evlist.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include <lk/debugfs.h>
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include "debug.h"
  18. #include <unistd.h>
  19. #include "parse-events.h"
  20. #include <sys/mman.h>
  21. #include <linux/bitops.h>
  22. #include <linux/hash.h>
  23. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  24. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  25. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  26. struct thread_map *threads)
  27. {
  28. int i;
  29. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  30. INIT_HLIST_HEAD(&evlist->heads[i]);
  31. INIT_LIST_HEAD(&evlist->entries);
  32. perf_evlist__set_maps(evlist, cpus, threads);
  33. evlist->workload.pid = -1;
  34. }
  35. struct perf_evlist *perf_evlist__new(void)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, NULL, NULL);
  40. return evlist;
  41. }
  42. /**
  43. * perf_evlist__set_id_pos - set the positions of event ids.
  44. * @evlist: selected event list
  45. *
  46. * Events with compatible sample types all have the same id_pos
  47. * and is_pos. For convenience, put a copy on evlist.
  48. */
  49. void perf_evlist__set_id_pos(struct perf_evlist *evlist)
  50. {
  51. struct perf_evsel *first = perf_evlist__first(evlist);
  52. evlist->id_pos = first->id_pos;
  53. evlist->is_pos = first->is_pos;
  54. }
  55. static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
  56. {
  57. struct perf_evsel *evsel;
  58. list_for_each_entry(evsel, &evlist->entries, node)
  59. perf_evsel__calc_id_pos(evsel);
  60. perf_evlist__set_id_pos(evlist);
  61. }
  62. static void perf_evlist__purge(struct perf_evlist *evlist)
  63. {
  64. struct perf_evsel *pos, *n;
  65. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  66. list_del_init(&pos->node);
  67. perf_evsel__delete(pos);
  68. }
  69. evlist->nr_entries = 0;
  70. }
  71. void perf_evlist__exit(struct perf_evlist *evlist)
  72. {
  73. free(evlist->mmap);
  74. free(evlist->pollfd);
  75. evlist->mmap = NULL;
  76. evlist->pollfd = NULL;
  77. }
  78. void perf_evlist__delete(struct perf_evlist *evlist)
  79. {
  80. perf_evlist__purge(evlist);
  81. perf_evlist__exit(evlist);
  82. free(evlist);
  83. }
  84. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  85. {
  86. list_add_tail(&entry->node, &evlist->entries);
  87. if (!evlist->nr_entries++)
  88. perf_evlist__set_id_pos(evlist);
  89. }
  90. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  91. struct list_head *list,
  92. int nr_entries)
  93. {
  94. bool set_id_pos = !evlist->nr_entries;
  95. list_splice_tail(list, &evlist->entries);
  96. evlist->nr_entries += nr_entries;
  97. if (set_id_pos)
  98. perf_evlist__set_id_pos(evlist);
  99. }
  100. void __perf_evlist__set_leader(struct list_head *list)
  101. {
  102. struct perf_evsel *evsel, *leader;
  103. leader = list_entry(list->next, struct perf_evsel, node);
  104. evsel = list_entry(list->prev, struct perf_evsel, node);
  105. leader->nr_members = evsel->idx - leader->idx + 1;
  106. list_for_each_entry(evsel, list, node) {
  107. evsel->leader = leader;
  108. }
  109. }
  110. void perf_evlist__set_leader(struct perf_evlist *evlist)
  111. {
  112. if (evlist->nr_entries) {
  113. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  114. __perf_evlist__set_leader(&evlist->entries);
  115. }
  116. }
  117. int perf_evlist__add_default(struct perf_evlist *evlist)
  118. {
  119. struct perf_event_attr attr = {
  120. .type = PERF_TYPE_HARDWARE,
  121. .config = PERF_COUNT_HW_CPU_CYCLES,
  122. };
  123. struct perf_evsel *evsel;
  124. event_attr_init(&attr);
  125. evsel = perf_evsel__new(&attr, 0);
  126. if (evsel == NULL)
  127. goto error;
  128. /* use strdup() because free(evsel) assumes name is allocated */
  129. evsel->name = strdup("cycles");
  130. if (!evsel->name)
  131. goto error_free;
  132. perf_evlist__add(evlist, evsel);
  133. return 0;
  134. error_free:
  135. perf_evsel__delete(evsel);
  136. error:
  137. return -ENOMEM;
  138. }
  139. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  140. struct perf_event_attr *attrs, size_t nr_attrs)
  141. {
  142. struct perf_evsel *evsel, *n;
  143. LIST_HEAD(head);
  144. size_t i;
  145. for (i = 0; i < nr_attrs; i++) {
