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3251. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3252. "1: \n\t"
  3253. /* Reload cr2 if changed */
  3254. "mov %c[cr2](%0), %%"R"ax \n\t"
  3255. "mov %%cr2, %%"R"dx \n\t"
  3256. "cmp %%"R"ax, %%"R"dx \n\t"
  3257. "je 2f \n\t"
  3258. "mov %%"R"ax, %%cr2 \n\t"
  3259. "2: \n\t"
  3260. /* Check if vmlaunch of vmresume is needed */
  3261. "cmpl $0, %c[launched](%0) \n\t"
  3262. /* Load guest registers. Don't clobber flags. */
  3263. "mov %c[rax](%0), %%"R"ax \n\t"
  3264. "mov %c[rbx](%0), %%"R"bx \n\t"
  3265. "mov %c[rdx](%0), %%"R"dx \n\t"
  3266. "mov %c[rsi](%0), %%"R"si \n\t"
  3267. "mov %c[rdi](%0), %%"R"di \n\t"
  3268. "mov %c[rbp](%0), %%"R"bp \n\t"
  3269. #ifdef CONFIG_X86_64
  3270. "mov %c[r8](%0), %%r8 \n\t"
  3271. "mov %c[r9](%0), %%r9 \n\t"
  3272. "mov %c[r10](%0), %%r10 \n\t"
  3273. "mov %c[r11](%0), %%r11 \n\t"
  3274. "mov %c[r12](%0), %%r12 \n\t"
  3275. "mov %c[r13](%0), %%r13 \n\t"
  3276. "mov %c[r14](%0), %%r14 \n\t"
  3277. "mov %c[r15](%0), %%r15 \n\t"
  3278. #endif
  3279. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3280. /* Enter guest mode */
  3281. "jne .Llaunched \n\t"
  3282. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3283. "jmp .Lkvm_vmx_return \n\t"
  3284. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3285. ".Lkvm_vmx_return: "
  3286. /* Save guest registers, load host registers, keep flags */
  3287. "xchg %0, (%%"R"sp) \n\t"
  3288. "mov %%"R"ax, %c[rax](%0) \n\t"
  3289. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3290. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3291. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3292. "mov %%"R"si, %c[rsi](%0) \n\t"
  3293. "mov %%"R"di, %c[rdi](%0) \n\t"
  3294. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3295. #ifdef CONFIG_X86_64
  3296. "mov %%r8, %c[r8](%0) \n\t"
  3297. "mov %%r9, %c[r9](%0) \n\t"
  3298. "mov %%r10, %c[r10](%0) \n\t"
  3299. "mov %%r11, %c[r11](%0) \n\t"
  3300. "mov %%r12, %c[r12](%0) \n\t"
  3301. "mov %%r13, %c[r13](%0) \n\t"
  3302. "mov %%r14, %c[r14](%0) \n\t"
  3303. "mov %%r15, %c[r15](%0) \n\t"
  3304. #endif
  3305. "mov %%cr2, %%"R"ax \n\t"
  3306. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3307. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3308. "setbe %c[fail](%0) \n\t"
  3309. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3310. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3311. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3312. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3313. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3314. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3315. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3316. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3317. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3318. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3319. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3320. #ifdef CONFIG_X86_64
  3321. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3322. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3323. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3324. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3325. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3326. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3327. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3328. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3329. #endif
  3330. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3331. : "cc", "memory"
  3332. , R"bx", R"di", R"si"
  3333. #ifdef CONFIG_X86_64
