disk-io.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size =
  237. btrfs_super_csum_size(&root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  339. btree_get_extent, mirror_num);
  340. if (!ret &&
  341. !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. unsigned long len;
  370. struct extent_buffer *eb;
  371. int ret;
  372. tree = &BTRFS_I(page->mapping->host)->io_tree;
  373. if (page->private == EXTENT_PAGE_PRIVATE) {
  374. WARN_ON(1);
  375. goto out;
  376. }
  377. if (!page->private) {
  378. WARN_ON(1);
  379. goto out;
  380. }
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page);
  384. if (eb == NULL) {
  385. WARN_ON(1);
  386. goto out;
  387. }
  388. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  389. btrfs_header_generation(eb));
  390. BUG_ON(ret);
  391. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. WARN_ON(1);
  395. goto err;
  396. }
  397. if (eb->first_page != page) {
  398. WARN_ON(1);
  399. goto err;
  400. }
  401. if (!PageUptodate(page)) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. csum_tree_block(root, eb, 0);
  406. err:
  407. free_extent_buffer(eb);
  408. out:
  409. return 0;
  410. }
  411. static int check_tree_block_fsid(struct btrfs_root *root,
  412. struct extent_buffer *eb)
  413. {
  414. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  415. u8 fsid[BTRFS_UUID_SIZE];
  416. int ret = 1;
  417. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  418. BTRFS_FSID_SIZE);
  419. while (fs_devices) {
  420. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  421. ret = 0;
  422. break;
  423. }
  424. fs_devices = fs_devices->seed;
  425. }
  426. return ret;
  427. }
  428. #define CORRUPT(reason, eb, root, slot) \
  429. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  430. "root=%llu, slot=%d\n", reason, \
  431. (unsigned long long)btrfs_header_bytenr(eb), \
  432. (unsigned long long)root->objectid, slot)
  433. static noinline int check_leaf(struct btrfs_root *root,
  434. struct extent_buffer *leaf)
  435. {
  436. struct btrfs_key key;
  437. struct btrfs_key leaf_key;
  438. u32 nritems = btrfs_header_nritems(leaf);
  439. int slot;
  440. if (nritems == 0)
  441. return 0;
  442. /* Check the 0 item */
  443. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  444. BTRFS_LEAF_DATA_SIZE(root)) {
  445. CORRUPT("invalid item offset size pair", leaf, root, 0);
  446. return -EIO;
  447. }
  448. /*
  449. * Check to make sure each items keys are in the correct order and their
  450. * offsets make sense. We only have to loop through nritems-1 because
  451. * we check the current slot against the next slot, which verifies the
  452. * next slot's offset+size makes sense and that the current's slot
  453. * offset is correct.
  454. */
  455. for (slot = 0; slot < nritems - 1; slot++) {
  456. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  457. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  458. /* Make sure the keys are in the right order */
  459. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  460. CORRUPT("bad key order", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Make sure the offset and ends are right, remember that the
  465. * item data starts at the end of the leaf and grows towards the
  466. * front.
  467. */
  468. if (btrfs_item_offset_nr(leaf, slot) !=
  469. btrfs_item_end_nr(leaf, slot + 1)) {
  470. CORRUPT("slot offset bad", leaf, root, slot);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure that we don't point outside of the leaf,
  475. * just incase all the items are consistent to eachother, but
  476. * all point outside of the leaf.
  477. */
  478. if (btrfs_item_end_nr(leaf, slot) >
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("slot end outside of leaf", leaf, root, slot);
  481. return -EIO;
  482. }
  483. }
  484. return 0;
  485. }
  486. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  487. struct extent_state *state)
  488. {
  489. struct extent_io_tree *tree;
  490. u64 found_start;
  491. int found_level;
  492. unsigned long len;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. int ret = 0;
  496. tree = &BTRFS_I(page->mapping->host)->io_tree;
  497. if (page->private == EXTENT_PAGE_PRIVATE)
  498. goto out;
  499. if (!page->private)
  500. goto out;
  501. len = page->private >> 2;
  502. WARN_ON(len == 0);
  503. eb = alloc_extent_buffer(tree, start, len, page);
  504. if (eb == NULL) {
  505. ret = -EIO;
  506. goto out;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != start) {
  510. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  511. "%llu %llu\n",
  512. (unsigned long long)found_start,
  513. (unsigned long long)eb->start);
  514. ret = -EIO;
  515. goto err;
  516. }
  517. if (eb->first_page != page) {
  518. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  519. eb->first_page->index, page->index);
  520. WARN_ON(1);
  521. ret = -EIO;
  522. goto err;
  523. }
  524. if (check_tree_block_fsid(root, eb)) {
  525. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  526. (unsigned long long)eb->start);
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_level = btrfs_header_level(eb);
  531. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  532. eb, found_level);
  533. ret = csum_tree_block(root, eb, 1);
  534. if (ret) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && check_leaf(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  548. end = eb->start + end - 1;
  549. err:
  550. free_extent_buffer(eb);
  551. out:
  552. return ret;
  553. }
  554. static void end_workqueue_bio(struct bio *bio, int err)
  555. {
  556. struct end_io_wq *end_io_wq = bio->bi_private;
  557. struct btrfs_fs_info *fs_info;
  558. fs_info = end_io_wq->info;
  559. end_io_wq->error = err;
  560. end_io_wq->work.func = end_workqueue_fn;
  561. end_io_wq->work.flags = 0;
  562. if (bio->bi_rw & REQ_WRITE) {
  563. if (end_io_wq->metadata == 1)
  564. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  565. &end_io_wq->work);
  566. else if (end_io_wq->metadata == 2)
  567. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  568. &end_io_wq->work);
  569. else
  570. btrfs_queue_worker(&fs_info->endio_write_workers,
  571. &end_io_wq->work);
  572. } else {
  573. if (end_io_wq->metadata)
  574. btrfs_queue_worker(&fs_info->endio_meta_workers,
  575. &end_io_wq->work);
  576. else
  577. btrfs_queue_worker(&fs_info->endio_workers,
  578. &end_io_wq->work);
  579. }
  580. }
  581. /*
  582. * For the metadata arg you want
  583. *
  584. * 0 - if data
  585. * 1 - if normal metadta
  586. * 2 - if writing to the free space cache area
  587. */
  588. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  589. int metadata)
  590. {
  591. struct end_io_wq *end_io_wq;
  592. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  593. if (!end_io_wq)
  594. return -ENOMEM;
  595. end_io_wq->private = bio->bi_private;
  596. end_io_wq->end_io = bio->bi_end_io;
  597. end_io_wq->info = info;
  598. end_io_wq->error = 0;
  599. end_io_wq->bio = bio;
  600. end_io_wq->metadata = metadata;
  601. bio->bi_private = end_io_wq;
  602. bio->bi_end_io = end_workqueue_bio;
  603. return 0;
  604. }
  605. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  606. {
  607. unsigned long limit = min_t(unsigned long,
  608. info->workers.max_workers,
  609. info->fs_devices->open_devices);
  610. return 256 * limit;
  611. }
  612. static void run_one_async_start(struct btrfs_work *work)
  613. {
  614. struct async_submit_bio *async;
  615. async = container_of(work, struct async_submit_bio, work);
  616. async->submit_bio_start(async->inode, async->rw, async->bio,
  617. async->mirror_num, async->bio_flags,
  618. async->bio_offset);
  619. }
  620. static void run_one_async_done(struct btrfs_work *work)
  621. {
  622. struct btrfs_fs_info *fs_info;
  623. struct async_submit_bio *async;
  624. int limit;
  625. async = container_of(work, struct async_submit_bio, work);
  626. fs_info = BTRFS_I(async->inode)->root->fs_info;
  627. limit = btrfs_async_submit_limit(fs_info);
  628. limit = limit * 2 / 3;
  629. atomic_dec(&fs_info->nr_async_submits);
  630. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  631. waitqueue_active(&fs_info->async_submit_wait))
  632. wake_up(&fs_info->async_submit_wait);
  633. async->submit_bio_done(async->inode, async->rw, async->bio,
  634. async->mirror_num, async->bio_flags,
  635. async->bio_offset);
  636. }
  637. static void run_one_async_free(struct btrfs_work *work)
  638. {
  639. struct async_submit_bio *async;
  640. async = container_of(work, struct async_submit_bio, work);
  641. kfree(async);
  642. }
  643. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  644. int rw, struct bio *bio, int mirror_num,
  645. unsigned long bio_flags,
  646. u64 bio_offset,
  647. extent_submit_bio_hook_t *submit_bio_start,
  648. extent_submit_bio_hook_t *submit_bio_done)
  649. {
  650. struct async_submit_bio *async;
  651. async = kmalloc(sizeof(*async), GFP_NOFS);
  652. if (!async)
  653. return -ENOMEM;
  654. async->inode = inode;
  655. async->rw = rw;
  656. async->bio = bio;
  657. async->mirror_num = mirror_num;
  658. async->submit_bio_start = submit_bio_start;
  659. async->submit_bio_done = submit_bio_done;
  660. async->work.func = run_one_async_start;
  661. async->work.ordered_func = run_one_async_done;
  662. async->work.ordered_free = run_one_async_free;
  663. async->work.flags = 0;
  664. async->bio_flags = bio_flags;
  665. async->bio_offset = bio_offset;
  666. atomic_inc(&fs_info->nr_async_submits);
  667. if (rw & REQ_SYNC)
  668. btrfs_set_work_high_prio(&async->work);
  669. btrfs_queue_worker(&fs_info->workers, &async->work);
  670. while (atomic_read(&fs_info->async_submit_draining) &&
  671. atomic_read(&fs_info->nr_async_submits)) {
  672. wait_event(fs_info->async_submit_wait,
  673. (atomic_read(&fs_info->nr_async_submits) == 0));
  674. }
  675. return 0;
  676. }
  677. static int btree_csum_one_bio(struct bio *bio)
  678. {
  679. struct bio_vec *bvec = bio->bi_io_vec;
  680. int bio_index = 0;
  681. struct btrfs_root *root;
  682. WARN_ON(bio->bi_vcnt <= 0);
  683. while (bio_index < bio->bi_vcnt) {
  684. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  685. csum_dirty_buffer(root, bvec->bv_page);
  686. bio_index++;
  687. bvec++;
  688. }
  689. return 0;
  690. }
  691. static int __btree_submit_bio_start(struct inode *inode, int rw,
  692. struct bio *bio, int mirror_num,
  693. unsigned long bio_flags,
  694. u64 bio_offset)
  695. {
  696. /*
  697. * when we're called for a write, we're already in the async
  698. * submission context. Just jump into btrfs_map_bio
  699. */
  700. btree_csum_one_bio(bio);
  701. return 0;
  702. }
  703. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  704. int mirror_num, unsigned long bio_flags,
  705. u64 bio_offset)
  706. {
  707. /*
  708. * when we're called for a write, we're already in the async
  709. * submission context. Just jump into btrfs_map_bio
  710. */
  711. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  712. }
  713. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  714. int mirror_num, unsigned long bio_flags,
  715. u64 bio_offset)
  716. {
  717. int ret;
  718. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  719. bio, 1);
  720. BUG_ON(ret);
  721. if (!(rw & REQ_WRITE)) {
  722. /*
  723. * called for a read, do the setup so that checksum validation
  724. * can happen in the async kernel threads
  725. */
  726. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  727. mirror_num, 0);
  728. }
  729. /*
  730. * kthread helpers are used to submit writes so that checksumming
  731. * can happen in parallel across all CPUs
  732. */
  733. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  734. inode, rw, bio, mirror_num, 0,
  735. bio_offset,
  736. __btree_submit_bio_start,
  737. __btree_submit_bio_done);
  738. }
  739. #ifdef CONFIG_MIGRATION
  740. static int btree_migratepage(struct address_space *mapping,
  741. struct page *newpage, struct page *page)
  742. {
  743. /*
  744. * we can't safely write a btree page from here,
  745. * we haven't done the locking hook
  746. */
  747. if (PageDirty(page))
  748. return -EAGAIN;
  749. /*
  750. * Buffers may be managed in a filesystem specific way.