  146. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  147. if (evsel == NULL)
  148. goto out_delete_partial_list;
  149. list_add_tail(&evsel->node, &head);
  150. }
  151. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  152. return 0;
  153. out_delete_partial_list:
  154. list_for_each_entry_safe(evsel, n, &head, node)
  155. perf_evsel__delete(evsel);
  156. return -1;
  157. }
  158. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  159. struct perf_event_attr *attrs, size_t nr_attrs)
  160. {
  161. size_t i;
  162. for (i = 0; i < nr_attrs; i++)
  163. event_attr_init(attrs + i);
  164. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  165. }
  166. struct perf_evsel *
  167. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  168. {
  169. struct perf_evsel *evsel;
  170. list_for_each_entry(evsel, &evlist->entries, node) {
  171. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  172. (int)evsel->attr.config == id)
  173. return evsel;
  174. }
  175. return NULL;
  176. }
  177. struct perf_evsel *
  178. perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
  179. const char *name)
  180. {
  181. struct perf_evsel *evsel;
  182. list_for_each_entry(evsel, &evlist->entries, node) {
  183. if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
  184. (strcmp(evsel->name, name) == 0))
  185. return evsel;
  186. }
  187. return NULL;
  188. }
  189. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  190. const char *sys, const char *name, void *handler)
  191. {
  192. struct perf_evsel *evsel;
  193. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  194. if (evsel == NULL)
  195. return -1;
  196. evsel->handler.func = handler;
  197. perf_evlist__add(evlist, evsel);
  198. return 0;
  199. }
  200. void perf_evlist__disable(struct perf_evlist *evlist)
  201. {
  202. int cpu, thread;
  203. struct perf_evsel *pos;
  204. int nr_cpus = cpu_map__nr(evlist->cpus);
  205. int nr_threads = thread_map__nr(evlist->threads);
  206. for (cpu = 0; cpu < nr_cpus; cpu++) {
  207. list_for_each_entry(pos, &evlist->entries, node) {
  208. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  209. continue;
  210. for (thread = 0; thread < nr_threads; thread++)
  211. ioctl(FD(pos, cpu, thread),
  212. PERF_EVENT_IOC_DISABLE, 0);
  213. }
  214. }
  215. }
  216. void perf_evlist__enable(struct perf_evlist *evlist)
  217. {
  218. int cpu, thread;
  219. struct perf_evsel *pos;
  220. int nr_cpus = cpu_map__nr(evlist->cpus);
  221. int nr_threads = thread_map__nr(evlist->threads);
  222. for (cpu = 0; cpu < nr_cpus; cpu++) {
  223. list_for_each_entry(pos, &evlist->entries, node) {
  224. if (!perf_evsel__is_group_leader(pos) || !pos->fd)
  225. continue;
  226. for (thread = 0; thread < nr_threads; thread++)
  227. ioctl(FD(pos, cpu, thread),
  228. PERF_EVENT_IOC_ENABLE, 0);
  229. }
  230. }
  231. }
  232. int perf_evlist__disable_event(struct perf_evlist *evlist,
  233. struct perf_evsel *evsel)
  234. {
  235. int cpu, thread, err;
  236. if (!evsel->fd)
  237. return 0;
  238. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  239. for (thread = 0; thread < evlist->threads->nr; thread++) {
  240. err = ioctl(FD(evsel, cpu, thread),
  241. PERF_EVENT_IOC_DISABLE, 0);
  242. if (err)
  243. return err;
  244. }
  245. }
  246. return 0;
  247. }
  248. int perf_evlist__enable_event(struct perf_evlist *evlist,
  249. struct perf_evsel *evsel)
  250. {
  251. int cpu, thread, err;
  252. if (!evsel->fd)
  253. return -EINVAL;
  254. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  255. for (thread = 0; thread < evlist->threads->nr; thread++) {
  256. err = ioctl(FD(evsel, cpu, thread),
  257. PERF_EVENT_IOC_ENABLE, 0);
  258. if (err)
  259. return err;
  260. }
  261. }
  262. return 0;
  263. }
  264. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  265. {
  266. int nr_cpus = cpu_map__nr(evlist->cpus);
  267. int nr_threads = thread_map__nr(evlist->threads);
  268. int nfds = nr_cpus * nr_threads * evlist->nr_entries;
  269. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  270. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  271. }
  272. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  273. {
  274. fcntl(fd, F_SETFL, O_NONBLOCK);
  275. evlist->pollfd[evlist->nr_fds].fd = fd;
  276. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  277. evlist->nr_fds++;
