md.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kthread.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/buffer_head.h> /* for invalidate_bdev */
  33. #include <linux/suspend.h>
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  56. /*
  57. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  58. * is 1000 KB/sec, so the extra system load does not show up that much.
  59. * Increase it if you want to have more _guaranteed_ speed. Note that
  60. * the RAID driver will use the maximum available bandwidth if the IO
  61. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  62. * speed limit - in case reconstruction slows down your system despite
  63. * idle IO detection.
  64. *
  65. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  66. * or /sys/block/mdX/md/sync_speed_{min,max}
  67. */
  68. static int sysctl_speed_limit_min = 1000;
  69. static int sysctl_speed_limit_max = 200000;
  70. static inline int speed_min(mddev_t *mddev)
  71. {
  72. return mddev->sync_speed_min ?
  73. mddev->sync_speed_min : sysctl_speed_limit_min;
  74. }
  75. static inline int speed_max(mddev_t *mddev)
  76. {
  77. return mddev->sync_speed_max ?
  78. mddev->sync_speed_max : sysctl_speed_limit_max;
  79. }
  80. static struct ctl_table_header *raid_table_header;
  81. static ctl_table raid_table[] = {
  82. {
  83. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  84. .procname = "speed_limit_min",
  85. .data = &sysctl_speed_limit_min,
  86. .maxlen = sizeof(int),
  87. .mode = 0644,
  88. .proc_handler = &proc_dointvec,
  89. },
  90. {
  91. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  92. .procname = "speed_limit_max",
  93. .data = &sysctl_speed_limit_max,
  94. .maxlen = sizeof(int),
  95. .mode = 0644,
  96. .proc_handler = &proc_dointvec,
  97. },
  98. { .ctl_name = 0 }
  99. };
  100. static ctl_table raid_dir_table[] = {
  101. {
  102. .ctl_name = DEV_RAID,
  103. .procname = "raid",
  104. .maxlen = 0,
  105. .mode = 0555,
  106. .child = raid_table,
  107. },
  108. { .ctl_name = 0 }
  109. };
  110. static ctl_table raid_root_table[] = {
  111. {
  112. .ctl_name = CTL_DEV,
  113. .procname = "dev",
  114. .maxlen = 0,
  115. .mode = 0555,
  116. .child = raid_dir_table,
  117. },
  118. { .ctl_name = 0 }
  119. };
  120. static struct block_device_operations md_fops;
  121. static int start_readonly;
  122. /*
  123. * We have a system wide 'event count' that is incremented
  124. * on any 'interesting' event, and readers of /proc/mdstat
  125. * can use 'poll' or 'select' to find out when the event
  126. * count increases.
  127. *
  128. * Events are:
  129. * start array, stop array, error, add device, remove device,
  130. * start build, activate spare
  131. */
  132. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  133. static atomic_t md_event_count;
  134. void md_new_event(mddev_t *mddev)
  135. {
  136. atomic_inc(&md_event_count);
  137. wake_up(&md_event_waiters);
  138. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  139. }
  140. EXPORT_SYMBOL_GPL(md_new_event);
  141. /* Alternate version that can be called from interrupts
  142. * when calling sysfs_notify isn't needed.
  143. */
  144. static void md_new_event_inintr(mddev_t *mddev)
  145. {
  146. atomic_inc(&md_event_count);
  147. wake_up(&md_event_waiters);
  148. }
  149. /*
  150. * Enables to iterate over all existing md arrays
  151. * all_mddevs_lock protects this list.
  152. */
  153. static LIST_HEAD(all_mddevs);
  154. static DEFINE_SPINLOCK(all_mddevs_lock);
  155. /*
  156. * iterates through all used mddevs in the system.
  157. * We take care to grab the all_mddevs_lock whenever navigating
  158. * the list, and to always hold a refcount when unlocked.
  159. * Any code which breaks out of this loop while own
  160. * a reference to the current mddev and must mddev_put it.
  161. */
  162. #define ITERATE_MDDEV(mddev,tmp) \
  163. \
  164. for (({ spin_lock(&all_mddevs_lock); \
  165. tmp = all_mddevs.next; \
  166. mddev = NULL;}); \
  167. ({ if (tmp != &all_mddevs) \
  168. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  169. spin_unlock(&all_mddevs_lock); \
  170. if (mddev) mddev_put(mddev); \
  171. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  172. tmp != &all_mddevs;}); \
  173. ({ spin_lock(&all_mddevs_lock); \
  174. tmp = tmp->next;}) \
  175. )
  176. static int md_fail_request (request_queue_t *q, struct bio *bio)
  177. {
  178. bio_io_error(bio, bio->bi_size);
  179. return 0;
  180. }
  181. static inline mddev_t *mddev_get(mddev_t *mddev)
  182. {
  183. atomic_inc(&mddev->active);
  184. return mddev;
  185. }
  186. static void mddev_put(mddev_t *mddev)
  187. {
  188. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  189. return;
  190. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  191. list_del(&mddev->all_mddevs);
  192. spin_unlock(&all_mddevs_lock);
  193. blk_cleanup_queue(mddev->queue);
  194. kobject_unregister(&mddev->kobj);
  195. } else
  196. spin_unlock(&all_mddevs_lock);
  197. }
  198. static mddev_t * mddev_find(dev_t unit)
  199. {
  200. mddev_t *mddev, *new = NULL;
  201. retry:
  202. spin_lock(&all_mddevs_lock);
  203. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  204. if (mddev->unit == unit) {
  205. mddev_get(mddev);
  206. spin_unlock(&all_mddevs_lock);
  207. kfree(new);
  208. return mddev;
  209. }
  210. if (new) {
  211. list_add(&new->all_mddevs, &all_mddevs);
  212. spin_unlock(&all_mddevs_lock);
  213. return new;
  214. }
  215. spin_unlock(&all_mddevs_lock);
  216. new = kzalloc(sizeof(*new), GFP_KERNEL);
  217. if (!new)
  218. return NULL;
  219. new->unit = unit;
  220. if (MAJOR(unit) == MD_MAJOR)
  221. new->md_minor = MINOR(unit);
  222. else
  223. new->md_minor = MINOR(unit) >> MdpMinorShift;
  224. mutex_init(&new->reconfig_mutex);
  225. INIT_LIST_HEAD(&new->disks);
  226. INIT_LIST_HEAD(&new->all_mddevs);
  227. init_timer(&new->safemode_timer);
  228. atomic_set(&new->active, 1);
  229. spin_lock_init(&new->write_lock);
  230. init_waitqueue_head(&new->sb_wait);
  231. new->queue = blk_alloc_queue(GFP_KERNEL);
  232. if (!new->queue) {
  233. kfree(new);
  234. return NULL;
  235. }
  236. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  237. blk_queue_make_request(new->queue, md_fail_request);
  238. goto retry;
  239. }
  240. static inline int mddev_lock(mddev_t * mddev)
  241. {
  242. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  243. }
  244. static inline int mddev_trylock(mddev_t * mddev)
  245. {
  246. return mutex_trylock(&mddev->reconfig_mutex);
  247. }
  248. static inline void mddev_unlock(mddev_t * mddev)
  249. {
  250. mutex_unlock(&mddev->reconfig_mutex);
  251. md_wakeup_thread(mddev->thread);
  252. }
  253. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  254. {
  255. mdk_rdev_t * rdev;
  256. struct list_head *tmp;
  257. ITERATE_RDEV(mddev,rdev,tmp) {
  258. if (rdev->desc_nr == nr)
  259. return rdev;
  260. }
  261. return NULL;
  262. }
  263. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  264. {
  265. struct list_head *tmp;
  266. mdk_rdev_t *rdev;
  267. ITERATE_RDEV(mddev,rdev,tmp) {
  268. if (rdev->bdev->bd_dev == dev)
  269. return rdev;
  270. }
  271. return NULL;
  272. }
  273. static struct mdk_personality *find_pers(int level, char *clevel)
  274. {
  275. struct mdk_personality *pers;
  276. list_for_each_entry(pers, &pers_list, list) {
  277. if (level != LEVEL_NONE && pers->level == level)
  278. return pers;
  279. if (strcmp(pers->name, clevel)==0)
  280. return pers;
  281. }
  282. return NULL;
  283. }
  284. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  285. {
  286. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  287. return MD_NEW_SIZE_BLOCKS(size);
  288. }
  289. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  290. {
  291. sector_t size;
  292. size = rdev->sb_offset;
  293. if (chunk_size)
  294. size &= ~((sector_t)chunk_size/1024 - 1);
  295. return size;
  296. }
  297. static int alloc_disk_sb(mdk_rdev_t * rdev)
  298. {
  299. if (rdev->sb_page)
  300. MD_BUG();
  301. rdev->sb_page = alloc_page(GFP_KERNEL);
  302. if (!rdev->sb_page) {
  303. printk(KERN_ALERT "md: out of memory.\n");
  304. return -EINVAL;
  305. }
  306. return 0;
  307. }
  308. static void free_disk_sb(mdk_rdev_t * rdev)
  309. {
  310. if (rdev->sb_page) {
  311. put_page(rdev->sb_page);
  312. rdev->sb_loaded = 0;
  313. rdev->sb_page = NULL;
  314. rdev->sb_offset = 0;
  315. rdev->size = 0;
  316. }
  317. }
  318. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  319. {
  320. mdk_rdev_t *rdev = bio->bi_private;
  321. mddev_t *mddev = rdev->mddev;
  322. if (bio->bi_size)
  323. return 1;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  325. md_error(mddev, rdev);
  326. if (atomic_dec_and_test(&mddev->pending_writes))
  327. wake_up(&mddev->sb_wait);
  328. bio_put(bio);
  329. return 0;
  330. }
  331. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  332. {
  333. struct bio *bio2 = bio->bi_private;
  334. mdk_rdev_t *rdev = bio2->bi_private;
  335. mddev_t *mddev = rdev->mddev;
  336. if (bio->bi_size)
  337. return 1;
  338. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  339. error == -EOPNOTSUPP) {
  340. unsigned long flags;
  341. /* barriers don't appear to be supported :-( */
  342. set_bit(BarriersNotsupp, &rdev->flags);
  343. mddev->barriers_work = 0;
  344. spin_lock_irqsave(&mddev->write_lock, flags);
  345. bio2->bi_next = mddev->biolist;
  346. mddev->biolist = bio2;
  347. spin_unlock_irqrestore(&mddev->write_lock, flags);
  348. wake_up(&mddev->sb_wait);
  349. bio_put(bio);
  350. return 0;
  351. }
  352. bio_put(bio2);
  353. bio->bi_private = rdev;
  354. return super_written(bio, bytes_done, error);
  355. }
  356. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  357. sector_t sector, int size, struct page *page)
  358. {
  359. /* write first size bytes of page to sector of rdev
  360. * Increment mddev->pending_writes before returning
  361. * and decrement it on completion, waking up sb_wait
  362. * if zero is reached.
  363. * If an error occurred, call md_error
  364. *
  365. * As we might need to resubmit the request if BIO_RW_BARRIER
  366. * causes ENOTSUPP, we allocate a spare bio...
  367. */
  368. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  369. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  370. bio->bi_bdev = rdev->bdev;
  371. bio->bi_sector = sector;
  372. bio_add_page(bio, page, size, 0);
  373. bio->bi_private = rdev;
  374. bio->bi_end_io = super_written;
  375. bio->bi_rw = rw;
  376. atomic_inc(&mddev->pending_writes);
  377. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  378. struct bio *rbio;
  379. rw |= (1<<BIO_RW_BARRIER);
  380. rbio = bio_clone(bio, GFP_NOIO);
  381. rbio->bi_private = bio;
  382. rbio->bi_end_io = super_written_barrier;
  383. submit_bio(rw, rbio);
  384. } else
  385. submit_bio(rw, bio);
  386. }
  387. void md_super_wait(mddev_t *mddev)
  388. {
  389. /* wait for all superblock writes that were scheduled to complete.