  751. * We must have no buffers or drop them.
  752. */
  753. if (page_has_private(page) &&
  754. !try_to_release_page(page, GFP_KERNEL))
  755. return -EAGAIN;
  756. return migrate_page(mapping, newpage, page);
  757. }
  758. #endif
  759. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  760. {
  761. struct extent_io_tree *tree;
  762. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  763. struct extent_buffer *eb;
  764. int was_dirty;
  765. tree = &BTRFS_I(page->mapping->host)->io_tree;
  766. if (!(current->flags & PF_MEMALLOC)) {
  767. return extent_write_full_page(tree, page,
  768. btree_get_extent, wbc);
  769. }
  770. redirty_page_for_writepage(wbc, page);
  771. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  772. WARN_ON(!eb);
  773. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  774. if (!was_dirty) {
  775. spin_lock(&root->fs_info->delalloc_lock);
  776. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  777. spin_unlock(&root->fs_info->delalloc_lock);
  778. }
  779. free_extent_buffer(eb);
  780. unlock_page(page);
  781. return 0;
  782. }
  783. static int btree_writepages(struct address_space *mapping,
  784. struct writeback_control *wbc)
  785. {
  786. struct extent_io_tree *tree;
  787. tree = &BTRFS_I(mapping->host)->io_tree;
  788. if (wbc->sync_mode == WB_SYNC_NONE) {
  789. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  790. u64 num_dirty;
  791. unsigned long thresh = 32 * 1024 * 1024;
  792. if (wbc->for_kupdate)
  793. return 0;
  794. /* this is a bit racy, but that's ok */
  795. num_dirty = root->fs_info->dirty_metadata_bytes;
  796. if (num_dirty < thresh)
  797. return 0;
  798. }
  799. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  800. }
  801. static int btree_readpage(struct file *file, struct page *page)
  802. {
  803. struct extent_io_tree *tree;
  804. tree = &BTRFS_I(page->mapping->host)->io_tree;
  805. return extent_read_full_page(tree, page, btree_get_extent);
  806. }
  807. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  808. {
  809. struct extent_io_tree *tree;
  810. struct extent_map_tree *map;
  811. int ret;
  812. if (PageWriteback(page) || PageDirty(page))
  813. return 0;
  814. tree = &BTRFS_I(page->mapping->host)->io_tree;
  815. map = &BTRFS_I(page->mapping->host)->extent_tree;
  816. ret = try_release_extent_state(map, tree, page, gfp_flags);
  817. if (!ret)
  818. return 0;
  819. ret = try_release_extent_buffer(tree, page);
  820. if (ret == 1) {
  821. ClearPagePrivate(page);
  822. set_page_private(page, 0);
  823. page_cache_release(page);
  824. }
  825. return ret;
  826. }
  827. static void btree_invalidatepage(struct page *page, unsigned long offset)
  828. {
  829. struct extent_io_tree *tree;
  830. tree = &BTRFS_I(page->mapping->host)->io_tree;
  831. extent_invalidatepage(tree, page, offset);
  832. btree_releasepage(page, GFP_NOFS);
  833. if (PagePrivate(page)) {
  834. printk(KERN_WARNING "btrfs warning page private not zero "
  835. "on page %llu\n", (unsigned long long)page_offset(page));
  836. ClearPagePrivate(page);
  837. set_page_private(page, 0);
  838. page_cache_release(page);
  839. }
  840. }
  841. static const struct address_space_operations btree_aops = {
  842. .readpage = btree_readpage,
  843. .writepage = btree_writepage,
  844. .writepages = btree_writepages,
  845. .releasepage = btree_releasepage,
  846. .invalidatepage = btree_invalidatepage,
  847. #ifdef CONFIG_MIGRATION
  848. .migratepage = btree_migratepage,
  849. #endif
  850. };
  851. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  852. u64 parent_transid)
  853. {
  854. struct extent_buffer *buf = NULL;
  855. struct inode *btree_inode = root->fs_info->btree_inode;
  856. int ret = 0;
  857. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  858. if (!buf)
  859. return 0;
  860. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  861. buf, 0, 0, btree_get_extent, 0);
  862. free_extent_buffer(buf);
  863. return ret;
  864. }
  865. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  866. u64 bytenr, u32 blocksize)
  867. {
  868. struct inode *btree_inode = root->fs_info->btree_inode;
  869. struct extent_buffer *eb;
  870. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  871. bytenr, blocksize);
  872. return eb;
  873. }
  874. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  875. u64 bytenr, u32 blocksize)
  876. {
  877. struct inode *btree_inode = root->fs_info->btree_inode;
  878. struct extent_buffer *eb;
  879. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  880. bytenr, blocksize, NULL);
  881. return eb;
  882. }
  883. int btrfs_write_tree_block(struct extent_buffer *buf)
  884. {
  885. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  886. buf->start + buf->len - 1);
  887. }
  888. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  889. {
  890. return filemap_fdatawait_range(buf->first_page->mapping,
  891. buf->start, buf->start + buf->len - 1);
  892. }
  893. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  894. u32 blocksize, u64 parent_transid)
  895. {
  896. struct extent_buffer *buf = NULL;
  897. int ret;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return NULL;
  901. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  902. if (ret == 0)
  903. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  904. return buf;
  905. }
  906. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  907. struct extent_buffer *buf)
  908. {
  909. struct inode *btree_inode = root->fs_info->btree_inode;
  910. if (btrfs_header_generation(buf) ==
  911. root->fs_info->running_transaction->transid) {
  912. btrfs_assert_tree_locked(buf);
  913. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  914. spin_lock(&root->fs_info->delalloc_lock);
  915. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  916. root->fs_info->dirty_metadata_bytes -= buf->len;
  917. else
  918. WARN_ON(1);
  919. spin_unlock(&root->fs_info->delalloc_lock);
  920. }
  921. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  922. btrfs_set_lock_blocking(buf);
  923. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  924. buf);
  925. }
  926. return 0;
  927. }
  928. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  929. u32 stripesize, struct btrfs_root *root,
  930. struct btrfs_fs_info *fs_info,
  931. u64 objectid)
  932. {
  933. root->node = NULL;
  934. root->commit_root = NULL;
  935. root->sectorsize = sectorsize;
  936. root->nodesize = nodesize;
  937. root->leafsize = leafsize;
  938. root->stripesize = stripesize;
  939. root->ref_cows = 0;
  940. root->track_dirty = 0;
  941. root->in_radix = 0;
  942. root->orphan_item_inserted = 0;
  943. root->orphan_cleanup_state = 0;
  944. root->fs_info = fs_info;
  945. root->objectid = objectid;
  946. root->last_trans = 0;
  947. root->highest_objectid = 0;
  948. root->name = NULL;
  949. root->inode_tree = RB_ROOT;
  950. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  951. root->block_rsv = NULL;
  952. root->orphan_block_rsv = NULL;
  953. INIT_LIST_HEAD(&root->dirty_list);
  954. INIT_LIST_HEAD(&root->orphan_list);
  955. INIT_LIST_HEAD(&root->root_list);
  956. spin_lock_init(&root->orphan_lock);
  957. spin_lock_init(&root->inode_lock);
  958. spin_lock_init(&root->accounting_lock);
  959. mutex_init(&root->objectid_mutex);
  960. mutex_init(&root->log_mutex);
  961. init_waitqueue_head(&root->log_writer_wait);
  962. init_waitqueue_head(&root->log_commit_wait[0]);
  963. init_waitqueue_head(&root->log_commit_wait[1]);
  964. atomic_set(&root->log_commit[0], 0);
  965. atomic_set(&root->log_commit[1], 0);
  966. atomic_set(&root->log_writers, 0);
  967. root->log_batch = 0;
  968. root->log_transid = 0;
  969. root->last_log_commit = 0;
  970. extent_io_tree_init(&root->dirty_log_pages,
  971. fs_info->btree_inode->i_mapping);
  972. memset(&root->root_key, 0, sizeof(root->root_key));
  973. memset(&root->root_item, 0, sizeof(root->root_item));
  974. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  975. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  976. root->defrag_trans_start = fs_info->generation;
  977. init_completion(&root->kobj_unregister);
  978. root->defrag_running = 0;
  979. root->root_key.objectid = objectid;
  980. root->anon_super.s_root = NULL;
  981. root->anon_super.s_dev = 0;
  982. INIT_LIST_HEAD(&root->anon_super.s_list);
  983. INIT_LIST_HEAD(&root->anon_super.s_instances);
  984. init_rwsem(&root->anon_super.s_umount);
  985. return 0;
  986. }
  987. static int find_and_setup_root(struct btrfs_root *tree_root,
  988. struct btrfs_fs_info *fs_info,
  989. u64 objectid,
  990. struct btrfs_root *root)
  991. {
  992. int ret;
  993. u32 blocksize;
  994. u64 generation;
  995. __setup_root(tree_root->nodesize, tree_root->leafsize,
  996. tree_root->sectorsize, tree_root->stripesize,
  997. root, fs_info, objectid);
  998. ret = btrfs_find_last_root(tree_root, objectid,
  999. &root->root_item, &root->root_key);
  1000. if (ret > 0)
  1001. return -ENOENT;
  1002. BUG_ON(ret);
  1003. generation = btrfs_root_generation(&root->root_item);
  1004. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1005. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1006. blocksize, generation);
  1007. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1008. free_extent_buffer(root->node);
  1009. return -EIO;
  1010. }
  1011. root->commit_root = btrfs_root_node(root);
  1012. return 0;
  1013. }
  1014. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1015. struct btrfs_fs_info *fs_info)
  1016. {
  1017. struct btrfs_root *root;
  1018. struct btrfs_root *tree_root = fs_info->tree_root;
  1019. struct extent_buffer *leaf;
  1020. root = kzalloc(sizeof(*root), GFP_NOFS);
  1021. if (!root)
  1022. return ERR_PTR(-ENOMEM);
  1023. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1024. tree_root->sectorsize, tree_root->stripesize,
  1025. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1026. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1027. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1028. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1029. /*
  1030. * log trees do not get reference counted because they go away
  1031. * before a real commit is actually done. They do store pointers
  1032. * to file data extents, and those reference counts still get
  1033. * updated (along with back refs to the log tree).