  278. }
  279. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  280. struct perf_evsel *evsel,
  281. int cpu, int thread, u64 id)
  282. {
  283. int hash;
  284. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  285. sid->id = id;
  286. sid->evsel = evsel;
  287. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  288. hlist_add_head(&sid->node, &evlist->heads[hash]);
  289. }
  290. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  291. int cpu, int thread, u64 id)
  292. {
  293. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  294. evsel->id[evsel->ids++] = id;
  295. }
  296. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  297. struct perf_evsel *evsel,
  298. int cpu, int thread, int fd)
  299. {
  300. u64 read_data[4] = { 0, };
  301. int id_idx = 1; /* The first entry is the counter value */
  302. u64 id;
  303. int ret;
  304. ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
  305. if (!ret)
  306. goto add;
  307. if (errno != ENOTTY)
  308. return -1;
  309. /* Legacy way to get event id.. All hail to old kernels! */
  310. /*
  311. * This way does not work with group format read, so bail
  312. * out in that case.
  313. */
  314. if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
  315. return -1;
  316. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  317. read(fd, &read_data, sizeof(read_data)) == -1)
  318. return -1;
  319. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  320. ++id_idx;
  321. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  322. ++id_idx;
  323. id = read_data[id_idx];
  324. add:
  325. perf_evlist__id_add(evlist, evsel, cpu, thread, id);
  326. return 0;
  327. }
  328. struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
  329. {
  330. struct hlist_head *head;
  331. struct perf_sample_id *sid;
  332. int hash;
  333. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  334. head = &evlist->heads[hash];
  335. hlist_for_each_entry(sid, head, node)
  336. if (sid->id == id)
  337. return sid;
  338. return NULL;
  339. }
  340. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  341. {
  342. struct perf_sample_id *sid;
  343. if (evlist->nr_entries == 1)
  344. return perf_evlist__first(evlist);
  345. sid = perf_evlist__id2sid(evlist, id);
  346. if (sid)
  347. return sid->evsel;
  348. if (!perf_evlist__sample_id_all(evlist))
  349. return perf_evlist__first(evlist);
  350. return NULL;
  351. }
  352. static int perf_evlist__event2id(struct perf_evlist *evlist,
  353. union perf_event *event, u64 *id)
  354. {
  355. const u64 *array = event->sample.array;
  356. ssize_t n;
  357. n = (event->header.size - sizeof(event->header)) >> 3;
  358. if (event->header.type == PERF_RECORD_SAMPLE) {
  359. if (evlist->id_pos >= n)
  360. return -1;
  361. *id = array[evlist->id_pos];
  362. } else {
  363. if (evlist->is_pos > n)
  364. return -1;
  365. n -= evlist->is_pos;
  366. *id = array[n];
  367. }
  368. return 0;
  369. }
  370. static struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
  371. union perf_event *event)
  372. {
  373. struct perf_evsel *first = perf_evlist__first(evlist);
  374. struct hlist_head *head;
  375. struct perf_sample_id *sid;
  376. int hash;
  377. u64 id;
  378. if (evlist->nr_entries == 1)
  379. return first;
  380. if (!first->attr.sample_id_all &&
  381. event->header.type != PERF_RECORD_SAMPLE)
  382. return first;
  383. if (perf_evlist__event2id(evlist, event, &id))
  384. return NULL;
  385. /* Synthesized events have an id of zero */
  386. if (!id)
  387. return first;
  388. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  389. head = &evlist->heads[hash];
  390. hlist_for_each_entry(sid, head, node) {
  391. if (sid->id == id)
  392. return sid->evsel;
  393. }
  394. return NULL;
  395. }
  396. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  397. {
  398. struct perf_mmap *md = &evlist->mmap[idx];
  399. unsigned int head = perf_mmap__read_head(md);
  400. unsigned int old = md->prev;
  401. unsigned char *data = md->base + page_size;
  402. union perf_event *event = NULL;
  403. if (evlist->overwrite) {
  404. /*
  405. * If we're further behind than half the buffer, there's a chance
  406. * the writer will bite our tail and mess up the samples under us.
