mv_xor.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/async_tx.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/memory.h>
  27. #include <asm/plat-orion/mv_xor.h>
  28. #include "mv_xor.h"
  29. static void mv_xor_issue_pending(struct dma_chan *chan);
  30. #define to_mv_xor_chan(chan) \
  31. container_of(chan, struct mv_xor_chan, common)
  32. #define to_mv_xor_device(dev) \
  33. container_of(dev, struct mv_xor_device, common)
  34. #define to_mv_xor_slot(tx) \
  35. container_of(tx, struct mv_xor_desc_slot, async_tx)
  36. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  37. {
  38. struct mv_xor_desc *hw_desc = desc->hw_desc;
  39. hw_desc->status = (1 << 31);
  40. hw_desc->phy_next_desc = 0;
  41. hw_desc->desc_command = (1 << 31);
  42. }
  43. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  44. {
  45. struct mv_xor_desc *hw_desc = desc->hw_desc;
  46. return hw_desc->phy_dest_addr;
  47. }
  48. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  49. int src_idx)
  50. {
  51. struct mv_xor_desc *hw_desc = desc->hw_desc;
  52. return hw_desc->phy_src_addr[src_idx];
  53. }
  54. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  55. u32 byte_count)
  56. {
  57. struct mv_xor_desc *hw_desc = desc->hw_desc;
  58. hw_desc->byte_count = byte_count;
  59. }
  60. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  61. u32 next_desc_addr)
  62. {
  63. struct mv_xor_desc *hw_desc = desc->hw_desc;
  64. BUG_ON(hw_desc->phy_next_desc);
  65. hw_desc->phy_next_desc = next_desc_addr;
  66. }
  67. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  68. {
  69. struct mv_xor_desc *hw_desc = desc->hw_desc;
  70. hw_desc->phy_next_desc = 0;
  71. }
  72. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  73. {
  74. desc->value = val;
  75. }
  76. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  77. dma_addr_t addr)
  78. {
  79. struct mv_xor_desc *hw_desc = desc->hw_desc;
  80. hw_desc->phy_dest_addr = addr;
  81. }
  82. static int mv_chan_memset_slot_count(size_t len)
  83. {
  84. return 1;
  85. }
  86. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  87. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  88. int index, dma_addr_t addr)
  89. {
  90. struct mv_xor_desc *hw_desc = desc->hw_desc;
  91. hw_desc->phy_src_addr[index] = addr;
  92. if (desc->type == DMA_XOR)
  93. hw_desc->desc_command |= (1 << index);
  94. }
  95. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  96. {
  97. return __raw_readl(XOR_CURR_DESC(chan));
  98. }
  99. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  100. u32 next_desc_addr)
  101. {
  102. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  103. }
  104. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  105. {
  106. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  107. }
  108. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  109. {
  110. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  111. }
  112. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  113. {
  114. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  115. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  116. }
  117. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  118. {
  119. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  120. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  121. __raw_writel(val, XOR_INTR_MASK(chan));
  122. }
  123. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  124. {
  125. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  126. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  127. return intr_cause;
  128. }
  129. static int mv_is_err_intr(u32 intr_cause)
  130. {
  131. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  132. return 1;
  133. return 0;
  134. }
  135. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  136. {
  137. u32 val = (1 << (1 + (chan->idx * 16)));
  138. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  139. __raw_writel(val, XOR_INTR_CAUSE(chan));
  140. }
  141. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  142. {
  143. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  144. __raw_writel(val, XOR_INTR_CAUSE(chan));
  145. }
  146. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  147. {
  148. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  149. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  150. if (chain_old_tail->type != desc->type)
  151. return 0;
  152. if (desc->type == DMA_MEMSET)
  153. return 0;
  154. return 1;
  155. }
  156. static void mv_set_mode(struct mv_xor_chan *chan,
  157. enum dma_transaction_type type)
  158. {
  159. u32 op_mode;
  160. u32 config = __raw_readl(XOR_CONFIG(chan));
  161. switch (type) {
  162. case DMA_XOR:
  163. op_mode = XOR_OPERATION_MODE_XOR;
  164. break;
  165. case DMA_MEMCPY:
  166. op_mode = XOR_OPERATION_MODE_MEMCPY;
  167. break;
  168. case DMA_MEMSET:
  169. op_mode = XOR_OPERATION_MODE_MEMSET;
  170. break;
  171. default:
  172. dev_printk(KERN_ERR, chan->device->common.dev,
  173. "error: unsupported operation %d.\n",
  174. type);
  175. BUG();
  176. return;
  177. }
  178. config &= ~0x7;
  179. config |= op_mode;
  180. __raw_writel(config, XOR_CONFIG(chan));
  181. chan->current_type = type;
  182. }
  183. static void mv_chan_activate(struct mv_xor_chan *chan)
  184. {
  185. u32 activation;
  186. dev_dbg(chan->device->common.dev, " activate chan.\n");
  187. activation = __raw_readl(XOR_ACTIVATION(chan));
  188. activation |= 0x1;
  189. __raw_writel(activation, XOR_ACTIVATION(chan));
  190. }
  191. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  192. {
  193. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  194. state = (state >> 4) & 0x3;
  195. return (state == 1) ? 1 : 0;
  196. }
  197. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  198. {
  199. return 1;
  200. }
  201. /**
  202. * mv_xor_free_slots - flags descriptor slots for reuse
  203. * @slot: Slot to free
  204. * Caller must hold &mv_chan->lock while calling this function
  205. */
  206. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  207. struct mv_xor_desc_slot *slot)
  208. {
  209. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  210. __func__, __LINE__, slot);
  211. slot->slots_per_op = 0;
  212. }
  213. /*
  214. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  215. * sw_desc
  216. * Caller must hold &mv_chan->lock while calling this function
  217. */
  218. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  219. struct mv_xor_desc_slot *sw_desc)
  220. {
  221. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  222. __func__, __LINE__, sw_desc);
  223. if (sw_desc->type != mv_chan->current_type)
  224. mv_set_mode(mv_chan, sw_desc->type);
  225. if (sw_desc->type == DMA_MEMSET) {
  226. /* for memset requests we need to program the engine, no
  227. * descriptors used.