  390. * if any had to be retried (due to BARRIER problems), retry them
  391. */
  392. DEFINE_WAIT(wq);
  393. for(;;) {
  394. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  395. if (atomic_read(&mddev->pending_writes)==0)
  396. break;
  397. while (mddev->biolist) {
  398. struct bio *bio;
  399. spin_lock_irq(&mddev->write_lock);
  400. bio = mddev->biolist;
  401. mddev->biolist = bio->bi_next ;
  402. bio->bi_next = NULL;
  403. spin_unlock_irq(&mddev->write_lock);
  404. submit_bio(bio->bi_rw, bio);
  405. }
  406. schedule();
  407. }
  408. finish_wait(&mddev->sb_wait, &wq);
  409. }
  410. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  411. {
  412. if (bio->bi_size)
  413. return 1;
  414. complete((struct completion*)bio->bi_private);
  415. return 0;
  416. }
  417. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  418. struct page *page, int rw)
  419. {
  420. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  421. struct completion event;
  422. int ret;
  423. rw |= (1 << BIO_RW_SYNC);
  424. bio->bi_bdev = bdev;
  425. bio->bi_sector = sector;
  426. bio_add_page(bio, page, size, 0);
  427. init_completion(&event);
  428. bio->bi_private = &event;
  429. bio->bi_end_io = bi_complete;
  430. submit_bio(rw, bio);
  431. wait_for_completion(&event);
  432. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  433. bio_put(bio);
  434. return ret;
  435. }
  436. EXPORT_SYMBOL_GPL(sync_page_io);
  437. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  438. {
  439. char b[BDEVNAME_SIZE];
  440. if (!rdev->sb_page) {
  441. MD_BUG();
  442. return -EINVAL;
  443. }
  444. if (rdev->sb_loaded)
  445. return 0;
  446. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  447. goto fail;
  448. rdev->sb_loaded = 1;
  449. return 0;
  450. fail:
  451. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  452. bdevname(rdev->bdev,b));
  453. return -EINVAL;
  454. }
  455. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  456. {
  457. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  458. (sb1->set_uuid1 == sb2->set_uuid1) &&
  459. (sb1->set_uuid2 == sb2->set_uuid2) &&
  460. (sb1->set_uuid3 == sb2->set_uuid3))
  461. return 1;
  462. return 0;
  463. }
  464. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  465. {
  466. int ret;
  467. mdp_super_t *tmp1, *tmp2;
  468. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  469. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  470. if (!tmp1 || !tmp2) {
  471. ret = 0;
  472. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  473. goto abort;
  474. }
  475. *tmp1 = *sb1;
  476. *tmp2 = *sb2;
  477. /*
  478. * nr_disks is not constant
  479. */
  480. tmp1->nr_disks = 0;
  481. tmp2->nr_disks = 0;
  482. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  483. ret = 0;
  484. else
  485. ret = 1;
  486. abort:
  487. kfree(tmp1);
  488. kfree(tmp2);
  489. return ret;
  490. }
  491. static unsigned int calc_sb_csum(mdp_super_t * sb)
  492. {
  493. unsigned int disk_csum, csum;
  494. disk_csum = sb->sb_csum;
  495. sb->sb_csum = 0;
  496. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  497. sb->sb_csum = disk_csum;
  498. return csum;
  499. }
  500. /*
  501. * Handle superblock details.
  502. * We want to be able to handle multiple superblock formats
  503. * so we have a common interface to them all, and an array of
  504. * different handlers.
  505. * We rely on user-space to write the initial superblock, and support
  506. * reading and updating of superblocks.
  507. * Interface methods are:
  508. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  509. * loads and validates a superblock on dev.
  510. * if refdev != NULL, compare superblocks on both devices
  511. * Return:
  512. * 0 - dev has a superblock that is compatible with refdev
  513. * 1 - dev has a superblock that is compatible and newer than refdev
  514. * so dev should be used as the refdev in future
  515. * -EINVAL superblock incompatible or invalid
  516. * -othererror e.g. -EIO
  517. *
  518. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  519. * Verify that dev is acceptable into mddev.
  520. * The first time, mddev->raid_disks will be 0, and data from
  521. * dev should be merged in. Subsequent calls check that dev
  522. * is new enough. Return 0 or -EINVAL
  523. *
  524. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  525. * Update the superblock for rdev with data in mddev
  526. * This does not write to disc.
  527. *
  528. */
  529. struct super_type {
  530. char *name;
  531. struct module *owner;
  532. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  533. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  534. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  535. };
  536. /*
  537. * load_super for 0.90.0
  538. */
  539. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  540. {
  541. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  542. mdp_super_t *sb;
  543. int ret;
  544. sector_t sb_offset;
  545. /*
  546. * Calculate the position of the superblock,
  547. * it's at the end of the disk.
  548. *
  549. * It also happens to be a multiple of 4Kb.
  550. */
  551. sb_offset = calc_dev_sboffset(rdev->bdev);
  552. rdev->sb_offset = sb_offset;
  553. ret = read_disk_sb(rdev, MD_SB_BYTES);
  554. if (ret) return ret;
  555. ret = -EINVAL;
  556. bdevname(rdev->bdev, b);
  557. sb = (mdp_super_t*)page_address(rdev->sb_page);
  558. if (sb->md_magic != MD_SB_MAGIC) {
  559. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  560. b);
  561. goto abort;
  562. }
  563. if (sb->major_version != 0 ||
  564. sb->minor_version < 90 ||
  565. sb->minor_version > 91) {
  566. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  567. sb->major_version, sb->minor_version,
  568. b);
  569. goto abort;
  570. }
  571. if (sb->raid_disks <= 0)
  572. goto abort;
  573. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  574. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  575. b);
  576. goto abort;
  577. }
  578. rdev->preferred_minor = sb->md_minor;
  579. rdev->data_offset = 0;
  580. rdev->sb_size = MD_SB_BYTES;
  581. if (sb->level == LEVEL_MULTIPATH)
  582. rdev->desc_nr = -1;
  583. else
  584. rdev->desc_nr = sb->this_disk.number;
  585. if (refdev == 0)
  586. ret = 1;
  587. else {
  588. __u64 ev1, ev2;
  589. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  590. if (!uuid_equal(refsb, sb)) {
  591. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  592. b, bdevname(refdev->bdev,b2));
  593. goto abort;
  594. }
  595. if (!sb_equal(refsb, sb)) {
  596. printk(KERN_WARNING "md: %s has same UUID"
  597. " but different superblock to %s\n",
  598. b, bdevname(refdev->bdev, b2));
  599. goto abort;
  600. }
  601. ev1 = md_event(sb);
  602. ev2 = md_event(refsb);
  603. if (ev1 > ev2)
  604. ret = 1;
  605. else
  606. ret = 0;
  607. }
  608. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  609. if (rdev->size < sb->size && sb->level > 1)
  610. /* "this cannot possibly happen" ... */
  611. ret = -EINVAL;
  612. abort:
  613. return ret;
  614. }
  615. /*
  616. * validate_super for 0.90.0
  617. */
  618. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  619. {
  620. mdp_disk_t *desc;
  621. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  622. __u64 ev1 = md_event(sb);
  623. rdev->raid_disk = -1;
  624. rdev->flags = 0;
  625. if (mddev->raid_disks == 0) {
  626. mddev->major_version = 0;
  627. mddev->minor_version = sb->minor_version;
  628. mddev->patch_version = sb->patch_version;
  629. mddev->persistent = ! sb->not_persistent;
  630. mddev->chunk_size = sb->chunk_size;
  631. mddev->ctime = sb->ctime;
  632. mddev->utime = sb->utime;
  633. mddev->level = sb->level;
  634. mddev->clevel[0] = 0;
  635. mddev->layout = sb->layout;
  636. mddev->raid_disks = sb->raid_disks;
  637. mddev->size = sb->size;
  638. mddev->events = ev1;
  639. mddev->bitmap_offset = 0;
  640. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  641. if (mddev->minor_version >= 91) {
  642. mddev->reshape_position = sb->reshape_position;
  643. mddev->delta_disks = sb->delta_disks;
  644. mddev->new_level = sb->new_level;
  645. mddev->new_layout = sb->new_layout;
  646. mddev->new_chunk = sb->new_chunk;
  647. } else {
  648. mddev->reshape_position = MaxSector;
  649. mddev->delta_disks = 0;
  650. mddev->new_level = mddev->level;
  651. mddev->new_layout = mddev->layout;
  652. mddev->new_chunk = mddev->chunk_size;
  653. }
  654. if (sb->state & (1<<MD_SB_CLEAN))
  655. mddev->recovery_cp = MaxSector;
  656. else {
  657. if (sb->events_hi == sb->cp_events_hi &&
  658. sb->events_lo == sb->cp_events_lo) {
  659. mddev->recovery_cp = sb->recovery_cp;
  660. } else
  661. mddev->recovery_cp = 0;
  662. }
  663. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  664. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  665. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  666. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  667. mddev->max_disks = MD_SB_DISKS;
  668. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  669. mddev->bitmap_file == NULL) {
  670. if (mddev->level != 1 && mddev->level != 4
  671. && mddev->level != 5 && mddev->level != 6
  672. && mddev->level != 10) {
  673. /* FIXME use a better test */
  674. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  675. return -EINVAL;
  676. }
  677. mddev->bitmap_offset = mddev->default_bitmap_offset;
  678. }
  679. } else if (mddev->pers == NULL) {
  680. /* Insist on good event counter while assembling */
  681. ++ev1;
  682. if (ev1 < mddev->events)
  683. return -EINVAL;
  684. } else if (mddev->bitmap) {
  685. /* if adding to array with a bitmap, then we can accept an
  686. * older device ... but not too old.
  687. */
  688. if (ev1 < mddev->bitmap->events_cleared)
  689. return 0;
  690. } else {
  691. if (ev1 < mddev->events)
  692. /* just a hot-add of a new device, leave raid_disk at -1 */
  693. return 0;
  694. }
  695. if (mddev->level != LEVEL_MULTIPATH) {
  696. desc = sb->disks + rdev->desc_nr;
  697. if (desc->state & (1<<MD_DISK_FAULTY))
  698. set_bit(Faulty, &rdev->flags);
  699. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  700. desc->raid_disk < mddev->raid_disks */) {
  701. set_bit(In_sync, &rdev->flags);
  702. rdev->raid_disk = desc->raid_disk;
  703. }
  704. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  705. set_bit(WriteMostly, &rdev->flags);
  706. } else /* MULTIPATH are always insync */
  707. set_bit(In_sync, &rdev->flags);
  708. return 0;
  709. }
  710. /*
  711. * sync_super for 0.90.0
  712. */
  713. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  714. {
  715. mdp_super_t *sb;
  716. struct list_head *tmp;
  717. mdk_rdev_t *rdev2;
  718. int next_spare = mddev->raid_disks;
  719. /* make rdev->sb match mddev data..
  720. *
  721. * 1/ zero out disks
  722. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  723. * 3/ any empty disks < next_spare become removed
  724. *
  725. * disks[0] gets initialised to REMOVED because
  726. * we cannot be sure from other fields if it has
  727. * been initialised or not.
