atl1.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699
  1. /*
  2. * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
  3. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
  4. * Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
  5. *
  6. * Derived from Intel e1000 driver
  7. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. *
  26. * Contact Information:
  27. * Xiong Huang <xiong_huang@attansic.com>
  28. * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
  29. * Xinzhu 302, TAIWAN, REPUBLIC OF CHINA
  30. *
  31. * Chris Snook <csnook@redhat.com>
  32. * Jay Cliburn <jcliburn@gmail.com>
  33. *
  34. * This version is adapted from the Attansic reference driver for
  35. * inclusion in the Linux kernel. It is currently under heavy development.
  36. * A very incomplete list of things that need to be dealt with:
  37. *
  38. * TODO:
  39. * Wake on LAN.
  40. * Add more ethtool functions.
  41. * Fix abstruse irq enable/disable condition described here:
  42. * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  43. *
  44. * NEEDS TESTING:
  45. * VLAN
  46. * multicast
  47. * promiscuous mode
  48. * interrupt coalescing
  49. * SMP torture testing
  50. */
  51. #include <asm/atomic.h>
  52. #include <asm/byteorder.h>
  53. #include <linux/compiler.h>
  54. #include <linux/crc32.h>
  55. #include <linux/delay.h>
  56. #include <linux/dma-mapping.h>
  57. #include <linux/etherdevice.h>
  58. #include <linux/hardirq.h>
  59. #include <linux/if_ether.h>
  60. #include <linux/if_vlan.h>
  61. #include <linux/in.h>
  62. #include <linux/interrupt.h>
  63. #include <linux/ip.h>
  64. #include <linux/irqflags.h>
  65. #include <linux/irqreturn.h>
  66. #include <linux/jiffies.h>
  67. #include <linux/mii.h>
  68. #include <linux/module.h>
  69. #include <linux/moduleparam.h>
  70. #include <linux/net.h>
  71. #include <linux/netdevice.h>
  72. #include <linux/pci.h>
  73. #include <linux/pci_ids.h>
  74. #include <linux/pm.h>
  75. #include <linux/skbuff.h>
  76. #include <linux/slab.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/string.h>
  79. #include <linux/tcp.h>
  80. #include <linux/timer.h>
  81. #include <linux/types.h>
  82. #include <linux/workqueue.h>
  83. #include <net/checksum.h>
  84. #include "atl1.h"
  85. /* Temporary hack for merging atl1 and atl2 */
  86. #include "atlx.c"
  87. /*
  88. * This is the only thing that needs to be changed to adjust the
  89. * maximum number of ports that the driver can manage.
  90. */
  91. #define ATL1_MAX_NIC 4
  92. #define OPTION_UNSET -1
  93. #define OPTION_DISABLED 0
  94. #define OPTION_ENABLED 1
  95. #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  96. /*
  97. * Interrupt Moderate Timer in units of 2 us
  98. *
  99. * Valid Range: 10-65535
  100. *
  101. * Default Value: 100 (200us)
  102. */
  103. static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  104. static int num_int_mod_timer;
  105. module_param_array_named(int_mod_timer, int_mod_timer, int,
  106. &num_int_mod_timer, 0);
  107. MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
  108. #define DEFAULT_INT_MOD_CNT 100 /* 200us */
  109. #define MAX_INT_MOD_CNT 65000
  110. #define MIN_INT_MOD_CNT 50
  111. struct atl1_option {
  112. enum { enable_option, range_option, list_option } type;
  113. char *name;
  114. char *err;
  115. int def;
  116. union {
  117. struct { /* range_option info */
  118. int min;
  119. int max;
  120. } r;
  121. struct { /* list_option info */
  122. int nr;
  123. struct atl1_opt_list {
  124. int i;
  125. char *str;
  126. } *p;
  127. } l;
  128. } arg;
  129. };
  130. static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
  131. struct pci_dev *pdev)
  132. {
  133. if (*value == OPTION_UNSET) {
  134. *value = opt->def;
  135. return 0;
  136. }
  137. switch (opt->type) {
  138. case enable_option:
  139. switch (*value) {
  140. case OPTION_ENABLED:
  141. dev_info(&pdev->dev, "%s enabled\n", opt->name);
  142. return 0;
  143. case OPTION_DISABLED:
  144. dev_info(&pdev->dev, "%s disabled\n", opt->name);
  145. return 0;
  146. }
  147. break;
  148. case range_option:
  149. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  150. dev_info(&pdev->dev, "%s set to %i\n", opt->name,
  151. *value);
  152. return 0;
  153. }
  154. break;
  155. case list_option:{
  156. int i;
  157. struct atl1_opt_list *ent;
  158. for (i = 0; i < opt->arg.l.nr; i++) {
  159. ent = &opt->arg.l.p[i];
  160. if (*value == ent->i) {
  161. if (ent->str[0] != '\0')
  162. dev_info(&pdev->dev, "%s\n",
  163. ent->str);
  164. return 0;
  165. }
  166. }
  167. }
  168. break;
  169. default:
  170. break;
  171. }
  172. dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
  173. opt->name, *value, opt->err);
  174. *value = opt->def;
  175. return -1;
  176. }
  177. /*
  178. * atl1_check_options - Range Checking for Command Line Parameters
  179. * @adapter: board private structure
  180. *
  181. * This routine checks all command line parameters for valid user
  182. * input. If an invalid value is given, or if no user specified
  183. * value exists, a default value is used. The final value is stored
  184. * in a variable in the adapter structure.
  185. */
  186. void __devinit atl1_check_options(struct atl1_adapter *adapter)
  187. {
  188. struct pci_dev *pdev = adapter->pdev;
  189. int bd = adapter->bd_number;
  190. if (bd >= ATL1_MAX_NIC) {
  191. dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
  192. dev_notice(&pdev->dev, "using defaults for all values\n");
  193. }
  194. { /* Interrupt Moderate Timer */
  195. struct atl1_option opt = {
  196. .type = range_option,
  197. .name = "Interrupt Moderator Timer",
  198. .err = "using default of "
  199. __MODULE_STRING(DEFAULT_INT_MOD_CNT),
  200. .def = DEFAULT_INT_MOD_CNT,
  201. .arg = {.r = {.min = MIN_INT_MOD_CNT,
  202. .max = MAX_INT_MOD_CNT} }
  203. };
  204. int val;
  205. if (num_int_mod_timer > bd) {
  206. val = int_mod_timer[bd];
  207. atl1_validate_option(&val, &opt, pdev);
  208. adapter->imt = (u16) val;
  209. } else
  210. adapter->imt = (u16) (opt.def);
  211. }
  212. }
  213. /*
  214. * atl1_pci_tbl - PCI Device ID Table
  215. */
  216. static const struct pci_device_id atl1_pci_tbl[] = {
  217. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
  218. /* required last entry */
  219. {0,}
  220. };
  221. MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
  222. static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  223. NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
  224. static int debug = -1;
  225. module_param(debug, int, 0);
  226. MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
  227. /*
  228. * Reset the transmit and receive units; mask and clear all interrupts.
  229. * hw - Struct containing variables accessed by shared code
  230. * return : 0 or idle status (if error)
  231. */
  232. static s32 atl1_reset_hw(struct atl1_hw *hw)
  233. {
  234. struct pci_dev *pdev = hw->back->pdev;
  235. struct atl1_adapter *adapter = hw->back;
  236. u32 icr;
  237. int i;
  238. /*
  239. * Clear Interrupt mask to stop board from generating
  240. * interrupts & Clear any pending interrupt events
  241. */
  242. /*
  243. * iowrite32(0, hw->hw_addr + REG_IMR);
  244. * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
  245. */
  246. /*
  247. * Issue Soft Reset to the MAC. This will reset the chip's
  248. * transmit, receive, DMA. It will not effect
  249. * the current PCI configuration. The global reset bit is self-
  250. * clearing, and should clear within a microsecond.
  251. */
  252. iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
  253. ioread32(hw->hw_addr + REG_MASTER_CTRL);
  254. iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
  255. ioread16(hw->hw_addr + REG_PHY_ENABLE);
  256. /* delay about 1ms */
  257. msleep(1);
  258. /* Wait at least 10ms for All module to be Idle */
  259. for (i = 0; i < 10; i++) {
  260. icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
  261. if (!icr)
  262. break;
  263. /* delay 1 ms */
  264. msleep(1);
  265. /* FIXME: still the right way to do this? */
  266. cpu_relax();
  267. }
  268. if (icr) {
  269. if (netif_msg_hw(adapter))
  270. dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
  271. return icr;
  272. }
  273. return 0;
  274. }
  275. /* function about EEPROM
  276. *
  277. * check_eeprom_exist
  278. * return 0 if eeprom exist
  279. */
  280. static int atl1_check_eeprom_exist(struct atl1_hw *hw)
  281. {
  282. u32 value;
  283. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  284. if (value & SPI_FLASH_CTRL_EN_VPD) {
  285. value &= ~SPI_FLASH_CTRL_EN_VPD;
  286. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  287. }
  288. value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
  289. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  290. }
  291. static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
  292. {
  293. int i;
  294. u32 control;
  295. if (offset & 3)
  296. /* address do not align */
  297. return false;
  298. iowrite32(0, hw->hw_addr + REG_VPD_DATA);
  299. control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  300. iowrite32(control, hw->hw_addr + REG_VPD_CAP);
  301. ioread32(hw->hw_addr + REG_VPD_CAP);
  302. for (i = 0; i < 10; i++) {
  303. msleep(2);
  304. control = ioread32(hw->hw_addr + REG_VPD_CAP);
  305. if (control & VPD_CAP_VPD_FLAG)
  306. break;
  307. }
  308. if (control & VPD_CAP_VPD_FLAG) {
  309. *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
  310. return true;
  311. }
  312. /* timeout */
  313. return false;
  314. }
  315. /*
  316. * Reads the value from a PHY register
  317. * hw - Struct containing variables accessed by shared code
  318. * reg_addr - address of the PHY register to read
  319. */
  320. s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
  321. {
  322. u32 val;
  323. int i;
  324. val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  325. MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
  326. MDIO_CLK_SEL_SHIFT;
  327. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  328. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  329. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  330. udelay(2);
  331. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  332. if (!(val & (MDIO_START | MDIO_BUSY)))
  333. break;
  334. }
  335. if (!(val & (MDIO_START | MDIO_BUSY))) {
  336. *phy_data = (u16) val;
  337. return 0;
  338. }
  339. return ATLX_ERR_PHY;
  340. }
  341. #define CUSTOM_SPI_CS_SETUP 2
  342. #define CUSTOM_SPI_CLK_HI 2
  343. #define CUSTOM_SPI_CLK_LO 2
  344. #define CUSTOM_SPI_CS_HOLD 2
  345. #define CUSTOM_SPI_CS_HI 3
  346. static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
  347. {
  348. int i;
  349. u32 value;
  350. iowrite32(0, hw->hw_addr + REG_SPI_DATA);
  351. iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
  352. value = SPI_FLASH_CTRL_WAIT_READY |
  353. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  354. SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
  355. SPI_FLASH_CTRL_CLK_HI_MASK) <<
  356. SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
  357. SPI_FLASH_CTRL_CLK_LO_MASK) <<
  358. SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
  359. SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  360. SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
  361. SPI_FLASH_CTRL_CS_HI_MASK) <<
  362. SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
  363. SPI_FLASH_CTRL_INS_SHIFT;
  364. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  365. value |= SPI_FLASH_CTRL_START;
  366. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  367. ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  368. for (i = 0; i < 10; i++) {
  369. msleep(1);
  370. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  371. if (!(value & SPI_FLASH_CTRL_START))
  372. break;
  373. }
  374. if (value & SPI_FLASH_CTRL_START)
  375. return false;
  376. *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
  377. return true;
  378. }
  379. /*
  380. * get_permanent_address
  381. * return 0 if get valid mac address,
  382. */
  383. static int atl1_get_permanent_address(struct atl1_hw *hw)
  384. {
  385. u32 addr[2];
  386. u32 i, control;
  387. u16 reg;
  388. u8 eth_addr[ETH_ALEN];
  389. bool key_valid;
  390. if (is_valid_ether_addr(hw->perm_mac_addr))
  391. return 0;
  392. /* init */
  393. addr[0] = addr[1] = 0;
  394. if (!atl1_check_eeprom_exist(hw)) {
  395. reg = 0;
  396. key_valid = false;
  397. /* Read out all EEPROM content */
  398. i = 0;
  399. while (1) {
  400. if (atl1_read_eeprom(hw, i + 0x100, &control)) {
  401. if (key_valid) {
  402. if (reg == REG_MAC_STA_ADDR)
  403. addr[0] = control;
  404. else if (reg == (REG_MAC_STA_ADDR + 4))
  405. addr[1] = control;
  406. key_valid = false;
  407. } else if ((control & 0xff) == 0x5A) {
  408. key_valid = true;
  409. reg = (u16) (control >> 16);
  410. } else
  411. break;
  412. } else
  413. /* read error */
  414. break;
  415. i += 4;
  416. }
  417. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  418. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  419. if (is_valid_ether_addr(eth_addr)) {
  420. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  421. return 0;
  422. }
  423. return 1;
  424. }
  425. /* see if SPI FLAGS exist ? */
  426. addr[0] = addr[1] = 0;
  427. reg = 0;
  428. key_valid = false;
  429. i = 0;
  430. while (1) {
  431. if (atl1_spi_read(hw, i + 0x1f000, &control)) {
  432. if (key_valid) {
  433. if (reg == REG_MAC_STA_ADDR)
  434. addr[0] = control;
  435. else if (reg == (REG_MAC_STA_ADDR + 4))
  436. addr[1] = control;
  437. key_valid = false;
  438. } else if ((control & 0xff) == 0x5A) {
  439. key_valid = true;
  440. reg = (u16) (control >> 16);
  441. } else
  442. /* data end */
  443. break;
  444. } else
  445. /* read error */
  446. break;
  447. i += 4;
  448. }
  449. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  450. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  451. if (is_valid_ether_addr(eth_addr)) {
  452. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  453. return 0;
  454. }
  455. /*
  456. * On some motherboards, the MAC address is written by the
  457. * BIOS directly to the MAC register during POST, and is
  458. * not stored in eeprom. If all else thus far has failed
  459. * to fetch the permanent MAC address, try reading it directly.