  228. */
  229. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  230. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  231. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  232. mv_chan_set_value(mv_chan, sw_desc->value);
  233. } else {
  234. /* set the hardware chain */
  235. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  236. }
  237. mv_chan->pending += sw_desc->slot_cnt;
  238. mv_xor_issue_pending(&mv_chan->common);
  239. }
  240. static dma_cookie_t
  241. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  242. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  243. {
  244. BUG_ON(desc->async_tx.cookie < 0);
  245. if (desc->async_tx.cookie > 0) {
  246. cookie = desc->async_tx.cookie;
  247. /* call the callback (must not sleep or submit new
  248. * operations to this channel)
  249. */
  250. if (desc->async_tx.callback)
  251. desc->async_tx.callback(
  252. desc->async_tx.callback_param);
  253. /* unmap dma addresses
  254. * (unmap_single vs unmap_page?)
  255. */
  256. if (desc->group_head && desc->unmap_len) {
  257. struct mv_xor_desc_slot *unmap = desc->group_head;
  258. struct device *dev =
  259. &mv_chan->device->pdev->dev;
  260. u32 len = unmap->unmap_len;
  261. u32 src_cnt = unmap->unmap_src_cnt;
  262. dma_addr_t addr = mv_desc_get_dest_addr(unmap);
  263. dma_unmap_page(dev, addr, len, DMA_FROM_DEVICE);
  264. while (src_cnt--) {
  265. addr = mv_desc_get_src_addr(unmap, src_cnt);
  266. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  267. }
  268. desc->group_head = NULL;
  269. }
  270. }
  271. /* run dependent operations */
  272. async_tx_run_dependencies(&desc->async_tx);
  273. return cookie;
  274. }
  275. static int
  276. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  277. {
  278. struct mv_xor_desc_slot *iter, *_iter;
  279. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  280. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  281. completed_node) {
  282. if (async_tx_test_ack(&iter->async_tx)) {
  283. list_del(&iter->completed_node);
  284. mv_xor_free_slots(mv_chan, iter);
  285. }
  286. }
  287. return 0;
  288. }
  289. static int
  290. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  291. struct mv_xor_chan *mv_chan)
  292. {
  293. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  294. __func__, __LINE__, desc, desc->async_tx.flags);
  295. list_del(&desc->chain_node);
  296. /* the client is allowed to attach dependent operations
  297. * until 'ack' is set
  298. */
  299. if (!async_tx_test_ack(&desc->async_tx)) {
  300. /* move this slot to the completed_slots */
  301. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  302. return 0;
  303. }
  304. mv_xor_free_slots(mv_chan, desc);
  305. return 0;
  306. }
  307. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  308. {
  309. struct mv_xor_desc_slot *iter, *_iter;
  310. dma_cookie_t cookie = 0;
  311. int busy = mv_chan_is_busy(mv_chan);
  312. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  313. int seen_current = 0;
  314. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  315. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  316. mv_xor_clean_completed_slots(mv_chan);
  317. /* free completed slots from the chain starting with
  318. * the oldest descriptor
  319. */
  320. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  321. chain_node) {
  322. prefetch(_iter);
  323. prefetch(&_iter->async_tx);
  324. /* do not advance past the current descriptor loaded into the
  325. * hardware channel, subsequent descriptors are either in
  326. * process or have not been submitted
  327. */
  328. if (seen_current)
  329. break;
  330. /* stop the search if we reach the current descriptor and the
  331. * channel is busy
  332. */
  333. if (iter->async_tx.phys == current_desc) {
  334. seen_current = 1;
  335. if (busy)
  336. break;
  337. }
  338. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  339. if (mv_xor_clean_slot(iter, mv_chan))
  340. break;
  341. }
  342. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  343. struct mv_xor_desc_slot *chain_head;
  344. chain_head = list_entry(mv_chan->chain.next,
  345. struct mv_xor_desc_slot,
  346. chain_node);
  347. mv_xor_start_new_chain(mv_chan, chain_head);
  348. }
  349. if (cookie > 0)
  350. mv_chan->completed_cookie = cookie;
  351. }
  352. static void
  353. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  354. {
  355. spin_lock_bh(&mv_chan->lock);
  356. __mv_xor_slot_cleanup(mv_chan);
  357. spin_unlock_bh(&mv_chan->lock);
  358. }
  359. static void mv_xor_tasklet(unsigned long data)
  360. {
  361. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  362. __mv_xor_slot_cleanup(chan);
  363. }
  364. static struct mv_xor_desc_slot *
  365. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  366. int slots_per_op)
  367. {