  3334. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3335. #endif
  3336. );
  3337. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3338. | (1 << VCPU_EXREG_PDPTR));
  3339. vcpu->arch.regs_dirty = 0;
  3340. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3341. if (vmx->rmode.irq.pending)
  3342. fixup_rmode_irq(vmx);
  3343. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3344. vmx->launched = 1;
  3345. vmx_complete_interrupts(vmx);
  3346. }
  3347. #undef R
  3348. #undef Q
  3349. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3350. {
  3351. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3352. if (vmx->vmcs) {
  3353. vcpu_clear(vmx);
  3354. free_vmcs(vmx->vmcs);
  3355. vmx->vmcs = NULL;
  3356. }
  3357. }
  3358. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3359. {
  3360. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3361. spin_lock(&vmx_vpid_lock);
  3362. if (vmx->vpid != 0)
  3363. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3364. spin_unlock(&vmx_vpid_lock);
  3365. vmx_free_vmcs(vcpu);
  3366. kfree(vmx->guest_msrs);
  3367. kvm_vcpu_uninit(vcpu);
  3368. kmem_cache_free(kvm_vcpu_cache, vmx);
  3369. }
  3370. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3371. {
  3372. int err;
  3373. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3374. int cpu;
  3375. if (!vmx)
  3376. return ERR_PTR(-ENOMEM);
  3377. allocate_vpid(vmx);
  3378. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3379. if (err)
  3380. goto free_vcpu;
  3381. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3382. if (!vmx->guest_msrs) {
  3383. err = -ENOMEM;
  3384. goto uninit_vcpu;
  3385. }
  3386. vmx->vmcs = alloc_vmcs();
  3387. if (!vmx->vmcs)
  3388. goto free_msrs;
  3389. vmcs_clear(vmx->vmcs);
  3390. cpu = get_cpu();
  3391. vmx_vcpu_load(&vmx->vcpu, cpu);
  3392. err = vmx_vcpu_setup(vmx);
  3393. vmx_vcpu_put(&vmx->vcpu);
  3394. put_cpu();
  3395. if (err)
  3396. goto free_vmcs;
  3397. if (vm_need_virtualize_apic_accesses(kvm))
  3398. if (alloc_apic_access_page(kvm) != 0)
  3399. goto free_vmcs;
  3400. if (enable_ept) {
  3401. if (!kvm->arch.ept_identity_map_addr)
  3402. kvm->arch.ept_identity_map_addr =
  3403. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3404. if (alloc_identity_pagetable(kvm) != 0)
  3405. goto free_vmcs;
  3406. }
  3407. return &vmx->vcpu;
  3408. free_vmcs:
  3409. free_vmcs(vmx->vmcs);
  3410. free_msrs:
  3411. kfree(vmx->guest_msrs);
  3412. uninit_vcpu:
  3413. kvm_vcpu_uninit(&vmx->vcpu);
  3414. free_vcpu:
  3415. kmem_cache_free(kvm_vcpu_cache, vmx);
  3416. return ERR_PTR(err);
  3417. }
  3418. static void __init vmx_check_processor_compat(void *rtn)
  3419. {
  3420. struct vmcs_config vmcs_conf;
  3421. *(int *)rtn = 0;
  3422. if (setup_vmcs_config(&vmcs_conf) < 0)
  3423. *(int *)rtn = -EIO;
  3424. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3425. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3426. smp_processor_id());
  3427. *(int *)rtn = -EIO;
  3428. }
  3429. }
  3430. static int get_ept_level(void)
  3431. {
  3432. return VMX_EPT_DEFAULT_GAW + 1;
  3433. }
  3434. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3435. {
  3436. u64 ret;
  3437. /* For VT-d and EPT combination
  3438. * 1. MMIO: always map as UC
  3439. * 2. EPT with VT-d:
  3440. * a. VT-d without snooping control feature: can't guarantee the
  3441. * result, try to trust guest.
  3442. * b. VT-d with snooping control feature: snooping control feature of
  3443. * VT-d engine can guarantee the cache correctness. Just set it
  3444. * to WB to keep consistent with host. So the same as item 3.