  407. *
  408. * If we somehow ended up ahead of the head, we got messed up.
  409. *
  410. * In either case, truncate and restart at head.
  411. */
  412. int diff = head - old;
  413. if (diff > md->mask / 2 || diff < 0) {
  414. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  415. /*
  416. * head points to a known good entry, start there.
  417. */
  418. old = head;
  419. }
  420. }
  421. if (old != head) {
  422. size_t size;
  423. event = (union perf_event *)&data[old & md->mask];
  424. size = event->header.size;
  425. /*
  426. * Event straddles the mmap boundary -- header should always
  427. * be inside due to u64 alignment of output.
  428. */
  429. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  430. unsigned int offset = old;
  431. unsigned int len = min(sizeof(*event), size), cpy;
  432. void *dst = &md->event_copy;
  433. do {
  434. cpy = min(md->mask + 1 - (offset & md->mask), len);
  435. memcpy(dst, &data[offset & md->mask], cpy);
  436. offset += cpy;
  437. dst += cpy;
  438. len -= cpy;
  439. } while (len);
  440. event = &md->event_copy;
  441. }
  442. old += size;
  443. }
  444. md->prev = old;
  445. return event;
  446. }
  447. void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx)
  448. {
  449. if (!evlist->overwrite) {
  450. struct perf_mmap *md = &evlist->mmap[idx];
  451. unsigned int old = md->prev;
  452. perf_mmap__write_tail(md, old);
  453. }
  454. }
  455. static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
  456. {
  457. if (evlist->mmap[idx].base != NULL) {
  458. munmap(evlist->mmap[idx].base, evlist->mmap_len);
  459. evlist->mmap[idx].base = NULL;
  460. }
  461. }
  462. void perf_evlist__munmap(struct perf_evlist *evlist)
  463. {
  464. int i;
  465. for (i = 0; i < evlist->nr_mmaps; i++)
  466. __perf_evlist__munmap(evlist, i);
  467. free(evlist->mmap);
  468. evlist->mmap = NULL;
  469. }
  470. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  471. {
  472. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  473. if (cpu_map__empty(evlist->cpus))
  474. evlist->nr_mmaps = thread_map__nr(evlist->threads);
  475. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  476. return evlist->mmap != NULL ? 0 : -ENOMEM;
  477. }
  478. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  479. int idx, int prot, int mask, int fd)
  480. {
  481. evlist->mmap[idx].prev = 0;
  482. evlist->mmap[idx].mask = mask;
  483. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  484. MAP_SHARED, fd, 0);
  485. if (evlist->mmap[idx].base == MAP_FAILED) {
  486. evlist->mmap[idx].base = NULL;
  487. return -1;
  488. }
  489. perf_evlist__add_pollfd(evlist, fd);
  490. return 0;
  491. }
  492. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  493. {
  494. struct perf_evsel *evsel;
  495. int cpu, thread;
  496. int nr_cpus = cpu_map__nr(evlist->cpus);
  497. int nr_threads = thread_map__nr(evlist->threads);
  498. pr_debug2("perf event ring buffer mmapped per cpu\n");
  499. for (cpu = 0; cpu < nr_cpus; cpu++) {
  500. int output = -1;
  501. for (thread = 0; thread < nr_threads; thread++) {
  502. list_for_each_entry(evsel, &evlist->entries, node) {
  503. int fd = FD(evsel, cpu, thread);
  504. if (output == -1) {
  505. output = fd;
  506. if (__perf_evlist__mmap(evlist, cpu,
  507. prot, mask, output) < 0)
  508. goto out_unmap;
  509. } else {
  510. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  511. goto out_unmap;
  512. }
  513. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  514. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  515. goto out_unmap;
  516. }
  517. }
  518. }
  519. return 0;
  520. out_unmap:
  521. for (cpu = 0; cpu < nr_cpus; cpu++)
  522. __perf_evlist__munmap(evlist, cpu);
  523. return -1;
  524. }