  460. */
  461. addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
  462. addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  463. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  464. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  465. if (is_valid_ether_addr(eth_addr)) {
  466. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  467. return 0;
  468. }
  469. return 1;
  470. }
  471. /*
  472. * Reads the adapter's MAC address from the EEPROM
  473. * hw - Struct containing variables accessed by shared code
  474. */
  475. s32 atl1_read_mac_addr(struct atl1_hw *hw)
  476. {
  477. u16 i;
  478. if (atl1_get_permanent_address(hw))
  479. random_ether_addr(hw->perm_mac_addr);
  480. for (i = 0; i < ETH_ALEN; i++)
  481. hw->mac_addr[i] = hw->perm_mac_addr[i];
  482. return 0;
  483. }
  484. /*
  485. * Hashes an address to determine its location in the multicast table
  486. * hw - Struct containing variables accessed by shared code
  487. * mc_addr - the multicast address to hash
  488. *
  489. * atl1_hash_mc_addr
  490. * purpose
  491. * set hash value for a multicast address
  492. * hash calcu processing :
  493. * 1. calcu 32bit CRC for multicast address
  494. * 2. reverse crc with MSB to LSB
  495. */
  496. u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
  497. {
  498. u32 crc32, value = 0;
  499. int i;
  500. crc32 = ether_crc_le(6, mc_addr);
  501. for (i = 0; i < 32; i++)
  502. value |= (((crc32 >> i) & 1) << (31 - i));
  503. return value;
  504. }
  505. /*
  506. * Sets the bit in the multicast table corresponding to the hash value.
  507. * hw - Struct containing variables accessed by shared code
  508. * hash_value - Multicast address hash value
  509. */
  510. void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
  511. {
  512. u32 hash_bit, hash_reg;
  513. u32 mta;
  514. /*
  515. * The HASH Table is a register array of 2 32-bit registers.
  516. * It is treated like an array of 64 bits. We want to set
  517. * bit BitArray[hash_value]. So we figure out what register
  518. * the bit is in, read it, OR in the new bit, then write
  519. * back the new value. The register is determined by the
  520. * upper 7 bits of the hash value and the bit within that
  521. * register are determined by the lower 5 bits of the value.
  522. */
  523. hash_reg = (hash_value >> 31) & 0x1;
  524. hash_bit = (hash_value >> 26) & 0x1F;
  525. mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  526. mta |= (1 << hash_bit);
  527. iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  528. }
  529. /*
  530. * Writes a value to a PHY register
  531. * hw - Struct containing variables accessed by shared code
  532. * reg_addr - address of the PHY register to write
  533. * data - data to write to the PHY
  534. */
  535. static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
  536. {
  537. int i;
  538. u32 val;
  539. val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  540. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  541. MDIO_SUP_PREAMBLE |
  542. MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  543. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  544. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  545. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  546. udelay(2);
  547. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  548. if (!(val & (MDIO_START | MDIO_BUSY)))
  549. break;
  550. }
  551. if (!(val & (MDIO_START | MDIO_BUSY)))
  552. return 0;
  553. return ATLX_ERR_PHY;
  554. }
  555. /*
  556. * Make L001's PHY out of Power Saving State (bug)
  557. * hw - Struct containing variables accessed by shared code
  558. * when power on, L001's PHY always on Power saving State
  559. * (Gigabit Link forbidden)
  560. */
  561. static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
  562. {
  563. s32 ret;
  564. ret = atl1_write_phy_reg(hw, 29, 0x0029);
  565. if (ret)
  566. return ret;
  567. return atl1_write_phy_reg(hw, 30, 0);
  568. }
  569. /*
  570. * Force the PHY into power saving mode using vendor magic.
  571. */
  572. #ifdef CONFIG_PM
  573. static void atl1_phy_enter_power_saving(struct atl1_hw *hw)
  574. {
  575. atl1_write_phy_reg(hw, MII_DBG_ADDR, 0);
  576. atl1_write_phy_reg(hw, MII_DBG_DATA, 0x124E);
  577. atl1_write_phy_reg(hw, MII_DBG_ADDR, 2);
  578. atl1_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
  579. atl1_write_phy_reg(hw, MII_DBG_ADDR, 3);
  580. atl1_write_phy_reg(hw, MII_DBG_DATA, 0);
  581. }
  582. #endif
  583. /*
  584. * Resets the PHY and make all config validate
  585. * hw - Struct containing variables accessed by shared code
  586. *
  587. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  588. */
  589. static s32 atl1_phy_reset(struct atl1_hw *hw)
  590. {
  591. struct pci_dev *pdev = hw->back->pdev;
  592. struct atl1_adapter *adapter = hw->back;
  593. s32 ret_val;
  594. u16 phy_data;
  595. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  596. hw->media_type == MEDIA_TYPE_1000M_FULL)
  597. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  598. else {
  599. switch (hw->media_type) {
  600. case MEDIA_TYPE_100M_FULL:
  601. phy_data =
  602. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  603. MII_CR_RESET;
  604. break;
  605. case MEDIA_TYPE_100M_HALF:
  606. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  607. break;
  608. case MEDIA_TYPE_10M_FULL:
  609. phy_data =
  610. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  611. break;
  612. default:
  613. /* MEDIA_TYPE_10M_HALF: */
  614. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  615. break;
  616. }
  617. }
  618. ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  619. if (ret_val) {
  620. u32 val;
  621. int i;
  622. /* pcie serdes link may be down! */
  623. if (netif_msg_hw(adapter))
  624. dev_dbg(&pdev->dev, "pcie phy link down\n");
  625. for (i = 0; i < 25; i++) {
  626. msleep(1);
  627. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  628. if (!(val & (MDIO_START | MDIO_BUSY)))
  629. break;
  630. }
  631. if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
  632. if (netif_msg_hw(adapter))
  633. dev_warn(&pdev->dev,
  634. "pcie link down at least 25ms\n");
  635. return ret_val;
  636. }
  637. }
  638. return 0;
  639. }
  640. /*
  641. * Configures PHY autoneg and flow control advertisement settings
  642. * hw - Struct containing variables accessed by shared code
  643. */
  644. static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
  645. {
  646. s32 ret_val;
  647. s16 mii_autoneg_adv_reg;
  648. s16 mii_1000t_ctrl_reg;
  649. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  650. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  651. /* Read the MII 1000Base-T Control Register (Address 9). */
  652. mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
  653. /*
  654. * First we clear all the 10/100 mb speed bits in the Auto-Neg
  655. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  656. * the 1000Base-T Control Register (Address 9).
  657. */
  658. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  659. mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
  660. /*
  661. * Need to parse media_type and set up
  662. * the appropriate PHY registers.
  663. */
  664. switch (hw->media_type) {
  665. case MEDIA_TYPE_AUTO_SENSOR:
  666. mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
  667. MII_AR_10T_FD_CAPS |
  668. MII_AR_100TX_HD_CAPS |
  669. MII_AR_100TX_FD_CAPS);
  670. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  671. break;
  672. case MEDIA_TYPE_1000M_FULL:
  673. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  674. break;
  675. case MEDIA_TYPE_100M_FULL:
  676. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  677. break;
  678. case MEDIA_TYPE_100M_HALF:
  679. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  680. break;
  681. case MEDIA_TYPE_10M_FULL:
  682. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  683. break;
  684. default:
  685. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  686. break;
  687. }
  688. /* flow control fixed to enable all */
  689. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  690. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  691. hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
  692. ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  693. if (ret_val)
  694. return ret_val;
  695. ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
  696. if (ret_val)
  697. return ret_val;
  698. return 0;
  699. }
  700. /*
  701. * Configures link settings.
  702. * hw - Struct containing variables accessed by shared code
  703. * Assumes the hardware has previously been reset and the
  704. * transmitter and receiver are not enabled.
  705. */
  706. static s32 atl1_setup_link(struct atl1_hw *hw)
  707. {
  708. struct pci_dev *pdev = hw->back->pdev;
  709. struct atl1_adapter *adapter = hw->back;
  710. s32 ret_val;
  711. /*
  712. * Options:
  713. * PHY will advertise value(s) parsed from
  714. * autoneg_advertised and fc
  715. * no matter what autoneg is , We will not wait link result.
  716. */
  717. ret_val = atl1_phy_setup_autoneg_adv(hw);
  718. if (ret_val) {
  719. if (netif_msg_link(adapter))
  720. dev_dbg(&pdev->dev,
  721. "error setting up autonegotiation\n");
  722. return ret_val;
  723. }
  724. /* SW.Reset , En-Auto-Neg if needed */
  725. ret_val = atl1_phy_reset(hw);
  726. if (ret_val) {
  727. if (netif_msg_link(adapter))
  728. dev_dbg(&pdev->dev, "error resetting phy\n");
  729. return ret_val;
  730. }
  731. hw->phy_configured = true;
  732. return ret_val;
  733. }
  734. static void atl1_init_flash_opcode(struct atl1_hw *hw)
  735. {
  736. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  737. /* Atmel */
  738. hw->flash_vendor = 0;
  739. /* Init OP table */
  740. iowrite8(flash_table[hw->flash_vendor].cmd_program,
  741. hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
  742. iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
  743. hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
  744. iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
  745. hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
  746. iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
  747. hw->hw_addr + REG_SPI_FLASH_OP_RDID);
  748. iowrite8(flash_table[hw->flash_vendor].cmd_wren,
  749. hw->hw_addr + REG_SPI_FLASH_OP_WREN);
  750. iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
  751. hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
  752. iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
  753. hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
  754. iowrite8(flash_table[hw->flash_vendor].cmd_read,
  755. hw->hw_addr + REG_SPI_FLASH_OP_READ);
  756. }
  757. /*
  758. * Performs basic configuration of the adapter.
  759. * hw - Struct containing variables accessed by shared code
  760. * Assumes that the controller has previously been reset and is in a
  761. * post-reset uninitialized state. Initializes multicast table,
  762. * and Calls routines to setup link
  763. * Leaves the transmit and receive units disabled and uninitialized.
  764. */
  765. static s32 atl1_init_hw(struct atl1_hw *hw)
  766. {
  767. u32 ret_val = 0;
  768. /* Zero out the Multicast HASH table */
  769. iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
  770. /* clear the old settings from the multicast hash table */
  771. iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
  772. atl1_init_flash_opcode(hw);
  773. if (!hw->phy_configured) {
  774. /* enable GPHY LinkChange Interrrupt */
  775. ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
  776. if (ret_val)
  777. return ret_val;
  778. /* make PHY out of power-saving state */
  779. ret_val = atl1_phy_leave_power_saving(hw);
  780. if (ret_val)
  781. return ret_val;
  782. /* Call a subroutine to configure the link */
  783. ret_val = atl1_setup_link(hw);
  784. }
  785. return ret_val;
  786. }
  787. /*
  788. * Detects the current speed and duplex settings of the hardware.
  789. * hw - Struct containing variables accessed by shared code
  790. * speed - Speed of the connection
  791. * duplex - Duplex setting of the connection
  792. */
  793. static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
  794. {
  795. struct pci_dev *pdev = hw->back->pdev;
  796. struct atl1_adapter *adapter = hw->back;
  797. s32 ret_val;
  798. u16 phy_data;
  799. /* ; --- Read PHY Specific Status Register (17) */
  800. ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  801. if (ret_val)
  802. return ret_val;
  803. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  804. return ATLX_ERR_PHY_RES;
  805. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  806. case MII_ATLX_PSSR_1000MBS:
  807. *speed = SPEED_1000;
  808. break;
  809. case MII_ATLX_PSSR_100MBS:
  810. *speed = SPEED_100;
  811. break;
  812. case MII_ATLX_PSSR_10MBS:
  813. *speed = SPEED_10;
  814. break;
  815. default:
  816. if (netif_msg_hw(adapter))
  817. dev_dbg(&pdev->dev, "error getting speed\n");
  818. return ATLX_ERR_PHY_SPEED;
  819. break;
  820. }
  821. if (phy_data & MII_ATLX_PSSR_DPLX)
  822. *duplex = FULL_DUPLEX;
  823. else
  824. *duplex = HALF_DUPLEX;
  825. return 0;
  826. }
  827. void atl1_set_mac_addr(struct atl1_hw *hw)
  828. {
  829. u32 value;
  830. /*
  831. * 00-0B-6A-F6-00-DC
  832. * 0: 6AF600DC 1: 000B
  833. * low dword
  834. */
  835. value = (((u32) hw->mac_addr[2]) << 24) |
  836. (((u32) hw->mac_addr[3]) << 16) |
  837. (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
  838. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  839. /* high dword */
  840. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  841. iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
  842. }
  843. /*
  844. * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
  845. * @adapter: board private structure to initialize
  846. *
  847. * atl1_sw_init initializes the Adapter private data structure.
  848. * Fields are initialized based on PCI device information and
  849. * OS network device settings (MTU size).
  850. */
  851. static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
  852. {
  853. struct atl1_hw *hw = &adapter->hw;
  854. struct net_device *netdev = adapter->netdev;
  855. hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  856. hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  857. adapter->wol = 0;
  858. adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
  859. adapter->ict = 50000; /* 100ms */
  860. adapter->link_speed = SPEED_0; /* hardware init */
  861. adapter->link_duplex = FULL_DUPLEX;
  862. hw->phy_configured = false;
  863. hw->preamble_len = 7;
  864. hw->ipgt = 0x60;
  865. hw->min_ifg = 0x50;
  866. hw->ipgr1 = 0x40;
  867. hw->ipgr2 = 0x60;
  868. hw->max_retry = 0xf;
  869. hw->lcol = 0x37;
  870. hw->jam_ipg = 7;
  871. hw->rfd_burst = 8;
  872. hw->rrd_burst = 8;
  873. hw->rfd_fetch_gap = 1;
  874. hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
  875. hw->rx_jumbo_lkah = 1;
  876. hw->rrd_ret_timer = 16;
  877. hw->tpd_burst = 4;
  878. hw->tpd_fetch_th = 16;
  879. hw->txf_burst = 0x100;
  880. hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
  881. hw->tpd_fetch_gap = 1;
  882. hw->rcb_value = atl1_rcb_64;
  883. hw->dma_ord = atl1_dma_ord_enh;
  884. hw->dmar_block = atl1_dma_req_256;
  885. hw->dmaw_block = atl1_dma_req_256;
  886. hw->cmb_rrd = 4;
  887. hw->cmb_tpd = 4;
  888. hw->cmb_rx_timer = 1; /* about 2us */
  889. hw->cmb_tx_timer = 1; /* about 2us */
  890. hw->smb_timer = 100000; /* about 200ms */
  891. spin_lock_init(&adapter->lock);
  892. spin_lock_init(&adapter->mb_lock);
  893. return 0;
  894. }
  895. static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
  896. {
  897. struct atl1_adapter *adapter = netdev_priv(netdev);
  898. u16 result;
  899. atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
  900. return result;
  901. }
  902. static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
  903. int val)
  904. {
  905. struct atl1_adapter *adapter = netdev_priv(netdev);
  906. atl1_write_phy_reg(&adapter->hw, reg_num, val);
  907. }
  908. /*
  909. * atl1_mii_ioctl -
  910. * @netdev:
  911. * @ifreq:
  912. * @cmd:
  913. */
  914. static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  915. {
  916. struct atl1_adapter *adapter = netdev_priv(netdev);
  917. unsigned long flags;
  918. int retval;
  919. if (!netif_running(netdev))
  920. return -EINVAL;
  921. spin_lock_irqsave(&adapter->lock, flags);
  922. retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
  923. spin_unlock_irqrestore(&adapter->lock, flags);
  924. return retval;
  925. }
  926. /*
  927. * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
  928. * @adapter: board private structure
  929. *
  930. * Return 0 on success, negative on failure
  931. */
  932. static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
  933. {
  934. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  935. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  936. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  937. struct atl1_ring_header *ring_header = &adapter->ring_header;
  938. struct pci_dev *pdev = adapter->pdev;
  939. int size;
  940. u8 offset = 0;
  941. size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
  942. tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
  943. if (unlikely(!tpd_ring->buffer_info)) {
  944. if (netif_msg_drv(adapter))
  945. dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
  946. size);
  947. goto err_nomem;
  948. }
  949. rfd_ring->buffer_info =
  950. (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
  951. /*
  952. * real ring DMA buffer
  953. * each ring/block may need up to 8 bytes for alignment, hence the
  954. * additional 40 bytes tacked onto the end.