  728. */
  729. int i;
  730. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  731. rdev->sb_size = MD_SB_BYTES;
  732. sb = (mdp_super_t*)page_address(rdev->sb_page);
  733. memset(sb, 0, sizeof(*sb));
  734. sb->md_magic = MD_SB_MAGIC;
  735. sb->major_version = mddev->major_version;
  736. sb->patch_version = mddev->patch_version;
  737. sb->gvalid_words = 0; /* ignored */
  738. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  739. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  740. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  741. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  742. sb->ctime = mddev->ctime;
  743. sb->level = mddev->level;
  744. sb->size = mddev->size;
  745. sb->raid_disks = mddev->raid_disks;
  746. sb->md_minor = mddev->md_minor;
  747. sb->not_persistent = !mddev->persistent;
  748. sb->utime = mddev->utime;
  749. sb->state = 0;
  750. sb->events_hi = (mddev->events>>32);
  751. sb->events_lo = (u32)mddev->events;
  752. if (mddev->reshape_position == MaxSector)
  753. sb->minor_version = 90;
  754. else {
  755. sb->minor_version = 91;
  756. sb->reshape_position = mddev->reshape_position;
  757. sb->new_level = mddev->new_level;
  758. sb->delta_disks = mddev->delta_disks;
  759. sb->new_layout = mddev->new_layout;
  760. sb->new_chunk = mddev->new_chunk;
  761. }
  762. mddev->minor_version = sb->minor_version;
  763. if (mddev->in_sync)
  764. {
  765. sb->recovery_cp = mddev->recovery_cp;
  766. sb->cp_events_hi = (mddev->events>>32);
  767. sb->cp_events_lo = (u32)mddev->events;
  768. if (mddev->recovery_cp == MaxSector)
  769. sb->state = (1<< MD_SB_CLEAN);
  770. } else
  771. sb->recovery_cp = 0;
  772. sb->layout = mddev->layout;
  773. sb->chunk_size = mddev->chunk_size;
  774. if (mddev->bitmap && mddev->bitmap_file == NULL)
  775. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  776. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  777. ITERATE_RDEV(mddev,rdev2,tmp) {
  778. mdp_disk_t *d;
  779. int desc_nr;
  780. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  781. && !test_bit(Faulty, &rdev2->flags))
  782. desc_nr = rdev2->raid_disk;
  783. else
  784. desc_nr = next_spare++;
  785. rdev2->desc_nr = desc_nr;
  786. d = &sb->disks[rdev2->desc_nr];
  787. nr_disks++;
  788. d->number = rdev2->desc_nr;
  789. d->major = MAJOR(rdev2->bdev->bd_dev);
  790. d->minor = MINOR(rdev2->bdev->bd_dev);
  791. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  792. && !test_bit(Faulty, &rdev2->flags))
  793. d->raid_disk = rdev2->raid_disk;
  794. else
  795. d->raid_disk = rdev2->desc_nr; /* compatibility */
  796. if (test_bit(Faulty, &rdev2->flags))
  797. d->state = (1<<MD_DISK_FAULTY);
  798. else if (test_bit(In_sync, &rdev2->flags)) {
  799. d->state = (1<<MD_DISK_ACTIVE);
  800. d->state |= (1<<MD_DISK_SYNC);
  801. active++;
  802. working++;
  803. } else {
  804. d->state = 0;
  805. spare++;
  806. working++;
  807. }
  808. if (test_bit(WriteMostly, &rdev2->flags))
  809. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  810. }
  811. /* now set the "removed" and "faulty" bits on any missing devices */
  812. for (i=0 ; i < mddev->raid_disks ; i++) {
  813. mdp_disk_t *d = &sb->disks[i];
  814. if (d->state == 0 && d->number == 0) {
  815. d->number = i;
  816. d->raid_disk = i;
  817. d->state = (1<<MD_DISK_REMOVED);
  818. d->state |= (1<<MD_DISK_FAULTY);
  819. failed++;
  820. }
  821. }
  822. sb->nr_disks = nr_disks;
  823. sb->active_disks = active;
  824. sb->working_disks = working;
  825. sb->failed_disks = failed;
  826. sb->spare_disks = spare;
  827. sb->this_disk = sb->disks[rdev->desc_nr];
  828. sb->sb_csum = calc_sb_csum(sb);
  829. }
  830. /*
  831. * version 1 superblock
  832. */
  833. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  834. {
  835. unsigned int disk_csum, csum;
  836. unsigned long long newcsum;
  837. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  838. unsigned int *isuper = (unsigned int*)sb;
  839. int i;
  840. disk_csum = sb->sb_csum;
  841. sb->sb_csum = 0;
  842. newcsum = 0;
  843. for (i=0; size>=4; size -= 4 )
  844. newcsum += le32_to_cpu(*isuper++);
  845. if (size == 2)
  846. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  847. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  848. sb->sb_csum = disk_csum;
  849. return cpu_to_le32(csum);
  850. }
  851. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  852. {
  853. struct mdp_superblock_1 *sb;
  854. int ret;
  855. sector_t sb_offset;
  856. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  857. int bmask;
  858. /*
  859. * Calculate the position of the superblock.
  860. * It is always aligned to a 4K boundary and
  861. * depeding on minor_version, it can be:
  862. * 0: At least 8K, but less than 12K, from end of device
  863. * 1: At start of device
  864. * 2: 4K from start of device.
  865. */
  866. switch(minor_version) {
  867. case 0:
  868. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  869. sb_offset -= 8*2;
  870. sb_offset &= ~(sector_t)(4*2-1);
  871. /* convert from sectors to K */
  872. sb_offset /= 2;
  873. break;
  874. case 1:
  875. sb_offset = 0;
  876. break;
  877. case 2:
  878. sb_offset = 4;
  879. break;
  880. default:
  881. return -EINVAL;
  882. }
  883. rdev->sb_offset = sb_offset;
  884. /* superblock is rarely larger than 1K, but it can be larger,
  885. * and it is safe to read 4k, so we do that
  886. */
  887. ret = read_disk_sb(rdev, 4096);
  888. if (ret) return ret;
  889. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  890. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  891. sb->major_version != cpu_to_le32(1) ||
  892. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  893. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  894. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  895. return -EINVAL;
  896. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  897. printk("md: invalid superblock checksum on %s\n",
  898. bdevname(rdev->bdev,b));
  899. return -EINVAL;
  900. }
  901. if (le64_to_cpu(sb->data_size) < 10) {
  902. printk("md: data_size too small on %s\n",
  903. bdevname(rdev->bdev,b));
  904. return -EINVAL;
  905. }
  906. rdev->preferred_minor = 0xffff;
  907. rdev->data_offset = le64_to_cpu(sb->data_offset);
  908. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  909. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  910. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  911. if (rdev->sb_size & bmask)
  912. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  913. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  914. rdev->desc_nr = -1;
  915. else
  916. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  917. if (refdev == 0)
  918. ret = 1;
  919. else {
  920. __u64 ev1, ev2;
  921. struct mdp_superblock_1 *refsb =
  922. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  923. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  924. sb->level != refsb->level ||
  925. sb->layout != refsb->layout ||
  926. sb->chunksize != refsb->chunksize) {
  927. printk(KERN_WARNING "md: %s has strangely different"
  928. " superblock to %s\n",
  929. bdevname(rdev->bdev,b),
  930. bdevname(refdev->bdev,b2));
  931. return -EINVAL;
  932. }
  933. ev1 = le64_to_cpu(sb->events);
  934. ev2 = le64_to_cpu(refsb->events);
  935. if (ev1 > ev2)
  936. ret = 1;
  937. else
  938. ret = 0;
  939. }
  940. if (minor_version)
  941. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  942. else
  943. rdev->size = rdev->sb_offset;
  944. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  945. return -EINVAL;
  946. rdev->size = le64_to_cpu(sb->data_size)/2;
  947. if (le32_to_cpu(sb->chunksize))
  948. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  949. if (le32_to_cpu(sb->size) > rdev->size*2)
  950. return -EINVAL;
  951. return ret;
  952. }
  953. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  954. {
  955. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  956. __u64 ev1 = le64_to_cpu(sb->events);
  957. rdev->raid_disk = -1;
  958. rdev->flags = 0;
  959. if (mddev->raid_disks == 0) {
  960. mddev->major_version = 1;
  961. mddev->patch_version = 0;
  962. mddev->persistent = 1;
  963. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  964. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  965. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  966. mddev->level = le32_to_cpu(sb->level);
  967. mddev->clevel[0] = 0;
  968. mddev->layout = le32_to_cpu(sb->layout);
  969. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  970. mddev->size = le64_to_cpu(sb->size)/2;
  971. mddev->events = ev1;
  972. mddev->bitmap_offset = 0;
  973. mddev->default_bitmap_offset = 1024 >> 9;
  974. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  975. memcpy(mddev->uuid, sb->set_uuid, 16);
  976. mddev->max_disks = (4096-256)/2;
  977. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  978. mddev->bitmap_file == NULL ) {
  979. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  980. && mddev->level != 10) {
  981. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  982. return -EINVAL;
  983. }
  984. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  985. }
  986. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  987. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  988. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  989. mddev->new_level = le32_to_cpu(sb->new_level);
  990. mddev->new_layout = le32_to_cpu(sb->new_layout);
  991. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  992. } else {
  993. mddev->reshape_position = MaxSector;
  994. mddev->delta_disks = 0;
  995. mddev->new_level = mddev->level;
  996. mddev->new_layout = mddev->layout;
  997. mddev->new_chunk = mddev->chunk_size;
  998. }
  999. } else if (mddev->pers == NULL) {
  1000. /* Insist of good event counter while assembling */
  1001. ++ev1;
  1002. if (ev1 < mddev->events)
  1003. return -EINVAL;
  1004. } else if (mddev->bitmap) {
  1005. /* If adding to array with a bitmap, then we can accept an
  1006. * older device, but not too old.
  1007. */
  1008. if (ev1 < mddev->bitmap->events_cleared)
  1009. return 0;
  1010. } else {
  1011. if (ev1 < mddev->events)
  1012. /* just a hot-add of a new device, leave raid_disk at -1 */
  1013. return 0;
  1014. }
  1015. if (mddev->level != LEVEL_MULTIPATH) {
  1016. int role;
  1017. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1018. switch(role) {
  1019. case 0xffff: /* spare */
  1020. break;
  1021. case 0xfffe: /* faulty */
  1022. set_bit(Faulty, &rdev->flags);
  1023. break;
  1024. default:
  1025. if ((le32_to_cpu(sb->feature_map) &
  1026. MD_FEATURE_RECOVERY_OFFSET))
  1027. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1028. else
  1029. set_bit(In_sync, &rdev->flags);
  1030. rdev->raid_disk = role;
  1031. break;
  1032. }
  1033. if (sb->devflags & WriteMostly1)
  1034. set_bit(WriteMostly, &rdev->flags);
  1035. } else /* MULTIPATH are always insync */
  1036. set_bit(In_sync, &rdev->flags);
  1037. return 0;
  1038. }
  1039. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1040. {
  1041. struct mdp_superblock_1 *sb;
  1042. struct list_head *tmp;
  1043. mdk_rdev_t *rdev2;
  1044. int max_dev, i;
  1045. /* make rdev->sb match mddev and rdev data. */
  1046. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1047. sb->feature_map = 0;
  1048. sb->pad0 = 0;
  1049. sb->recovery_offset = cpu_to_le64(0);
  1050. memset(sb->pad1, 0, sizeof(sb->pad1));
  1051. memset(sb->pad2, 0, sizeof(sb->pad2));
  1052. memset(sb->pad3, 0, sizeof(sb->pad3));
  1053. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1054. sb->events = cpu_to_le64(mddev->events);
  1055. if (mddev->in_sync)
  1056. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1057. else
  1058. sb->resync_offset = cpu_to_le64(0);
  1059. sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
  1060. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1061. sb->size = cpu_to_le64(mddev->size<<1);
  1062. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1063. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1064. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1065. }
  1066. if (rdev->raid_disk >= 0 &&
  1067. !test_bit(In_sync, &rdev->flags) &&
  1068. rdev->recovery_offset > 0) {
  1069. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1070. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1071. }
  1072. if (mddev->reshape_position != MaxSector) {
  1073. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1074. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1075. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1076. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1077. sb->new_level = cpu_to_le32(mddev->new_level);
  1078. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1079. }
  1080. max_dev = 0;
  1081. ITERATE_RDEV(mddev,rdev2,tmp)
  1082. if (rdev2->desc_nr+1 > max_dev)
  1083. max_dev = rdev2->desc_nr+1;
  1084. sb->max_dev = cpu_to_le32(max_dev);
  1085. for (i=0; i<max_dev;i++)
  1086. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1087. ITERATE_RDEV(mddev,rdev2,tmp) {
  1088. i = rdev2->desc_nr;
  1089. if (test_bit(Faulty, &rdev2->flags))
  1090. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1091. else if (test_bit(In_sync, &rdev2->flags))
  1092. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1093. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1094. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1095. else
  1096. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1097. }
  1098. sb->sb_csum = calc_sb_1_csum(sb);
  1099. }
  1100. static struct super_type super_types[] = {
  1101. [0] = {
  1102. .name = "0.90.0",
  1103. .owner = THIS_MODULE,
  1104. .load_super = super_90_load,
  1105. .validate_super = super_90_validate,
  1106. .sync_super = super_90_sync,
  1107. },
  1108. [1] = {
  1109. .name = "md-1",
  1110. .owner = THIS_MODULE,
  1111. .load_super = super_1_load,
  1112. .validate_super = super_1_validate,
  1113. .sync_super = super_1_sync,
  1114. },
  1115. };
  1116. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1117. {
  1118. struct list_head *tmp;
  1119. mdk_rdev_t *rdev;
  1120. ITERATE_RDEV(mddev,rdev,tmp)
  1121. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1122. return rdev;
  1123. return NULL;
  1124. }
  1125. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1126. {
  1127. struct list_head *tmp;
  1128. mdk_rdev_t *rdev;
  1129. ITERATE_RDEV(mddev1,rdev,tmp)
  1130. if (match_dev_unit(mddev2, rdev))
  1131. return 1;
  1132. return 0;
  1133. }
  1134. static LIST_HEAD(pending_raid_disks);
  1135. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1136. {
  1137. mdk_rdev_t *same_pdev;
  1138. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1139. struct kobject *ko;
  1140. char *s;
  1141. if (rdev->mddev) {
  1142. MD_BUG();
  1143. return -EINVAL;
  1144. }
  1145. /* make sure rdev->size exceeds mddev->size */
  1146. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1147. if (mddev->pers)
  1148. /* Cannot change size, so fail */
  1149. return -ENOSPC;
  1150. else
  1151. mddev->size = rdev->size;
  1152. }
  1153. same_pdev = match_dev_unit(mddev, rdev);
  1154. if (same_pdev)
  1155. printk(KERN_WARNING
  1156. "%s: WARNING: %s appears to be on the same physical"
  1157. " disk as %s. True\n protection against single-disk"
  1158. " failure might be compromised.\n",
  1159. mdname(mddev), bdevname(rdev->bdev,b),
  1160. bdevname(same_pdev->bdev,b2));
  1161. /* Verify rdev->desc_nr is unique.