  1034. */
  1035. root->ref_cows = 0;
  1036. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1037. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1038. if (IS_ERR(leaf)) {
  1039. kfree(root);
  1040. return ERR_CAST(leaf);
  1041. }
  1042. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1043. btrfs_set_header_bytenr(leaf, leaf->start);
  1044. btrfs_set_header_generation(leaf, trans->transid);
  1045. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1046. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1047. root->node = leaf;
  1048. write_extent_buffer(root->node, root->fs_info->fsid,
  1049. (unsigned long)btrfs_header_fsid(root->node),
  1050. BTRFS_FSID_SIZE);
  1051. btrfs_mark_buffer_dirty(root->node);
  1052. btrfs_tree_unlock(root->node);
  1053. return root;
  1054. }
  1055. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1056. struct btrfs_fs_info *fs_info)
  1057. {
  1058. struct btrfs_root *log_root;
  1059. log_root = alloc_log_tree(trans, fs_info);
  1060. if (IS_ERR(log_root))
  1061. return PTR_ERR(log_root);
  1062. WARN_ON(fs_info->log_root_tree);
  1063. fs_info->log_root_tree = log_root;
  1064. return 0;
  1065. }
  1066. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1067. struct btrfs_root *root)
  1068. {
  1069. struct btrfs_root *log_root;
  1070. struct btrfs_inode_item *inode_item;
  1071. log_root = alloc_log_tree(trans, root->fs_info);
  1072. if (IS_ERR(log_root))
  1073. return PTR_ERR(log_root);
  1074. log_root->last_trans = trans->transid;
  1075. log_root->root_key.offset = root->root_key.objectid;
  1076. inode_item = &log_root->root_item.inode;
  1077. inode_item->generation = cpu_to_le64(1);
  1078. inode_item->size = cpu_to_le64(3);
  1079. inode_item->nlink = cpu_to_le32(1);
  1080. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1081. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1082. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1083. WARN_ON(root->log_root);
  1084. root->log_root = log_root;
  1085. root->log_transid = 0;
  1086. root->last_log_commit = 0;
  1087. return 0;
  1088. }
  1089. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1090. struct btrfs_key *location)
  1091. {
  1092. struct btrfs_root *root;
  1093. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1094. struct btrfs_path *path;
  1095. struct extent_buffer *l;
  1096. u64 generation;
  1097. u32 blocksize;
  1098. int ret = 0;
  1099. root = kzalloc(sizeof(*root), GFP_NOFS);
  1100. if (!root)
  1101. return ERR_PTR(-ENOMEM);
  1102. if (location->offset == (u64)-1) {
  1103. ret = find_and_setup_root(tree_root, fs_info,
  1104. location->objectid, root);
  1105. if (ret) {
  1106. kfree(root);
  1107. return ERR_PTR(ret);
  1108. }
  1109. goto out;
  1110. }
  1111. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1112. tree_root->sectorsize, tree_root->stripesize,
  1113. root, fs_info, location->objectid);
  1114. path = btrfs_alloc_path();
  1115. if (!path) {
  1116. kfree(root);
  1117. return ERR_PTR(-ENOMEM);
  1118. }
  1119. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1120. if (ret == 0) {
  1121. l = path->nodes[0];
  1122. read_extent_buffer(l, &root->root_item,
  1123. btrfs_item_ptr_offset(l, path->slots[0]),
  1124. sizeof(root->root_item));
  1125. memcpy(&root->root_key, location, sizeof(*location));
  1126. }
  1127. btrfs_free_path(path);
  1128. if (ret) {
  1129. kfree(root);
  1130. if (ret > 0)
  1131. ret = -ENOENT;
  1132. return ERR_PTR(ret);
  1133. }
  1134. generation = btrfs_root_generation(&root->root_item);
  1135. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1136. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1137. blocksize, generation);
  1138. root->commit_root = btrfs_root_node(root);
  1139. BUG_ON(!root->node);
  1140. out:
  1141. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1142. root->ref_cows = 1;
  1143. btrfs_check_and_init_root_item(&root->root_item);
  1144. }
  1145. return root;
  1146. }
  1147. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1148. struct btrfs_key *location)
  1149. {
  1150. struct btrfs_root *root;
  1151. int ret;
  1152. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1153. return fs_info->tree_root;
  1154. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1155. return fs_info->extent_root;
  1156. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1157. return fs_info->chunk_root;
  1158. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1159. return fs_info->dev_root;
  1160. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1161. return fs_info->csum_root;
  1162. again:
  1163. spin_lock(&fs_info->fs_roots_radix_lock);
  1164. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1165. (unsigned long)location->objectid);
  1166. spin_unlock(&fs_info->fs_roots_radix_lock);
  1167. if (root)
  1168. return root;
  1169. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1170. if (IS_ERR(root))
  1171. return root;
  1172. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1173. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1174. GFP_NOFS);
  1175. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1176. ret = -ENOMEM;
  1177. goto fail;
  1178. }
  1179. btrfs_init_free_ino_ctl(root);
  1180. mutex_init(&root->fs_commit_mutex);
  1181. spin_lock_init(&root->cache_lock);
  1182. init_waitqueue_head(&root->cache_wait);
  1183. ret = set_anon_super(&root->anon_super, NULL);
  1184. if (ret)
  1185. goto fail;
  1186. if (btrfs_root_refs(&root->root_item) == 0) {
  1187. ret = -ENOENT;
  1188. goto fail;
  1189. }
  1190. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1191. if (ret < 0)
  1192. goto fail;
  1193. if (ret == 0)
  1194. root->orphan_item_inserted = 1;
  1195. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1196. if (ret)
  1197. goto fail;
  1198. spin_lock(&fs_info->fs_roots_radix_lock);
  1199. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1200. (unsigned long)root->root_key.objectid,
  1201. root);
  1202. if (ret == 0)
  1203. root->in_radix = 1;
  1204. spin_unlock(&fs_info->fs_roots_radix_lock);
  1205. radix_tree_preload_end();
  1206. if (ret) {
  1207. if (ret == -EEXIST) {
  1208. free_fs_root(root);
  1209. goto again;
  1210. }
  1211. goto fail;
  1212. }
  1213. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1214. root->root_key.objectid);
  1215. WARN_ON(ret);
  1216. return root;
  1217. fail:
  1218. free_fs_root(root);
  1219. return ERR_PTR(ret);
  1220. }
  1221. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1222. {
  1223. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1224. int ret = 0;
  1225. struct btrfs_device *device;
  1226. struct backing_dev_info *bdi;
  1227. rcu_read_lock();
  1228. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1229. if (!device->bdev)
  1230. continue;
  1231. bdi = blk_get_backing_dev_info(device->bdev);
  1232. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1233. ret = 1;
  1234. break;
  1235. }
  1236. }
  1237. rcu_read_unlock();
  1238. return ret;
  1239. }
  1240. /*
  1241. * If this fails, caller must call bdi_destroy() to get rid of the
  1242. * bdi again.