  955. */
  956. ring_header->size = size =
  957. sizeof(struct tx_packet_desc) * tpd_ring->count
  958. + sizeof(struct rx_free_desc) * rfd_ring->count
  959. + sizeof(struct rx_return_desc) * rrd_ring->count
  960. + sizeof(struct coals_msg_block)
  961. + sizeof(struct stats_msg_block)
  962. + 40;
  963. ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
  964. &ring_header->dma);
  965. if (unlikely(!ring_header->desc)) {
  966. if (netif_msg_drv(adapter))
  967. dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
  968. goto err_nomem;
  969. }
  970. memset(ring_header->desc, 0, ring_header->size);
  971. /* init TPD ring */
  972. tpd_ring->dma = ring_header->dma;
  973. offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
  974. tpd_ring->dma += offset;
  975. tpd_ring->desc = (u8 *) ring_header->desc + offset;
  976. tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
  977. /* init RFD ring */
  978. rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
  979. offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
  980. rfd_ring->dma += offset;
  981. rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
  982. rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
  983. /* init RRD ring */
  984. rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
  985. offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
  986. rrd_ring->dma += offset;
  987. rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
  988. rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
  989. /* init CMB */
  990. adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
  991. offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
  992. adapter->cmb.dma += offset;
  993. adapter->cmb.cmb = (struct coals_msg_block *)
  994. ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
  995. /* init SMB */
  996. adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
  997. offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
  998. adapter->smb.dma += offset;
  999. adapter->smb.smb = (struct stats_msg_block *)
  1000. ((u8 *) adapter->cmb.cmb +
  1001. (sizeof(struct coals_msg_block) + offset));
  1002. return 0;
  1003. err_nomem:
  1004. kfree(tpd_ring->buffer_info);
  1005. return -ENOMEM;
  1006. }
  1007. static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
  1008. {
  1009. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1010. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1011. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1012. atomic_set(&tpd_ring->next_to_use, 0);
  1013. atomic_set(&tpd_ring->next_to_clean, 0);
  1014. rfd_ring->next_to_clean = 0;
  1015. atomic_set(&rfd_ring->next_to_use, 0);
  1016. rrd_ring->next_to_use = 0;
  1017. atomic_set(&rrd_ring->next_to_clean, 0);
  1018. }
  1019. /*
  1020. * atl1_clean_rx_ring - Free RFD Buffers
  1021. * @adapter: board private structure
  1022. */
  1023. static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
  1024. {
  1025. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1026. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1027. struct atl1_buffer *buffer_info;
  1028. struct pci_dev *pdev = adapter->pdev;
  1029. unsigned long size;
  1030. unsigned int i;
  1031. /* Free all the Rx ring sk_buffs */
  1032. for (i = 0; i < rfd_ring->count; i++) {
  1033. buffer_info = &rfd_ring->buffer_info[i];
  1034. if (buffer_info->dma) {
  1035. pci_unmap_page(pdev, buffer_info->dma,
  1036. buffer_info->length, PCI_DMA_FROMDEVICE);
  1037. buffer_info->dma = 0;
  1038. }
  1039. if (buffer_info->skb) {
  1040. dev_kfree_skb(buffer_info->skb);
  1041. buffer_info->skb = NULL;
  1042. }
  1043. }
  1044. size = sizeof(struct atl1_buffer) * rfd_ring->count;
  1045. memset(rfd_ring->buffer_info, 0, size);
  1046. /* Zero out the descriptor ring */
  1047. memset(rfd_ring->desc, 0, rfd_ring->size);
  1048. rfd_ring->next_to_clean = 0;
  1049. atomic_set(&rfd_ring->next_to_use, 0);
  1050. rrd_ring->next_to_use = 0;
  1051. atomic_set(&rrd_ring->next_to_clean, 0);
  1052. }
  1053. /*
  1054. * atl1_clean_tx_ring - Free Tx Buffers
  1055. * @adapter: board private structure
  1056. */
  1057. static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
  1058. {
  1059. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1060. struct atl1_buffer *buffer_info;
  1061. struct pci_dev *pdev = adapter->pdev;
  1062. unsigned long size;
  1063. unsigned int i;
  1064. /* Free all the Tx ring sk_buffs */
  1065. for (i = 0; i < tpd_ring->count; i++) {
  1066. buffer_info = &tpd_ring->buffer_info[i];
  1067. if (buffer_info->dma) {
  1068. pci_unmap_page(pdev, buffer_info->dma,
  1069. buffer_info->length, PCI_DMA_TODEVICE);
  1070. buffer_info->dma = 0;
  1071. }
  1072. }
  1073. for (i = 0; i < tpd_ring->count; i++) {
  1074. buffer_info = &tpd_ring->buffer_info[i];
  1075. if (buffer_info->skb) {
  1076. dev_kfree_skb_any(buffer_info->skb);
  1077. buffer_info->skb = NULL;
  1078. }
  1079. }
  1080. size = sizeof(struct atl1_buffer) * tpd_ring->count;
  1081. memset(tpd_ring->buffer_info, 0, size);
  1082. /* Zero out the descriptor ring */
  1083. memset(tpd_ring->desc, 0, tpd_ring->size);
  1084. atomic_set(&tpd_ring->next_to_use, 0);
  1085. atomic_set(&tpd_ring->next_to_clean, 0);
  1086. }
  1087. /*
  1088. * atl1_free_ring_resources - Free Tx / RX descriptor Resources
  1089. * @adapter: board private structure
  1090. *
  1091. * Free all transmit software resources
  1092. */
  1093. static void atl1_free_ring_resources(struct atl1_adapter *adapter)
  1094. {
  1095. struct pci_dev *pdev = adapter->pdev;
  1096. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1097. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1098. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1099. struct atl1_ring_header *ring_header = &adapter->ring_header;
  1100. atl1_clean_tx_ring(adapter);
  1101. atl1_clean_rx_ring(adapter);
  1102. kfree(tpd_ring->buffer_info);
  1103. pci_free_consistent(pdev, ring_header->size, ring_header->desc,
  1104. ring_header->dma);
  1105. tpd_ring->buffer_info = NULL;
  1106. tpd_ring->desc = NULL;
  1107. tpd_ring->dma = 0;
  1108. rfd_ring->buffer_info = NULL;
  1109. rfd_ring->desc = NULL;
  1110. rfd_ring->dma = 0;
  1111. rrd_ring->desc = NULL;
  1112. rrd_ring->dma = 0;
  1113. }
  1114. static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
  1115. {
  1116. u32 value;
  1117. struct atl1_hw *hw = &adapter->hw;
  1118. struct net_device *netdev = adapter->netdev;
  1119. /* Config MAC CTRL Register */
  1120. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
  1121. /* duplex */
  1122. if (FULL_DUPLEX == adapter->link_duplex)
  1123. value |= MAC_CTRL_DUPLX;
  1124. /* speed */
  1125. value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
  1126. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
  1127. MAC_CTRL_SPEED_SHIFT);
  1128. /* flow control */
  1129. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  1130. /* PAD & CRC */
  1131. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1132. /* preamble length */
  1133. value |= (((u32) adapter->hw.preamble_len
  1134. & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1135. /* vlan */
  1136. if (adapter->vlgrp)
  1137. value |= MAC_CTRL_RMV_VLAN;
  1138. /* rx checksum
  1139. if (adapter->rx_csum)
  1140. value |= MAC_CTRL_RX_CHKSUM_EN;
  1141. */
  1142. /* filter mode */
  1143. value |= MAC_CTRL_BC_EN;
  1144. if (netdev->flags & IFF_PROMISC)
  1145. value |= MAC_CTRL_PROMIS_EN;
  1146. else if (netdev->flags & IFF_ALLMULTI)
  1147. value |= MAC_CTRL_MC_ALL_EN;
  1148. /* value |= MAC_CTRL_LOOPBACK; */
  1149. iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
  1150. }
  1151. static u32 atl1_check_link(struct atl1_adapter *adapter)
  1152. {
  1153. struct atl1_hw *hw = &adapter->hw;
  1154. struct net_device *netdev = adapter->netdev;
  1155. u32 ret_val;
  1156. u16 speed, duplex, phy_data;
  1157. int reconfig = 0;
  1158. /* MII_BMSR must read twice */
  1159. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1160. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1161. if (!(phy_data & BMSR_LSTATUS)) {
  1162. /* link down */
  1163. if (netif_carrier_ok(netdev)) {
  1164. /* old link state: Up */
  1165. if (netif_msg_link(adapter))
  1166. dev_info(&adapter->pdev->dev, "link is down\n");
  1167. adapter->link_speed = SPEED_0;
  1168. netif_carrier_off(netdev);
  1169. netif_stop_queue(netdev);
  1170. }
  1171. return 0;
  1172. }
  1173. /* Link Up */
  1174. ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  1175. if (ret_val)
  1176. return ret_val;
  1177. switch (hw->media_type) {
  1178. case MEDIA_TYPE_1000M_FULL:
  1179. if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
  1180. reconfig = 1;
  1181. break;
  1182. case MEDIA_TYPE_100M_FULL:
  1183. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1184. reconfig = 1;
  1185. break;
  1186. case MEDIA_TYPE_100M_HALF:
  1187. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1188. reconfig = 1;
  1189. break;
  1190. case MEDIA_TYPE_10M_FULL:
  1191. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1192. reconfig = 1;
  1193. break;
  1194. case MEDIA_TYPE_10M_HALF:
  1195. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1196. reconfig = 1;
  1197. break;
  1198. }
  1199. /* link result is our setting */
  1200. if (!reconfig) {
  1201. if (adapter->link_speed != speed
  1202. || adapter->link_duplex != duplex) {
  1203. adapter->link_speed = speed;
  1204. adapter->link_duplex = duplex;
  1205. atl1_setup_mac_ctrl(adapter);
  1206. if (netif_msg_link(adapter))
  1207. dev_info(&adapter->pdev->dev,
  1208. "%s link is up %d Mbps %s\n",
  1209. netdev->name, adapter->link_speed,
  1210. adapter->link_duplex == FULL_DUPLEX ?
  1211. "full duplex" : "half duplex");
  1212. }
  1213. if (!netif_carrier_ok(netdev)) {
  1214. /* Link down -> Up */
  1215. netif_carrier_on(netdev);
  1216. netif_wake_queue(netdev);
  1217. }
  1218. return 0;
  1219. }
  1220. /* change original link status */
  1221. if (netif_carrier_ok(netdev)) {
  1222. adapter->link_speed = SPEED_0;
  1223. netif_carrier_off(netdev);
  1224. netif_stop_queue(netdev);
  1225. }
  1226. if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
  1227. hw->media_type != MEDIA_TYPE_1000M_FULL) {
  1228. switch (hw->media_type) {
  1229. case MEDIA_TYPE_100M_FULL:
  1230. phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  1231. MII_CR_RESET;
  1232. break;
  1233. case MEDIA_TYPE_100M_HALF:
  1234. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  1235. break;
  1236. case MEDIA_TYPE_10M_FULL:
  1237. phy_data =
  1238. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  1239. break;
  1240. default:
  1241. /* MEDIA_TYPE_10M_HALF: */
  1242. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  1243. break;
  1244. }
  1245. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  1246. return 0;
  1247. }
  1248. /* auto-neg, insert timer to re-config phy */
  1249. if (!adapter->phy_timer_pending) {
  1250. adapter->phy_timer_pending = true;
  1251. mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
  1252. }
  1253. return 0;
  1254. }
  1255. static void set_flow_ctrl_old(struct atl1_adapter *adapter)
  1256. {
  1257. u32 hi, lo, value;
  1258. /* RFD Flow Control */
  1259. value = adapter->rfd_ring.count;
  1260. hi = value / 16;
  1261. if (hi < 2)
  1262. hi = 2;
  1263. lo = value * 7 / 8;
  1264. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1265. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1266. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1267. /* RRD Flow Control */
  1268. value = adapter->rrd_ring.count;
  1269. lo = value / 16;
  1270. hi = value * 7 / 8;
  1271. if (lo < 2)
  1272. lo = 2;
  1273. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1274. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1275. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1276. }
  1277. static void set_flow_ctrl_new(struct atl1_hw *hw)
  1278. {
  1279. u32 hi, lo, value;
  1280. /* RXF Flow Control */
  1281. value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
  1282. lo = value / 16;
  1283. if (lo < 192)
  1284. lo = 192;
  1285. hi = value * 7 / 8;
  1286. if (hi < lo)
  1287. hi = lo + 16;
  1288. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1289. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1290. iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1291. /* RRD Flow Control */
  1292. value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
  1293. lo = value / 8;
  1294. hi = value * 7 / 8;
  1295. if (lo < 2)
  1296. lo = 2;
  1297. if (hi < lo)
  1298. hi = lo + 3;
  1299. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1300. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1301. iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1302. }
  1303. /*
  1304. * atl1_configure - Configure Transmit&Receive Unit after Reset
  1305. * @adapter: board private structure
  1306. *
  1307. * Configure the Tx /Rx unit of the MAC after a reset.