  368. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  369. LIST_HEAD(chain);
  370. int slots_found, retry = 0;
  371. /* start search from the last allocated descrtiptor
  372. * if a contiguous allocation can not be found start searching
  373. * from the beginning of the list
  374. */
  375. retry:
  376. slots_found = 0;
  377. if (retry == 0)
  378. iter = mv_chan->last_used;
  379. else
  380. iter = list_entry(&mv_chan->all_slots,
  381. struct mv_xor_desc_slot,
  382. slot_node);
  383. list_for_each_entry_safe_continue(
  384. iter, _iter, &mv_chan->all_slots, slot_node) {
  385. prefetch(_iter);
  386. prefetch(&_iter->async_tx);
  387. if (iter->slots_per_op) {
  388. /* give up after finding the first busy slot
  389. * on the second pass through the list
  390. */
  391. if (retry)
  392. break;
  393. slots_found = 0;
  394. continue;
  395. }
  396. /* start the allocation if the slot is correctly aligned */
  397. if (!slots_found++)
  398. alloc_start = iter;
  399. if (slots_found == num_slots) {
  400. struct mv_xor_desc_slot *alloc_tail = NULL;
  401. struct mv_xor_desc_slot *last_used = NULL;
  402. iter = alloc_start;
  403. while (num_slots) {
  404. int i;
  405. /* pre-ack all but the last descriptor */
  406. async_tx_ack(&iter->async_tx);
  407. list_add_tail(&iter->chain_node, &chain);
  408. alloc_tail = iter;
  409. iter->async_tx.cookie = 0;
  410. iter->slot_cnt = num_slots;
  411. iter->xor_check_result = NULL;
  412. for (i = 0; i < slots_per_op; i++) {
  413. iter->slots_per_op = slots_per_op - i;
  414. last_used = iter;
  415. iter = list_entry(iter->slot_node.next,
  416. struct mv_xor_desc_slot,
  417. slot_node);
  418. }
  419. num_slots -= slots_per_op;
  420. }
  421. alloc_tail->group_head = alloc_start;
  422. alloc_tail->async_tx.cookie = -EBUSY;
  423. list_splice(&chain, &alloc_tail->async_tx.tx_list);
  424. mv_chan->last_used = last_used;
  425. mv_desc_clear_next_desc(alloc_start);
  426. mv_desc_clear_next_desc(alloc_tail);
  427. return alloc_tail;
  428. }
  429. }
  430. if (!retry++)
  431. goto retry;
  432. /* try to free some slots if the allocation fails */
  433. tasklet_schedule(&mv_chan->irq_tasklet);
  434. return NULL;
  435. }
  436. static dma_cookie_t
  437. mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
  438. struct mv_xor_desc_slot *desc)
  439. {
  440. dma_cookie_t cookie = mv_chan->common.cookie;
  441. if (++cookie < 0)
  442. cookie = 1;
  443. mv_chan->common.cookie = desc->async_tx.cookie = cookie;
  444. return cookie;
  445. }
  446. /************************ DMA engine API functions ****************************/
  447. static dma_cookie_t
  448. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  449. {
  450. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  451. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  452. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  453. dma_cookie_t cookie;
  454. int new_hw_chain = 1;
  455. dev_dbg(mv_chan->device->common.dev,
  456. "%s sw_desc %p: async_tx %p\n",
  457. __func__, sw_desc, &sw_desc->async_tx);
  458. grp_start = sw_desc->group_head;
  459. spin_lock_bh(&mv_chan->lock);
  460. cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
  461. if (list_empty(&mv_chan->chain))
  462. list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
  463. else {
  464. new_hw_chain = 0;
  465. old_chain_tail = list_entry(mv_chan->chain.prev,
  466. struct mv_xor_desc_slot,
  467. chain_node);
  468. list_splice_init(&grp_start->async_tx.tx_list,
  469. &old_chain_tail->chain_node);
  470. if (!mv_can_chain(grp_start))
  471. goto submit_done;
  472. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  473. old_chain_tail->async_tx.phys);
  474. /* fix up the hardware chain */
  475. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  476. /* if the channel is not busy */
  477. if (!mv_chan_is_busy(mv_chan)) {
  478. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  479. /*
  480. * and the curren desc is the end of the chain before
  481. * the append, then we need to start the channel
  482. */
  483. if (current_desc == old_chain_tail->async_tx.phys)
  484. new_hw_chain = 1;
  485. }
  486. }
  487. if (new_hw_chain)
  488. mv_xor_start_new_chain(mv_chan, grp_start);
  489. submit_done:
  490. spin_unlock_bh(&mv_chan->lock);
  491. return cookie;
  492. }
  493. /* returns the number of allocated descriptors */
  494. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  495. {
  496. char *hw_desc;
  497. int idx;
  498. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  499. struct mv_xor_desc_slot *slot = NULL;
  500. struct mv_xor_platform_data *plat_data =
  501. mv_chan->device->pdev->dev.platform_data;
  502. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  503. /* Allocate descriptor slots */
  504. idx = mv_chan->slots_allocated;
  505. while (idx < num_descs_in_pool) {