  1243. */
  1244. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1245. {
  1246. int err;
  1247. bdi->capabilities = BDI_CAP_MAP_COPY;
  1248. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1249. if (err)
  1250. return err;
  1251. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1252. bdi->congested_fn = btrfs_congested_fn;
  1253. bdi->congested_data = info;
  1254. return 0;
  1255. }
  1256. static int bio_ready_for_csum(struct bio *bio)
  1257. {
  1258. u64 length = 0;
  1259. u64 buf_len = 0;
  1260. u64 start = 0;
  1261. struct page *page;
  1262. struct extent_io_tree *io_tree = NULL;
  1263. struct bio_vec *bvec;
  1264. int i;
  1265. int ret;
  1266. bio_for_each_segment(bvec, bio, i) {
  1267. page = bvec->bv_page;
  1268. if (page->private == EXTENT_PAGE_PRIVATE) {
  1269. length += bvec->bv_len;
  1270. continue;
  1271. }
  1272. if (!page->private) {
  1273. length += bvec->bv_len;
  1274. continue;
  1275. }
  1276. length = bvec->bv_len;
  1277. buf_len = page->private >> 2;
  1278. start = page_offset(page) + bvec->bv_offset;
  1279. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1280. }
  1281. /* are we fully contained in this bio? */
  1282. if (buf_len <= length)
  1283. return 1;
  1284. ret = extent_range_uptodate(io_tree, start + length,
  1285. start + buf_len - 1);
  1286. return ret;
  1287. }
  1288. /*
  1289. * called by the kthread helper functions to finally call the bio end_io
  1290. * functions. This is where read checksum verification actually happens
  1291. */
  1292. static void end_workqueue_fn(struct btrfs_work *work)
  1293. {
  1294. struct bio *bio;
  1295. struct end_io_wq *end_io_wq;
  1296. struct btrfs_fs_info *fs_info;
  1297. int error;
  1298. end_io_wq = container_of(work, struct end_io_wq, work);
  1299. bio = end_io_wq->bio;
  1300. fs_info = end_io_wq->info;
  1301. /* metadata bio reads are special because the whole tree block must
  1302. * be checksummed at once. This makes sure the entire block is in
  1303. * ram and up to date before trying to verify things. For
  1304. * blocksize <= pagesize, it is basically a noop
  1305. */
  1306. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1307. !bio_ready_for_csum(bio)) {
  1308. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1309. &end_io_wq->work);
  1310. return;
  1311. }
  1312. error = end_io_wq->error;
  1313. bio->bi_private = end_io_wq->private;
  1314. bio->bi_end_io = end_io_wq->end_io;
  1315. kfree(end_io_wq);
  1316. bio_endio(bio, error);
  1317. }
  1318. static int cleaner_kthread(void *arg)
  1319. {
  1320. struct btrfs_root *root = arg;
  1321. do {
  1322. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1323. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1324. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1325. btrfs_run_delayed_iputs(root);
  1326. btrfs_clean_old_snapshots(root);
  1327. mutex_unlock(&root->fs_info->cleaner_mutex);
  1328. btrfs_run_defrag_inodes(root->fs_info);
  1329. }
  1330. if (freezing(current)) {
  1331. refrigerator();
  1332. } else {
  1333. set_current_state(TASK_INTERRUPTIBLE);
  1334. if (!kthread_should_stop())
  1335. schedule();
  1336. __set_current_state(TASK_RUNNING);
  1337. }
  1338. } while (!kthread_should_stop());
  1339. return 0;
  1340. }
  1341. static int transaction_kthread(void *arg)
  1342. {
  1343. struct btrfs_root *root = arg;
  1344. struct btrfs_trans_handle *trans;
  1345. struct btrfs_transaction *cur;
  1346. u64 transid;
  1347. unsigned long now;
  1348. unsigned long delay;
  1349. int ret;
  1350. do {
  1351. delay = HZ * 30;
  1352. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1353. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1354. spin_lock(&root->fs_info->trans_lock);
  1355. cur = root->fs_info->running_transaction;
  1356. if (!cur) {
  1357. spin_unlock(&root->fs_info->trans_lock);
  1358. goto sleep;
  1359. }
  1360. now = get_seconds();
  1361. if (!cur->blocked &&
  1362. (now < cur->start_time || now - cur->start_time < 30)) {
  1363. spin_unlock(&root->fs_info->trans_lock);
  1364. delay = HZ * 5;
  1365. goto sleep;
  1366. }
  1367. transid = cur->transid;
  1368. spin_unlock(&root->fs_info->trans_lock);
  1369. trans = btrfs_join_transaction(root);
  1370. BUG_ON(IS_ERR(trans));
  1371. if (transid == trans->transid) {
  1372. ret = btrfs_commit_transaction(trans, root);
  1373. BUG_ON(ret);
  1374. } else {
  1375. btrfs_end_transaction(trans, root);
  1376. }
  1377. sleep:
  1378. wake_up_process(root->fs_info->cleaner_kthread);
  1379. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1380. if (freezing(current)) {
  1381. refrigerator();
  1382. } else {
  1383. set_current_state(TASK_INTERRUPTIBLE);
  1384. if (!kthread_should_stop() &&
  1385. !btrfs_transaction_blocked(root->fs_info))
  1386. schedule_timeout(delay);
  1387. __set_current_state(TASK_RUNNING);
  1388. }
  1389. } while (!kthread_should_stop());
  1390. return 0;
  1391. }
  1392. struct btrfs_root *open_ctree(struct super_block *sb,
  1393. struct btrfs_fs_devices *fs_devices,
  1394. char *options)
  1395. {
  1396. u32 sectorsize;
  1397. u32 nodesize;
  1398. u32 leafsize;
  1399. u32 blocksize;
  1400. u32 stripesize;
  1401. u64 generation;
  1402. u64 features;
  1403. struct btrfs_key location;
  1404. struct buffer_head *bh;
  1405. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1406. GFP_NOFS);
  1407. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1408. GFP_NOFS);
  1409. struct btrfs_root *tree_root = btrfs_sb(sb);
  1410. struct btrfs_fs_info *fs_info = NULL;
  1411. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1412. GFP_NOFS);
  1413. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1414. GFP_NOFS);
  1415. struct btrfs_root *log_tree_root;
  1416. int ret;
  1417. int err = -EINVAL;
  1418. struct btrfs_super_block *disk_super;
  1419. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1420. !chunk_root || !dev_root || !csum_root) {
  1421. err = -ENOMEM;
  1422. goto fail;
  1423. }
  1424. fs_info = tree_root->fs_info;
  1425. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1426. if (ret) {
  1427. err = ret;
  1428. goto fail;
  1429. }
  1430. ret = setup_bdi(fs_info, &fs_info->bdi);
  1431. if (ret) {
  1432. err = ret;
  1433. goto fail_srcu;
  1434. }
  1435. fs_info->btree_inode = new_inode(sb);
  1436. if (!fs_info->btree_inode) {
  1437. err = -ENOMEM;
  1438. goto fail_bdi;
  1439. }
  1440. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1441. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1442. INIT_LIST_HEAD(&fs_info->trans_list);
  1443. INIT_LIST_HEAD(&fs_info->dead_roots);
  1444. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1445. INIT_LIST_HEAD(&fs_info->hashers);
  1446. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1447. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1448. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1449. spin_lock_init(&fs_info->delalloc_lock);
  1450. spin_lock_init(&fs_info->trans_lock);
  1451. spin_lock_init(&fs_info->ref_cache_lock);
  1452. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1453. spin_lock_init(&fs_info->delayed_iput_lock);
  1454. spin_lock_init(&fs_info->defrag_inodes_lock);
  1455. mutex_init(&fs_info->reloc_mutex);
  1456. init_completion(&fs_info->kobj_unregister);
  1457. fs_info->tree_root = tree_root;
  1458. fs_info->extent_root = extent_root;
  1459. fs_info->csum_root = csum_root;
  1460. fs_info->chunk_root = chunk_root;
  1461. fs_info->dev_root = dev_root;
  1462. fs_info->fs_devices = fs_devices;
  1463. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1464. INIT_LIST_HEAD(&fs_info->space_info);
  1465. btrfs_mapping_init(&fs_info->mapping_tree);
  1466. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1467. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1468. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1469. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1470. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1471. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1472. mutex_init(&fs_info->durable_block_rsv_mutex);
  1473. atomic_set(&fs_info->nr_async_submits, 0);
  1474. atomic_set(&fs_info->async_delalloc_pages, 0);
  1475. atomic_set(&fs_info->async_submit_draining, 0);
  1476. atomic_set(&fs_info->nr_async_bios, 0);
  1477. atomic_set(&fs_info->defrag_running, 0);
  1478. fs_info->sb = sb;
  1479. fs_info->max_inline = 8192 * 1024;
  1480. fs_info->metadata_ratio = 0;
  1481. fs_info->defrag_inodes = RB_ROOT;
  1482. fs_info->trans_no_join = 0;
  1483. fs_info->thread_pool_size = min_t(unsigned long,
  1484. num_online_cpus() + 2, 8);
  1485. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1486. spin_lock_init(&fs_info->ordered_extent_lock);
  1487. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1488. GFP_NOFS);
  1489. if (!fs_info->delayed_root) {
  1490. err = -ENOMEM;
  1491. goto fail_iput;
  1492. }
  1493. btrfs_init_delayed_root(fs_info->delayed_root);
  1494. mutex_init(&fs_info->scrub_lock);
  1495. atomic_set(&fs_info->scrubs_running, 0);
  1496. atomic_set(&fs_info->scrub_pause_req, 0);
  1497. atomic_set(&fs_info->scrubs_paused, 0);
  1498. atomic_set(&fs_info->scrub_cancel_req, 0);
  1499. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1500. init_rwsem(&fs_info->scrub_super_lock);
  1501. fs_info->scrub_workers_refcnt = 0;
  1502. sb->s_blocksize = 4096;
  1503. sb->s_blocksize_bits = blksize_bits(4096);
  1504. sb->s_bdi = &fs_info->bdi;
  1505. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1506. fs_info->btree_inode->i_nlink = 1;
  1507. /*
  1508. * we set the i_size on the btree inode to the max possible int.
  1509. * the real end of the address space is determined by all of
  1510. * the devices in the system
  1511. */
  1512. fs_info->btree_inode->i_size = OFFSET_MAX;
  1513. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1514. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1515. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1516. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1517. fs_info->btree_inode->i_mapping);
  1518. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1519. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1520. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1521. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1522. sizeof(struct btrfs_key));
  1523. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1524. insert_inode_hash(fs_info->btree_inode);
  1525. spin_lock_init(&fs_info->block_group_cache_lock);
  1526. fs_info->block_group_cache_tree = RB_ROOT;
  1527. extent_io_tree_init(&fs_info->freed_extents[0],
  1528. fs_info->btree_inode->i_mapping);
  1529. extent_io_tree_init(&fs_info->freed_extents[1],
  1530. fs_info->btree_inode->i_mapping);
  1531. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1532. fs_info->do_barriers = 1;
  1533. mutex_init(&fs_info->ordered_operations_mutex);
  1534. mutex_init(&fs_info->tree_log_mutex);
  1535. mutex_init(&fs_info->chunk_mutex);
  1536. mutex_init(&fs_info->transaction_kthread_mutex);
  1537. mutex_init(&fs_info->cleaner_mutex);
  1538. mutex_init(&fs_info->volume_mutex);
  1539. init_rwsem(&fs_info->extent_commit_sem);
  1540. init_rwsem(&fs_info->cleanup_work_sem);
  1541. init_rwsem(&fs_info->subvol_sem);
  1542. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1543. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1544. init_waitqueue_head(&fs_info->transaction_throttle);
  1545. init_waitqueue_head(&fs_info->transaction_wait);
  1546. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1547. init_waitqueue_head(&fs_info->async_submit_wait);
  1548. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1549. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1550. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1551. if (!bh) {
  1552. err = -EINVAL;
  1553. goto fail_alloc;
  1554. }
  1555. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1556. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1557. sizeof(fs_info->super_for_commit));
  1558. brelse(bh);
  1559. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1560. disk_super = &fs_info->super_copy;
  1561. if (!btrfs_super_root(disk_super))
  1562. goto fail_alloc;
  1563. /* check FS state, whether FS is broken. */
  1564. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1565. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1566. /*
  1567. * In the long term, we'll store the compression type in the super
  1568. * block, and it'll be used for per file compression control.