  1308. */
  1309. static u32 atl1_configure(struct atl1_adapter *adapter)
  1310. {
  1311. struct atl1_hw *hw = &adapter->hw;
  1312. u32 value;
  1313. /* clear interrupt status */
  1314. iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
  1315. /* set MAC Address */
  1316. value = (((u32) hw->mac_addr[2]) << 24) |
  1317. (((u32) hw->mac_addr[3]) << 16) |
  1318. (((u32) hw->mac_addr[4]) << 8) |
  1319. (((u32) hw->mac_addr[5]));
  1320. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  1321. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  1322. iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  1323. /* tx / rx ring */
  1324. /* HI base address */
  1325. iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
  1326. hw->hw_addr + REG_DESC_BASE_ADDR_HI);
  1327. /* LO base address */
  1328. iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
  1329. hw->hw_addr + REG_DESC_RFD_ADDR_LO);
  1330. iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
  1331. hw->hw_addr + REG_DESC_RRD_ADDR_LO);
  1332. iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
  1333. hw->hw_addr + REG_DESC_TPD_ADDR_LO);
  1334. iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
  1335. hw->hw_addr + REG_DESC_CMB_ADDR_LO);
  1336. iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
  1337. hw->hw_addr + REG_DESC_SMB_ADDR_LO);
  1338. /* element count */
  1339. value = adapter->rrd_ring.count;
  1340. value <<= 16;
  1341. value += adapter->rfd_ring.count;
  1342. iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
  1343. iowrite32(adapter->tpd_ring.count, hw->hw_addr +
  1344. REG_DESC_TPD_RING_SIZE);
  1345. /* Load Ptr */
  1346. iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
  1347. /* config Mailbox */
  1348. value = ((atomic_read(&adapter->tpd_ring.next_to_use)
  1349. & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
  1350. ((atomic_read(&adapter->rrd_ring.next_to_clean)
  1351. & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
  1352. ((atomic_read(&adapter->rfd_ring.next_to_use)
  1353. & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
  1354. iowrite32(value, hw->hw_addr + REG_MAILBOX);
  1355. /* config IPG/IFG */
  1356. value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
  1357. << MAC_IPG_IFG_IPGT_SHIFT) |
  1358. (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
  1359. << MAC_IPG_IFG_MIFG_SHIFT) |
  1360. (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
  1361. << MAC_IPG_IFG_IPGR1_SHIFT) |
  1362. (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
  1363. << MAC_IPG_IFG_IPGR2_SHIFT);
  1364. iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
  1365. /* config Half-Duplex Control */
  1366. value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  1367. (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
  1368. << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  1369. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  1370. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  1371. (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
  1372. << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  1373. iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
  1374. /* set Interrupt Moderator Timer */
  1375. iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
  1376. iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
  1377. /* set Interrupt Clear Timer */
  1378. iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
  1379. /* set max frame size hw will accept */
  1380. iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
  1381. /* jumbo size & rrd retirement timer */
  1382. value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
  1383. << RXQ_JMBOSZ_TH_SHIFT) |
  1384. (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
  1385. << RXQ_JMBO_LKAH_SHIFT) |
  1386. (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
  1387. << RXQ_RRD_TIMER_SHIFT);
  1388. iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
  1389. /* Flow Control */
  1390. switch (hw->dev_rev) {
  1391. case 0x8001:
  1392. case 0x9001:
  1393. case 0x9002:
  1394. case 0x9003:
  1395. set_flow_ctrl_old(adapter);
  1396. break;
  1397. default:
  1398. set_flow_ctrl_new(hw);
  1399. break;
  1400. }
  1401. /* config TXQ */
  1402. value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
  1403. << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
  1404. (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
  1405. << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
  1406. (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
  1407. << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
  1408. TXQ_CTRL_EN;
  1409. iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
  1410. /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
  1411. value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
  1412. << TX_JUMBO_TASK_TH_SHIFT) |
  1413. (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
  1414. << TX_TPD_MIN_IPG_SHIFT);
  1415. iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
  1416. /* config RXQ */
  1417. value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
  1418. << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
  1419. (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
  1420. << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
  1421. (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
  1422. << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
  1423. RXQ_CTRL_EN;
  1424. iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
  1425. /* config DMA Engine */
  1426. value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
  1427. << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
  1428. ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
  1429. << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
  1430. DMA_CTRL_DMAW_EN;
  1431. value |= (u32) hw->dma_ord;
  1432. if (atl1_rcb_128 == hw->rcb_value)
  1433. value |= DMA_CTRL_RCB_VALUE;
  1434. iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
  1435. /* config CMB / SMB */
  1436. value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
  1437. hw->cmb_tpd : adapter->tpd_ring.count;
  1438. value <<= 16;
  1439. value |= hw->cmb_rrd;
  1440. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
  1441. value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
  1442. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
  1443. iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
  1444. /* --- enable CMB / SMB */
  1445. value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
  1446. iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
  1447. value = ioread32(adapter->hw.hw_addr + REG_ISR);
  1448. if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
  1449. value = 1; /* config failed */
  1450. else
  1451. value = 0;
  1452. /* clear all interrupt status */
  1453. iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
  1454. iowrite32(0, adapter->hw.hw_addr + REG_ISR);
  1455. return value;
  1456. }
  1457. /*
  1458. * atl1_pcie_patch - Patch for PCIE module
  1459. */
  1460. static void atl1_pcie_patch(struct atl1_adapter *adapter)
  1461. {
  1462. u32 value;
  1463. /* much vendor magic here */
  1464. value = 0x6500;
  1465. iowrite32(value, adapter->hw.hw_addr + 0x12FC);
  1466. /* pcie flow control mode change */
  1467. value = ioread32(adapter->hw.hw_addr + 0x1008);
  1468. value |= 0x8000;
  1469. iowrite32(value, adapter->hw.hw_addr + 0x1008);
  1470. }
  1471. /*
  1472. * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
  1473. * on PCI Command register is disable.
  1474. * The function enable this bit.
  1475. * Brackett, 2006/03/15
  1476. */
  1477. static void atl1_via_workaround(struct atl1_adapter *adapter)
  1478. {
  1479. unsigned long value;
  1480. value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
  1481. if (value & PCI_COMMAND_INTX_DISABLE)
  1482. value &= ~PCI_COMMAND_INTX_DISABLE;
  1483. iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
  1484. }
  1485. static void atl1_inc_smb(struct atl1_adapter *adapter)
  1486. {
  1487. struct stats_msg_block *smb = adapter->smb.smb;
  1488. /* Fill out the OS statistics structure */
  1489. adapter->soft_stats.rx_packets += smb->rx_ok;
  1490. adapter->soft_stats.tx_packets += smb->tx_ok;
  1491. adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
  1492. adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
  1493. adapter->soft_stats.multicast += smb->rx_mcast;
  1494. adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
  1495. smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
  1496. /* Rx Errors */
  1497. adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
  1498. smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
  1499. smb->rx_rrd_ov + smb->rx_align_err);
  1500. adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
  1501. adapter->soft_stats.rx_length_errors += smb->rx_len_err;
  1502. adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
  1503. adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
  1504. adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
  1505. smb->rx_rxf_ov);
  1506. adapter->soft_stats.rx_pause += smb->rx_pause;
  1507. adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
  1508. adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
  1509. /* Tx Errors */
  1510. adapter->soft_stats.tx_errors += (smb->tx_late_col +
  1511. smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
  1512. adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
  1513. adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
  1514. adapter->soft_stats.tx_window_errors += smb->tx_late_col;
  1515. adapter->soft_stats.excecol += smb->tx_abort_col;
  1516. adapter->soft_stats.deffer += smb->tx_defer;
  1517. adapter->soft_stats.scc += smb->tx_1_col;
  1518. adapter->soft_stats.mcc += smb->tx_2_col;
  1519. adapter->soft_stats.latecol += smb->tx_late_col;
  1520. adapter->soft_stats.tx_underun += smb->tx_underrun;
  1521. adapter->soft_stats.tx_trunc += smb->tx_trunc;
  1522. adapter->soft_stats.tx_pause += smb->tx_pause;
  1523. adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
  1524. adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
  1525. adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
  1526. adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
  1527. adapter->net_stats.multicast = adapter->soft_stats.multicast;
  1528. adapter->net_stats.collisions = adapter->soft_stats.collisions;
  1529. adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
  1530. adapter->net_stats.rx_over_errors =
  1531. adapter->soft_stats.rx_missed_errors;
  1532. adapter->net_stats.rx_length_errors =
  1533. adapter->soft_stats.rx_length_errors;
  1534. adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
  1535. adapter->net_stats.rx_frame_errors =
  1536. adapter->soft_stats.rx_frame_errors;
  1537. adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
  1538. adapter->net_stats.rx_missed_errors =
  1539. adapter->soft_stats.rx_missed_errors;
  1540. adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
  1541. adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
  1542. adapter->net_stats.tx_aborted_errors =
  1543. adapter->soft_stats.tx_aborted_errors;
  1544. adapter->net_stats.tx_window_errors =
  1545. adapter->soft_stats.tx_window_errors;
  1546. adapter->net_stats.tx_carrier_errors =
  1547. adapter->soft_stats.tx_carrier_errors;
  1548. }
  1549. static void atl1_update_mailbox(struct atl1_adapter *adapter)
  1550. {
  1551. unsigned long flags;
  1552. u32 tpd_next_to_use;
  1553. u32 rfd_next_to_use;
  1554. u32 rrd_next_to_clean;
  1555. u32 value;
  1556. spin_lock_irqsave(&adapter->mb_lock, flags);
  1557. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1558. rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
  1559. rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
  1560. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1561. MB_RFD_PROD_INDX_SHIFT) |
  1562. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1563. MB_RRD_CONS_INDX_SHIFT) |
  1564. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1565. MB_TPD_PROD_INDX_SHIFT);
  1566. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1567. spin_unlock_irqrestore(&adapter->mb_lock, flags);
  1568. }
  1569. static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
  1570. struct rx_return_desc *rrd, u16 offset)
  1571. {
  1572. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1573. while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
  1574. rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
  1575. if (++rfd_ring->next_to_clean == rfd_ring->count) {
  1576. rfd_ring->next_to_clean = 0;
  1577. }
  1578. }
  1579. }
  1580. static void atl1_update_rfd_index(struct atl1_adapter *adapter,
  1581. struct rx_return_desc *rrd)
  1582. {
  1583. u16 num_buf;
  1584. num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
  1585. adapter->rx_buffer_len;
  1586. if (rrd->num_buf == num_buf)
  1587. /* clean alloc flag for bad rrd */
  1588. atl1_clean_alloc_flag(adapter, rrd, num_buf);
  1589. }
  1590. static void atl1_rx_checksum(struct atl1_adapter *adapter,
  1591. struct rx_return_desc *rrd, struct sk_buff *skb)
  1592. {
  1593. struct pci_dev *pdev = adapter->pdev;
  1594. skb->ip_summed = CHECKSUM_NONE;
  1595. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1596. if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
  1597. ERR_FLAG_CODE | ERR_FLAG_OV)) {
  1598. adapter->hw_csum_err++;
  1599. if (netif_msg_rx_err(adapter))
  1600. dev_printk(KERN_DEBUG, &pdev->dev,
  1601. "rx checksum error\n");
  1602. return;
  1603. }
  1604. }
  1605. /* not IPv4 */
  1606. if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
  1607. /* checksum is invalid, but it's not an IPv4 pkt, so ok */
  1608. return;
  1609. /* IPv4 packet */
  1610. if (likely(!(rrd->err_flg &
  1611. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
  1612. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1613. adapter->hw_csum_good++;
  1614. return;
  1615. }
  1616. /* IPv4, but hardware thinks its checksum is wrong */
  1617. if (netif_msg_rx_err(adapter))
  1618. dev_printk(KERN_DEBUG, &pdev->dev,
  1619. "hw csum wrong, pkt_flag:%x, err_flag:%x\n",
  1620. rrd->pkt_flg, rrd->err_flg);
  1621. skb->ip_summed = CHECKSUM_COMPLETE;
  1622. skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
  1623. adapter->hw_csum_err++;
  1624. return;
  1625. }
  1626. /*
  1627. * atl1_alloc_rx_buffers - Replace used receive buffers
  1628. * @adapter: address of board private structure
  1629. */
  1630. static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
  1631. {
  1632. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1633. struct pci_dev *pdev = adapter->pdev;
  1634. struct page *page;
  1635. unsigned long offset;
  1636. struct atl1_buffer *buffer_info, *next_info;
  1637. struct sk_buff *skb;
  1638. u16 num_alloc = 0;
  1639. u16 rfd_next_to_use, next_next;
  1640. struct rx_free_desc *rfd_desc;
  1641. next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
  1642. if (++next_next == rfd_ring->count)
  1643. next_next = 0;
  1644. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1645. next_info = &rfd_ring->buffer_info[next_next];
  1646. while (!buffer_info->alloced && !next_info->alloced) {
  1647. if (buffer_info->skb) {
  1648. buffer_info->alloced = 1;
  1649. goto next;
  1650. }
  1651. rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
  1652. skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
  1653. if (unlikely(!skb)) {
  1654. /* Better luck next round */
  1655. adapter->net_stats.rx_dropped++;
  1656. break;
  1657. }
  1658. /*
  1659. * Make buffer alignment 2 beyond a 16 byte boundary
  1660. * this will result in a 16 byte aligned IP header after
  1661. * the 14 byte MAC header is removed
  1662. */
  1663. skb_reserve(skb, NET_IP_ALIGN);
  1664. buffer_info->alloced = 1;
  1665. buffer_info->skb = skb;
  1666. buffer_info->length = (u16) adapter->rx_buffer_len;
  1667. page = virt_to_page(skb->data);
  1668. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1669. buffer_info->dma = pci_map_page(pdev, page, offset,
  1670. adapter->rx_buffer_len,
  1671. PCI_DMA_FROMDEVICE);
  1672. rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1673. rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
  1674. rfd_desc->coalese = 0;
  1675. next:
  1676. rfd_next_to_use = next_next;
  1677. if (unlikely(++next_next == rfd_ring->count))
  1678. next_next = 0;
  1679. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1680. next_info = &rfd_ring->buffer_info[next_next];
  1681. num_alloc++;
  1682. }
  1683. if (num_alloc) {
  1684. /*
  1685. * Force memory writes to complete before letting h/w
  1686. * know there are new descriptors to fetch. (Only
  1687. * applicable for weak-ordered memory model archs,
  1688. * such as IA-64).