  1162. * If it is -1, assign a free number, else
  1163. * check number is not in use
  1164. */
  1165. if (rdev->desc_nr < 0) {
  1166. int choice = 0;
  1167. if (mddev->pers) choice = mddev->raid_disks;
  1168. while (find_rdev_nr(mddev, choice))
  1169. choice++;
  1170. rdev->desc_nr = choice;
  1171. } else {
  1172. if (find_rdev_nr(mddev, rdev->desc_nr))
  1173. return -EBUSY;
  1174. }
  1175. bdevname(rdev->bdev,b);
  1176. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1177. return -ENOMEM;
  1178. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1179. *s = '!';
  1180. list_add(&rdev->same_set, &mddev->disks);
  1181. rdev->mddev = mddev;
  1182. printk(KERN_INFO "md: bind<%s>\n", b);
  1183. rdev->kobj.parent = &mddev->kobj;
  1184. kobject_add(&rdev->kobj);
  1185. if (rdev->bdev->bd_part)
  1186. ko = &rdev->bdev->bd_part->kobj;
  1187. else
  1188. ko = &rdev->bdev->bd_disk->kobj;
  1189. sysfs_create_link(&rdev->kobj, ko, "block");
  1190. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1191. return 0;
  1192. }
  1193. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1194. {
  1195. char b[BDEVNAME_SIZE];
  1196. if (!rdev->mddev) {
  1197. MD_BUG();
  1198. return;
  1199. }
  1200. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1201. list_del_init(&rdev->same_set);
  1202. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1203. rdev->mddev = NULL;
  1204. sysfs_remove_link(&rdev->kobj, "block");
  1205. kobject_del(&rdev->kobj);
  1206. }
  1207. /*
  1208. * prevent the device from being mounted, repartitioned or
  1209. * otherwise reused by a RAID array (or any other kernel
  1210. * subsystem), by bd_claiming the device.
  1211. */
  1212. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1213. {
  1214. int err = 0;
  1215. struct block_device *bdev;
  1216. char b[BDEVNAME_SIZE];
  1217. bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1218. if (IS_ERR(bdev)) {
  1219. printk(KERN_ERR "md: could not open %s.\n",
  1220. __bdevname(dev, b));
  1221. return PTR_ERR(bdev);
  1222. }
  1223. err = bd_claim(bdev, rdev);
  1224. if (err) {
  1225. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1226. bdevname(bdev, b));
  1227. blkdev_put_partition(bdev);
  1228. return err;
  1229. }
  1230. rdev->bdev = bdev;
  1231. return err;
  1232. }
  1233. static void unlock_rdev(mdk_rdev_t *rdev)
  1234. {
  1235. struct block_device *bdev = rdev->bdev;
  1236. rdev->bdev = NULL;
  1237. if (!bdev)
  1238. MD_BUG();
  1239. bd_release(bdev);
  1240. blkdev_put_partition(bdev);
  1241. }
  1242. void md_autodetect_dev(dev_t dev);
  1243. static void export_rdev(mdk_rdev_t * rdev)
  1244. {
  1245. char b[BDEVNAME_SIZE];
  1246. printk(KERN_INFO "md: export_rdev(%s)\n",
  1247. bdevname(rdev->bdev,b));
  1248. if (rdev->mddev)
  1249. MD_BUG();
  1250. free_disk_sb(rdev);
  1251. list_del_init(&rdev->same_set);
  1252. #ifndef MODULE
  1253. md_autodetect_dev(rdev->bdev->bd_dev);
  1254. #endif
  1255. unlock_rdev(rdev);
  1256. kobject_put(&rdev->kobj);
  1257. }
  1258. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1259. {
  1260. unbind_rdev_from_array(rdev);
  1261. export_rdev(rdev);
  1262. }
  1263. static void export_array(mddev_t *mddev)
  1264. {
  1265. struct list_head *tmp;
  1266. mdk_rdev_t *rdev;
  1267. ITERATE_RDEV(mddev,rdev,tmp) {
  1268. if (!rdev->mddev) {
  1269. MD_BUG();
  1270. continue;
  1271. }
  1272. kick_rdev_from_array(rdev);
  1273. }
  1274. if (!list_empty(&mddev->disks))
  1275. MD_BUG();
  1276. mddev->raid_disks = 0;
  1277. mddev->major_version = 0;
  1278. }
  1279. static void print_desc(mdp_disk_t *desc)
  1280. {
  1281. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1282. desc->major,desc->minor,desc->raid_disk,desc->state);
  1283. }
  1284. static void print_sb(mdp_super_t *sb)
  1285. {
  1286. int i;
  1287. printk(KERN_INFO
  1288. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1289. sb->major_version, sb->minor_version, sb->patch_version,
  1290. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1291. sb->ctime);
  1292. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1293. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1294. sb->md_minor, sb->layout, sb->chunk_size);
  1295. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1296. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1297. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1298. sb->failed_disks, sb->spare_disks,
  1299. sb->sb_csum, (unsigned long)sb->events_lo);
  1300. printk(KERN_INFO);
  1301. for (i = 0; i < MD_SB_DISKS; i++) {
  1302. mdp_disk_t *desc;
  1303. desc = sb->disks + i;
  1304. if (desc->number || desc->major || desc->minor ||
  1305. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1306. printk(" D %2d: ", i);
  1307. print_desc(desc);
  1308. }
  1309. }
  1310. printk(KERN_INFO "md: THIS: ");
  1311. print_desc(&sb->this_disk);
  1312. }
  1313. static void print_rdev(mdk_rdev_t *rdev)
  1314. {
  1315. char b[BDEVNAME_SIZE];
  1316. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1317. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1318. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1319. rdev->desc_nr);
  1320. if (rdev->sb_loaded) {
  1321. printk(KERN_INFO "md: rdev superblock:\n");
  1322. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1323. } else
  1324. printk(KERN_INFO "md: no rdev superblock!\n");
  1325. }
  1326. static void md_print_devices(void)
  1327. {
  1328. struct list_head *tmp, *tmp2;
  1329. mdk_rdev_t *rdev;
  1330. mddev_t *mddev;
  1331. char b[BDEVNAME_SIZE];
  1332. printk("\n");
  1333. printk("md: **********************************\n");
  1334. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1335. printk("md: **********************************\n");
  1336. ITERATE_MDDEV(mddev,tmp) {
  1337. if (mddev->bitmap)
  1338. bitmap_print_sb(mddev->bitmap);
  1339. else
  1340. printk("%s: ", mdname(mddev));
  1341. ITERATE_RDEV(mddev,rdev,tmp2)
  1342. printk("<%s>", bdevname(rdev->bdev,b));
  1343. printk("\n");
  1344. ITERATE_RDEV(mddev,rdev,tmp2)
  1345. print_rdev(rdev);
  1346. }
  1347. printk("md: **********************************\n");
  1348. printk("\n");
  1349. }
  1350. static void sync_sbs(mddev_t * mddev, int nospares)
  1351. {
  1352. /* Update each superblock (in-memory image), but
  1353. * if we are allowed to, skip spares which already
  1354. * have the right event counter, or have one earlier
  1355. * (which would mean they aren't being marked as dirty
  1356. * with the rest of the array)
  1357. */
  1358. mdk_rdev_t *rdev;
  1359. struct list_head *tmp;
  1360. ITERATE_RDEV(mddev,rdev,tmp) {
  1361. if (rdev->sb_events == mddev->events ||
  1362. (nospares &&
  1363. rdev->raid_disk < 0 &&
  1364. (rdev->sb_events&1)==0 &&
  1365. rdev->sb_events+1 == mddev->events)) {
  1366. /* Don't update this superblock */
  1367. rdev->sb_loaded = 2;
  1368. } else {
  1369. super_types[mddev->major_version].
  1370. sync_super(mddev, rdev);
  1371. rdev->sb_loaded = 1;
  1372. }
  1373. }
  1374. }
  1375. void md_update_sb(mddev_t * mddev)
  1376. {
  1377. int err;
  1378. struct list_head *tmp;
  1379. mdk_rdev_t *rdev;
  1380. int sync_req;
  1381. int nospares = 0;
  1382. repeat:
  1383. spin_lock_irq(&mddev->write_lock);
  1384. sync_req = mddev->in_sync;
  1385. mddev->utime = get_seconds();
  1386. if (mddev->sb_dirty == 3)
  1387. /* just a clean<-> dirty transition, possibly leave spares alone,
  1388. * though if events isn't the right even/odd, we will have to do
  1389. * spares after all
  1390. */
  1391. nospares = 1;
  1392. /* If this is just a dirty<->clean transition, and the array is clean
  1393. * and 'events' is odd, we can roll back to the previous clean state */
  1394. if (mddev->sb_dirty == 3
  1395. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1396. && (mddev->events & 1))
  1397. mddev->events--;
  1398. else {
  1399. /* otherwise we have to go forward and ... */
  1400. mddev->events ++;
  1401. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1402. /* .. if the array isn't clean, insist on an odd 'events' */
  1403. if ((mddev->events&1)==0) {
  1404. mddev->events++;
  1405. nospares = 0;
  1406. }
  1407. } else {
  1408. /* otherwise insist on an even 'events' (for clean states) */
  1409. if ((mddev->events&1)) {
  1410. mddev->events++;
  1411. nospares = 0;
  1412. }
  1413. }
  1414. }
  1415. if (!mddev->events) {
  1416. /*
  1417. * oops, this 64-bit counter should never wrap.
  1418. * Either we are in around ~1 trillion A.C., assuming
  1419. * 1 reboot per second, or we have a bug:
  1420. */
  1421. MD_BUG();
  1422. mddev->events --;
  1423. }
  1424. mddev->sb_dirty = 2;
  1425. sync_sbs(mddev, nospares);
  1426. /*
  1427. * do not write anything to disk if using
  1428. * nonpersistent superblocks
  1429. */
  1430. if (!mddev->persistent) {
  1431. mddev->sb_dirty = 0;
  1432. spin_unlock_irq(&mddev->write_lock);
  1433. wake_up(&mddev->sb_wait);
  1434. return;
  1435. }
  1436. spin_unlock_irq(&mddev->write_lock);
  1437. dprintk(KERN_INFO
  1438. "md: updating %s RAID superblock on device (in sync %d)\n",
  1439. mdname(mddev),mddev->in_sync);
  1440. err = bitmap_update_sb(mddev->bitmap);
  1441. ITERATE_RDEV(mddev,rdev,tmp) {
  1442. char b[BDEVNAME_SIZE];
  1443. dprintk(KERN_INFO "md: ");
  1444. if (rdev->sb_loaded != 1)
  1445. continue; /* no noise on spare devices */
  1446. if (test_bit(Faulty, &rdev->flags))
  1447. dprintk("(skipping faulty ");
  1448. dprintk("%s ", bdevname(rdev->bdev,b));
  1449. if (!test_bit(Faulty, &rdev->flags)) {
  1450. md_super_write(mddev,rdev,
  1451. rdev->sb_offset<<1, rdev->sb_size,
  1452. rdev->sb_page);
  1453. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1454. bdevname(rdev->bdev,b),
  1455. (unsigned long long)rdev->sb_offset);
  1456. rdev->sb_events = mddev->events;
  1457. } else
  1458. dprintk(")\n");
  1459. if (mddev->level == LEVEL_MULTIPATH)
  1460. /* only need to write one superblock... */
  1461. break;
  1462. }
  1463. md_super_wait(mddev);
  1464. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1465. spin_lock_irq(&mddev->write_lock);
  1466. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1467. /* have to write it out again */
  1468. spin_unlock_irq(&mddev->write_lock);
  1469. goto repeat;
  1470. }
  1471. mddev->sb_dirty = 0;
  1472. spin_unlock_irq(&mddev->write_lock);
  1473. wake_up(&mddev->sb_wait);
  1474. }
  1475. EXPORT_SYMBOL_GPL(md_update_sb);
  1476. /* words written to sysfs files may, or my not, be \n terminated.