  1569. */
  1570. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1571. ret = btrfs_parse_options(tree_root, options);
  1572. if (ret) {
  1573. err = ret;
  1574. goto fail_alloc;
  1575. }
  1576. features = btrfs_super_incompat_flags(disk_super) &
  1577. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1578. if (features) {
  1579. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1580. "unsupported optional features (%Lx).\n",
  1581. (unsigned long long)features);
  1582. err = -EINVAL;
  1583. goto fail_alloc;
  1584. }
  1585. features = btrfs_super_incompat_flags(disk_super);
  1586. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1587. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1588. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1589. btrfs_set_super_incompat_flags(disk_super, features);
  1590. features = btrfs_super_compat_ro_flags(disk_super) &
  1591. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1592. if (!(sb->s_flags & MS_RDONLY) && features) {
  1593. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1594. "unsupported option features (%Lx).\n",
  1595. (unsigned long long)features);
  1596. err = -EINVAL;
  1597. goto fail_alloc;
  1598. }
  1599. btrfs_init_workers(&fs_info->generic_worker,
  1600. "genwork", 1, NULL);
  1601. btrfs_init_workers(&fs_info->workers, "worker",
  1602. fs_info->thread_pool_size,
  1603. &fs_info->generic_worker);
  1604. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1605. fs_info->thread_pool_size,
  1606. &fs_info->generic_worker);
  1607. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1608. min_t(u64, fs_devices->num_devices,
  1609. fs_info->thread_pool_size),
  1610. &fs_info->generic_worker);
  1611. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1612. 2, &fs_info->generic_worker);
  1613. /* a higher idle thresh on the submit workers makes it much more
  1614. * likely that bios will be send down in a sane order to the
  1615. * devices
  1616. */
  1617. fs_info->submit_workers.idle_thresh = 64;
  1618. fs_info->workers.idle_thresh = 16;
  1619. fs_info->workers.ordered = 1;
  1620. fs_info->delalloc_workers.idle_thresh = 2;
  1621. fs_info->delalloc_workers.ordered = 1;
  1622. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1623. &fs_info->generic_worker);
  1624. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1625. fs_info->thread_pool_size,
  1626. &fs_info->generic_worker);
  1627. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1628. fs_info->thread_pool_size,
  1629. &fs_info->generic_worker);
  1630. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1631. "endio-meta-write", fs_info->thread_pool_size,
  1632. &fs_info->generic_worker);
  1633. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1634. fs_info->thread_pool_size,
  1635. &fs_info->generic_worker);
  1636. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1637. 1, &fs_info->generic_worker);
  1638. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1639. fs_info->thread_pool_size,
  1640. &fs_info->generic_worker);
  1641. /*
  1642. * endios are largely parallel and should have a very
  1643. * low idle thresh
  1644. */
  1645. fs_info->endio_workers.idle_thresh = 4;
  1646. fs_info->endio_meta_workers.idle_thresh = 4;
  1647. fs_info->endio_write_workers.idle_thresh = 2;
  1648. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1649. btrfs_start_workers(&fs_info->workers, 1);
  1650. btrfs_start_workers(&fs_info->generic_worker, 1);
  1651. btrfs_start_workers(&fs_info->submit_workers, 1);
  1652. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1653. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1654. btrfs_start_workers(&fs_info->endio_workers, 1);
  1655. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1656. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1657. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1658. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1659. btrfs_start_workers(&fs_info->delayed_workers, 1);
  1660. btrfs_start_workers(&fs_info->caching_workers, 1);
  1661. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1662. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1663. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1664. nodesize = btrfs_super_nodesize(disk_super);
  1665. leafsize = btrfs_super_leafsize(disk_super);
  1666. sectorsize = btrfs_super_sectorsize(disk_super);
  1667. stripesize = btrfs_super_stripesize(disk_super);
  1668. tree_root->nodesize = nodesize;
  1669. tree_root->leafsize = leafsize;
  1670. tree_root->sectorsize = sectorsize;
  1671. tree_root->stripesize = stripesize;
  1672. sb->s_blocksize = sectorsize;
  1673. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1674. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1675. sizeof(disk_super->magic))) {
  1676. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1677. goto fail_sb_buffer;
  1678. }
  1679. mutex_lock(&fs_info->chunk_mutex);
  1680. ret = btrfs_read_sys_array(tree_root);
  1681. mutex_unlock(&fs_info->chunk_mutex);
  1682. if (ret) {
  1683. printk(KERN_WARNING "btrfs: failed to read the system "
  1684. "array on %s\n", sb->s_id);
  1685. goto fail_sb_buffer;
  1686. }
  1687. blocksize = btrfs_level_size(tree_root,
  1688. btrfs_super_chunk_root_level(disk_super));
  1689. generation = btrfs_super_chunk_root_generation(disk_super);
  1690. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1691. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1692. chunk_root->node = read_tree_block(chunk_root,
  1693. btrfs_super_chunk_root(disk_super),
  1694. blocksize, generation);
  1695. BUG_ON(!chunk_root->node);
  1696. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1697. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1698. sb->s_id);
  1699. goto fail_chunk_root;
  1700. }
  1701. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1702. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1703. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1704. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1705. BTRFS_UUID_SIZE);
  1706. mutex_lock(&fs_info->chunk_mutex);
  1707. ret = btrfs_read_chunk_tree(chunk_root);
  1708. mutex_unlock(&fs_info->chunk_mutex);
  1709. if (ret) {
  1710. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1711. sb->s_id);
  1712. goto fail_chunk_root;
  1713. }
  1714. btrfs_close_extra_devices(fs_devices);
  1715. blocksize = btrfs_level_size(tree_root,
  1716. btrfs_super_root_level(disk_super));
  1717. generation = btrfs_super_generation(disk_super);
  1718. tree_root->node = read_tree_block(tree_root,
  1719. btrfs_super_root(disk_super),
  1720. blocksize, generation);
  1721. if (!tree_root->node)
  1722. goto fail_chunk_root;
  1723. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1724. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1725. sb->s_id);
  1726. goto fail_tree_root;
  1727. }
  1728. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1729. tree_root->commit_root = btrfs_root_node(tree_root);
  1730. ret = find_and_setup_root(tree_root, fs_info,
  1731. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1732. if (ret)
  1733. goto fail_tree_root;
  1734. extent_root->track_dirty = 1;
  1735. ret = find_and_setup_root(tree_root, fs_info,
  1736. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1737. if (ret)
  1738. goto fail_extent_root;
  1739. dev_root->track_dirty = 1;
  1740. ret = find_and_setup_root(tree_root, fs_info,
  1741. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1742. if (ret)
  1743. goto fail_dev_root;
  1744. csum_root->track_dirty = 1;
  1745. fs_info->generation = generation;
  1746. fs_info->last_trans_committed = generation;
  1747. fs_info->data_alloc_profile = (u64)-1;
  1748. fs_info->metadata_alloc_profile = (u64)-1;
  1749. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1750. ret = btrfs_init_space_info(fs_info);
  1751. if (ret) {
  1752. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1753. goto fail_block_groups;
  1754. }
  1755. ret = btrfs_read_block_groups(extent_root);
  1756. if (ret) {
  1757. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1758. goto fail_block_groups;
  1759. }
  1760. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1761. "btrfs-cleaner");
  1762. if (IS_ERR(fs_info->cleaner_kthread))
  1763. goto fail_block_groups;
  1764. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1765. tree_root,
  1766. "btrfs-transaction");
  1767. if (IS_ERR(fs_info->transaction_kthread))
  1768. goto fail_cleaner;
  1769. if (!btrfs_test_opt(tree_root, SSD) &&
  1770. !btrfs_test_opt(tree_root, NOSSD) &&
  1771. !fs_info->fs_devices->rotating) {
  1772. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1773. "mode\n");
  1774. btrfs_set_opt(fs_info->mount_opt, SSD);
  1775. }
  1776. /* do not make disk changes in broken FS */
  1777. if (btrfs_super_log_root(disk_super) != 0 &&
  1778. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1779. u64 bytenr = btrfs_super_log_root(disk_super);
  1780. if (fs_devices->rw_devices == 0) {
  1781. printk(KERN_WARNING "Btrfs log replay required "
  1782. "on RO media\n");
  1783. err = -EIO;
  1784. goto fail_trans_kthread;
  1785. }
  1786. blocksize =
  1787. btrfs_level_size(tree_root,
  1788. btrfs_super_log_root_level(disk_super));
  1789. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1790. if (!log_tree_root) {
  1791. err = -ENOMEM;
  1792. goto fail_trans_kthread;
  1793. }
  1794. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1795. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1796. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1797. blocksize,
  1798. generation + 1);
  1799. ret = btrfs_recover_log_trees(log_tree_root);
  1800. BUG_ON(ret);
  1801. if (sb->s_flags & MS_RDONLY) {
  1802. ret = btrfs_commit_super(tree_root);
  1803. BUG_ON(ret);
  1804. }
  1805. }
  1806. ret = btrfs_find_orphan_roots(tree_root);
  1807. BUG_ON(ret);
  1808. if (!(sb->s_flags & MS_RDONLY)) {
  1809. ret = btrfs_cleanup_fs_roots(fs_info);
  1810. BUG_ON(ret);
  1811. ret = btrfs_recover_relocation(tree_root);
  1812. if (ret < 0) {
  1813. printk(KERN_WARNING
  1814. "btrfs: failed to recover relocation\n");
  1815. err = -EINVAL;
  1816. goto fail_trans_kthread;
  1817. }
  1818. }
  1819. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1820. location.type = BTRFS_ROOT_ITEM_KEY;