  506. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  507. if (!slot) {
  508. printk(KERN_INFO "MV XOR Channel only initialized"
  509. " %d descriptor slots", idx);
  510. break;
  511. }
  512. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  513. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  514. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  515. slot->async_tx.tx_submit = mv_xor_tx_submit;
  516. INIT_LIST_HEAD(&slot->chain_node);
  517. INIT_LIST_HEAD(&slot->slot_node);
  518. INIT_LIST_HEAD(&slot->async_tx.tx_list);
  519. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  520. slot->async_tx.phys =
  521. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  522. slot->idx = idx++;
  523. spin_lock_bh(&mv_chan->lock);
  524. mv_chan->slots_allocated = idx;
  525. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  526. spin_unlock_bh(&mv_chan->lock);
  527. }
  528. if (mv_chan->slots_allocated && !mv_chan->last_used)
  529. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  530. struct mv_xor_desc_slot,
  531. slot_node);
  532. dev_dbg(mv_chan->device->common.dev,
  533. "allocated %d descriptor slots last_used: %p\n",
  534. mv_chan->slots_allocated, mv_chan->last_used);
  535. return mv_chan->slots_allocated ? : -ENOMEM;
  536. }
  537. static struct dma_async_tx_descriptor *
  538. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  539. size_t len, unsigned long flags)
  540. {
  541. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  542. struct mv_xor_desc_slot *sw_desc, *grp_start;
  543. int slot_cnt;
  544. dev_dbg(mv_chan->device->common.dev,
  545. "%s dest: %x src %x len: %u flags: %ld\n",
  546. __func__, dest, src, len, flags);
  547. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  548. return NULL;
  549. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  550. spin_lock_bh(&mv_chan->lock);
  551. slot_cnt = mv_chan_memcpy_slot_count(len);
  552. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  553. if (sw_desc) {
  554. sw_desc->type = DMA_MEMCPY;
  555. sw_desc->async_tx.flags = flags;
  556. grp_start = sw_desc->group_head;
  557. mv_desc_init(grp_start, flags);
  558. mv_desc_set_byte_count(grp_start, len);
  559. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  560. mv_desc_set_src_addr(grp_start, 0, src);
  561. sw_desc->unmap_src_cnt = 1;
  562. sw_desc->unmap_len = len;
  563. }
  564. spin_unlock_bh(&mv_chan->lock);
  565. dev_dbg(mv_chan->device->common.dev,
  566. "%s sw_desc %p async_tx %p\n",
  567. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  568. return sw_desc ? &sw_desc->async_tx : NULL;
  569. }
  570. static struct dma_async_tx_descriptor *
  571. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  572. size_t len, unsigned long flags)
  573. {
  574. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  575. struct mv_xor_desc_slot *sw_desc, *grp_start;
  576. int slot_cnt;
  577. dev_dbg(mv_chan->device->common.dev,
  578. "%s dest: %x len: %u flags: %ld\n",
  579. __func__, dest, len, flags);
  580. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  581. return NULL;
  582. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  583. spin_lock_bh(&mv_chan->lock);
  584. slot_cnt = mv_chan_memset_slot_count(len);
  585. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  586. if (sw_desc) {
  587. sw_desc->type = DMA_MEMSET;
  588. sw_desc->async_tx.flags = flags;
  589. grp_start = sw_desc->group_head;
  590. mv_desc_init(grp_start, flags);
  591. mv_desc_set_byte_count(grp_start, len);
  592. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  593. mv_desc_set_block_fill_val(grp_start, value);
  594. sw_desc->unmap_src_cnt = 1;
  595. sw_desc->unmap_len = len;
  596. }
  597. spin_unlock_bh(&mv_chan->lock);
  598. dev_dbg(mv_chan->device->common.dev,
  599. "%s sw_desc %p async_tx %p \n",
  600. __func__, sw_desc, &sw_desc->async_tx);
  601. return sw_desc ? &sw_desc->async_tx : NULL;
  602. }
  603. static struct dma_async_tx_descriptor *
  604. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  605. unsigned int src_cnt, size_t len, unsigned long flags)
  606. {
  607. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  608. struct mv_xor_desc_slot *sw_desc, *grp_start;
  609. int slot_cnt;
  610. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  611. return NULL;
  612. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  613. dev_dbg(mv_chan->device->common.dev,
  614. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  615. __func__, src_cnt, len, dest, flags);
  616. spin_lock_bh(&mv_chan->lock);
  617. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  618. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  619. if (sw_desc) {
  620. sw_desc->type = DMA_XOR;
  621. sw_desc->async_tx.flags = flags;
  622. grp_start = sw_desc->group_head;
  623. mv_desc_init(grp_start, flags);