  1689. */
  1690. wmb();
  1691. atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
  1692. }
  1693. return num_alloc;
  1694. }
  1695. static void atl1_intr_rx(struct atl1_adapter *adapter)
  1696. {
  1697. int i, count;
  1698. u16 length;
  1699. u16 rrd_next_to_clean;
  1700. u32 value;
  1701. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1702. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1703. struct atl1_buffer *buffer_info;
  1704. struct rx_return_desc *rrd;
  1705. struct sk_buff *skb;
  1706. count = 0;
  1707. rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
  1708. while (1) {
  1709. rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
  1710. i = 1;
  1711. if (likely(rrd->xsz.valid)) { /* packet valid */
  1712. chk_rrd:
  1713. /* check rrd status */
  1714. if (likely(rrd->num_buf == 1))
  1715. goto rrd_ok;
  1716. else if (netif_msg_rx_err(adapter)) {
  1717. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1718. "unexpected RRD buffer count\n");
  1719. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1720. "rx_buf_len = %d\n",
  1721. adapter->rx_buffer_len);
  1722. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1723. "RRD num_buf = %d\n",
  1724. rrd->num_buf);
  1725. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1726. "RRD pkt_len = %d\n",
  1727. rrd->xsz.xsum_sz.pkt_size);
  1728. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1729. "RRD pkt_flg = 0x%08X\n",
  1730. rrd->pkt_flg);
  1731. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1732. "RRD err_flg = 0x%08X\n",
  1733. rrd->err_flg);
  1734. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1735. "RRD vlan_tag = 0x%08X\n",
  1736. rrd->vlan_tag);
  1737. }
  1738. /* rrd seems to be bad */
  1739. if (unlikely(i-- > 0)) {
  1740. /* rrd may not be DMAed completely */
  1741. udelay(1);
  1742. goto chk_rrd;
  1743. }
  1744. /* bad rrd */
  1745. if (netif_msg_rx_err(adapter))
  1746. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1747. "bad RRD\n");
  1748. /* see if update RFD index */
  1749. if (rrd->num_buf > 1)
  1750. atl1_update_rfd_index(adapter, rrd);
  1751. /* update rrd */
  1752. rrd->xsz.valid = 0;
  1753. if (++rrd_next_to_clean == rrd_ring->count)
  1754. rrd_next_to_clean = 0;
  1755. count++;
  1756. continue;
  1757. } else { /* current rrd still not be updated */
  1758. break;
  1759. }
  1760. rrd_ok:
  1761. /* clean alloc flag for bad rrd */
  1762. atl1_clean_alloc_flag(adapter, rrd, 0);
  1763. buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
  1764. if (++rfd_ring->next_to_clean == rfd_ring->count)
  1765. rfd_ring->next_to_clean = 0;
  1766. /* update rrd next to clean */
  1767. if (++rrd_next_to_clean == rrd_ring->count)
  1768. rrd_next_to_clean = 0;
  1769. count++;
  1770. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1771. if (!(rrd->err_flg &
  1772. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
  1773. | ERR_FLAG_LEN))) {
  1774. /* packet error, don't need upstream */
  1775. buffer_info->alloced = 0;
  1776. rrd->xsz.valid = 0;
  1777. continue;
  1778. }
  1779. }
  1780. /* Good Receive */
  1781. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1782. buffer_info->length, PCI_DMA_FROMDEVICE);
  1783. skb = buffer_info->skb;
  1784. length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
  1785. skb_put(skb, length - ETH_FCS_LEN);
  1786. /* Receive Checksum Offload */
  1787. atl1_rx_checksum(adapter, rrd, skb);
  1788. skb->protocol = eth_type_trans(skb, adapter->netdev);
  1789. if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
  1790. u16 vlan_tag = (rrd->vlan_tag >> 4) |
  1791. ((rrd->vlan_tag & 7) << 13) |
  1792. ((rrd->vlan_tag & 8) << 9);
  1793. vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
  1794. } else
  1795. netif_rx(skb);
  1796. /* let protocol layer free skb */
  1797. buffer_info->skb = NULL;
  1798. buffer_info->alloced = 0;
  1799. rrd->xsz.valid = 0;
  1800. adapter->netdev->last_rx = jiffies;
  1801. }
  1802. atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
  1803. atl1_alloc_rx_buffers(adapter);
  1804. /* update mailbox ? */
  1805. if (count) {
  1806. u32 tpd_next_to_use;
  1807. u32 rfd_next_to_use;
  1808. spin_lock(&adapter->mb_lock);
  1809. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1810. rfd_next_to_use =
  1811. atomic_read(&adapter->rfd_ring.next_to_use);
  1812. rrd_next_to_clean =
  1813. atomic_read(&adapter->rrd_ring.next_to_clean);
  1814. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1815. MB_RFD_PROD_INDX_SHIFT) |
  1816. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1817. MB_RRD_CONS_INDX_SHIFT) |
  1818. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1819. MB_TPD_PROD_INDX_SHIFT);
  1820. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1821. spin_unlock(&adapter->mb_lock);
  1822. }
  1823. }
  1824. static void atl1_intr_tx(struct atl1_adapter *adapter)
  1825. {
  1826. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1827. struct atl1_buffer *buffer_info;
  1828. u16 sw_tpd_next_to_clean;
  1829. u16 cmb_tpd_next_to_clean;
  1830. sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1831. cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
  1832. while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
  1833. struct tx_packet_desc *tpd;
  1834. tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
  1835. buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
  1836. if (buffer_info->dma) {
  1837. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1838. buffer_info->length, PCI_DMA_TODEVICE);
  1839. buffer_info->dma = 0;
  1840. }
  1841. if (buffer_info->skb) {
  1842. dev_kfree_skb_irq(buffer_info->skb);
  1843. buffer_info->skb = NULL;
  1844. }
  1845. if (++sw_tpd_next_to_clean == tpd_ring->count)
  1846. sw_tpd_next_to_clean = 0;
  1847. }
  1848. atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
  1849. if (netif_queue_stopped(adapter->netdev)
  1850. && netif_carrier_ok(adapter->netdev))
  1851. netif_wake_queue(adapter->netdev);
  1852. }
  1853. static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
  1854. {
  1855. u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1856. u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
  1857. return ((next_to_clean > next_to_use) ?
  1858. next_to_clean - next_to_use - 1 :
  1859. tpd_ring->count + next_to_clean - next_to_use - 1);
  1860. }
  1861. static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
  1862. struct tx_packet_desc *ptpd)
  1863. {
  1864. /* spinlock held */
  1865. u8 hdr_len, ip_off;
  1866. u32 real_len;
  1867. int err;
  1868. if (skb_shinfo(skb)->gso_size) {
  1869. if (skb_header_cloned(skb)) {
  1870. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1871. if (unlikely(err))
  1872. return -1;
  1873. }
  1874. if (skb->protocol == ntohs(ETH_P_IP)) {
  1875. struct iphdr *iph = ip_hdr(skb);
  1876. real_len = (((unsigned char *)iph - skb->data) +
  1877. ntohs(iph->tot_len));
  1878. if (real_len < skb->len)
  1879. pskb_trim(skb, real_len);
  1880. hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
  1881. if (skb->len == hdr_len) {
  1882. iph->check = 0;
  1883. tcp_hdr(skb)->check =
  1884. ~csum_tcpudp_magic(iph->saddr,
  1885. iph->daddr, tcp_hdrlen(skb),
  1886. IPPROTO_TCP, 0);
  1887. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1888. TPD_IPHL_SHIFT;
  1889. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1890. TPD_TCPHDRLEN_MASK) <<
  1891. TPD_TCPHDRLEN_SHIFT;
  1892. ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
  1893. ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
  1894. return 1;
  1895. }
  1896. iph->check = 0;
  1897. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1898. iph->daddr, 0, IPPROTO_TCP, 0);
  1899. ip_off = (unsigned char *)iph -
  1900. (unsigned char *) skb_network_header(skb);
  1901. if (ip_off == 8) /* 802.3-SNAP frame */
  1902. ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
  1903. else if (ip_off != 0)
  1904. return -2;
  1905. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1906. TPD_IPHL_SHIFT;
  1907. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1908. TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
  1909. ptpd->word3 |= (skb_shinfo(skb)->gso_size &
  1910. TPD_MSS_MASK) << TPD_MSS_SHIFT;
  1911. ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
  1912. return 3;
  1913. }
  1914. }
  1915. return false;
  1916. }
  1917. static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
  1918. struct tx_packet_desc *ptpd)
  1919. {
  1920. u8 css, cso;
  1921. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  1922. css = (u8) (skb->csum_start - skb_headroom(skb));
  1923. cso = css + (u8) skb->csum_offset;
  1924. if (unlikely(css & 0x1)) {
  1925. /* L1 hardware requires an even number here */
  1926. if (netif_msg_tx_err(adapter))
  1927. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1928. "payload offset not an even number\n");
  1929. return -1;
  1930. }
  1931. ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
  1932. TPD_PLOADOFFSET_SHIFT;
  1933. ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
  1934. TPD_CCSUMOFFSET_SHIFT;
  1935. ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
  1936. return true;
  1937. }
  1938. return 0;
  1939. }
  1940. static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
  1941. struct tx_packet_desc *ptpd)
  1942. {
  1943. /* spinlock held */
  1944. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1945. struct atl1_buffer *buffer_info;
  1946. u16 buf_len = skb->len;
  1947. struct page *page;
  1948. unsigned long offset;
  1949. unsigned int nr_frags;
  1950. unsigned int f;
  1951. int retval;
  1952. u16 next_to_use;
  1953. u16 data_len;
  1954. u8 hdr_len;
  1955. buf_len -= skb->data_len;
  1956. nr_frags = skb_shinfo(skb)->nr_frags;
  1957. next_to_use = atomic_read(&tpd_ring->next_to_use);
  1958. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1959. if (unlikely(buffer_info->skb))
  1960. BUG();
  1961. /* put skb in last TPD */
  1962. buffer_info->skb = NULL;
  1963. retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
  1964. if (retval) {
  1965. /* TSO */
  1966. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1967. buffer_info->length = hdr_len;
  1968. page = virt_to_page(skb->data);
  1969. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1970. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1971. offset, hdr_len,
  1972. PCI_DMA_TODEVICE);
  1973. if (++next_to_use == tpd_ring->count)
  1974. next_to_use = 0;
  1975. if (buf_len > hdr_len) {
  1976. int i, nseg;
  1977. data_len = buf_len - hdr_len;
  1978. nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1979. ATL1_MAX_TX_BUF_LEN;
  1980. for (i = 0; i < nseg; i++) {
  1981. buffer_info =
  1982. &tpd_ring->buffer_info[next_to_use];
  1983. buffer_info->skb = NULL;
  1984. buffer_info->length =
  1985. (ATL1_MAX_TX_BUF_LEN >=
  1986. data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
  1987. data_len -= buffer_info->length;
  1988. page = virt_to_page(skb->data +
  1989. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1990. offset = (unsigned long)(skb->data +
  1991. (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
  1992. ~PAGE_MASK;
  1993. buffer_info->dma = pci_map_page(adapter->pdev,
  1994. page, offset, buffer_info->length,
  1995. PCI_DMA_TODEVICE);
  1996. if (++next_to_use == tpd_ring->count)
  1997. next_to_use = 0;
  1998. }
  1999. }
  2000. } else {
  2001. /* not TSO */
  2002. buffer_info->length = buf_len;
  2003. page = virt_to_page(skb->data);
  2004. offset = (unsigned long)skb->data & ~PAGE_MASK;
  2005. buffer_info->dma = pci_map_page(adapter->pdev, page,
  2006. offset, buf_len, PCI_DMA_TODEVICE);
  2007. if (++next_to_use == tpd_ring->count)
  2008. next_to_use = 0;
  2009. }
  2010. for (f = 0; f < nr_frags; f++) {
  2011. struct skb_frag_struct *frag;
  2012. u16 i, nseg;
  2013. frag = &skb_shinfo(skb)->frags[f];
  2014. buf_len = frag->size;
  2015. nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
  2016. ATL1_MAX_TX_BUF_LEN;
  2017. for (i = 0; i < nseg; i++) {
  2018. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2019. if (unlikely(buffer_info->skb))
  2020. BUG();
  2021. buffer_info->skb = NULL;
  2022. buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
  2023. ATL1_MAX_TX_BUF_LEN : buf_len;
  2024. buf_len -= buffer_info->length;
  2025. buffer_info->dma = pci_map_page(adapter->pdev,
  2026. frag->page,
  2027. frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
  2028. buffer_info->length, PCI_DMA_TODEVICE);
  2029. if (++next_to_use == tpd_ring->count)
  2030. next_to_use = 0;
  2031. }
  2032. }
  2033. /* last tpd's buffer-info */
  2034. buffer_info->skb = skb;
  2035. }
  2036. static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
  2037. struct tx_packet_desc *ptpd)
  2038. {
  2039. /* spinlock held */
  2040. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2041. struct atl1_buffer *buffer_info;
  2042. struct tx_packet_desc *tpd;
  2043. u16 j;
  2044. u32 val;
  2045. u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
  2046. for (j = 0; j < count; j++) {
  2047. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2048. tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
  2049. if (tpd != ptpd)
  2050. memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
  2051. tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
  2052. tpd->word2 = (cpu_to_le16(buffer_info->length) &
  2053. TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
  2054. /*
  2055. * if this is the first packet in a TSO chain, set
  2056. * TPD_HDRFLAG, otherwise, clear it.
  2057. */
  2058. val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
  2059. TPD_SEGMENT_EN_MASK;
  2060. if (val) {
  2061. if (!j)
  2062. tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
  2063. else
  2064. tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
  2065. }
  2066. if (j == (count - 1))
  2067. tpd->word3 |= 1 << TPD_EOP_SHIFT;
  2068. if (++next_to_use == tpd_ring->count)
  2069. next_to_use = 0;
  2070. }
  2071. /*
  2072. * Force memory writes to complete before letting h/w
  2073. * know there are new descriptors to fetch. (Only
  2074. * applicable for weak-ordered memory model archs,
  2075. * such as IA-64).