  525. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  526. {
  527. struct perf_evsel *evsel;
  528. int thread;
  529. int nr_threads = thread_map__nr(evlist->threads);
  530. pr_debug2("perf event ring buffer mmapped per thread\n");
  531. for (thread = 0; thread < nr_threads; thread++) {
  532. int output = -1;
  533. list_for_each_entry(evsel, &evlist->entries, node) {
  534. int fd = FD(evsel, 0, thread);
  535. if (output == -1) {
  536. output = fd;
  537. if (__perf_evlist__mmap(evlist, thread,
  538. prot, mask, output) < 0)
  539. goto out_unmap;
  540. } else {
  541. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  542. goto out_unmap;
  543. }
  544. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  545. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  546. goto out_unmap;
  547. }
  548. }
  549. return 0;
  550. out_unmap:
  551. for (thread = 0; thread < nr_threads; thread++)
  552. __perf_evlist__munmap(evlist, thread);
  553. return -1;
  554. }
  555. /** perf_evlist__mmap - Create per cpu maps to receive events
  556. *
  557. * @evlist - list of events
  558. * @pages - map length in pages
  559. * @overwrite - overwrite older events?
  560. *
  561. * If overwrite is false the user needs to signal event consuption using:
  562. *
  563. * struct perf_mmap *m = &evlist->mmap[cpu];
  564. * unsigned int head = perf_mmap__read_head(m);
  565. *
  566. * perf_mmap__write_tail(m, head)
  567. *
  568. * Using perf_evlist__read_on_cpu does this automatically.
  569. */
  570. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  571. bool overwrite)
  572. {
  573. struct perf_evsel *evsel;
  574. const struct cpu_map *cpus = evlist->cpus;
  575. const struct thread_map *threads = evlist->threads;
  576. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  577. /* 512 kiB: default amount of unprivileged mlocked memory */
  578. if (pages == UINT_MAX)
  579. pages = (512 * 1024) / page_size;
  580. else if (!is_power_of_2(pages))
  581. return -EINVAL;
  582. mask = pages * page_size - 1;
  583. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  584. return -ENOMEM;
  585. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  586. return -ENOMEM;
  587. evlist->overwrite = overwrite;
  588. evlist->mmap_len = (pages + 1) * page_size;
  589. list_for_each_entry(evsel, &evlist->entries, node) {
  590. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  591. evsel->sample_id == NULL &&
  592. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  593. return -ENOMEM;
  594. }
  595. if (cpu_map__empty(cpus))
  596. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  597. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  598. }
  599. int perf_evlist__create_maps(struct perf_evlist *evlist,
  600. struct perf_target *target)
  601. {
  602. evlist->threads = thread_map__new_str(target->pid, target->tid,
  603. target->uid);
  604. if (evlist->threads == NULL)
  605. return -1;
  606. if (perf_target__has_task(target))
  607. evlist->cpus = cpu_map__dummy_new();
  608. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  609. evlist->cpus = cpu_map__dummy_new();
  610. else
  611. evlist->cpus = cpu_map__new(target->cpu_list);
  612. if (evlist->cpus == NULL)
  613. goto out_delete_threads;
  614. return 0;
  615. out_delete_threads:
  616. thread_map__delete(evlist->threads);
  617. return -1;
  618. }
  619. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  620. {
  621. cpu_map__delete(evlist->cpus);
  622. thread_map__delete(evlist->threads);
  623. evlist->cpus = NULL;
  624. evlist->threads = NULL;
  625. }
  626. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  627. {
  628. struct perf_evsel *evsel;
  629. int err = 0;
  630. const int ncpus = cpu_map__nr(evlist->cpus),
  631. nthreads = thread_map__nr(evlist->threads);