  3445. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3446. * consistent with host MTRR
  3447. */
  3448. if (is_mmio)
  3449. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3450. else if (vcpu->kvm->arch.iommu_domain &&
  3451. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3452. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3453. VMX_EPT_MT_EPTE_SHIFT;
  3454. else
  3455. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3456. | VMX_EPT_IPAT_BIT;
  3457. return ret;
  3458. }
  3459. #define _ER(x) { EXIT_REASON_##x, #x }
  3460. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3461. _ER(EXCEPTION_NMI),
  3462. _ER(EXTERNAL_INTERRUPT),
  3463. _ER(TRIPLE_FAULT),
  3464. _ER(PENDING_INTERRUPT),
  3465. _ER(NMI_WINDOW),
  3466. _ER(TASK_SWITCH),
  3467. _ER(CPUID),
  3468. _ER(HLT),
  3469. _ER(INVLPG),
  3470. _ER(RDPMC),
  3471. _ER(RDTSC),
  3472. _ER(VMCALL),
  3473. _ER(VMCLEAR),
  3474. _ER(VMLAUNCH),
  3475. _ER(VMPTRLD),
  3476. _ER(VMPTRST),
  3477. _ER(VMREAD),
  3478. _ER(VMRESUME),
  3479. _ER(VMWRITE),
  3480. _ER(VMOFF),
  3481. _ER(VMON),
  3482. _ER(CR_ACCESS),
  3483. _ER(DR_ACCESS),
  3484. _ER(IO_INSTRUCTION),
  3485. _ER(MSR_READ),
  3486. _ER(MSR_WRITE),
  3487. _ER(MWAIT_INSTRUCTION),
  3488. _ER(MONITOR_INSTRUCTION),
  3489. _ER(PAUSE_INSTRUCTION),
  3490. _ER(MCE_DURING_VMENTRY),
  3491. _ER(TPR_BELOW_THRESHOLD),
  3492. _ER(APIC_ACCESS),
  3493. _ER(EPT_VIOLATION),
  3494. _ER(EPT_MISCONFIG),
  3495. _ER(WBINVD),
  3496. { -1, NULL }
  3497. };
  3498. #undef _ER
  3499. static int vmx_get_lpage_level(void)
  3500. {
  3501. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3502. return PT_DIRECTORY_LEVEL;
  3503. else
  3504. /* For shadow and EPT supported 1GB page */
  3505. return PT_PDPE_LEVEL;
  3506. }
  3507. static inline u32 bit(int bitno)
  3508. {
  3509. return 1 << (bitno & 31);
  3510. }
  3511. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3512. {
  3513. struct kvm_cpuid_entry2 *best;
  3514. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3515. u32 exec_control;
  3516. vmx->rdtscp_enabled = false;
  3517. if (vmx_rdtscp_supported()) {
  3518. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3519. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3520. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3521. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3522. vmx->rdtscp_enabled = true;
  3523. else {
  3524. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3525. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3526. exec_control);
  3527. }
  3528. }
  3529. }
  3530. }
  3531. static struct kvm_x86_ops vmx_x86_ops = {
  3532. .cpu_has_kvm_support = cpu_has_kvm_support,
  3533. .disabled_by_bios = vmx_disabled_by_bios,
  3534. .hardware_setup = hardware_setup,
  3535. .hardware_unsetup = hardware_unsetup,
  3536. .check_processor_compatibility = vmx_check_processor_compat,
  3537. .hardware_enable = hardware_enable,
  3538. .hardware_disable = hardware_disable,
  3539. .cpu_has_accelerated_tpr = report_flexpriority,
  3540. .vcpu_create = vmx_create_vcpu,
  3541. .vcpu_free = vmx_free_vcpu,
  3542. .vcpu_reset = vmx_vcpu_reset,
  3543. .prepare_guest_switch = vmx_save_host_state,
  3544. .vcpu_load = vmx_vcpu_load,
  3545. .vcpu_put = vmx_vcpu_put,
  3546. .set_guest_debug = set_guest_debug,
  3547. .get_msr = vmx_get_msr,
  3548. .set_msr = vmx_set_msr,
  3549. .get_segment_base = vmx_get_segment_base,
  3550. .get_segment = vmx_get_segment,
  3551. .set_segment = vmx_set_segment,
  3552. .get_cpl = vmx_get_cpl,
  3553. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3554. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3555. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3556. .set_cr0 = vmx_set_cr0,
  3557. .set_cr3 = vmx_set_cr3,
  3558. .set_cr4 = vmx_set_cr4,
  3559. .set_efer = vmx_set_efer,
  3560. .get_idt = vmx_get_idt,
  3561. .set_idt = vmx_set_idt,
  3562. .get_gdt = vmx_get_gdt,
  3563. .set_gdt = vmx_set_gdt,
  3564. .cache_reg = vmx_cache_reg,