  1477. * We want to accept with case. For this we use cmd_match.
  1478. */
  1479. static int cmd_match(const char *cmd, const char *str)
  1480. {
  1481. /* See if cmd, written into a sysfs file, matches
  1482. * str. They must either be the same, or cmd can
  1483. * have a trailing newline
  1484. */
  1485. while (*cmd && *str && *cmd == *str) {
  1486. cmd++;
  1487. str++;
  1488. }
  1489. if (*cmd == '\n')
  1490. cmd++;
  1491. if (*str || *cmd)
  1492. return 0;
  1493. return 1;
  1494. }
  1495. struct rdev_sysfs_entry {
  1496. struct attribute attr;
  1497. ssize_t (*show)(mdk_rdev_t *, char *);
  1498. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1499. };
  1500. static ssize_t
  1501. state_show(mdk_rdev_t *rdev, char *page)
  1502. {
  1503. char *sep = "";
  1504. int len=0;
  1505. if (test_bit(Faulty, &rdev->flags)) {
  1506. len+= sprintf(page+len, "%sfaulty",sep);
  1507. sep = ",";
  1508. }
  1509. if (test_bit(In_sync, &rdev->flags)) {
  1510. len += sprintf(page+len, "%sin_sync",sep);
  1511. sep = ",";
  1512. }
  1513. if (test_bit(WriteMostly, &rdev->flags)) {
  1514. len += sprintf(page+len, "%swrite_mostly",sep);
  1515. sep = ",";
  1516. }
  1517. if (!test_bit(Faulty, &rdev->flags) &&
  1518. !test_bit(In_sync, &rdev->flags)) {
  1519. len += sprintf(page+len, "%sspare", sep);
  1520. sep = ",";
  1521. }
  1522. return len+sprintf(page+len, "\n");
  1523. }
  1524. static ssize_t
  1525. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1526. {
  1527. /* can write
  1528. * faulty - simulates and error
  1529. * remove - disconnects the device
  1530. * writemostly - sets write_mostly
  1531. * -writemostly - clears write_mostly
  1532. */
  1533. int err = -EINVAL;
  1534. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1535. md_error(rdev->mddev, rdev);
  1536. err = 0;
  1537. } else if (cmd_match(buf, "remove")) {
  1538. if (rdev->raid_disk >= 0)
  1539. err = -EBUSY;
  1540. else {
  1541. mddev_t *mddev = rdev->mddev;
  1542. kick_rdev_from_array(rdev);
  1543. md_update_sb(mddev);
  1544. md_new_event(mddev);
  1545. err = 0;
  1546. }
  1547. } else if (cmd_match(buf, "writemostly")) {
  1548. set_bit(WriteMostly, &rdev->flags);
  1549. err = 0;
  1550. } else if (cmd_match(buf, "-writemostly")) {
  1551. clear_bit(WriteMostly, &rdev->flags);
  1552. err = 0;
  1553. }
  1554. return err ? err : len;
  1555. }
  1556. static struct rdev_sysfs_entry
  1557. rdev_state = __ATTR(state, 0644, state_show, state_store);
  1558. static ssize_t
  1559. super_show(mdk_rdev_t *rdev, char *page)
  1560. {
  1561. if (rdev->sb_loaded && rdev->sb_size) {
  1562. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1563. return rdev->sb_size;
  1564. } else
  1565. return 0;
  1566. }
  1567. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1568. static ssize_t
  1569. errors_show(mdk_rdev_t *rdev, char *page)
  1570. {
  1571. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1572. }
  1573. static ssize_t
  1574. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1575. {
  1576. char *e;
  1577. unsigned long n = simple_strtoul(buf, &e, 10);
  1578. if (*buf && (*e == 0 || *e == '\n')) {
  1579. atomic_set(&rdev->corrected_errors, n);
  1580. return len;
  1581. }
  1582. return -EINVAL;
  1583. }
  1584. static struct rdev_sysfs_entry rdev_errors =
  1585. __ATTR(errors, 0644, errors_show, errors_store);
  1586. static ssize_t
  1587. slot_show(mdk_rdev_t *rdev, char *page)
  1588. {
  1589. if (rdev->raid_disk < 0)
  1590. return sprintf(page, "none\n");
  1591. else
  1592. return sprintf(page, "%d\n", rdev->raid_disk);
  1593. }
  1594. static ssize_t
  1595. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1596. {
  1597. char *e;
  1598. int slot = simple_strtoul(buf, &e, 10);
  1599. if (strncmp(buf, "none", 4)==0)
  1600. slot = -1;
  1601. else if (e==buf || (*e && *e!= '\n'))
  1602. return -EINVAL;
  1603. if (rdev->mddev->pers)
  1604. /* Cannot set slot in active array (yet) */
  1605. return -EBUSY;
  1606. if (slot >= rdev->mddev->raid_disks)
  1607. return -ENOSPC;
  1608. rdev->raid_disk = slot;
  1609. /* assume it is working */
  1610. rdev->flags = 0;
  1611. set_bit(In_sync, &rdev->flags);
  1612. return len;
  1613. }
  1614. static struct rdev_sysfs_entry rdev_slot =
  1615. __ATTR(slot, 0644, slot_show, slot_store);
  1616. static ssize_t
  1617. offset_show(mdk_rdev_t *rdev, char *page)
  1618. {
  1619. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1620. }
  1621. static ssize_t
  1622. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1623. {
  1624. char *e;
  1625. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1626. if (e==buf || (*e && *e != '\n'))
  1627. return -EINVAL;
  1628. if (rdev->mddev->pers)
  1629. return -EBUSY;
  1630. rdev->data_offset = offset;
  1631. return len;
  1632. }
  1633. static struct rdev_sysfs_entry rdev_offset =
  1634. __ATTR(offset, 0644, offset_show, offset_store);
  1635. static ssize_t
  1636. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1637. {
  1638. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1639. }
  1640. static ssize_t
  1641. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1642. {
  1643. char *e;
  1644. unsigned long long size = simple_strtoull(buf, &e, 10);
  1645. if (e==buf || (*e && *e != '\n'))
  1646. return -EINVAL;
  1647. if (rdev->mddev->pers)
  1648. return -EBUSY;
  1649. rdev->size = size;
  1650. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1651. rdev->mddev->size = size;
  1652. return len;
  1653. }
  1654. static struct rdev_sysfs_entry rdev_size =
  1655. __ATTR(size, 0644, rdev_size_show, rdev_size_store);
  1656. static struct attribute *rdev_default_attrs[] = {
  1657. &rdev_state.attr,
  1658. &rdev_super.attr,
  1659. &rdev_errors.attr,
  1660. &rdev_slot.attr,
  1661. &rdev_offset.attr,
  1662. &rdev_size.attr,
  1663. NULL,
  1664. };
  1665. static ssize_t
  1666. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1667. {
  1668. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1669. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1670. if (!entry->show)
  1671. return -EIO;
  1672. return entry->show(rdev, page);
  1673. }
  1674. static ssize_t
  1675. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1676. const char *page, size_t length)
  1677. {
  1678. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1679. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1680. if (!entry->store)
  1681. return -EIO;
  1682. return entry->store(rdev, page, length);
  1683. }
  1684. static void rdev_free(struct kobject *ko)
  1685. {
  1686. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1687. kfree(rdev);
  1688. }
  1689. static struct sysfs_ops rdev_sysfs_ops = {
  1690. .show = rdev_attr_show,
  1691. .store = rdev_attr_store,
  1692. };
  1693. static struct kobj_type rdev_ktype = {
  1694. .release = rdev_free,
  1695. .sysfs_ops = &rdev_sysfs_ops,
  1696. .default_attrs = rdev_default_attrs,
  1697. };
  1698. /*
  1699. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1700. *
  1701. * mark the device faulty if:
  1702. *
  1703. * - the device is nonexistent (zero size)
  1704. * - the device has no valid superblock
  1705. *
  1706. * a faulty rdev _never_ has rdev->sb set.
  1707. */
  1708. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1709. {
  1710. char b[BDEVNAME_SIZE];
  1711. int err;
  1712. mdk_rdev_t *rdev;
  1713. sector_t size;
  1714. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1715. if (!rdev) {
  1716. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1717. return ERR_PTR(-ENOMEM);
  1718. }
  1719. if ((err = alloc_disk_sb(rdev)))
  1720. goto abort_free;
  1721. err = lock_rdev(rdev, newdev);
  1722. if (err)
  1723. goto abort_free;
  1724. rdev->kobj.parent = NULL;
  1725. rdev->kobj.ktype = &rdev_ktype;
  1726. kobject_init(&rdev->kobj);
  1727. rdev->desc_nr = -1;
  1728. rdev->flags = 0;
  1729. rdev->data_offset = 0;
  1730. rdev->sb_events = 0;
  1731. atomic_set(&rdev->nr_pending, 0);
  1732. atomic_set(&rdev->read_errors, 0);
  1733. atomic_set(&rdev->corrected_errors, 0);
  1734. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1735. if (!size) {
  1736. printk(KERN_WARNING
  1737. "md: %s has zero or unknown size, marking faulty!\n",
  1738. bdevname(rdev->bdev,b));
  1739. err = -EINVAL;
  1740. goto abort_free;
  1741. }
  1742. if (super_format >= 0) {
  1743. err = super_types[super_format].
  1744. load_super(rdev, NULL, super_minor);
  1745. if (err == -EINVAL) {
  1746. printk(KERN_WARNING
  1747. "md: %s has invalid sb, not importing!\n",
  1748. bdevname(rdev->bdev,b));
  1749. goto abort_free;
  1750. }
  1751. if (err < 0) {
  1752. printk(KERN_WARNING
  1753. "md: could not read %s's sb, not importing!\n",
  1754. bdevname(rdev->bdev,b));
  1755. goto abort_free;
  1756. }
  1757. }
  1758. INIT_LIST_HEAD(&rdev->same_set);
  1759. return rdev;
  1760. abort_free:
  1761. if (rdev->sb_page) {
  1762. if (rdev->bdev)
  1763. unlock_rdev(rdev);
  1764. free_disk_sb(rdev);
  1765. }
  1766. kfree(rdev);
  1767. return ERR_PTR(err);
  1768. }
  1769. /*
  1770. * Check a full RAID array for plausibility
  1771. */
  1772. static void analyze_sbs(mddev_t * mddev)
  1773. {
  1774. int i;
  1775. struct list_head *tmp;
  1776. mdk_rdev_t *rdev, *freshest;
  1777. char b[BDEVNAME_SIZE];
  1778. freshest = NULL;
  1779. ITERATE_RDEV(mddev,rdev,tmp)
  1780. switch (super_types[mddev->major_version].
  1781. load_super(rdev, freshest, mddev->minor_version)) {
  1782. case 1:
  1783. freshest = rdev;
  1784. break;
  1785. case 0:
  1786. break;
  1787. default:
  1788. printk( KERN_ERR \
  1789. "md: fatal superblock inconsistency in %s"
  1790. " -- removing from array\n",
  1791. bdevname(rdev->bdev,b));
  1792. kick_rdev_from_array(rdev);
  1793. }
  1794. super_types[mddev->major_version].
  1795. validate_super(mddev, freshest);
  1796. i = 0;
  1797. ITERATE_RDEV(mddev,rdev,tmp) {
  1798. if (rdev != freshest)
  1799. if (super_types[mddev->major_version].