  632. list_for_each_entry(evsel, &evlist->entries, node) {
  633. if (evsel->filter == NULL)
  634. continue;
  635. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  636. if (err)
  637. break;
  638. }
  639. return err;
  640. }
  641. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  642. {
  643. struct perf_evsel *evsel;
  644. int err = 0;
  645. const int ncpus = cpu_map__nr(evlist->cpus),
  646. nthreads = thread_map__nr(evlist->threads);
  647. list_for_each_entry(evsel, &evlist->entries, node) {
  648. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  649. if (err)
  650. break;
  651. }
  652. return err;
  653. }
  654. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  655. {
  656. struct perf_evsel *pos;
  657. if (evlist->nr_entries == 1)
  658. return true;
  659. if (evlist->id_pos < 0 || evlist->is_pos < 0)
  660. return false;
  661. list_for_each_entry(pos, &evlist->entries, node) {
  662. if (pos->id_pos != evlist->id_pos ||
  663. pos->is_pos != evlist->is_pos)
  664. return false;
  665. }
  666. return true;
  667. }
  668. u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  669. {
  670. struct perf_evsel *evsel;
  671. if (evlist->combined_sample_type)
  672. return evlist->combined_sample_type;
  673. list_for_each_entry(evsel, &evlist->entries, node)
  674. evlist->combined_sample_type |= evsel->attr.sample_type;
  675. return evlist->combined_sample_type;
  676. }
  677. u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
  678. {
  679. evlist->combined_sample_type = 0;
  680. return __perf_evlist__combined_sample_type(evlist);
  681. }
  682. bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
  683. {
  684. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  685. u64 read_format = first->attr.read_format;
  686. u64 sample_type = first->attr.sample_type;
  687. list_for_each_entry_continue(pos, &evlist->entries, node) {
  688. if (read_format != pos->attr.read_format)
  689. return false;
  690. }
  691. /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
  692. if ((sample_type & PERF_SAMPLE_READ) &&
  693. !(read_format & PERF_FORMAT_ID)) {
  694. return false;
  695. }
  696. return true;
  697. }
  698. u64 perf_evlist__read_format(struct perf_evlist *evlist)
  699. {
  700. struct perf_evsel *first = perf_evlist__first(evlist);
  701. return first->attr.read_format;
  702. }
  703. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  704. {
  705. struct perf_evsel *first = perf_evlist__first(evlist);
  706. struct perf_sample *data;
  707. u64 sample_type;
  708. u16 size = 0;
  709. if (!first->attr.sample_id_all)
  710. goto out;
  711. sample_type = first->attr.sample_type;
  712. if (sample_type & PERF_SAMPLE_TID)
  713. size += sizeof(data->tid) * 2;
  714. if (sample_type & PERF_SAMPLE_TIME)
  715. size += sizeof(data->time);
  716. if (sample_type & PERF_SAMPLE_ID)
  717. size += sizeof(data->id);
  718. if (sample_type & PERF_SAMPLE_STREAM_ID)
  719. size += sizeof(data->stream_id);
  720. if (sample_type & PERF_SAMPLE_CPU)
  721. size += sizeof(data->cpu) * 2;
  722. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  723. size += sizeof(data->id);
  724. out:
  725. return size;
  726. }
  727. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  728. {
  729. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  730. list_for_each_entry_continue(pos, &evlist->entries, node) {
  731. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  732. return false;
  733. }
  734. return true;
  735. }
  736. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  737. {
  738. struct perf_evsel *first = perf_evlist__first(evlist);
  739. return first->attr.sample_id_all;
  740. }
  741. void perf_evlist__set_selected(struct perf_evlist *evlist,
  742. struct perf_evsel *evsel)