  2076. */
  2077. wmb();
  2078. atomic_set(&tpd_ring->next_to_use, next_to_use);
  2079. }
  2080. static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2081. {
  2082. struct atl1_adapter *adapter = netdev_priv(netdev);
  2083. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2084. int len = skb->len;
  2085. int tso;
  2086. int count = 1;
  2087. int ret_val;
  2088. struct tx_packet_desc *ptpd;
  2089. u16 frag_size;
  2090. u16 vlan_tag;
  2091. unsigned long flags;
  2092. unsigned int nr_frags = 0;
  2093. unsigned int mss = 0;
  2094. unsigned int f;
  2095. unsigned int proto_hdr_len;
  2096. len -= skb->data_len;
  2097. if (unlikely(skb->len <= 0)) {
  2098. dev_kfree_skb_any(skb);
  2099. return NETDEV_TX_OK;
  2100. }
  2101. nr_frags = skb_shinfo(skb)->nr_frags;
  2102. for (f = 0; f < nr_frags; f++) {
  2103. frag_size = skb_shinfo(skb)->frags[f].size;
  2104. if (frag_size)
  2105. count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
  2106. ATL1_MAX_TX_BUF_LEN;
  2107. }
  2108. mss = skb_shinfo(skb)->gso_size;
  2109. if (mss) {
  2110. if (skb->protocol == ntohs(ETH_P_IP)) {
  2111. proto_hdr_len = (skb_transport_offset(skb) +
  2112. tcp_hdrlen(skb));
  2113. if (unlikely(proto_hdr_len > len)) {
  2114. dev_kfree_skb_any(skb);
  2115. return NETDEV_TX_OK;
  2116. }
  2117. /* need additional TPD ? */
  2118. if (proto_hdr_len != len)
  2119. count += (len - proto_hdr_len +
  2120. ATL1_MAX_TX_BUF_LEN - 1) /
  2121. ATL1_MAX_TX_BUF_LEN;
  2122. }
  2123. }
  2124. if (!spin_trylock_irqsave(&adapter->lock, flags)) {
  2125. /* Can't get lock - tell upper layer to requeue */
  2126. if (netif_msg_tx_queued(adapter))
  2127. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2128. "tx locked\n");
  2129. return NETDEV_TX_LOCKED;
  2130. }
  2131. if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
  2132. /* not enough descriptors */
  2133. netif_stop_queue(netdev);
  2134. spin_unlock_irqrestore(&adapter->lock, flags);
  2135. if (netif_msg_tx_queued(adapter))
  2136. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2137. "tx busy\n");
  2138. return NETDEV_TX_BUSY;
  2139. }
  2140. ptpd = ATL1_TPD_DESC(tpd_ring,
  2141. (u16) atomic_read(&tpd_ring->next_to_use));
  2142. memset(ptpd, 0, sizeof(struct tx_packet_desc));
  2143. if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
  2144. vlan_tag = vlan_tx_tag_get(skb);
  2145. vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
  2146. ((vlan_tag >> 9) & 0x8);
  2147. ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
  2148. ptpd->word3 |= (vlan_tag & TPD_VL_TAGGED_MASK) <<
  2149. TPD_VL_TAGGED_SHIFT;
  2150. }
  2151. tso = atl1_tso(adapter, skb, ptpd);
  2152. if (tso < 0) {
  2153. spin_unlock_irqrestore(&adapter->lock, flags);
  2154. dev_kfree_skb_any(skb);
  2155. return NETDEV_TX_OK;
  2156. }
  2157. if (!tso) {
  2158. ret_val = atl1_tx_csum(adapter, skb, ptpd);
  2159. if (ret_val < 0) {
  2160. spin_unlock_irqrestore(&adapter->lock, flags);
  2161. dev_kfree_skb_any(skb);
  2162. return NETDEV_TX_OK;
  2163. }
  2164. }
  2165. atl1_tx_map(adapter, skb, ptpd);
  2166. atl1_tx_queue(adapter, count, ptpd);
  2167. atl1_update_mailbox(adapter);
  2168. spin_unlock_irqrestore(&adapter->lock, flags);
  2169. netdev->trans_start = jiffies;
  2170. return NETDEV_TX_OK;
  2171. }
  2172. /*
  2173. * atl1_intr - Interrupt Handler
  2174. * @irq: interrupt number
  2175. * @data: pointer to a network interface device structure
  2176. * @pt_regs: CPU registers structure
  2177. */
  2178. static irqreturn_t atl1_intr(int irq, void *data)
  2179. {
  2180. struct atl1_adapter *adapter = netdev_priv(data);
  2181. u32 status;
  2182. int max_ints = 10;
  2183. status = adapter->cmb.cmb->int_stats;
  2184. if (!status)
  2185. return IRQ_NONE;
  2186. do {
  2187. /* clear CMB interrupt status at once */
  2188. adapter->cmb.cmb->int_stats = 0;
  2189. if (status & ISR_GPHY) /* clear phy status */
  2190. atlx_clear_phy_int(adapter);
  2191. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  2192. iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
  2193. /* check if SMB intr */
  2194. if (status & ISR_SMB)
  2195. atl1_inc_smb(adapter);
  2196. /* check if PCIE PHY Link down */
  2197. if (status & ISR_PHY_LINKDOWN) {
  2198. if (netif_msg_intr(adapter))
  2199. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2200. "pcie phy link down %x\n", status);
  2201. if (netif_running(adapter->netdev)) { /* reset MAC */
  2202. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2203. schedule_work(&adapter->pcie_dma_to_rst_task);
  2204. return IRQ_HANDLED;
  2205. }
  2206. }
  2207. /* check if DMA read/write error ? */
  2208. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  2209. if (netif_msg_intr(adapter))
  2210. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2211. "pcie DMA r/w error (status = 0x%x)\n",
  2212. status);
  2213. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2214. schedule_work(&adapter->pcie_dma_to_rst_task);
  2215. return IRQ_HANDLED;
  2216. }
  2217. /* link event */
  2218. if (status & ISR_GPHY) {
  2219. adapter->soft_stats.tx_carrier_errors++;
  2220. atl1_check_for_link(adapter);
  2221. }
  2222. /* transmit event */
  2223. if (status & ISR_CMB_TX)
  2224. atl1_intr_tx(adapter);
  2225. /* rx exception */
  2226. if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2227. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2228. ISR_HOST_RRD_OV | ISR_CMB_RX))) {
  2229. if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2230. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2231. ISR_HOST_RRD_OV))
  2232. if (netif_msg_intr(adapter))
  2233. dev_printk(KERN_DEBUG,
  2234. &adapter->pdev->dev,
  2235. "rx exception, ISR = 0x%x\n",
  2236. status);
  2237. atl1_intr_rx(adapter);
  2238. }
  2239. if (--max_ints < 0)
  2240. break;
  2241. } while ((status = adapter->cmb.cmb->int_stats));
  2242. /* re-enable Interrupt */
  2243. iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
  2244. return IRQ_HANDLED;
  2245. }
  2246. /*
  2247. * atl1_watchdog - Timer Call-back
  2248. * @data: pointer to netdev cast into an unsigned long
  2249. */
  2250. static void atl1_watchdog(unsigned long data)
  2251. {
  2252. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2253. /* Reset the timer */
  2254. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2255. }
  2256. /*
  2257. * atl1_phy_config - Timer Call-back
  2258. * @data: pointer to netdev cast into an unsigned long
  2259. */
  2260. static void atl1_phy_config(unsigned long data)
  2261. {
  2262. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2263. struct atl1_hw *hw = &adapter->hw;
  2264. unsigned long flags;
  2265. spin_lock_irqsave(&adapter->lock, flags);
  2266. adapter->phy_timer_pending = false;
  2267. atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  2268. atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
  2269. atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
  2270. spin_unlock_irqrestore(&adapter->lock, flags);
  2271. }
  2272. /*
  2273. * Orphaned vendor comment left intact here:
  2274. * <vendor comment>
  2275. * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
  2276. * will assert. We do soft reset <0x1400=1> according
  2277. * with the SPEC. BUT, it seemes that PCIE or DMA
  2278. * state-machine will not be reset. DMAR_TO_INT will
  2279. * assert again and again.
  2280. * </vendor comment>
  2281. */
  2282. static int atl1_reset(struct atl1_adapter *adapter)
  2283. {
  2284. int ret;
  2285. ret = atl1_reset_hw(&adapter->hw);
  2286. if (ret)
  2287. return ret;
  2288. return atl1_init_hw(&adapter->hw);
  2289. }
  2290. static s32 atl1_up(struct atl1_adapter *adapter)
  2291. {
  2292. struct net_device *netdev = adapter->netdev;
  2293. int err;
  2294. int irq_flags = IRQF_SAMPLE_RANDOM;
  2295. /* hardware has been reset, we need to reload some things */
  2296. atlx_set_multi(netdev);
  2297. atl1_init_ring_ptrs(adapter);
  2298. atlx_restore_vlan(adapter);
  2299. err = atl1_alloc_rx_buffers(adapter);
  2300. if (unlikely(!err))
  2301. /* no RX BUFFER allocated */
  2302. return -ENOMEM;
  2303. if (unlikely(atl1_configure(adapter))) {
  2304. err = -EIO;
  2305. goto err_up;
  2306. }
  2307. err = pci_enable_msi(adapter->pdev);
  2308. if (err) {
  2309. if (netif_msg_ifup(adapter))
  2310. dev_info(&adapter->pdev->dev,
  2311. "Unable to enable MSI: %d\n", err);
  2312. irq_flags |= IRQF_SHARED;
  2313. }
  2314. err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
  2315. netdev->name, netdev);
  2316. if (unlikely(err))
  2317. goto err_up;
  2318. mod_timer(&adapter->watchdog_timer, jiffies);
  2319. atlx_irq_enable(adapter);
  2320. atl1_check_link(adapter);
  2321. return 0;
  2322. err_up:
  2323. pci_disable_msi(adapter->pdev);
  2324. /* free rx_buffers */
  2325. atl1_clean_rx_ring(adapter);
  2326. return err;
  2327. }
  2328. static void atl1_down(struct atl1_adapter *adapter)
  2329. {
  2330. struct net_device *netdev = adapter->netdev;
  2331. del_timer_sync(&adapter->watchdog_timer);
  2332. del_timer_sync(&adapter->phy_config_timer);
  2333. adapter->phy_timer_pending = false;
  2334. atlx_irq_disable(adapter);
  2335. free_irq(adapter->pdev->irq, netdev);
  2336. pci_disable_msi(adapter->pdev);
  2337. atl1_reset_hw(&adapter->hw);
  2338. adapter->cmb.cmb->int_stats = 0;
  2339. adapter->link_speed = SPEED_0;
  2340. adapter->link_duplex = -1;
  2341. netif_carrier_off(netdev);
  2342. netif_stop_queue(netdev);
  2343. atl1_clean_tx_ring(adapter);
  2344. atl1_clean_rx_ring(adapter);
  2345. }
  2346. static void atl1_tx_timeout_task(struct work_struct *work)
  2347. {
  2348. struct atl1_adapter *adapter =
  2349. container_of(work, struct atl1_adapter, tx_timeout_task);
  2350. struct net_device *netdev = adapter->netdev;
  2351. netif_device_detach(netdev);
  2352. atl1_down(adapter);
  2353. atl1_up(adapter);
  2354. netif_device_attach(netdev);
  2355. }
  2356. /*
  2357. * atl1_change_mtu - Change the Maximum Transfer Unit
  2358. * @netdev: network interface device structure
  2359. * @new_mtu: new value for maximum frame size
  2360. *
  2361. * Returns 0 on success, negative on failure
  2362. */
  2363. static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
  2364. {
  2365. struct atl1_adapter *adapter = netdev_priv(netdev);
  2366. int old_mtu = netdev->mtu;
  2367. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  2368. if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
  2369. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2370. if (netif_msg_link(adapter))
  2371. dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
  2372. return -EINVAL;
  2373. }
  2374. adapter->hw.max_frame_size = max_frame;
  2375. adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
  2376. adapter->rx_buffer_len = (max_frame + 7) & ~7;
  2377. adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
  2378. netdev->mtu = new_mtu;
  2379. if ((old_mtu != new_mtu) && netif_running(netdev)) {
  2380. atl1_down(adapter);
  2381. atl1_up(adapter);
  2382. }
  2383. return 0;
  2384. }
  2385. /*
  2386. * atl1_open - Called when a network interface is made active
  2387. * @netdev: network interface device structure
  2388. *
  2389. * Returns 0 on success, negative value on failure
  2390. *
  2391. * The open entry point is called when a network interface is made
  2392. * active by the system (IFF_UP). At this point all resources needed
  2393. * for transmit and receive operations are allocated, the interrupt
  2394. * handler is registered with the OS, the watchdog timer is started,
  2395. * and the stack is notified that the interface is ready.
  2396. */
  2397. static int atl1_open(struct net_device *netdev)
  2398. {
  2399. struct atl1_adapter *adapter = netdev_priv(netdev);
  2400. int err;
  2401. /* allocate transmit descriptors */
  2402. err = atl1_setup_ring_resources(adapter);
  2403. if (err)
  2404. return err;
  2405. err = atl1_up(adapter);
  2406. if (err)
  2407. goto err_up;
  2408. return 0;
  2409. err_up:
  2410. atl1_reset(adapter);
  2411. return err;
  2412. }
  2413. /*
  2414. * atl1_close - Disables a network interface
  2415. * @netdev: network interface device structure
  2416. *
  2417. * Returns 0, this is not allowed to fail
  2418. *
  2419. * The close entry point is called when an interface is de-activated
  2420. * by the OS. The hardware is still under the drivers control, but
  2421. * needs to be disabled. A global MAC reset is issued to stop the
  2422. * hardware, and all transmit and receive resources are freed.
  2423. */
  2424. static int atl1_close(struct net_device *netdev)
  2425. {
  2426. struct atl1_adapter *adapter = netdev_priv(netdev);
  2427. atl1_down(adapter);
  2428. atl1_free_ring_resources(adapter);
  2429. return 0;
  2430. }
  2431. #ifdef CONFIG_PM
  2432. static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
  2433. {
  2434. struct net_device *netdev = pci_get_drvdata(pdev);
  2435. struct atl1_adapter *adapter = netdev_priv(netdev);
  2436. struct atl1_hw *hw = &adapter->hw;
  2437. u32 ctrl = 0;
  2438. u32 wufc = adapter->wol;
  2439. netif_device_detach(netdev);
  2440. if (netif_running(netdev))
  2441. atl1_down(adapter);
  2442. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2443. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2444. if (ctrl & BMSR_LSTATUS)
  2445. wufc &= ~ATLX_WUFC_LNKC;
  2446. /* reduce speed to 10/100M */
  2447. if (wufc) {
  2448. atl1_phy_enter_power_saving(hw);
  2449. /* if resume, let driver to re- setup link */
  2450. hw->phy_configured = false;
  2451. atl1_set_mac_addr(hw);
  2452. atlx_set_multi(netdev);
  2453. ctrl = 0;
  2454. /* turn on magic packet wol */
  2455. if (wufc & ATLX_WUFC_MAG)
  2456. ctrl = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
  2457. /* turn on Link change WOL */
  2458. if (wufc & ATLX_WUFC_LNKC)
  2459. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  2460. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2461. /* turn on all-multi mode if wake on multicast is enabled */
  2462. ctrl = ioread32(hw->hw_addr + REG_MAC_CTRL);
  2463. ctrl &= ~MAC_CTRL_DBG;
  2464. ctrl &= ~MAC_CTRL_PROMIS_EN;
  2465. if (wufc & ATLX_WUFC_MC)
  2466. ctrl |= MAC_CTRL_MC_ALL_EN;
  2467. else
  2468. ctrl &= ~MAC_CTRL_MC_ALL_EN;
  2469. /* turn on broadcast mode if wake on-BC is enabled */
  2470. if (wufc & ATLX_WUFC_BC)
  2471. ctrl |= MAC_CTRL_BC_EN;
  2472. else
  2473. ctrl &= ~MAC_CTRL_BC_EN;
  2474. /* enable RX */
  2475. ctrl |= MAC_CTRL_RX_EN;
  2476. iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
  2477. pci_enable_wake(pdev, PCI_D3hot, 1);
  2478. pci_enable_wake(pdev, PCI_D3cold, 1);
  2479. } else {
  2480. iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
  2481. pci_enable_wake(pdev, PCI_D3hot, 0);
  2482. pci_enable_wake(pdev, PCI_D3cold, 0);
  2483. }
  2484. pci_save_state(pdev);
  2485. pci_disable_device(pdev);
  2486. pci_set_power_state(pdev, PCI_D3hot);
  2487. return 0;
  2488. }
  2489. static int atl1_resume(struct pci_dev *pdev)
  2490. {
  2491. struct net_device *netdev = pci_get_drvdata(pdev);
  2492. struct atl1_adapter *adapter = netdev_priv(netdev);
  2493. u32 err;
  2494. pci_set_power_state(pdev, PCI_D0);
  2495. pci_restore_state(pdev);
  2496. /* FIXME: check and handle */
  2497. err = pci_enable_device(pdev);
  2498. pci_enable_wake(pdev, PCI_D3hot, 0);
  2499. pci_enable_wake(pdev, PCI_D3cold, 0);
  2500. iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
  2501. atl1_reset(adapter);
  2502. if (netif_running(netdev))
  2503. atl1_up(adapter);
  2504. netif_device_attach(netdev);
  2505. atl1_via_workaround(adapter);
  2506. return 0;
  2507. }
  2508. #else
  2509. #define atl1_suspend NULL
  2510. #define atl1_resume NULL
  2511. #endif
  2512. #ifdef CONFIG_NET_POLL_CONTROLLER
  2513. static void atl1_poll_controller(struct net_device *netdev)
  2514. {
  2515. disable_irq(netdev->irq);
  2516. atl1_intr(netdev->irq, netdev);
  2517. enable_irq(netdev->irq);
  2518. }
  2519. #endif
  2520. /*
  2521. * atl1_probe - Device Initialization Routine
  2522. * @pdev: PCI device information struct
  2523. * @ent: entry in atl1_pci_tbl
  2524. *
  2525. * Returns 0 on success, negative on failure
  2526. *
  2527. * atl1_probe initializes an adapter identified by a pci_dev structure.