  624. /* the byte count field is the same as in memcpy desc*/
  625. mv_desc_set_byte_count(grp_start, len);
  626. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  627. sw_desc->unmap_src_cnt = src_cnt;
  628. sw_desc->unmap_len = len;
  629. while (src_cnt--)
  630. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  631. }
  632. spin_unlock_bh(&mv_chan->lock);
  633. dev_dbg(mv_chan->device->common.dev,
  634. "%s sw_desc %p async_tx %p \n",
  635. __func__, sw_desc, &sw_desc->async_tx);
  636. return sw_desc ? &sw_desc->async_tx : NULL;
  637. }
  638. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  639. {
  640. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  641. struct mv_xor_desc_slot *iter, *_iter;
  642. int in_use_descs = 0;
  643. mv_xor_slot_cleanup(mv_chan);
  644. spin_lock_bh(&mv_chan->lock);
  645. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  646. chain_node) {
  647. in_use_descs++;
  648. list_del(&iter->chain_node);
  649. }
  650. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  651. completed_node) {
  652. in_use_descs++;
  653. list_del(&iter->completed_node);
  654. }
  655. list_for_each_entry_safe_reverse(
  656. iter, _iter, &mv_chan->all_slots, slot_node) {
  657. list_del(&iter->slot_node);
  658. kfree(iter);
  659. mv_chan->slots_allocated--;
  660. }
  661. mv_chan->last_used = NULL;
  662. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  663. __func__, mv_chan->slots_allocated);
  664. spin_unlock_bh(&mv_chan->lock);
  665. if (in_use_descs)
  666. dev_err(mv_chan->device->common.dev,
  667. "freeing %d in use descriptors!\n", in_use_descs);
  668. }
  669. /**
  670. * mv_xor_is_complete - poll the status of an XOR transaction
  671. * @chan: XOR channel handle
  672. * @cookie: XOR transaction identifier
  673. */
  674. static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
  675. dma_cookie_t cookie,
  676. dma_cookie_t *done,
  677. dma_cookie_t *used)
  678. {
  679. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  680. dma_cookie_t last_used;
  681. dma_cookie_t last_complete;
  682. enum dma_status ret;
  683. last_used = chan->cookie;
  684. last_complete = mv_chan->completed_cookie;
  685. mv_chan->is_complete_cookie = cookie;
  686. if (done)
  687. *done = last_complete;
  688. if (used)
  689. *used = last_used;
  690. ret = dma_async_is_complete(cookie, last_complete, last_used);
  691. if (ret == DMA_SUCCESS) {
  692. mv_xor_clean_completed_slots(mv_chan);
  693. return ret;
  694. }
  695. mv_xor_slot_cleanup(mv_chan);
  696. last_used = chan->cookie;
  697. last_complete = mv_chan->completed_cookie;
  698. if (done)
  699. *done = last_complete;
  700. if (used)
  701. *used = last_used;
  702. return dma_async_is_complete(cookie, last_complete, last_used);
  703. }
  704. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  705. {
  706. u32 val;
  707. val = __raw_readl(XOR_CONFIG(chan));
  708. dev_printk(KERN_ERR, chan->device->common.dev,
  709. "config 0x%08x.\n", val);
  710. val = __raw_readl(XOR_ACTIVATION(chan));
  711. dev_printk(KERN_ERR, chan->device->common.dev,
  712. "activation 0x%08x.\n", val);
  713. val = __raw_readl(XOR_INTR_CAUSE(chan));
  714. dev_printk(KERN_ERR, chan->device->common.dev,
  715. "intr cause 0x%08x.\n", val);
  716. val = __raw_readl(XOR_INTR_MASK(chan));
  717. dev_printk(KERN_ERR, chan->device->common.dev,
  718. "intr mask 0x%08x.\n", val);
  719. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  720. dev_printk(KERN_ERR, chan->device->common.dev,
  721. "error cause 0x%08x.\n", val);
  722. val = __raw_readl(XOR_ERROR_ADDR(chan));
  723. dev_printk(KERN_ERR, chan->device->common.dev,
  724. "error addr 0x%08x.\n", val);
  725. }
  726. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  727. u32 intr_cause)
  728. {
  729. if (intr_cause & (1 << 4)) {
  730. dev_dbg(chan->device->common.dev,
  731. "ignore this error\n");
  732. return;
  733. }
  734. dev_printk(KERN_ERR, chan->device->common.dev,
  735. "error on chan %d. intr cause 0x%08x.\n",
  736. chan->idx, intr_cause);
  737. mv_dump_xor_regs(chan);
  738. BUG();
  739. }
  740. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  741. {
  742. struct mv_xor_chan *chan = data;
  743. u32 intr_cause = mv_chan_get_intr_cause(chan);
  744. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  745. if (mv_is_err_intr(intr_cause))
  746. mv_xor_err_interrupt_handler(chan, intr_cause);
  747. tasklet_schedule(&chan->irq_tasklet);
  748. mv_xor_device_clear_eoc_cause(chan);
  749. return IRQ_HANDLED;
  750. }
  751. static void mv_xor_issue_pending(struct dma_chan *chan)
  752. {
  753. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  754. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  755. mv_chan->pending = 0;
  756. mv_chan_activate(mv_chan);
  757. }
  758. }
  759. /*
  760. * Perform a transaction to verify the HW works.
  761. */