  3565. .get_rflags = vmx_get_rflags,
  3566. .set_rflags = vmx_set_rflags,
  3567. .fpu_activate = vmx_fpu_activate,
  3568. .fpu_deactivate = vmx_fpu_deactivate,
  3569. .tlb_flush = vmx_flush_tlb,
  3570. .run = vmx_vcpu_run,
  3571. .handle_exit = vmx_handle_exit,
  3572. .skip_emulated_instruction = skip_emulated_instruction,
  3573. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3574. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3575. .patch_hypercall = vmx_patch_hypercall,
  3576. .set_irq = vmx_inject_irq,
  3577. .set_nmi = vmx_inject_nmi,
  3578. .queue_exception = vmx_queue_exception,
  3579. .interrupt_allowed = vmx_interrupt_allowed,
  3580. .nmi_allowed = vmx_nmi_allowed,
  3581. .get_nmi_mask = vmx_get_nmi_mask,
  3582. .set_nmi_mask = vmx_set_nmi_mask,
  3583. .enable_nmi_window = enable_nmi_window,
  3584. .enable_irq_window = enable_irq_window,
  3585. .update_cr8_intercept = update_cr8_intercept,
  3586. .set_tss_addr = vmx_set_tss_addr,
  3587. .get_tdp_level = get_ept_level,
  3588. .get_mt_mask = vmx_get_mt_mask,
  3589. .exit_reasons_str = vmx_exit_reasons_str,
  3590. .get_lpage_level = vmx_get_lpage_level,
  3591. .cpuid_update = vmx_cpuid_update,
  3592. .rdtscp_supported = vmx_rdtscp_supported,
  3593. };
  3594. static int __init vmx_init(void)
  3595. {
  3596. int r, i;
  3597. rdmsrl_safe(MSR_EFER, &host_efer);
  3598. for (i = 0; i < NR_VMX_MSR; ++i)
  3599. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3600. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3601. if (!vmx_io_bitmap_a)
  3602. return -ENOMEM;
  3603. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3604. if (!vmx_io_bitmap_b) {
  3605. r = -ENOMEM;
  3606. goto out;
  3607. }
  3608. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3609. if (!vmx_msr_bitmap_legacy) {
  3610. r = -ENOMEM;
  3611. goto out1;
  3612. }
  3613. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3614. if (!vmx_msr_bitmap_longmode) {
  3615. r = -ENOMEM;
  3616. goto out2;
  3617. }
  3618. /*
  3619. * Allow direct access to the PC debug port (it is often used for I/O
  3620. * delays, but the vmexits simply slow things down).
  3621. */
  3622. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3623. clear_bit(0x80, vmx_io_bitmap_a);
  3624. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3625. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3626. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3627. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3628. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3629. if (r)
  3630. goto out3;
  3631. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3632. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3633. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3634. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3635. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3636. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3637. if (enable_ept) {
  3638. bypass_guest_pf = 0;
  3639. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3640. VMX_EPT_WRITABLE_MASK);
  3641. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3642. VMX_EPT_EXECUTABLE_MASK);
  3643. kvm_enable_tdp();
  3644. } else
  3645. kvm_disable_tdp();
  3646. if (bypass_guest_pf)
  3647. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3648. return 0;
  3649. out3:
  3650. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3651. out2:
  3652. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3653. out1:
  3654. free_page((unsigned long)vmx_io_bitmap_b);
  3655. out:
  3656. free_page((unsigned long)vmx_io_bitmap_a);
  3657. return r;
  3658. }
  3659. static void __exit vmx_exit(void)
  3660. {
  3661. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3662. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3663. free_page((unsigned long)vmx_io_bitmap_b);
  3664. free_page((unsigned long)vmx_io_bitmap_a);
  3665. kvm_exit();
  3666. }
  3667. module_init(vmx_init)
  3668. module_exit(vmx_exit)