  1821. location.offset = (u64)-1;
  1822. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1823. if (!fs_info->fs_root)
  1824. goto fail_trans_kthread;
  1825. if (IS_ERR(fs_info->fs_root)) {
  1826. err = PTR_ERR(fs_info->fs_root);
  1827. goto fail_trans_kthread;
  1828. }
  1829. if (!(sb->s_flags & MS_RDONLY)) {
  1830. down_read(&fs_info->cleanup_work_sem);
  1831. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1832. if (!err)
  1833. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1834. up_read(&fs_info->cleanup_work_sem);
  1835. if (err) {
  1836. close_ctree(tree_root);
  1837. return ERR_PTR(err);
  1838. }
  1839. }
  1840. return tree_root;
  1841. fail_trans_kthread:
  1842. kthread_stop(fs_info->transaction_kthread);
  1843. fail_cleaner:
  1844. kthread_stop(fs_info->cleaner_kthread);
  1845. /*
  1846. * make sure we're done with the btree inode before we stop our
  1847. * kthreads
  1848. */
  1849. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1850. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1851. fail_block_groups:
  1852. btrfs_free_block_groups(fs_info);
  1853. free_extent_buffer(csum_root->node);
  1854. free_extent_buffer(csum_root->commit_root);
  1855. fail_dev_root:
  1856. free_extent_buffer(dev_root->node);
  1857. free_extent_buffer(dev_root->commit_root);
  1858. fail_extent_root:
  1859. free_extent_buffer(extent_root->node);
  1860. free_extent_buffer(extent_root->commit_root);
  1861. fail_tree_root:
  1862. free_extent_buffer(tree_root->node);
  1863. free_extent_buffer(tree_root->commit_root);
  1864. fail_chunk_root:
  1865. free_extent_buffer(chunk_root->node);
  1866. free_extent_buffer(chunk_root->commit_root);
  1867. fail_sb_buffer:
  1868. btrfs_stop_workers(&fs_info->generic_worker);
  1869. btrfs_stop_workers(&fs_info->fixup_workers);
  1870. btrfs_stop_workers(&fs_info->delalloc_workers);
  1871. btrfs_stop_workers(&fs_info->workers);
  1872. btrfs_stop_workers(&fs_info->endio_workers);
  1873. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1874. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1875. btrfs_stop_workers(&fs_info->endio_write_workers);
  1876. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1877. btrfs_stop_workers(&fs_info->submit_workers);
  1878. btrfs_stop_workers(&fs_info->delayed_workers);
  1879. btrfs_stop_workers(&fs_info->caching_workers);
  1880. fail_alloc:
  1881. kfree(fs_info->delayed_root);
  1882. fail_iput:
  1883. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1884. iput(fs_info->btree_inode);
  1885. btrfs_close_devices(fs_info->fs_devices);
  1886. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1887. fail_bdi:
  1888. bdi_destroy(&fs_info->bdi);
  1889. fail_srcu:
  1890. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1891. fail:
  1892. kfree(extent_root);
  1893. kfree(tree_root);
  1894. kfree(fs_info);
  1895. kfree(chunk_root);
  1896. kfree(dev_root);
  1897. kfree(csum_root);
  1898. return ERR_PTR(err);
  1899. }
  1900. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1901. {
  1902. char b[BDEVNAME_SIZE];
  1903. if (uptodate) {
  1904. set_buffer_uptodate(bh);
  1905. } else {
  1906. printk_ratelimited(KERN_WARNING "lost page write due to "
  1907. "I/O error on %s\n",
  1908. bdevname(bh->b_bdev, b));
  1909. /* note, we dont' set_buffer_write_io_error because we have
  1910. * our own ways of dealing with the IO errors
  1911. */
  1912. clear_buffer_uptodate(bh);
  1913. }
  1914. unlock_buffer(bh);
  1915. put_bh(bh);
  1916. }
  1917. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1918. {
  1919. struct buffer_head *bh;
  1920. struct buffer_head *latest = NULL;
  1921. struct btrfs_super_block *super;
  1922. int i;
  1923. u64 transid = 0;
  1924. u64 bytenr;
  1925. /* we would like to check all the supers, but that would make
  1926. * a btrfs mount succeed after a mkfs from a different FS.
  1927. * So, we need to add a special mount option to scan for
  1928. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1929. */
  1930. for (i = 0; i < 1; i++) {
  1931. bytenr = btrfs_sb_offset(i);
  1932. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1933. break;
  1934. bh = __bread(bdev, bytenr / 4096, 4096);
  1935. if (!bh)
  1936. continue;
  1937. super = (struct btrfs_super_block *)bh->b_data;
  1938. if (btrfs_super_bytenr(super) != bytenr ||
  1939. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1940. sizeof(super->magic))) {
  1941. brelse(bh);
  1942. continue;
  1943. }
  1944. if (!latest || btrfs_super_generation(super) > transid) {
  1945. brelse(latest);
  1946. latest = bh;
  1947. transid = btrfs_super_generation(super);
  1948. } else {
  1949. brelse(bh);
  1950. }
  1951. }
  1952. return latest;
  1953. }
  1954. /*
  1955. * this should be called twice, once with wait == 0 and
  1956. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1957. * we write are pinned.
  1958. *
  1959. * They are released when wait == 1 is done.
  1960. * max_mirrors must be the same for both runs, and it indicates how
  1961. * many supers on this one device should be written.
  1962. *
  1963. * max_mirrors == 0 means to write them all.
  1964. */
  1965. static int write_dev_supers(struct btrfs_device *device,
  1966. struct btrfs_super_block *sb,
  1967. int do_barriers, int wait, int max_mirrors)
  1968. {
  1969. struct buffer_head *bh;
  1970. int i;
  1971. int ret;
  1972. int errors = 0;
  1973. u32 crc;
  1974. u64 bytenr;
  1975. int last_barrier = 0;
  1976. if (max_mirrors == 0)
  1977. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1978. /* make sure only the last submit_bh does a barrier */
  1979. if (do_barriers) {
  1980. for (i = 0; i < max_mirrors; i++) {
  1981. bytenr = btrfs_sb_offset(i);
  1982. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1983. device->total_bytes)
  1984. break;
  1985. last_barrier = i;
  1986. }
  1987. }
  1988. for (i = 0; i < max_mirrors; i++) {
  1989. bytenr = btrfs_sb_offset(i);
  1990. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1991. break;
  1992. if (wait) {
  1993. bh = __find_get_block(device->bdev, bytenr / 4096,
  1994. BTRFS_SUPER_INFO_SIZE);
  1995. BUG_ON(!bh);
  1996. wait_on_buffer(bh);
  1997. if (!buffer_uptodate(bh))
  1998. errors++;
  1999. /* drop our reference */
  2000. brelse(bh);
  2001. /* drop the reference from the wait == 0 run */
  2002. brelse(bh);
  2003. continue;
  2004. } else {
  2005. btrfs_set_super_bytenr(sb, bytenr);
  2006. crc = ~(u32)0;
  2007. crc = btrfs_csum_data(NULL, (char *)sb +
  2008. BTRFS_CSUM_SIZE, crc,
  2009. BTRFS_SUPER_INFO_SIZE -
  2010. BTRFS_CSUM_SIZE);
  2011. btrfs_csum_final(crc, sb->csum);
  2012. /*
  2013. * one reference for us, and we leave it for the
  2014. * caller
  2015. */
  2016. bh = __getblk(device->bdev, bytenr / 4096,
  2017. BTRFS_SUPER_INFO_SIZE);
  2018. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2019. /* one reference for submit_bh */
  2020. get_bh(bh);
  2021. set_buffer_uptodate(bh);
  2022. lock_buffer(bh);
  2023. bh->b_end_io = btrfs_end_buffer_write_sync;
  2024. }
  2025. if (i == last_barrier && do_barriers)
  2026. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2027. else
  2028. ret = submit_bh(WRITE_SYNC, bh);
  2029. if (ret)
  2030. errors++;
  2031. }
  2032. return errors < i ? 0 : -1;
  2033. }
  2034. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2035. {
  2036. struct list_head *head;
  2037. struct btrfs_device *dev;
  2038. struct btrfs_super_block *sb;
  2039. struct btrfs_dev_item *dev_item;
  2040. int ret;
  2041. int do_barriers;
  2042. int max_errors;
  2043. int total_errors = 0;
  2044. u64 flags;
  2045. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2046. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2047. sb = &root->fs_info->super_for_commit;
  2048. dev_item = &sb->dev_item;
  2049. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2050. head = &root->fs_info->fs_devices->devices;
  2051. list_for_each_entry_rcu(dev, head, dev_list) {
  2052. if (!dev->bdev) {
  2053. total_errors++;
  2054. continue;
  2055. }
  2056. if (!dev->in_fs_metadata || !dev->writeable)
  2057. continue;
  2058. btrfs_set_stack_device_generation(dev_item, 0);
  2059. btrfs_set_stack_device_type(dev_item, dev->type);
  2060. btrfs_set_stack_device_id(dev_item, dev->devid);
  2061. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2062. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2063. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2064. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2065. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2066. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2067. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2068. flags = btrfs_super_flags(sb);
  2069. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2070. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2071. if (ret)
  2072. total_errors++;
  2073. }
  2074. if (total_errors > max_errors) {
  2075. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2076. total_errors);
  2077. BUG();
  2078. }
  2079. total_errors = 0;
  2080. list_for_each_entry_rcu(dev, head, dev_list) {
  2081. if (!dev->bdev)
  2082. continue;
  2083. if (!dev->in_fs_metadata || !dev->writeable)
  2084. continue;
  2085. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2086. if (ret)
  2087. total_errors++;
  2088. }
  2089. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2090. if (total_errors > max_errors) {
  2091. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2092. total_errors);
  2093. BUG();
  2094. }
  2095. return 0;
  2096. }
  2097. int write_ctree_super(struct btrfs_trans_handle *trans,
  2098. struct btrfs_root *root, int max_mirrors)
  2099. {
  2100. int ret;
  2101. ret = write_all_supers(root, max_mirrors);
  2102. return ret;
  2103. }
  2104. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2105. {
  2106. spin_lock(&fs_info->fs_roots_radix_lock);
  2107. radix_tree_delete(&fs_info->fs_roots_radix,
  2108. (unsigned long)root->root_key.objectid);
  2109. spin_unlock(&fs_info->fs_roots_radix_lock);
  2110. if (btrfs_root_refs(&root->root_item) == 0)
  2111. synchronize_srcu(&fs_info->subvol_srcu);
  2112. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2113. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2114. free_fs_root(root);