  762. #define MV_XOR_TEST_SIZE 2000
  763. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  764. {
  765. int i;
  766. void *src, *dest;
  767. dma_addr_t src_dma, dest_dma;
  768. struct dma_chan *dma_chan;
  769. dma_cookie_t cookie;
  770. struct dma_async_tx_descriptor *tx;
  771. int err = 0;
  772. struct mv_xor_chan *mv_chan;
  773. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  774. if (!src)
  775. return -ENOMEM;
  776. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  777. if (!dest) {
  778. kfree(src);
  779. return -ENOMEM;
  780. }
  781. /* Fill in src buffer */
  782. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  783. ((u8 *) src)[i] = (u8)i;
  784. /* Start copy, using first DMA channel */
  785. dma_chan = container_of(device->common.channels.next,
  786. struct dma_chan,
  787. device_node);
  788. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  789. err = -ENODEV;
  790. goto out;
  791. }
  792. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  793. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  794. src_dma = dma_map_single(dma_chan->device->dev, src,
  795. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  796. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  797. MV_XOR_TEST_SIZE, 0);
  798. cookie = mv_xor_tx_submit(tx);
  799. mv_xor_issue_pending(dma_chan);
  800. async_tx_ack(tx);
  801. msleep(1);
  802. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  803. DMA_SUCCESS) {
  804. dev_printk(KERN_ERR, dma_chan->device->dev,
  805. "Self-test copy timed out, disabling\n");
  806. err = -ENODEV;
  807. goto free_resources;
  808. }
  809. mv_chan = to_mv_xor_chan(dma_chan);
  810. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  811. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  812. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  813. dev_printk(KERN_ERR, dma_chan->device->dev,
  814. "Self-test copy failed compare, disabling\n");
  815. err = -ENODEV;
  816. goto free_resources;
  817. }
  818. free_resources:
  819. mv_xor_free_chan_resources(dma_chan);
  820. out:
  821. kfree(src);
  822. kfree(dest);
  823. return err;
  824. }
  825. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  826. static int __devinit
  827. mv_xor_xor_self_test(struct mv_xor_device *device)
  828. {
  829. int i, src_idx;
  830. struct page *dest;
  831. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  832. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  833. dma_addr_t dest_dma;
  834. struct dma_async_tx_descriptor *tx;
  835. struct dma_chan *dma_chan;
  836. dma_cookie_t cookie;
  837. u8 cmp_byte = 0;
  838. u32 cmp_word;
  839. int err = 0;
  840. struct mv_xor_chan *mv_chan;
  841. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  842. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  843. if (!xor_srcs[src_idx])
  844. while (src_idx--) {
  845. __free_page(xor_srcs[src_idx]);
  846. return -ENOMEM;
  847. }
  848. }
  849. dest = alloc_page(GFP_KERNEL);
  850. if (!dest)
  851. while (src_idx--) {
  852. __free_page(xor_srcs[src_idx]);
  853. return -ENOMEM;
  854. }
  855. /* Fill in src buffers */
  856. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  857. u8 *ptr = page_address(xor_srcs[src_idx]);
  858. for (i = 0; i < PAGE_SIZE; i++)
  859. ptr[i] = (1 << src_idx);
  860. }
  861. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  862. cmp_byte ^= (u8) (1 << src_idx);
  863. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  864. (cmp_byte << 8) | cmp_byte;
  865. memset(page_address(dest), 0, PAGE_SIZE);
  866. dma_chan = container_of(device->common.channels.next,
  867. struct dma_chan,
  868. device_node);
  869. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  870. err = -ENODEV;
  871. goto out;
  872. }
  873. /* test xor */
  874. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  875. DMA_FROM_DEVICE);
  876. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  877. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  878. 0, PAGE_SIZE, DMA_TO_DEVICE);
  879. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  880. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  881. cookie = mv_xor_tx_submit(tx);
  882. mv_xor_issue_pending(dma_chan);
  883. async_tx_ack(tx);
  884. msleep(8);
  885. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  886. DMA_SUCCESS) {
  887. dev_printk(KERN_ERR, dma_chan->device->dev,
  888. "Self-test xor timed out, disabling\n");
  889. err = -ENODEV;
  890. goto free_resources;
  891. }
  892. mv_chan = to_mv_xor_chan(dma_chan);
  893. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  894. PAGE_SIZE, DMA_FROM_DEVICE);
  895. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  896. u32 *ptr = page_address(dest);
  897. if (ptr[i] != cmp_word) {
  898. dev_printk(KERN_ERR, dma_chan->device->dev,
  899. "Self-test xor failed compare, disabling."