  2528. * The OS initialization, configuring of the adapter private structure,
  2529. * and a hardware reset occur.
  2530. */
  2531. static int __devinit atl1_probe(struct pci_dev *pdev,
  2532. const struct pci_device_id *ent)
  2533. {
  2534. struct net_device *netdev;
  2535. struct atl1_adapter *adapter;
  2536. static int cards_found = 0;
  2537. int err;
  2538. err = pci_enable_device(pdev);
  2539. if (err)
  2540. return err;
  2541. /*
  2542. * The atl1 chip can DMA to 64-bit addresses, but it uses a single
  2543. * shared register for the high 32 bits, so only a single, aligned,
  2544. * 4 GB physical address range can be used at a time.
  2545. *
  2546. * Supporting 64-bit DMA on this hardware is more trouble than it's
  2547. * worth. It is far easier to limit to 32-bit DMA than update
  2548. * various kernel subsystems to support the mechanics required by a
  2549. * fixed-high-32-bit system.
  2550. */
  2551. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2552. if (err) {
  2553. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2554. goto err_dma;
  2555. }
  2556. /*
  2557. * Mark all PCI regions associated with PCI device
  2558. * pdev as being reserved by owner atl1_driver_name
  2559. */
  2560. err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
  2561. if (err)
  2562. goto err_request_regions;
  2563. /*
  2564. * Enables bus-mastering on the device and calls
  2565. * pcibios_set_master to do the needed arch specific settings
  2566. */
  2567. pci_set_master(pdev);
  2568. netdev = alloc_etherdev(sizeof(struct atl1_adapter));
  2569. if (!netdev) {
  2570. err = -ENOMEM;
  2571. goto err_alloc_etherdev;
  2572. }
  2573. SET_NETDEV_DEV(netdev, &pdev->dev);
  2574. pci_set_drvdata(pdev, netdev);
  2575. adapter = netdev_priv(netdev);
  2576. adapter->netdev = netdev;
  2577. adapter->pdev = pdev;
  2578. adapter->hw.back = adapter;
  2579. adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
  2580. adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
  2581. if (!adapter->hw.hw_addr) {
  2582. err = -EIO;
  2583. goto err_pci_iomap;
  2584. }
  2585. /* get device revision number */
  2586. adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
  2587. (REG_MASTER_CTRL + 2));
  2588. if (netif_msg_probe(adapter))
  2589. dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
  2590. /* set default ring resource counts */
  2591. adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
  2592. adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
  2593. adapter->mii.dev = netdev;
  2594. adapter->mii.mdio_read = mdio_read;
  2595. adapter->mii.mdio_write = mdio_write;
  2596. adapter->mii.phy_id_mask = 0x1f;
  2597. adapter->mii.reg_num_mask = 0x1f;
  2598. netdev->open = &atl1_open;
  2599. netdev->stop = &atl1_close;
  2600. netdev->hard_start_xmit = &atl1_xmit_frame;
  2601. netdev->get_stats = &atlx_get_stats;
  2602. netdev->set_multicast_list = &atlx_set_multi;
  2603. netdev->set_mac_address = &atl1_set_mac;
  2604. netdev->change_mtu = &atl1_change_mtu;
  2605. netdev->do_ioctl = &atlx_ioctl;
  2606. netdev->tx_timeout = &atlx_tx_timeout;
  2607. netdev->watchdog_timeo = 5 * HZ;
  2608. #ifdef CONFIG_NET_POLL_CONTROLLER
  2609. netdev->poll_controller = atl1_poll_controller;
  2610. #endif
  2611. netdev->vlan_rx_register = atlx_vlan_rx_register;
  2612. netdev->ethtool_ops = &atl1_ethtool_ops;
  2613. adapter->bd_number = cards_found;
  2614. /* setup the private structure */
  2615. err = atl1_sw_init(adapter);
  2616. if (err)
  2617. goto err_common;
  2618. netdev->features = NETIF_F_HW_CSUM;
  2619. netdev->features |= NETIF_F_SG;
  2620. netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
  2621. netdev->features |= NETIF_F_TSO;
  2622. netdev->features |= NETIF_F_LLTX;
  2623. /*
  2624. * patch for some L1 of old version,
  2625. * the final version of L1 may not need these
  2626. * patches
  2627. */
  2628. /* atl1_pcie_patch(adapter); */
  2629. /* really reset GPHY core */
  2630. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2631. /*
  2632. * reset the controller to
  2633. * put the device in a known good starting state
  2634. */
  2635. if (atl1_reset_hw(&adapter->hw)) {
  2636. err = -EIO;
  2637. goto err_common;
  2638. }
  2639. /* copy the MAC address out of the EEPROM */
  2640. atl1_read_mac_addr(&adapter->hw);
  2641. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  2642. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2643. err = -EIO;
  2644. goto err_common;
  2645. }
  2646. atl1_check_options(adapter);
  2647. /* pre-init the MAC, and setup link */
  2648. err = atl1_init_hw(&adapter->hw);
  2649. if (err) {
  2650. err = -EIO;
  2651. goto err_common;
  2652. }
  2653. atl1_pcie_patch(adapter);
  2654. /* assume we have no link for now */
  2655. netif_carrier_off(netdev);
  2656. netif_stop_queue(netdev);
  2657. init_timer(&adapter->watchdog_timer);
  2658. adapter->watchdog_timer.function = &atl1_watchdog;
  2659. adapter->watchdog_timer.data = (unsigned long)adapter;
  2660. init_timer(&adapter->phy_config_timer);
  2661. adapter->phy_config_timer.function = &atl1_phy_config;
  2662. adapter->phy_config_timer.data = (unsigned long)adapter;
  2663. adapter->phy_timer_pending = false;
  2664. INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
  2665. INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
  2666. INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
  2667. err = register_netdev(netdev);
  2668. if (err)
  2669. goto err_common;
  2670. cards_found++;
  2671. atl1_via_workaround(adapter);
  2672. return 0;
  2673. err_common:
  2674. pci_iounmap(pdev, adapter->hw.hw_addr);
  2675. err_pci_iomap:
  2676. free_netdev(netdev);
  2677. err_alloc_etherdev:
  2678. pci_release_regions(pdev);
  2679. err_dma:
  2680. err_request_regions:
  2681. pci_disable_device(pdev);
  2682. return err;
  2683. }
  2684. /*
  2685. * atl1_remove - Device Removal Routine
  2686. * @pdev: PCI device information struct
  2687. *
  2688. * atl1_remove is called by the PCI subsystem to alert the driver
  2689. * that it should release a PCI device. The could be caused by a
  2690. * Hot-Plug event, or because the driver is going to be removed from
  2691. * memory.
  2692. */
  2693. static void __devexit atl1_remove(struct pci_dev *pdev)
  2694. {
  2695. struct net_device *netdev = pci_get_drvdata(pdev);
  2696. struct atl1_adapter *adapter;
  2697. /* Device not available. Return. */
  2698. if (!netdev)
  2699. return;
  2700. adapter = netdev_priv(netdev);
  2701. /*
  2702. * Some atl1 boards lack persistent storage for their MAC, and get it
  2703. * from the BIOS during POST. If we've been messing with the MAC
  2704. * address, we need to save the permanent one.
  2705. */
  2706. if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
  2707. memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
  2708. ETH_ALEN);
  2709. atl1_set_mac_addr(&adapter->hw);
  2710. }
  2711. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2712. unregister_netdev(netdev);
  2713. pci_iounmap(pdev, adapter->hw.hw_addr);
  2714. pci_release_regions(pdev);
  2715. free_netdev(netdev);
  2716. pci_disable_device(pdev);
  2717. }
  2718. static struct pci_driver atl1_driver = {
  2719. .name = ATLX_DRIVER_NAME,
  2720. .id_table = atl1_pci_tbl,
  2721. .probe = atl1_probe,
  2722. .remove = __devexit_p(atl1_remove),
  2723. .suspend = atl1_suspend,
  2724. .resume = atl1_resume
  2725. };
  2726. /*
  2727. * atl1_exit_module - Driver Exit Cleanup Routine
  2728. *
  2729. * atl1_exit_module is called just before the driver is removed
  2730. * from memory.
  2731. */
  2732. static void __exit atl1_exit_module(void)
  2733. {
  2734. pci_unregister_driver(&atl1_driver);
  2735. }
  2736. /*
  2737. * atl1_init_module - Driver Registration Routine
  2738. *
  2739. * atl1_init_module is the first routine called when the driver is
  2740. * loaded. All it does is register with the PCI subsystem.
  2741. */
  2742. static int __init atl1_init_module(void)
  2743. {
  2744. return pci_register_driver(&atl1_driver);
  2745. }
  2746. module_init(atl1_init_module);
  2747. module_exit(atl1_exit_module);
  2748. struct atl1_stats {
  2749. char stat_string[ETH_GSTRING_LEN];
  2750. int sizeof_stat;
  2751. int stat_offset;
  2752. };
  2753. #define ATL1_STAT(m) \
  2754. sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
  2755. static struct atl1_stats atl1_gstrings_stats[] = {
  2756. {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
  2757. {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
  2758. {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
  2759. {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
  2760. {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
  2761. {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
  2762. {"rx_dropped", ATL1_STAT(net_stats.rx_dropped)},
  2763. {"tx_dropped", ATL1_STAT(net_stats.tx_dropped)},
  2764. {"multicast", ATL1_STAT(soft_stats.multicast)},
  2765. {"collisions", ATL1_STAT(soft_stats.collisions)},
  2766. {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
  2767. {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2768. {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
  2769. {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
  2770. {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
  2771. {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2772. {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
  2773. {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
  2774. {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
  2775. {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
  2776. {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
  2777. {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
  2778. {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
  2779. {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
  2780. {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
  2781. {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
  2782. {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
  2783. {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
  2784. {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
  2785. {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
  2786. {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
  2787. };
  2788. static void atl1_get_ethtool_stats(struct net_device *netdev,
  2789. struct ethtool_stats *stats, u64 *data)
  2790. {
  2791. struct atl1_adapter *adapter = netdev_priv(netdev);
  2792. int i;
  2793. char *p;
  2794. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  2795. p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
  2796. data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
  2797. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2798. }
  2799. }
  2800. static int atl1_get_sset_count(struct net_device *netdev, int sset)
  2801. {
  2802. switch (sset) {
  2803. case ETH_SS_STATS:
  2804. return ARRAY_SIZE(atl1_gstrings_stats);
  2805. default:
  2806. return -EOPNOTSUPP;
  2807. }
  2808. }
  2809. static int atl1_get_settings(struct net_device *netdev,
  2810. struct ethtool_cmd *ecmd)
  2811. {
  2812. struct atl1_adapter *adapter = netdev_priv(netdev);
  2813. struct atl1_hw *hw = &adapter->hw;
  2814. ecmd->supported = (SUPPORTED_10baseT_Half |
  2815. SUPPORTED_10baseT_Full |
  2816. SUPPORTED_100baseT_Half |
  2817. SUPPORTED_100baseT_Full |
  2818. SUPPORTED_1000baseT_Full |
  2819. SUPPORTED_Autoneg | SUPPORTED_TP);
  2820. ecmd->advertising = ADVERTISED_TP;
  2821. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2822. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  2823. ecmd->advertising |= ADVERTISED_Autoneg;
  2824. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
  2825. ecmd->advertising |= ADVERTISED_Autoneg;
  2826. ecmd->advertising |=
  2827. (ADVERTISED_10baseT_Half |
  2828. ADVERTISED_10baseT_Full |
  2829. ADVERTISED_100baseT_Half |
  2830. ADVERTISED_100baseT_Full |
  2831. ADVERTISED_1000baseT_Full);
  2832. } else
  2833. ecmd->advertising |= (ADVERTISED_1000baseT_Full);
  2834. }
  2835. ecmd->port = PORT_TP;
  2836. ecmd->phy_address = 0;
  2837. ecmd->transceiver = XCVR_INTERNAL;
  2838. if (netif_carrier_ok(adapter->netdev)) {
  2839. u16 link_speed, link_duplex;
  2840. atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
  2841. ecmd->speed = link_speed;
  2842. if (link_duplex == FULL_DUPLEX)
  2843. ecmd->duplex = DUPLEX_FULL;
  2844. else
  2845. ecmd->duplex = DUPLEX_HALF;
  2846. } else {
  2847. ecmd->speed = -1;
  2848. ecmd->duplex = -1;
  2849. }
  2850. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2851. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2852. ecmd->autoneg = AUTONEG_ENABLE;
  2853. else
  2854. ecmd->autoneg = AUTONEG_DISABLE;
  2855. return 0;
  2856. }
  2857. static int atl1_set_settings(struct net_device *netdev,
  2858. struct ethtool_cmd *ecmd)
  2859. {
  2860. struct atl1_adapter *adapter = netdev_priv(netdev);
  2861. struct atl1_hw *hw = &adapter->hw;
  2862. u16 phy_data;
  2863. int ret_val = 0;
  2864. u16 old_media_type = hw->media_type;
  2865. if (netif_running(adapter->netdev)) {