  1800. validate_super(mddev, rdev)) {
  1801. printk(KERN_WARNING "md: kicking non-fresh %s"
  1802. " from array!\n",
  1803. bdevname(rdev->bdev,b));
  1804. kick_rdev_from_array(rdev);
  1805. continue;
  1806. }
  1807. if (mddev->level == LEVEL_MULTIPATH) {
  1808. rdev->desc_nr = i++;
  1809. rdev->raid_disk = rdev->desc_nr;
  1810. set_bit(In_sync, &rdev->flags);
  1811. }
  1812. }
  1813. if (mddev->recovery_cp != MaxSector &&
  1814. mddev->level >= 1)
  1815. printk(KERN_ERR "md: %s: raid array is not clean"
  1816. " -- starting background reconstruction\n",
  1817. mdname(mddev));
  1818. }
  1819. static ssize_t
  1820. safe_delay_show(mddev_t *mddev, char *page)
  1821. {
  1822. int msec = (mddev->safemode_delay*1000)/HZ;
  1823. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1824. }
  1825. static ssize_t
  1826. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1827. {
  1828. int scale=1;
  1829. int dot=0;
  1830. int i;
  1831. unsigned long msec;
  1832. char buf[30];
  1833. char *e;
  1834. /* remove a period, and count digits after it */
  1835. if (len >= sizeof(buf))
  1836. return -EINVAL;
  1837. strlcpy(buf, cbuf, len);
  1838. buf[len] = 0;
  1839. for (i=0; i<len; i++) {
  1840. if (dot) {
  1841. if (isdigit(buf[i])) {
  1842. buf[i-1] = buf[i];
  1843. scale *= 10;
  1844. }
  1845. buf[i] = 0;
  1846. } else if (buf[i] == '.') {
  1847. dot=1;
  1848. buf[i] = 0;
  1849. }
  1850. }
  1851. msec = simple_strtoul(buf, &e, 10);
  1852. if (e == buf || (*e && *e != '\n'))
  1853. return -EINVAL;
  1854. msec = (msec * 1000) / scale;
  1855. if (msec == 0)
  1856. mddev->safemode_delay = 0;
  1857. else {
  1858. mddev->safemode_delay = (msec*HZ)/1000;
  1859. if (mddev->safemode_delay == 0)
  1860. mddev->safemode_delay = 1;
  1861. }
  1862. return len;
  1863. }
  1864. static struct md_sysfs_entry md_safe_delay =
  1865. __ATTR(safe_mode_delay, 0644,safe_delay_show, safe_delay_store);
  1866. static ssize_t
  1867. level_show(mddev_t *mddev, char *page)
  1868. {
  1869. struct mdk_personality *p = mddev->pers;
  1870. if (p)
  1871. return sprintf(page, "%s\n", p->name);
  1872. else if (mddev->clevel[0])
  1873. return sprintf(page, "%s\n", mddev->clevel);
  1874. else if (mddev->level != LEVEL_NONE)
  1875. return sprintf(page, "%d\n", mddev->level);
  1876. else
  1877. return 0;
  1878. }
  1879. static ssize_t
  1880. level_store(mddev_t *mddev, const char *buf, size_t len)
  1881. {
  1882. int rv = len;
  1883. if (mddev->pers)
  1884. return -EBUSY;
  1885. if (len == 0)
  1886. return 0;
  1887. if (len >= sizeof(mddev->clevel))
  1888. return -ENOSPC;
  1889. strncpy(mddev->clevel, buf, len);
  1890. if (mddev->clevel[len-1] == '\n')
  1891. len--;
  1892. mddev->clevel[len] = 0;
  1893. mddev->level = LEVEL_NONE;
  1894. return rv;
  1895. }
  1896. static struct md_sysfs_entry md_level =
  1897. __ATTR(level, 0644, level_show, level_store);
  1898. static ssize_t
  1899. layout_show(mddev_t *mddev, char *page)
  1900. {
  1901. /* just a number, not meaningful for all levels */
  1902. return sprintf(page, "%d\n", mddev->layout);
  1903. }
  1904. static ssize_t
  1905. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1906. {
  1907. char *e;
  1908. unsigned long n = simple_strtoul(buf, &e, 10);
  1909. if (mddev->pers)
  1910. return -EBUSY;
  1911. if (!*buf || (*e && *e != '\n'))
  1912. return -EINVAL;
  1913. mddev->layout = n;
  1914. return len;
  1915. }
  1916. static struct md_sysfs_entry md_layout =
  1917. __ATTR(layout, 0655, layout_show, layout_store);
  1918. static ssize_t
  1919. raid_disks_show(mddev_t *mddev, char *page)
  1920. {
  1921. if (mddev->raid_disks == 0)
  1922. return 0;
  1923. return sprintf(page, "%d\n", mddev->raid_disks);
  1924. }
  1925. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1926. static ssize_t
  1927. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1928. {
  1929. /* can only set raid_disks if array is not yet active */
  1930. char *e;
  1931. int rv = 0;
  1932. unsigned long n = simple_strtoul(buf, &e, 10);
  1933. if (!*buf || (*e && *e != '\n'))
  1934. return -EINVAL;
  1935. if (mddev->pers)
  1936. rv = update_raid_disks(mddev, n);
  1937. else
  1938. mddev->raid_disks = n;
  1939. return rv ? rv : len;
  1940. }
  1941. static struct md_sysfs_entry md_raid_disks =
  1942. __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
  1943. static ssize_t
  1944. chunk_size_show(mddev_t *mddev, char *page)
  1945. {
  1946. return sprintf(page, "%d\n", mddev->chunk_size);
  1947. }
  1948. static ssize_t
  1949. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  1950. {
  1951. /* can only set chunk_size if array is not yet active */
  1952. char *e;
  1953. unsigned long n = simple_strtoul(buf, &e, 10);
  1954. if (mddev->pers)
  1955. return -EBUSY;
  1956. if (!*buf || (*e && *e != '\n'))
  1957. return -EINVAL;
  1958. mddev->chunk_size = n;
  1959. return len;
  1960. }
  1961. static struct md_sysfs_entry md_chunk_size =
  1962. __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
  1963. static ssize_t
  1964. resync_start_show(mddev_t *mddev, char *page)
  1965. {
  1966. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  1967. }
  1968. static ssize_t
  1969. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  1970. {
  1971. /* can only set chunk_size if array is not yet active */
  1972. char *e;
  1973. unsigned long long n = simple_strtoull(buf, &e, 10);
  1974. if (mddev->pers)
  1975. return -EBUSY;
  1976. if (!*buf || (*e && *e != '\n'))
  1977. return -EINVAL;
  1978. mddev->recovery_cp = n;
  1979. return len;
  1980. }
  1981. static struct md_sysfs_entry md_resync_start =
  1982. __ATTR(resync_start, 0644, resync_start_show, resync_start_store);
  1983. /*
  1984. * The array state can be:
  1985. *
  1986. * clear
  1987. * No devices, no size, no level
  1988. * Equivalent to STOP_ARRAY ioctl
  1989. * inactive
  1990. * May have some settings, but array is not active
  1991. * all IO results in error
  1992. * When written, doesn't tear down array, but just stops it
  1993. * suspended (not supported yet)
  1994. * All IO requests will block. The array can be reconfigured.
  1995. * Writing this, if accepted, will block until array is quiessent
  1996. * readonly
  1997. * no resync can happen. no superblocks get written.
  1998. * write requests fail
  1999. * read-auto
  2000. * like readonly, but behaves like 'clean' on a write request.
  2001. *
  2002. * clean - no pending writes, but otherwise active.
  2003. * When written to inactive array, starts without resync
  2004. * If a write request arrives then
  2005. * if metadata is known, mark 'dirty' and switch to 'active'.
  2006. * if not known, block and switch to write-pending
  2007. * If written to an active array that has pending writes, then fails.
  2008. * active
  2009. * fully active: IO and resync can be happening.
  2010. * When written to inactive array, starts with resync
  2011. *
  2012. * write-pending
  2013. * clean, but writes are blocked waiting for 'active' to be written.
  2014. *
  2015. * active-idle
  2016. * like active, but no writes have been seen for a while (100msec).
  2017. *
  2018. */
  2019. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2020. write_pending, active_idle, bad_word};
  2021. static char *array_states[] = {
  2022. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2023. "write-pending", "active-idle", NULL };
  2024. static int match_word(const char *word, char **list)
  2025. {
  2026. int n;
  2027. for (n=0; list[n]; n++)
  2028. if (cmd_match(word, list[n]))
  2029. break;
  2030. return n;
  2031. }
  2032. static ssize_t
  2033. array_state_show(mddev_t *mddev, char *page)
  2034. {
  2035. enum array_state st = inactive;
  2036. if (mddev->pers)
  2037. switch(mddev->ro) {
  2038. case 1:
  2039. st = readonly;
  2040. break;
  2041. case 2:
  2042. st = read_auto;
  2043. break;
  2044. case 0:
  2045. if (mddev->in_sync)
  2046. st = clean;
  2047. else if (mddev->safemode)
  2048. st = active_idle;
  2049. else
  2050. st = active;
  2051. }
  2052. else {
  2053. if (list_empty(&mddev->disks) &&
  2054. mddev->raid_disks == 0 &&
  2055. mddev->size == 0)
  2056. st = clear;
  2057. else
  2058. st = inactive;
  2059. }
  2060. return sprintf(page, "%s\n", array_states[st]);
  2061. }
  2062. static int do_md_stop(mddev_t * mddev, int ro);
  2063. static int do_md_run(mddev_t * mddev);
  2064. static int restart_array(mddev_t *mddev);
  2065. static ssize_t
  2066. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2067. {
  2068. int err = -EINVAL;
  2069. enum array_state st = match_word(buf, array_states);
  2070. switch(st) {
  2071. case bad_word:
  2072. break;
  2073. case clear:
  2074. /* stopping an active array */
  2075. if (mddev->pers) {
  2076. if (atomic_read(&mddev->active) > 1)
  2077. return -EBUSY;
  2078. err = do_md_stop(mddev, 0);
  2079. }
  2080. break;
  2081. case inactive:
  2082. /* stopping an active array */
  2083. if (mddev->pers) {
  2084. if (atomic_read(&mddev->active) > 1)
  2085. return -EBUSY;
  2086. err = do_md_stop(mddev, 2);
  2087. }
  2088. break;
  2089. case suspended:
  2090. break; /* not supported yet */
  2091. case readonly:
  2092. if (mddev->pers)
  2093. err = do_md_stop(mddev, 1);
  2094. else {
  2095. mddev->ro = 1;
  2096. err = do_md_run(mddev);
  2097. }
  2098. break;
  2099. case read_auto:
  2100. /* stopping an active array */
  2101. if (mddev->pers) {
  2102. err = do_md_stop(mddev, 1);
  2103. if (err == 0)
  2104. mddev->ro = 2; /* FIXME mark devices writable */
  2105. } else {
  2106. mddev->ro = 2;
  2107. err = do_md_run(mddev);
  2108. }
  2109. break;
  2110. case clean:
  2111. if (mddev->pers) {
  2112. restart_array(mddev);
  2113. spin_lock_irq(&mddev->write_lock);
  2114. if (atomic_read(&mddev->writes_pending) == 0) {
  2115. mddev->in_sync = 1;
  2116. mddev->sb_dirty = 1;
  2117. }
  2118. spin_unlock_irq(&mddev->write_lock);
  2119. } else {
  2120. mddev->ro = 0;
  2121. mddev->recovery_cp = MaxSector;
  2122. err = do_md_run(mddev);
  2123. }
  2124. break;
  2125. case active:
  2126. if (mddev->pers) {
  2127. restart_array(mddev);
  2128. mddev->sb_dirty = 0;
  2129. wake_up(&mddev->sb_wait);
  2130. err = 0;
  2131. } else {
  2132. mddev->ro = 0;
  2133. err = do_md_run(mddev);
  2134. }
  2135. break;
  2136. case write_pending:
  2137. case active_idle:
  2138. /* these cannot be set */
  2139. break;
  2140. }
  2141. if (err)
  2142. return err;
  2143. else
  2144. return len;
  2145. }
  2146. static struct md_sysfs_entry md_array_state = __ATTR(array_state, 0644, array_state_show, array_state_store);
  2147. static ssize_t
  2148. null_show(mddev_t *mddev, char *page)
  2149. {
  2150. return -EINVAL;
  2151. }
  2152. static ssize_t
  2153. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2154. {
  2155. /* buf must be %d:%d\n? giving major and minor numbers */
  2156. /* The new device is added to the array.