  2115. return 0;
  2116. }
  2117. static void free_fs_root(struct btrfs_root *root)
  2118. {
  2119. iput(root->cache_inode);
  2120. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2121. if (root->anon_super.s_dev) {
  2122. down_write(&root->anon_super.s_umount);
  2123. kill_anon_super(&root->anon_super);
  2124. }
  2125. free_extent_buffer(root->node);
  2126. free_extent_buffer(root->commit_root);
  2127. kfree(root->free_ino_ctl);
  2128. kfree(root->free_ino_pinned);
  2129. kfree(root->name);
  2130. kfree(root);
  2131. }
  2132. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2133. {
  2134. int ret;
  2135. struct btrfs_root *gang[8];
  2136. int i;
  2137. while (!list_empty(&fs_info->dead_roots)) {
  2138. gang[0] = list_entry(fs_info->dead_roots.next,
  2139. struct btrfs_root, root_list);
  2140. list_del(&gang[0]->root_list);
  2141. if (gang[0]->in_radix) {
  2142. btrfs_free_fs_root(fs_info, gang[0]);
  2143. } else {
  2144. free_extent_buffer(gang[0]->node);
  2145. free_extent_buffer(gang[0]->commit_root);
  2146. kfree(gang[0]);
  2147. }
  2148. }
  2149. while (1) {
  2150. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2151. (void **)gang, 0,
  2152. ARRAY_SIZE(gang));
  2153. if (!ret)
  2154. break;
  2155. for (i = 0; i < ret; i++)
  2156. btrfs_free_fs_root(fs_info, gang[i]);
  2157. }
  2158. return 0;
  2159. }
  2160. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2161. {
  2162. u64 root_objectid = 0;
  2163. struct btrfs_root *gang[8];
  2164. int i;
  2165. int ret;
  2166. while (1) {
  2167. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2168. (void **)gang, root_objectid,
  2169. ARRAY_SIZE(gang));
  2170. if (!ret)
  2171. break;
  2172. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2173. for (i = 0; i < ret; i++) {
  2174. int err;
  2175. root_objectid = gang[i]->root_key.objectid;
  2176. err = btrfs_orphan_cleanup(gang[i]);
  2177. if (err)
  2178. return err;
  2179. }
  2180. root_objectid++;
  2181. }
  2182. return 0;
  2183. }
  2184. int btrfs_commit_super(struct btrfs_root *root)
  2185. {
  2186. struct btrfs_trans_handle *trans;
  2187. int ret;
  2188. mutex_lock(&root->fs_info->cleaner_mutex);
  2189. btrfs_run_delayed_iputs(root);
  2190. btrfs_clean_old_snapshots(root);
  2191. mutex_unlock(&root->fs_info->cleaner_mutex);
  2192. /* wait until ongoing cleanup work done */
  2193. down_write(&root->fs_info->cleanup_work_sem);
  2194. up_write(&root->fs_info->cleanup_work_sem);
  2195. trans = btrfs_join_transaction(root);
  2196. if (IS_ERR(trans))
  2197. return PTR_ERR(trans);
  2198. ret = btrfs_commit_transaction(trans, root);
  2199. BUG_ON(ret);
  2200. /* run commit again to drop the original snapshot */
  2201. trans = btrfs_join_transaction(root);
  2202. if (IS_ERR(trans))
  2203. return PTR_ERR(trans);
  2204. btrfs_commit_transaction(trans, root);
  2205. ret = btrfs_write_and_wait_transaction(NULL, root);
  2206. BUG_ON(ret);
  2207. ret = write_ctree_super(NULL, root, 0);
  2208. return ret;
  2209. }
  2210. int close_ctree(struct btrfs_root *root)
  2211. {
  2212. struct btrfs_fs_info *fs_info = root->fs_info;
  2213. int ret;
  2214. fs_info->closing = 1;
  2215. smp_mb();
  2216. btrfs_scrub_cancel(root);
  2217. /* wait for any defraggers to finish */
  2218. wait_event(fs_info->transaction_wait,
  2219. (atomic_read(&fs_info->defrag_running) == 0));
  2220. /* clear out the rbtree of defraggable inodes */
  2221. btrfs_run_defrag_inodes(root->fs_info);
  2222. btrfs_put_block_group_cache(fs_info);
  2223. /*
  2224. * Here come 2 situations when btrfs is broken to flip readonly:
  2225. *
  2226. * 1. when btrfs flips readonly somewhere else before
  2227. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2228. * and btrfs will skip to write sb directly to keep
  2229. * ERROR state on disk.
  2230. *
  2231. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2232. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2233. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2234. * btrfs will cleanup all FS resources first and write sb then.
  2235. */
  2236. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2237. ret = btrfs_commit_super(root);
  2238. if (ret)
  2239. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2240. }
  2241. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2242. ret = btrfs_error_commit_super(root);
  2243. if (ret)
  2244. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2245. }
  2246. kthread_stop(root->fs_info->transaction_kthread);
  2247. kthread_stop(root->fs_info->cleaner_kthread);
  2248. fs_info->closing = 2;
  2249. smp_mb();
  2250. if (fs_info->delalloc_bytes) {
  2251. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2252. (unsigned long long)fs_info->delalloc_bytes);
  2253. }
  2254. if (fs_info->total_ref_cache_size) {
  2255. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2256. (unsigned long long)fs_info->total_ref_cache_size);
  2257. }
  2258. free_extent_buffer(fs_info->extent_root->node);
  2259. free_extent_buffer(fs_info->extent_root->commit_root);
  2260. free_extent_buffer(fs_info->tree_root->node);
  2261. free_extent_buffer(fs_info->tree_root->commit_root);
  2262. free_extent_buffer(root->fs_info->chunk_root->node);
  2263. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2264. free_extent_buffer(root->fs_info->dev_root->node);
  2265. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2266. free_extent_buffer(root->fs_info->csum_root->node);
  2267. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2268. btrfs_free_block_groups(root->fs_info);
  2269. del_fs_roots(fs_info);
  2270. iput(fs_info->btree_inode);
  2271. kfree(fs_info->delayed_root);
  2272. btrfs_stop_workers(&fs_info->generic_worker);
  2273. btrfs_stop_workers(&fs_info->fixup_workers);
  2274. btrfs_stop_workers(&fs_info->delalloc_workers);
  2275. btrfs_stop_workers(&fs_info->workers);
  2276. btrfs_stop_workers(&fs_info->endio_workers);
  2277. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2278. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2279. btrfs_stop_workers(&fs_info->endio_write_workers);
  2280. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2281. btrfs_stop_workers(&fs_info->submit_workers);
  2282. btrfs_stop_workers(&fs_info->delayed_workers);
  2283. btrfs_stop_workers(&fs_info->caching_workers);
  2284. btrfs_close_devices(fs_info->fs_devices);
  2285. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2286. bdi_destroy(&fs_info->bdi);
  2287. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2288. kfree(fs_info->extent_root);
  2289. kfree(fs_info->tree_root);
  2290. kfree(fs_info->chunk_root);
  2291. kfree(fs_info->dev_root);
  2292. kfree(fs_info->csum_root);
  2293. kfree(fs_info);
  2294. return 0;
  2295. }
  2296. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2297. {
  2298. int ret;
  2299. struct inode *btree_inode = buf->first_page->mapping->host;
  2300. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2301. NULL);
  2302. if (!ret)
  2303. return ret;
  2304. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2305. parent_transid);
  2306. return !ret;
  2307. }
  2308. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2309. {
  2310. struct inode *btree_inode = buf->first_page->mapping->host;
  2311. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2312. buf);
  2313. }
  2314. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2315. {
  2316. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2317. u64 transid = btrfs_header_generation(buf);
  2318. struct inode *btree_inode = root->fs_info->btree_inode;
  2319. int was_dirty;
  2320. btrfs_assert_tree_locked(buf);
  2321. if (transid != root->fs_info->generation) {
  2322. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2323. "found %llu running %llu\n",
  2324. (unsigned long long)buf->start,
  2325. (unsigned long long)transid,
  2326. (unsigned long long)root->fs_info->generation);
  2327. WARN_ON(1);
  2328. }
  2329. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2330. buf);
  2331. if (!was_dirty) {
  2332. spin_lock(&root->fs_info->delalloc_lock);
  2333. root->fs_info->dirty_metadata_bytes += buf->len;
  2334. spin_unlock(&root->fs_info->delalloc_lock);
  2335. }
  2336. }
  2337. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2338. {
  2339. /*
  2340. * looks as though older kernels can get into trouble with
  2341. * this code, they end up stuck in balance_dirty_pages forever
  2342. */
  2343. u64 num_dirty;
  2344. unsigned long thresh = 32 * 1024 * 1024;
  2345. if (current->flags & PF_MEMALLOC)
  2346. return;
  2347. btrfs_balance_delayed_items(root);
  2348. num_dirty = root->fs_info->dirty_metadata_bytes;
  2349. if (num_dirty > thresh) {
  2350. balance_dirty_pages_ratelimited_nr(
  2351. root->fs_info->btree_inode->i_mapping, 1);
  2352. }
  2353. return;
  2354. }
  2355. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2356. {
  2357. /*
  2358. * looks as though older kernels can get into trouble with
  2359. * this code, they end up stuck in balance_dirty_pages forever
  2360. */
  2361. u64 num_dirty;
  2362. unsigned long thresh = 32 * 1024 * 1024;
  2363. if (current->flags & PF_MEMALLOC)
  2364. return;
  2365. num_dirty = root->fs_info->dirty_metadata_bytes;
  2366. if (num_dirty > thresh) {
  2367. balance_dirty_pages_ratelimited_nr(
  2368. root->fs_info->btree_inode->i_mapping, 1);
  2369. }
  2370. return;
  2371. }
  2372. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2373. {
  2374. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2375. int ret;
  2376. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2377. if (ret == 0)
  2378. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2379. return ret;
  2380. }
  2381. int btree_lock_page_hook(struct page *page)
  2382. {
  2383. struct inode *inode = page->mapping->host;
  2384. struct btrfs_root *root = BTRFS_I(inode)->root;
  2385. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2386. struct extent_buffer *eb;
  2387. unsigned long len;
  2388. u64 bytenr = page_offset(page);
  2389. if (page->private == EXTENT_PAGE_PRIVATE)
  2390. goto out;
  2391. len = page->private >> 2;
  2392. eb = find_extent_buffer(io_tree, bytenr, len);
  2393. if (!eb)