  900. " index %d, data %x, expected %x\n", i,
  901. ptr[i], cmp_word);
  902. err = -ENODEV;
  903. goto free_resources;
  904. }
  905. }
  906. free_resources:
  907. mv_xor_free_chan_resources(dma_chan);
  908. out:
  909. src_idx = MV_XOR_NUM_SRC_TEST;
  910. while (src_idx--)
  911. __free_page(xor_srcs[src_idx]);
  912. __free_page(dest);
  913. return err;
  914. }
  915. static int __devexit mv_xor_remove(struct platform_device *dev)
  916. {
  917. struct mv_xor_device *device = platform_get_drvdata(dev);
  918. struct dma_chan *chan, *_chan;
  919. struct mv_xor_chan *mv_chan;
  920. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  921. dma_async_device_unregister(&device->common);
  922. dma_free_coherent(&dev->dev, plat_data->pool_size,
  923. device->dma_desc_pool_virt, device->dma_desc_pool);
  924. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  925. device_node) {
  926. mv_chan = to_mv_xor_chan(chan);
  927. list_del(&chan->device_node);
  928. }
  929. return 0;
  930. }
  931. static int __devinit mv_xor_probe(struct platform_device *pdev)
  932. {
  933. int ret = 0;
  934. int irq;
  935. struct mv_xor_device *adev;
  936. struct mv_xor_chan *mv_chan;
  937. struct dma_device *dma_dev;
  938. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  939. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  940. if (!adev)
  941. return -ENOMEM;
  942. dma_dev = &adev->common;
  943. /* allocate coherent memory for hardware descriptors
  944. * note: writecombine gives slightly better performance, but
  945. * requires that we explicitly flush the writes
  946. */
  947. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  948. plat_data->pool_size,
  949. &adev->dma_desc_pool,
  950. GFP_KERNEL);
  951. if (!adev->dma_desc_pool_virt)
  952. return -ENOMEM;
  953. adev->id = plat_data->hw_id;
  954. /* discover transaction capabilites from the platform data */
  955. dma_dev->cap_mask = plat_data->cap_mask;
  956. adev->pdev = pdev;
  957. platform_set_drvdata(pdev, adev);
  958. adev->shared = platform_get_drvdata(plat_data->shared);
  959. INIT_LIST_HEAD(&dma_dev->channels);
  960. /* set base routines */
  961. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  962. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  963. dma_dev->device_is_tx_complete = mv_xor_is_complete;
  964. dma_dev->device_issue_pending = mv_xor_issue_pending;
  965. dma_dev->dev = &pdev->dev;
  966. /* set prep routines based on capability */
  967. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  968. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  969. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  970. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  971. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  972. dma_dev->max_xor = 8; ;
  973. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  974. }
  975. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  976. if (!mv_chan) {
  977. ret = -ENOMEM;
  978. goto err_free_dma;
  979. }
  980. mv_chan->device = adev;
  981. mv_chan->idx = plat_data->hw_id;
  982. mv_chan->mmr_base = adev->shared->xor_base;
  983. if (!mv_chan->mmr_base) {
  984. ret = -ENOMEM;
  985. goto err_free_dma;
  986. }
  987. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  988. mv_chan);
  989. /* clear errors before enabling interrupts */
  990. mv_xor_device_clear_err_status(mv_chan);
  991. irq = platform_get_irq(pdev, 0);
  992. if (irq < 0) {
  993. ret = irq;
  994. goto err_free_dma;
  995. }
  996. ret = devm_request_irq(&pdev->dev, irq,
  997. mv_xor_interrupt_handler,
  998. 0, dev_name(&pdev->dev), mv_chan);
  999. if (ret)
  1000. goto err_free_dma;
  1001. mv_chan_unmask_interrupts(mv_chan);
  1002. mv_set_mode(mv_chan, DMA_MEMCPY);
  1003. spin_lock_init(&mv_chan->lock);
  1004. INIT_LIST_HEAD(&mv_chan->chain);
  1005. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1006. INIT_LIST_HEAD(&mv_chan->all_slots);
  1007. INIT_RCU_HEAD(&mv_chan->common.rcu);
  1008. mv_chan->common.device = dma_dev;
  1009. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1010. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1011. ret = mv_xor_memcpy_self_test(adev);
  1012. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1013. if (ret)