  2157. * If the array has a persistent superblock, we read the
  2158. * superblock to initialise info and check validity.
  2159. * Otherwise, only checking done is that in bind_rdev_to_array,
  2160. * which mainly checks size.
  2161. */
  2162. char *e;
  2163. int major = simple_strtoul(buf, &e, 10);
  2164. int minor;
  2165. dev_t dev;
  2166. mdk_rdev_t *rdev;
  2167. int err;
  2168. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2169. return -EINVAL;
  2170. minor = simple_strtoul(e+1, &e, 10);
  2171. if (*e && *e != '\n')
  2172. return -EINVAL;
  2173. dev = MKDEV(major, minor);
  2174. if (major != MAJOR(dev) ||
  2175. minor != MINOR(dev))
  2176. return -EOVERFLOW;
  2177. if (mddev->persistent) {
  2178. rdev = md_import_device(dev, mddev->major_version,
  2179. mddev->minor_version);
  2180. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2181. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2182. mdk_rdev_t, same_set);
  2183. err = super_types[mddev->major_version]
  2184. .load_super(rdev, rdev0, mddev->minor_version);
  2185. if (err < 0)
  2186. goto out;
  2187. }
  2188. } else
  2189. rdev = md_import_device(dev, -1, -1);
  2190. if (IS_ERR(rdev))
  2191. return PTR_ERR(rdev);
  2192. err = bind_rdev_to_array(rdev, mddev);
  2193. out:
  2194. if (err)
  2195. export_rdev(rdev);
  2196. return err ? err : len;
  2197. }
  2198. static struct md_sysfs_entry md_new_device =
  2199. __ATTR(new_dev, 0200, null_show, new_dev_store);
  2200. static ssize_t
  2201. size_show(mddev_t *mddev, char *page)
  2202. {
  2203. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2204. }
  2205. static int update_size(mddev_t *mddev, unsigned long size);
  2206. static ssize_t
  2207. size_store(mddev_t *mddev, const char *buf, size_t len)
  2208. {
  2209. /* If array is inactive, we can reduce the component size, but
  2210. * not increase it (except from 0).
  2211. * If array is active, we can try an on-line resize
  2212. */
  2213. char *e;
  2214. int err = 0;
  2215. unsigned long long size = simple_strtoull(buf, &e, 10);
  2216. if (!*buf || *buf == '\n' ||
  2217. (*e && *e != '\n'))
  2218. return -EINVAL;
  2219. if (mddev->pers) {
  2220. err = update_size(mddev, size);
  2221. md_update_sb(mddev);
  2222. } else {
  2223. if (mddev->size == 0 ||
  2224. mddev->size > size)
  2225. mddev->size = size;
  2226. else
  2227. err = -ENOSPC;
  2228. }
  2229. return err ? err : len;
  2230. }
  2231. static struct md_sysfs_entry md_size =
  2232. __ATTR(component_size, 0644, size_show, size_store);
  2233. /* Metdata version.
  2234. * This is either 'none' for arrays with externally managed metadata,
  2235. * or N.M for internally known formats
  2236. */
  2237. static ssize_t
  2238. metadata_show(mddev_t *mddev, char *page)
  2239. {
  2240. if (mddev->persistent)
  2241. return sprintf(page, "%d.%d\n",
  2242. mddev->major_version, mddev->minor_version);
  2243. else
  2244. return sprintf(page, "none\n");
  2245. }
  2246. static ssize_t
  2247. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2248. {
  2249. int major, minor;
  2250. char *e;
  2251. if (!list_empty(&mddev->disks))
  2252. return -EBUSY;
  2253. if (cmd_match(buf, "none")) {
  2254. mddev->persistent = 0;
  2255. mddev->major_version = 0;
  2256. mddev->minor_version = 90;
  2257. return len;
  2258. }
  2259. major = simple_strtoul(buf, &e, 10);
  2260. if (e==buf || *e != '.')
  2261. return -EINVAL;
  2262. buf = e+1;
  2263. minor = simple_strtoul(buf, &e, 10);
  2264. if (e==buf || *e != '\n')
  2265. return -EINVAL;
  2266. if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
  2267. super_types[major].name == NULL)
  2268. return -ENOENT;
  2269. mddev->major_version = major;
  2270. mddev->minor_version = minor;
  2271. mddev->persistent = 1;
  2272. return len;
  2273. }
  2274. static struct md_sysfs_entry md_metadata =
  2275. __ATTR(metadata_version, 0644, metadata_show, metadata_store);
  2276. static ssize_t
  2277. action_show(mddev_t *mddev, char *page)
  2278. {
  2279. char *type = "idle";
  2280. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2281. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2282. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2283. type = "reshape";
  2284. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2285. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2286. type = "resync";
  2287. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2288. type = "check";
  2289. else
  2290. type = "repair";
  2291. } else
  2292. type = "recover";
  2293. }
  2294. return sprintf(page, "%s\n", type);
  2295. }
  2296. static ssize_t
  2297. action_store(mddev_t *mddev, const char *page, size_t len)
  2298. {
  2299. if (!mddev->pers || !mddev->pers->sync_request)
  2300. return -EINVAL;
  2301. if (cmd_match(page, "idle")) {
  2302. if (mddev->sync_thread) {
  2303. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2304. md_unregister_thread(mddev->sync_thread);
  2305. mddev->sync_thread = NULL;
  2306. mddev->recovery = 0;
  2307. }
  2308. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2309. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2310. return -EBUSY;
  2311. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2312. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2313. else if (cmd_match(page, "reshape")) {
  2314. int err;
  2315. if (mddev->pers->start_reshape == NULL)
  2316. return -EINVAL;
  2317. err = mddev->pers->start_reshape(mddev);
  2318. if (err)
  2319. return err;
  2320. } else {
  2321. if (cmd_match(page, "check"))
  2322. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2323. else if (!cmd_match(page, "repair"))
  2324. return -EINVAL;
  2325. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2326. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2327. }
  2328. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2329. md_wakeup_thread(mddev->thread);
  2330. return len;
  2331. }
  2332. static ssize_t
  2333. mismatch_cnt_show(mddev_t *mddev, char *page)
  2334. {
  2335. return sprintf(page, "%llu\n",
  2336. (unsigned long long) mddev->resync_mismatches);
  2337. }
  2338. static struct md_sysfs_entry
  2339. md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2340. static struct md_sysfs_entry
  2341. md_mismatches = __ATTR_RO(mismatch_cnt);
  2342. static ssize_t
  2343. sync_min_show(mddev_t *mddev, char *page)
  2344. {
  2345. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2346. mddev->sync_speed_min ? "local": "system");
  2347. }
  2348. static ssize_t
  2349. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2350. {
  2351. int min;
  2352. char *e;
  2353. if (strncmp(buf, "system", 6)==0) {
  2354. mddev->sync_speed_min = 0;
  2355. return len;
  2356. }
  2357. min = simple_strtoul(buf, &e, 10);
  2358. if (buf == e || (*e && *e != '\n') || min <= 0)
  2359. return -EINVAL;
  2360. mddev->sync_speed_min = min;
  2361. return len;
  2362. }
  2363. static struct md_sysfs_entry md_sync_min =
  2364. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2365. static ssize_t
  2366. sync_max_show(mddev_t *mddev, char *page)
  2367. {
  2368. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2369. mddev->sync_speed_max ? "local": "system");
  2370. }
  2371. static ssize_t
  2372. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2373. {
  2374. int max;
  2375. char *e;
  2376. if (strncmp(buf, "system", 6)==0) {
  2377. mddev->sync_speed_max = 0;
  2378. return len;
  2379. }
  2380. max = simple_strtoul(buf, &e, 10);
  2381. if (buf == e || (*e && *e != '\n') || max <= 0)
  2382. return -EINVAL;
  2383. mddev->sync_speed_max = max;
  2384. return len;
  2385. }
  2386. static struct md_sysfs_entry md_sync_max =
  2387. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2388. static ssize_t
  2389. sync_speed_show(mddev_t *mddev, char *page)
  2390. {
  2391. unsigned long resync, dt, db;
  2392. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2393. dt = ((jiffies - mddev->resync_mark) / HZ);
  2394. if (!dt) dt++;
  2395. db = resync - (mddev->resync_mark_cnt);
  2396. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2397. }
  2398. static struct md_sysfs_entry
  2399. md_sync_speed = __ATTR_RO(sync_speed);
  2400. static ssize_t
  2401. sync_completed_show(mddev_t *mddev, char *page)
  2402. {
  2403. unsigned long max_blocks, resync;
  2404. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2405. max_blocks = mddev->resync_max_sectors;
  2406. else
  2407. max_blocks = mddev->size << 1;
  2408. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2409. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2410. }
  2411. static struct md_sysfs_entry
  2412. md_sync_completed = __ATTR_RO(sync_completed);
  2413. static ssize_t
  2414. suspend_lo_show(mddev_t *mddev, char *page)
  2415. {
  2416. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2417. }
  2418. static ssize_t
  2419. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2420. {
  2421. char *e;
  2422. unsigned long long new = simple_strtoull(buf, &e, 10);
  2423. if (mddev->pers->quiesce == NULL)
  2424. return -EINVAL;
  2425. if (buf == e || (*e && *e != '\n'))
  2426. return -EINVAL;
  2427. if (new >= mddev->suspend_hi ||
  2428. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2429. mddev->suspend_lo = new;
  2430. mddev->pers->quiesce(mddev, 2);
  2431. return len;
  2432. } else
  2433. return -EINVAL;
  2434. }
  2435. static struct md_sysfs_entry md_suspend_lo =
  2436. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2437. static ssize_t
  2438. suspend_hi_show(mddev_t *mddev, char *page)
  2439. {
  2440. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2441. }
  2442. static ssize_t
  2443. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2444. {
  2445. char *e;
  2446. unsigned long long new = simple_strtoull(buf, &e, 10);
  2447. if (mddev->pers->quiesce == NULL)
  2448. return -EINVAL;
  2449. if (buf == e || (*e && *e != '\n'))
  2450. return -EINVAL;
  2451. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2452. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2453. mddev->suspend_hi = new;
  2454. mddev->pers->quiesce(mddev, 1);
  2455. mddev->pers->quiesce(mddev, 0);
  2456. return len;
  2457. } else
  2458. return -EINVAL;
  2459. }
  2460. static struct md_sysfs_entry md_suspend_hi =
  2461. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2462. static struct attribute *md_default_attrs[] = {
  2463. &md_level.attr,
  2464. &md_layout.attr,
  2465. &md_raid_disks.attr,
  2466. &md_chunk_size.attr,
  2467. &md_size.attr,
  2468. &md_resync_start.attr,
  2469. &md_metadata.attr,
  2470. &md_new_device.attr,
  2471. &md_safe_delay.attr,
  2472. &md_array_state.attr,
  2473. NULL,
  2474. };
  2475. static struct attribute *md_redundancy_attrs[] = {
  2476. &md_scan_mode.attr,
  2477. &md_mismatches.attr,
  2478. &md_sync_min.attr,
  2479. &md_sync_max.attr,
  2480. &md_sync_speed.attr,
  2481. &md_sync_completed.attr,
  2482. &md_suspend_lo.attr,
  2483. &md_suspend_hi.attr,
  2484. NULL,
  2485. };
  2486. static struct attribute_group md_redundancy_group = {
  2487. .name = NULL,
  2488. .attrs = md_redundancy_attrs,
  2489. };
  2490. static ssize_t
  2491. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2492. {
  2493. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2494. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2495. ssize_t rv;
  2496. if (!entry->show)
  2497. return -EIO;
  2498. rv = mddev_lock(mddev);
  2499. if (!rv) {
  2500. rv = entry->show(mddev, page);
  2501. mddev_unlock(mddev);