  2394. goto out;
  2395. btrfs_tree_lock(eb);
  2396. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2397. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2398. spin_lock(&root->fs_info->delalloc_lock);
  2399. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2400. root->fs_info->dirty_metadata_bytes -= eb->len;
  2401. else
  2402. WARN_ON(1);
  2403. spin_unlock(&root->fs_info->delalloc_lock);
  2404. }
  2405. btrfs_tree_unlock(eb);
  2406. free_extent_buffer(eb);
  2407. out:
  2408. lock_page(page);
  2409. return 0;
  2410. }
  2411. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2412. int read_only)
  2413. {
  2414. if (read_only)
  2415. return;
  2416. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2417. printk(KERN_WARNING "warning: mount fs with errors, "
  2418. "running btrfsck is recommended\n");
  2419. }
  2420. int btrfs_error_commit_super(struct btrfs_root *root)
  2421. {
  2422. int ret;
  2423. mutex_lock(&root->fs_info->cleaner_mutex);
  2424. btrfs_run_delayed_iputs(root);
  2425. mutex_unlock(&root->fs_info->cleaner_mutex);
  2426. down_write(&root->fs_info->cleanup_work_sem);
  2427. up_write(&root->fs_info->cleanup_work_sem);
  2428. /* cleanup FS via transaction */
  2429. btrfs_cleanup_transaction(root);
  2430. ret = write_ctree_super(NULL, root, 0);
  2431. return ret;
  2432. }
  2433. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2434. {
  2435. struct btrfs_inode *btrfs_inode;
  2436. struct list_head splice;
  2437. INIT_LIST_HEAD(&splice);
  2438. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2439. spin_lock(&root->fs_info->ordered_extent_lock);
  2440. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2441. while (!list_empty(&splice)) {
  2442. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2443. ordered_operations);
  2444. list_del_init(&btrfs_inode->ordered_operations);
  2445. btrfs_invalidate_inodes(btrfs_inode->root);
  2446. }
  2447. spin_unlock(&root->fs_info->ordered_extent_lock);
  2448. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2449. return 0;
  2450. }
  2451. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2452. {
  2453. struct list_head splice;
  2454. struct btrfs_ordered_extent *ordered;
  2455. struct inode *inode;
  2456. INIT_LIST_HEAD(&splice);
  2457. spin_lock(&root->fs_info->ordered_extent_lock);
  2458. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2459. while (!list_empty(&splice)) {
  2460. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2461. root_extent_list);
  2462. list_del_init(&ordered->root_extent_list);
  2463. atomic_inc(&ordered->refs);
  2464. /* the inode may be getting freed (in sys_unlink path). */
  2465. inode = igrab(ordered->inode);
  2466. spin_unlock(&root->fs_info->ordered_extent_lock);
  2467. if (inode)
  2468. iput(inode);
  2469. atomic_set(&ordered->refs, 1);
  2470. btrfs_put_ordered_extent(ordered);
  2471. spin_lock(&root->fs_info->ordered_extent_lock);
  2472. }
  2473. spin_unlock(&root->fs_info->ordered_extent_lock);
  2474. return 0;
  2475. }
  2476. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2477. struct btrfs_root *root)
  2478. {
  2479. struct rb_node *node;
  2480. struct btrfs_delayed_ref_root *delayed_refs;
  2481. struct btrfs_delayed_ref_node *ref;
  2482. int ret = 0;
  2483. delayed_refs = &trans->delayed_refs;
  2484. spin_lock(&delayed_refs->lock);
  2485. if (delayed_refs->num_entries == 0) {
  2486. spin_unlock(&delayed_refs->lock);
  2487. printk(KERN_INFO "delayed_refs has NO entry\n");
  2488. return ret;
  2489. }
  2490. node = rb_first(&delayed_refs->root);
  2491. while (node) {
  2492. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2493. node = rb_next(node);
  2494. ref->in_tree = 0;
  2495. rb_erase(&ref->rb_node, &delayed_refs->root);
  2496. delayed_refs->num_entries--;
  2497. atomic_set(&ref->refs, 1);
  2498. if (btrfs_delayed_ref_is_head(ref)) {
  2499. struct btrfs_delayed_ref_head *head;
  2500. head = btrfs_delayed_node_to_head(ref);
  2501. mutex_lock(&head->mutex);
  2502. kfree(head->extent_op);
  2503. delayed_refs->num_heads--;
  2504. if (list_empty(&head->cluster))
  2505. delayed_refs->num_heads_ready--;
  2506. list_del_init(&head->cluster);
  2507. mutex_unlock(&head->mutex);
  2508. }
  2509. spin_unlock(&delayed_refs->lock);
  2510. btrfs_put_delayed_ref(ref);
  2511. cond_resched();
  2512. spin_lock(&delayed_refs->lock);
  2513. }
  2514. spin_unlock(&delayed_refs->lock);
  2515. return ret;
  2516. }
  2517. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2518. {
  2519. struct btrfs_pending_snapshot *snapshot;
  2520. struct list_head splice;
  2521. INIT_LIST_HEAD(&splice);
  2522. list_splice_init(&t->pending_snapshots, &splice);
  2523. while (!list_empty(&splice)) {
  2524. snapshot = list_entry(splice.next,
  2525. struct btrfs_pending_snapshot,
  2526. list);
  2527. list_del_init(&snapshot->list);
  2528. kfree(snapshot);
  2529. }
  2530. return 0;
  2531. }
  2532. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2533. {
  2534. struct btrfs_inode *btrfs_inode;
  2535. struct list_head splice;
  2536. INIT_LIST_HEAD(&splice);
  2537. spin_lock(&root->fs_info->delalloc_lock);
  2538. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2539. while (!list_empty(&splice)) {
  2540. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2541. delalloc_inodes);
  2542. list_del_init(&btrfs_inode->delalloc_inodes);
  2543. btrfs_invalidate_inodes(btrfs_inode->root);
  2544. }
  2545. spin_unlock(&root->fs_info->delalloc_lock);
  2546. return 0;
  2547. }
  2548. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2549. struct extent_io_tree *dirty_pages,
  2550. int mark)
  2551. {
  2552. int ret;
  2553. struct page *page;
  2554. struct inode *btree_inode = root->fs_info->btree_inode;
  2555. struct extent_buffer *eb;
  2556. u64 start = 0;
  2557. u64 end;
  2558. u64 offset;
  2559. unsigned long index;
  2560. while (1) {
  2561. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2562. mark);
  2563. if (ret)
  2564. break;
  2565. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2566. while (start <= end) {
  2567. index = start >> PAGE_CACHE_SHIFT;
  2568. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2569. page = find_get_page(btree_inode->i_mapping, index);
  2570. if (!page)
  2571. continue;
  2572. offset = page_offset(page);
  2573. spin_lock(&dirty_pages->buffer_lock);
  2574. eb = radix_tree_lookup(
  2575. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2576. offset >> PAGE_CACHE_SHIFT);
  2577. spin_unlock(&dirty_pages->buffer_lock);
  2578. if (eb) {
  2579. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2580. &eb->bflags);
  2581. atomic_set(&eb->refs, 1);
  2582. }
  2583. if (PageWriteback(page))
  2584. end_page_writeback(page);
  2585. lock_page(page);
  2586. if (PageDirty(page)) {
  2587. clear_page_dirty_for_io(page);
  2588. spin_lock_irq(&page->mapping->tree_lock);
  2589. radix_tree_tag_clear(&page->mapping->page_tree,
  2590. page_index(page),
  2591. PAGECACHE_TAG_DIRTY);
  2592. spin_unlock_irq(&page->mapping->tree_lock);
  2593. }
  2594. page->mapping->a_ops->invalidatepage(page, 0);
  2595. unlock_page(page);
  2596. }
  2597. }
  2598. return ret;
  2599. }
  2600. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2601. struct extent_io_tree *pinned_extents)
  2602. {
  2603. struct extent_io_tree *unpin;
  2604. u64 start;
  2605. u64 end;
  2606. int ret;
  2607. unpin = pinned_extents;
  2608. while (1) {
  2609. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2610. EXTENT_DIRTY);
  2611. if (ret)
  2612. break;
  2613. /* opt_discard */
  2614. if (btrfs_test_opt(root, DISCARD))
  2615. ret = btrfs_error_discard_extent(root, start,
  2616. end + 1 - start,
  2617. NULL);
  2618. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2619. btrfs_error_unpin_extent_range(root, start, end);
  2620. cond_resched();
  2621. }
  2622. return 0;
  2623. }
  2624. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2625. {
  2626. struct btrfs_transaction *t;
  2627. LIST_HEAD(list);
  2628. WARN_ON(1);
  2629. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2630. spin_lock(&root->fs_info->trans_lock);
  2631. list_splice_init(&root->fs_info->trans_list, &list);
  2632. root->fs_info->trans_no_join = 1;
  2633. spin_unlock(&root->fs_info->trans_lock);
  2634. while (!list_empty(&list)) {
  2635. t = list_entry(list.next, struct btrfs_transaction, list);
  2636. if (!t)
  2637. break;
  2638. btrfs_destroy_ordered_operations(root);
  2639. btrfs_destroy_ordered_extents(root);
  2640. btrfs_destroy_delayed_refs(t, root);
  2641. btrfs_block_rsv_release(root,
  2642. &root->fs_info->trans_block_rsv,
  2643. t->dirty_pages.dirty_bytes);
  2644. /* FIXME: cleanup wait for commit */
  2645. t->in_commit = 1;
  2646. t->blocked = 1;
  2647. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2648. wake_up(&root->fs_info->transaction_blocked_wait);
  2649. t->blocked = 0;
  2650. if (waitqueue_active(&root->fs_info->transaction_wait))
  2651. wake_up(&root->fs_info->transaction_wait);
  2652. t->commit_done = 1;
  2653. if (waitqueue_active(&t->commit_wait))
  2654. wake_up(&t->commit_wait);
  2655. btrfs_destroy_pending_snapshots(t);
  2656. btrfs_destroy_delalloc_inodes(root);
  2657. spin_lock(&root->fs_info->trans_lock);
  2658. root->fs_info->running_transaction = NULL;
  2659. spin_unlock(&root->fs_info->trans_lock);
  2660. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2661. EXTENT_DIRTY);
  2662. btrfs_destroy_pinned_extent(root,
  2663. root->fs_info->pinned_extents);
  2664. atomic_set(&t->use_count, 0);
  2665. list_del_init(&t->list);
  2666. memset(t, 0, sizeof(*t));
  2667. kmem_cache_free(btrfs_transaction_cachep, t);
  2668. }
  2669. spin_lock(&root->fs_info->trans_lock);
  2670. root->fs_info->trans_no_join = 0;
  2671. spin_unlock(&root->fs_info->trans_lock);
  2672. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2673. return 0;
  2674. }
  2675. static struct extent_io_ops btree_extent_io_ops = {
  2676. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2677. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2678. .submit_bio_hook = btree_submit_bio_hook,
  2679. /* note we're sharing with inode.c for the merge bio hook */
  2680. .merge_bio_hook = btrfs_merge_bio_hook,
  2681. };