  2866. if (netif_msg_link(adapter))
  2867. dev_dbg(&adapter->pdev->dev,
  2868. "ethtool shutting down adapter\n");
  2869. atl1_down(adapter);
  2870. }
  2871. if (ecmd->autoneg == AUTONEG_ENABLE)
  2872. hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
  2873. else {
  2874. if (ecmd->speed == SPEED_1000) {
  2875. if (ecmd->duplex != DUPLEX_FULL) {
  2876. if (netif_msg_link(adapter))
  2877. dev_warn(&adapter->pdev->dev,
  2878. "1000M half is invalid\n");
  2879. ret_val = -EINVAL;
  2880. goto exit_sset;
  2881. }
  2882. hw->media_type = MEDIA_TYPE_1000M_FULL;
  2883. } else if (ecmd->speed == SPEED_100) {
  2884. if (ecmd->duplex == DUPLEX_FULL)
  2885. hw->media_type = MEDIA_TYPE_100M_FULL;
  2886. else
  2887. hw->media_type = MEDIA_TYPE_100M_HALF;
  2888. } else {
  2889. if (ecmd->duplex == DUPLEX_FULL)
  2890. hw->media_type = MEDIA_TYPE_10M_FULL;
  2891. else
  2892. hw->media_type = MEDIA_TYPE_10M_HALF;
  2893. }
  2894. }
  2895. switch (hw->media_type) {
  2896. case MEDIA_TYPE_AUTO_SENSOR:
  2897. ecmd->advertising =
  2898. ADVERTISED_10baseT_Half |
  2899. ADVERTISED_10baseT_Full |
  2900. ADVERTISED_100baseT_Half |
  2901. ADVERTISED_100baseT_Full |
  2902. ADVERTISED_1000baseT_Full |
  2903. ADVERTISED_Autoneg | ADVERTISED_TP;
  2904. break;
  2905. case MEDIA_TYPE_1000M_FULL:
  2906. ecmd->advertising =
  2907. ADVERTISED_1000baseT_Full |
  2908. ADVERTISED_Autoneg | ADVERTISED_TP;
  2909. break;
  2910. default:
  2911. ecmd->advertising = 0;
  2912. break;
  2913. }
  2914. if (atl1_phy_setup_autoneg_adv(hw)) {
  2915. ret_val = -EINVAL;
  2916. if (netif_msg_link(adapter))
  2917. dev_warn(&adapter->pdev->dev,
  2918. "invalid ethtool speed/duplex setting\n");
  2919. goto exit_sset;
  2920. }
  2921. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2922. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2923. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  2924. else {
  2925. switch (hw->media_type) {
  2926. case MEDIA_TYPE_100M_FULL:
  2927. phy_data =
  2928. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  2929. MII_CR_RESET;
  2930. break;
  2931. case MEDIA_TYPE_100M_HALF:
  2932. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  2933. break;
  2934. case MEDIA_TYPE_10M_FULL:
  2935. phy_data =
  2936. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  2937. break;
  2938. default:
  2939. /* MEDIA_TYPE_10M_HALF: */
  2940. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  2941. break;
  2942. }
  2943. }
  2944. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  2945. exit_sset:
  2946. if (ret_val)
  2947. hw->media_type = old_media_type;
  2948. if (netif_running(adapter->netdev)) {
  2949. if (netif_msg_link(adapter))
  2950. dev_dbg(&adapter->pdev->dev,
  2951. "ethtool starting adapter\n");
  2952. atl1_up(adapter);
  2953. } else if (!ret_val) {
  2954. if (netif_msg_link(adapter))
  2955. dev_dbg(&adapter->pdev->dev,
  2956. "ethtool resetting adapter\n");
  2957. atl1_reset(adapter);
  2958. }
  2959. return ret_val;
  2960. }
  2961. static void atl1_get_drvinfo(struct net_device *netdev,
  2962. struct ethtool_drvinfo *drvinfo)
  2963. {
  2964. struct atl1_adapter *adapter = netdev_priv(netdev);
  2965. strncpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
  2966. strncpy(drvinfo->version, ATLX_DRIVER_VERSION,
  2967. sizeof(drvinfo->version));
  2968. strncpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  2969. strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
  2970. sizeof(drvinfo->bus_info));
  2971. drvinfo->eedump_len = ATL1_EEDUMP_LEN;
  2972. }
  2973. static void atl1_get_wol(struct net_device *netdev,
  2974. struct ethtool_wolinfo *wol)
  2975. {
  2976. struct atl1_adapter *adapter = netdev_priv(netdev);
  2977. wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  2978. wol->wolopts = 0;
  2979. if (adapter->wol & ATLX_WUFC_EX)
  2980. wol->wolopts |= WAKE_UCAST;
  2981. if (adapter->wol & ATLX_WUFC_MC)
  2982. wol->wolopts |= WAKE_MCAST;
  2983. if (adapter->wol & ATLX_WUFC_BC)
  2984. wol->wolopts |= WAKE_BCAST;
  2985. if (adapter->wol & ATLX_WUFC_MAG)
  2986. wol->wolopts |= WAKE_MAGIC;
  2987. return;
  2988. }
  2989. static int atl1_set_wol(struct net_device *netdev,
  2990. struct ethtool_wolinfo *wol)
  2991. {
  2992. struct atl1_adapter *adapter = netdev_priv(netdev);
  2993. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  2994. return -EOPNOTSUPP;
  2995. adapter->wol = 0;
  2996. if (wol->wolopts & WAKE_UCAST)
  2997. adapter->wol |= ATLX_WUFC_EX;
  2998. if (wol->wolopts & WAKE_MCAST)
  2999. adapter->wol |= ATLX_WUFC_MC;
  3000. if (wol->wolopts & WAKE_BCAST)
  3001. adapter->wol |= ATLX_WUFC_BC;
  3002. if (wol->wolopts & WAKE_MAGIC)
  3003. adapter->wol |= ATLX_WUFC_MAG;
  3004. return 0;
  3005. }
  3006. static u32 atl1_get_msglevel(struct net_device *netdev)
  3007. {
  3008. struct atl1_adapter *adapter = netdev_priv(netdev);
  3009. return adapter->msg_enable;
  3010. }
  3011. static void atl1_set_msglevel(struct net_device *netdev, u32 value)
  3012. {
  3013. struct atl1_adapter *adapter = netdev_priv(netdev);
  3014. adapter->msg_enable = value;
  3015. }
  3016. static int atl1_get_regs_len(struct net_device *netdev)
  3017. {
  3018. return ATL1_REG_COUNT * sizeof(u32);
  3019. }
  3020. static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  3021. void *p)
  3022. {
  3023. struct atl1_adapter *adapter = netdev_priv(netdev);
  3024. struct atl1_hw *hw = &adapter->hw;
  3025. unsigned int i;
  3026. u32 *regbuf = p;
  3027. for (i = 0; i < ATL1_REG_COUNT; i++) {
  3028. /*
  3029. * This switch statement avoids reserved regions
  3030. * of register space.
  3031. */
  3032. switch (i) {
  3033. case 6 ... 9:
  3034. case 14:
  3035. case 29 ... 31:
  3036. case 34 ... 63:
  3037. case 75 ... 127:
  3038. case 136 ... 1023:
  3039. case 1027 ... 1087:
  3040. case 1091 ... 1151:
  3041. case 1194 ... 1195:
  3042. case 1200 ... 1201:
  3043. case 1206 ... 1213:
  3044. case 1216 ... 1279:
  3045. case 1290 ... 1311:
  3046. case 1323 ... 1343:
  3047. case 1358 ... 1359:
  3048. case 1368 ... 1375:
  3049. case 1378 ... 1383:
  3050. case 1388 ... 1391:
  3051. case 1393 ... 1395:
  3052. case 1402 ... 1403:
  3053. case 1410 ... 1471:
  3054. case 1522 ... 1535:
  3055. /* reserved region; don't read it */
  3056. regbuf[i] = 0;
  3057. break;
  3058. default:
  3059. /* unreserved region */
  3060. regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
  3061. }
  3062. }
  3063. }
  3064. static void atl1_get_ringparam(struct net_device *netdev,
  3065. struct ethtool_ringparam *ring)
  3066. {
  3067. struct atl1_adapter *adapter = netdev_priv(netdev);
  3068. struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
  3069. struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
  3070. ring->rx_max_pending = ATL1_MAX_RFD;
  3071. ring->tx_max_pending = ATL1_MAX_TPD;
  3072. ring->rx_mini_max_pending = 0;
  3073. ring->rx_jumbo_max_pending = 0;
  3074. ring->rx_pending = rxdr->count;
  3075. ring->tx_pending = txdr->count;
  3076. ring->rx_mini_pending = 0;
  3077. ring->rx_jumbo_pending = 0;
  3078. }
  3079. static int atl1_set_ringparam(struct net_device *netdev,
  3080. struct ethtool_ringparam *ring)
  3081. {
  3082. struct atl1_adapter *adapter = netdev_priv(netdev);
  3083. struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
  3084. struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
  3085. struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
  3086. struct atl1_tpd_ring tpd_old, tpd_new;
  3087. struct atl1_rfd_ring rfd_old, rfd_new;
  3088. struct atl1_rrd_ring rrd_old, rrd_new;
  3089. struct atl1_ring_header rhdr_old, rhdr_new;
  3090. int err;
  3091. tpd_old = adapter->tpd_ring;
  3092. rfd_old = adapter->rfd_ring;
  3093. rrd_old = adapter->rrd_ring;
  3094. rhdr_old = adapter->ring_header;
  3095. if (netif_running(adapter->netdev))
  3096. atl1_down(adapter);
  3097. rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
  3098. rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
  3099. rfdr->count;
  3100. rfdr->count = (rfdr->count + 3) & ~3;
  3101. rrdr->count = rfdr->count;
  3102. tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
  3103. tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
  3104. tpdr->count;
  3105. tpdr->count = (tpdr->count + 3) & ~3;
  3106. if (netif_running(adapter->netdev)) {
  3107. /* try to get new resources before deleting old */
  3108. err = atl1_setup_ring_resources(adapter);
  3109. if (err)
  3110. goto err_setup_ring;
  3111. /*
  3112. * save the new, restore the old in order to free it,
  3113. * then restore the new back again
  3114. */
  3115. rfd_new = adapter->rfd_ring;
  3116. rrd_new = adapter->rrd_ring;
  3117. tpd_new = adapter->tpd_ring;
  3118. rhdr_new = adapter->ring_header;
  3119. adapter->rfd_ring = rfd_old;
  3120. adapter->rrd_ring = rrd_old;
  3121. adapter->tpd_ring = tpd_old;
  3122. adapter->ring_header = rhdr_old;
  3123. atl1_free_ring_resources(adapter);
  3124. adapter->rfd_ring = rfd_new;
  3125. adapter->rrd_ring = rrd_new;
  3126. adapter->tpd_ring = tpd_new;
  3127. adapter->ring_header = rhdr_new;
  3128. err = atl1_up(adapter);
  3129. if (err)
  3130. return err;
  3131. }
  3132. return 0;
  3133. err_setup_ring:
  3134. adapter->rfd_ring = rfd_old;
  3135. adapter->rrd_ring = rrd_old;
  3136. adapter->tpd_ring = tpd_old;
  3137. adapter->ring_header = rhdr_old;
  3138. atl1_up(adapter);
  3139. return err;
  3140. }
  3141. static void atl1_get_pauseparam(struct net_device *netdev,
  3142. struct ethtool_pauseparam *epause)
  3143. {
  3144. struct atl1_adapter *adapter = netdev_priv(netdev);
  3145. struct atl1_hw *hw = &adapter->hw;
  3146. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3147. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3148. epause->autoneg = AUTONEG_ENABLE;
  3149. } else {
  3150. epause->autoneg = AUTONEG_DISABLE;
  3151. }
  3152. epause->rx_pause = 1;
  3153. epause->tx_pause = 1;
  3154. }
  3155. static int atl1_set_pauseparam(struct net_device *netdev,
  3156. struct ethtool_pauseparam *epause)
  3157. {
  3158. struct atl1_adapter *adapter = netdev_priv(netdev);
  3159. struct atl1_hw *hw = &adapter->hw;
  3160. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3161. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3162. epause->autoneg = AUTONEG_ENABLE;
  3163. } else {
  3164. epause->autoneg = AUTONEG_DISABLE;
  3165. }
  3166. epause->rx_pause = 1;
  3167. epause->tx_pause = 1;
  3168. return 0;
  3169. }
  3170. /* FIXME: is this right? -- CHS */
  3171. static u32 atl1_get_rx_csum(struct net_device *netdev)
  3172. {
  3173. return 1;
  3174. }
  3175. static void atl1_get_strings(struct net_device *netdev, u32 stringset,
  3176. u8 *data)
  3177. {
  3178. u8 *p = data;
  3179. int i;
  3180. switch (stringset) {
  3181. case ETH_SS_STATS:
  3182. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  3183. memcpy(p, atl1_gstrings_stats[i].stat_string,
  3184. ETH_GSTRING_LEN);
  3185. p += ETH_GSTRING_LEN;
  3186. }
  3187. break;
  3188. }
  3189. }
  3190. static int atl1_nway_reset(struct net_device *netdev)
  3191. {
  3192. struct atl1_adapter *adapter = netdev_priv(netdev);
  3193. struct atl1_hw *hw = &adapter->hw;
  3194. if (netif_running(netdev)) {
  3195. u16 phy_data;
  3196. atl1_down(adapter);
  3197. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3198. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3199. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  3200. } else {
  3201. switch (hw->media_type) {
  3202. case MEDIA_TYPE_100M_FULL:
  3203. phy_data = MII_CR_FULL_DUPLEX |
  3204. MII_CR_SPEED_100 | MII_CR_RESET;
  3205. break;
  3206. case MEDIA_TYPE_100M_HALF:
  3207. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  3208. break;
  3209. case MEDIA_TYPE_10M_FULL:
  3210. phy_data = MII_CR_FULL_DUPLEX |
  3211. MII_CR_SPEED_10 | MII_CR_RESET;
  3212. break;
  3213. default:
  3214. /* MEDIA_TYPE_10M_HALF */
  3215. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  3216. }
  3217. }
  3218. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  3219. atl1_up(adapter);
  3220. }
  3221. return 0;
  3222. }
  3223. const struct ethtool_ops atl1_ethtool_ops = {
  3224. .get_settings = atl1_get_settings,
  3225. .set_settings = atl1_set_settings,
  3226. .get_drvinfo = atl1_get_drvinfo,
  3227. .get_wol = atl1_get_wol,
  3228. .set_wol = atl1_set_wol,
  3229. .get_msglevel = atl1_get_msglevel,
  3230. .set_msglevel = atl1_set_msglevel,
  3231. .get_regs_len = atl1_get_regs_len,
  3232. .get_regs = atl1_get_regs,
  3233. .get_ringparam = atl1_get_ringparam,
  3234. .set_ringparam = atl1_set_ringparam,
  3235. .get_pauseparam = atl1_get_pauseparam,
  3236. .set_pauseparam = atl1_set_pauseparam,
  3237. .get_rx_csum = atl1_get_rx_csum,
  3238. .set_tx_csum = ethtool_op_set_tx_hw_csum,
  3239. .get_link = ethtool_op_get_link,
  3240. .set_sg = ethtool_op_set_sg,
  3241. .get_strings = atl1_get_strings,
  3242. .nway_reset = atl1_nway_reset,
  3243. .get_ethtool_stats = atl1_get_ethtool_stats,
  3244. .get_sset_count = atl1_get_sset_count,
  3245. .set_tso = ethtool_op_set_tso,
  3246. };