  1014. goto err_free_dma;
  1015. }
  1016. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1017. ret = mv_xor_xor_self_test(adev);
  1018. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1019. if (ret)
  1020. goto err_free_dma;
  1021. }
  1022. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1023. "( %s%s%s%s)\n",
  1024. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1025. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1026. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1027. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1028. dma_async_device_register(dma_dev);
  1029. goto out;
  1030. err_free_dma:
  1031. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1032. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1033. out:
  1034. return ret;
  1035. }
  1036. static void
  1037. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1038. struct mbus_dram_target_info *dram)
  1039. {
  1040. void __iomem *base = msp->xor_base;
  1041. u32 win_enable = 0;
  1042. int i;
  1043. for (i = 0; i < 8; i++) {
  1044. writel(0, base + WINDOW_BASE(i));
  1045. writel(0, base + WINDOW_SIZE(i));
  1046. if (i < 4)
  1047. writel(0, base + WINDOW_REMAP_HIGH(i));
  1048. }
  1049. for (i = 0; i < dram->num_cs; i++) {
  1050. struct mbus_dram_window *cs = dram->cs + i;
  1051. writel((cs->base & 0xffff0000) |
  1052. (cs->mbus_attr << 8) |
  1053. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1054. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1055. win_enable |= (1 << i);
  1056. win_enable |= 3 << (16 + (2 * i));
  1057. }
  1058. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1059. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1060. }
  1061. static struct platform_driver mv_xor_driver = {
  1062. .probe = mv_xor_probe,
  1063. .remove = mv_xor_remove,
  1064. .driver = {
  1065. .owner = THIS_MODULE,
  1066. .name = MV_XOR_NAME,
  1067. },
  1068. };
  1069. static int mv_xor_shared_probe(struct platform_device *pdev)
  1070. {
  1071. struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
  1072. struct mv_xor_shared_private *msp;
  1073. struct resource *res;
  1074. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1075. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1076. if (!msp)
  1077. return -ENOMEM;
  1078. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1079. if (!res)
  1080. return -ENODEV;
  1081. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1082. res->end - res->start + 1);
  1083. if (!msp->xor_base)
  1084. return -EBUSY;
  1085. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1086. if (!res)
  1087. return -ENODEV;
  1088. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1089. res->end - res->start + 1);
  1090. if (!msp->xor_high_base)
  1091. return -EBUSY;
  1092. platform_set_drvdata(pdev, msp);
  1093. /*
  1094. * (Re-)program MBUS remapping windows if we are asked to.
  1095. */
  1096. if (msd != NULL && msd->dram != NULL)
  1097. mv_xor_conf_mbus_windows(msp, msd->dram);
  1098. return 0;
  1099. }
  1100. static int mv_xor_shared_remove(struct platform_device *pdev)
  1101. {
  1102. return 0;
  1103. }
  1104. static struct platform_driver mv_xor_shared_driver = {
  1105. .probe = mv_xor_shared_probe,
  1106. .remove = mv_xor_shared_remove,
  1107. .driver = {
  1108. .owner = THIS_MODULE,
  1109. .name = MV_XOR_SHARED_NAME,
  1110. },
  1111. };
  1112. static int __init mv_xor_init(void)
  1113. {
  1114. int rc;
  1115. rc = platform_driver_register(&mv_xor_shared_driver);
  1116. if (!rc) {
  1117. rc = platform_driver_register(&mv_xor_driver);
  1118. if (rc)
  1119. platform_driver_unregister(&mv_xor_shared_driver);
  1120. }
  1121. return rc;
  1122. }
  1123. module_init(mv_xor_init);
  1124. /* it's currently unsafe to unload this module */
  1125. #if 0
  1126. static void __exit mv_xor_exit(void)
  1127. {
  1128. platform_driver_unregister(&mv_xor_driver);
  1129. platform_driver_unregister(&mv_xor_shared_driver);
  1130. return;
  1131. }
  1132. module_exit(mv_xor_exit);
  1133. #endif
  1134. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1135. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1136. MODULE_LICENSE("GPL");