  743. {
  744. evlist->selected = evsel;
  745. }
  746. void perf_evlist__close(struct perf_evlist *evlist)
  747. {
  748. struct perf_evsel *evsel;
  749. int ncpus = cpu_map__nr(evlist->cpus);
  750. int nthreads = thread_map__nr(evlist->threads);
  751. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  752. perf_evsel__close(evsel, ncpus, nthreads);
  753. }
  754. int perf_evlist__open(struct perf_evlist *evlist)
  755. {
  756. struct perf_evsel *evsel;
  757. int err;
  758. perf_evlist__update_id_pos(evlist);
  759. list_for_each_entry(evsel, &evlist->entries, node) {
  760. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  761. if (err < 0)
  762. goto out_err;
  763. }
  764. return 0;
  765. out_err:
  766. perf_evlist__close(evlist);
  767. errno = -err;
  768. return err;
  769. }
  770. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  771. struct perf_target *target,
  772. const char *argv[], bool pipe_output,
  773. bool want_signal)
  774. {
  775. int child_ready_pipe[2], go_pipe[2];
  776. char bf;
  777. if (pipe(child_ready_pipe) < 0) {
  778. perror("failed to create 'ready' pipe");
  779. return -1;
  780. }
  781. if (pipe(go_pipe) < 0) {
  782. perror("failed to create 'go' pipe");
  783. goto out_close_ready_pipe;
  784. }
  785. evlist->workload.pid = fork();
  786. if (evlist->workload.pid < 0) {
  787. perror("failed to fork");
  788. goto out_close_pipes;
  789. }
  790. if (!evlist->workload.pid) {
  791. if (pipe_output)
  792. dup2(2, 1);
  793. signal(SIGTERM, SIG_DFL);
  794. close(child_ready_pipe[0]);
  795. close(go_pipe[1]);
  796. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  797. /*
  798. * Tell the parent we're ready to go
  799. */
  800. close(child_ready_pipe[1]);
  801. /*
  802. * Wait until the parent tells us to go.
  803. */
  804. if (read(go_pipe[0], &bf, 1) == -1)
  805. perror("unable to read pipe");
  806. execvp(argv[0], (char **)argv);
  807. perror(argv[0]);
  808. if (want_signal)
  809. kill(getppid(), SIGUSR1);
  810. exit(-1);
  811. }
  812. if (perf_target__none(target))
  813. evlist->threads->map[0] = evlist->workload.pid;
  814. close(child_ready_pipe[1]);
  815. close(go_pipe[0]);
  816. /*
  817. * wait for child to settle
  818. */
  819. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  820. perror("unable to read pipe");
  821. goto out_close_pipes;
  822. }
  823. fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
  824. evlist->workload.cork_fd = go_pipe[1];
  825. close(child_ready_pipe[0]);
  826. return 0;
  827. out_close_pipes:
  828. close(go_pipe[0]);
  829. close(go_pipe[1]);
  830. out_close_ready_pipe:
  831. close(child_ready_pipe[0]);
  832. close(child_ready_pipe[1]);
  833. return -1;
  834. }
  835. int perf_evlist__start_workload(struct perf_evlist *evlist)
  836. {
  837. if (evlist->workload.cork_fd > 0) {
  838. char bf = 0;
  839. int ret;
  840. /*
  841. * Remove the cork, let it rip!
  842. */
  843. ret = write(evlist->workload.cork_fd, &bf, 1);
  844. if (ret < 0)
  845. perror("enable to write to pipe");
  846. close(evlist->workload.cork_fd);
  847. return ret;
  848. }
  849. return 0;
  850. }
  851. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  852. struct perf_sample *sample)
  853. {
  854. struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
  855. if (!evsel)
  856. return -EFAULT;
  857. return perf_evsel__parse_sample(evsel, event, sample);
  858. }
  859. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  860. {
  861. struct perf_evsel *evsel;
  862. size_t printed = 0;
  863. list_for_each_entry(evsel, &evlist->entries, node) {
  864. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  865. perf_evsel__name(evsel));
  866. }
  867. return printed + fprintf(fp, "\n");;
  868. }