  2502. }
  2503. return rv;
  2504. }
  2505. static ssize_t
  2506. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2507. const char *page, size_t length)
  2508. {
  2509. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2510. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2511. ssize_t rv;
  2512. if (!entry->store)
  2513. return -EIO;
  2514. rv = mddev_lock(mddev);
  2515. if (!rv) {
  2516. rv = entry->store(mddev, page, length);
  2517. mddev_unlock(mddev);
  2518. }
  2519. return rv;
  2520. }
  2521. static void md_free(struct kobject *ko)
  2522. {
  2523. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2524. kfree(mddev);
  2525. }
  2526. static struct sysfs_ops md_sysfs_ops = {
  2527. .show = md_attr_show,
  2528. .store = md_attr_store,
  2529. };
  2530. static struct kobj_type md_ktype = {
  2531. .release = md_free,
  2532. .sysfs_ops = &md_sysfs_ops,
  2533. .default_attrs = md_default_attrs,
  2534. };
  2535. int mdp_major = 0;
  2536. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2537. {
  2538. static DEFINE_MUTEX(disks_mutex);
  2539. mddev_t *mddev = mddev_find(dev);
  2540. struct gendisk *disk;
  2541. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2542. int shift = partitioned ? MdpMinorShift : 0;
  2543. int unit = MINOR(dev) >> shift;
  2544. if (!mddev)
  2545. return NULL;
  2546. mutex_lock(&disks_mutex);
  2547. if (mddev->gendisk) {
  2548. mutex_unlock(&disks_mutex);
  2549. mddev_put(mddev);
  2550. return NULL;
  2551. }
  2552. disk = alloc_disk(1 << shift);
  2553. if (!disk) {
  2554. mutex_unlock(&disks_mutex);
  2555. mddev_put(mddev);
  2556. return NULL;
  2557. }
  2558. disk->major = MAJOR(dev);
  2559. disk->first_minor = unit << shift;
  2560. if (partitioned)
  2561. sprintf(disk->disk_name, "md_d%d", unit);
  2562. else
  2563. sprintf(disk->disk_name, "md%d", unit);
  2564. disk->fops = &md_fops;
  2565. disk->private_data = mddev;
  2566. disk->queue = mddev->queue;
  2567. add_disk(disk);
  2568. mddev->gendisk = disk;
  2569. mutex_unlock(&disks_mutex);
  2570. mddev->kobj.parent = &disk->kobj;
  2571. mddev->kobj.k_name = NULL;
  2572. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2573. mddev->kobj.ktype = &md_ktype;
  2574. kobject_register(&mddev->kobj);
  2575. return NULL;
  2576. }
  2577. static void md_safemode_timeout(unsigned long data)
  2578. {
  2579. mddev_t *mddev = (mddev_t *) data;
  2580. mddev->safemode = 1;
  2581. md_wakeup_thread(mddev->thread);
  2582. }
  2583. static int start_dirty_degraded;
  2584. static int do_md_run(mddev_t * mddev)
  2585. {
  2586. int err;
  2587. int chunk_size;
  2588. struct list_head *tmp;
  2589. mdk_rdev_t *rdev;
  2590. struct gendisk *disk;
  2591. struct mdk_personality *pers;
  2592. char b[BDEVNAME_SIZE];
  2593. if (list_empty(&mddev->disks))
  2594. /* cannot run an array with no devices.. */
  2595. return -EINVAL;
  2596. if (mddev->pers)
  2597. return -EBUSY;
  2598. /*
  2599. * Analyze all RAID superblock(s)
  2600. */
  2601. if (!mddev->raid_disks)
  2602. analyze_sbs(mddev);
  2603. chunk_size = mddev->chunk_size;
  2604. if (chunk_size) {
  2605. if (chunk_size > MAX_CHUNK_SIZE) {
  2606. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2607. chunk_size, MAX_CHUNK_SIZE);
  2608. return -EINVAL;
  2609. }
  2610. /*
  2611. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2612. */
  2613. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2614. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2615. return -EINVAL;
  2616. }
  2617. if (chunk_size < PAGE_SIZE) {
  2618. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2619. chunk_size, PAGE_SIZE);
  2620. return -EINVAL;
  2621. }
  2622. /* devices must have minimum size of one chunk */
  2623. ITERATE_RDEV(mddev,rdev,tmp) {
  2624. if (test_bit(Faulty, &rdev->flags))
  2625. continue;
  2626. if (rdev->size < chunk_size / 1024) {
  2627. printk(KERN_WARNING
  2628. "md: Dev %s smaller than chunk_size:"
  2629. " %lluk < %dk\n",
  2630. bdevname(rdev->bdev,b),
  2631. (unsigned long long)rdev->size,
  2632. chunk_size / 1024);
  2633. return -EINVAL;
  2634. }
  2635. }
  2636. }
  2637. #ifdef CONFIG_KMOD
  2638. if (mddev->level != LEVEL_NONE)
  2639. request_module("md-level-%d", mddev->level);
  2640. else if (mddev->clevel[0])
  2641. request_module("md-%s", mddev->clevel);
  2642. #endif
  2643. /*
  2644. * Drop all container device buffers, from now on
  2645. * the only valid external interface is through the md
  2646. * device.
  2647. * Also find largest hardsector size
  2648. */
  2649. ITERATE_RDEV(mddev,rdev,tmp) {
  2650. if (test_bit(Faulty, &rdev->flags))
  2651. continue;
  2652. sync_blockdev(rdev->bdev);
  2653. invalidate_bdev(rdev->bdev, 0);
  2654. }
  2655. md_probe(mddev->unit, NULL, NULL);
  2656. disk = mddev->gendisk;
  2657. if (!disk)
  2658. return -ENOMEM;
  2659. spin_lock(&pers_lock);
  2660. pers = find_pers(mddev->level, mddev->clevel);
  2661. if (!pers || !try_module_get(pers->owner)) {
  2662. spin_unlock(&pers_lock);
  2663. if (mddev->level != LEVEL_NONE)
  2664. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2665. mddev->level);
  2666. else
  2667. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2668. mddev->clevel);
  2669. return -EINVAL;
  2670. }
  2671. mddev->pers = pers;
  2672. spin_unlock(&pers_lock);
  2673. mddev->level = pers->level;
  2674. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2675. if (mddev->reshape_position != MaxSector &&
  2676. pers->start_reshape == NULL) {
  2677. /* This personality cannot handle reshaping... */
  2678. mddev->pers = NULL;
  2679. module_put(pers->owner);
  2680. return -EINVAL;
  2681. }
  2682. mddev->recovery = 0;
  2683. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2684. mddev->barriers_work = 1;
  2685. mddev->ok_start_degraded = start_dirty_degraded;
  2686. if (start_readonly)
  2687. mddev->ro = 2; /* read-only, but switch on first write */
  2688. err = mddev->pers->run(mddev);
  2689. if (!err && mddev->pers->sync_request) {
  2690. err = bitmap_create(mddev);
  2691. if (err) {
  2692. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2693. mdname(mddev), err);
  2694. mddev->pers->stop(mddev);
  2695. }
  2696. }
  2697. if (err) {
  2698. printk(KERN_ERR "md: pers->run() failed ...\n");
  2699. module_put(mddev->pers->owner);
  2700. mddev->pers = NULL;
  2701. bitmap_destroy(mddev);
  2702. return err;
  2703. }
  2704. if (mddev->pers->sync_request)
  2705. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  2706. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2707. mddev->ro = 0;
  2708. atomic_set(&mddev->writes_pending,0);
  2709. mddev->safemode = 0;
  2710. mddev->safemode_timer.function = md_safemode_timeout;
  2711. mddev->safemode_timer.data = (unsigned long) mddev;
  2712. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2713. mddev->in_sync = 1;
  2714. ITERATE_RDEV(mddev,rdev,tmp)
  2715. if (rdev->raid_disk >= 0) {
  2716. char nm[20];
  2717. sprintf(nm, "rd%d", rdev->raid_disk);
  2718. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  2719. }
  2720. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2721. if (mddev->sb_dirty)
  2722. md_update_sb(mddev);
  2723. set_capacity(disk, mddev->array_size<<1);
  2724. /* If we call blk_queue_make_request here, it will
  2725. * re-initialise max_sectors etc which may have been
  2726. * refined inside -> run. So just set the bits we need to set.
  2727. * Most initialisation happended when we called
  2728. * blk_queue_make_request(..., md_fail_request)
  2729. * earlier.
  2730. */
  2731. mddev->queue->queuedata = mddev;
  2732. mddev->queue->make_request_fn = mddev->pers->make_request;
  2733. /* If there is a partially-recovered drive we need to
  2734. * start recovery here. If we leave it to md_check_recovery,
  2735. * it will remove the drives and not do the right thing
  2736. */
  2737. if (mddev->degraded && !mddev->sync_thread) {
  2738. struct list_head *rtmp;
  2739. int spares = 0;
  2740. ITERATE_RDEV(mddev,rdev,rtmp)
  2741. if (rdev->raid_disk >= 0 &&
  2742. !test_bit(In_sync, &rdev->flags) &&
  2743. !test_bit(Faulty, &rdev->flags))
  2744. /* complete an interrupted recovery */
  2745. spares++;
  2746. if (spares && mddev->pers->sync_request) {
  2747. mddev->recovery = 0;
  2748. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2749. mddev->sync_thread = md_register_thread(md_do_sync,
  2750. mddev,
  2751. "%s_resync");
  2752. if (!mddev->sync_thread) {
  2753. printk(KERN_ERR "%s: could not start resync"
  2754. " thread...\n",
  2755. mdname(mddev));
  2756. /* leave the spares where they are, it shouldn't hurt */
  2757. mddev->recovery = 0;
  2758. }
  2759. }
  2760. }
  2761. md_wakeup_thread(mddev->thread);
  2762. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2763. mddev->changed = 1;
  2764. md_new_event(mddev);
  2765. return 0;
  2766. }
  2767. static int restart_array(mddev_t *mddev)
  2768. {
  2769. struct gendisk *disk = mddev->gendisk;
  2770. int err;
  2771. /*
  2772. * Complain if it has no devices
  2773. */
  2774. err = -ENXIO;
  2775. if (list_empty(&mddev->disks))
  2776. goto out;
  2777. if (mddev->pers) {
  2778. err = -EBUSY;
  2779. if (!mddev->ro)
  2780. goto out;
  2781. mddev->safemode = 0;
  2782. mddev->ro = 0;
  2783. set_disk_ro(disk, 0);
  2784. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2785. mdname(mddev));
  2786. /*
  2787. * Kick recovery or resync if necessary
  2788. */
  2789. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2790. md_wakeup_thread(mddev->thread);
  2791. md_wakeup_thread(mddev->sync_thread);
  2792. err = 0;
  2793. } else
  2794. err = -EINVAL;
  2795. out:
  2796. return err;
  2797. }
  2798. /* similar to deny_write_access, but accounts for our holding a reference
  2799. * to the file ourselves */
  2800. static int deny_bitmap_write_access(struct file * file)
  2801. {
  2802. struct inode *inode = file->f_mapping->host;
  2803. spin_lock(&inode->i_lock);
  2804. if (atomic_read(&inode->i_writecount) > 1) {
  2805. spin_unlock(&inode->i_lock);
  2806. return -ETXTBSY;
  2807. }
  2808. atomic_set(&inode->i_writecount, -1);
  2809. spin_unlock(&inode->i_lock);
  2810. return 0;
  2811. }
  2812. static void restore_bitmap_write_access(struct file *file)
  2813. {
  2814. struct inode *inode = file->f_mapping->host;
  2815. spin_lock(&inode->i_lock);
  2816. atomic_set(&inode->i_writecount, 1);
  2817. spin_unlock(&inode->i_lock);
  2818. }
  2819. /* mode:
  2820. * 0 - completely stop and dis-assemble array
  2821. * 1 - switch to readonly
  2822. * 2 - stop but do not disassemble array
  2823. */
  2824. static int do_md_stop(mddev_t * mddev, int mode)
  2825. {
  2826. int err = 0;
  2827. struct gendisk *disk = mddev->gendisk;
  2828. if (mddev->pers) {
  2829. if (atomic_read(&mddev->active)>2) {
  2830. printk("md: %s still in use.\n",mdname(mddev));
  2831. return -EBUSY;
  2832. }
  2833. if (mddev->sync_thread) {
  2834. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2835. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2836. md_unregister_thread(mddev->sync_thread);
  2837. mddev->sync_thread = NULL;
  2838. }
  2839. del_timer_sync(&mddev->safemode_timer);
  2840. invalidate_partition(disk, 0);
  2841. switch(mode) {
  2842. case 1: /* readonly */
  2843. err = -ENXIO;
  2844. if (mddev->ro==1)
  2845. goto out;
  2846. mddev->ro = 1;
  2847. break;
  2848. case 0: /* disassemble */
  2849. case 2: /* stop */
  2850. bitmap_flush(mddev);
  2851. md_super_wait(mddev);
  2852. if (mddev->ro)
  2853. set_disk_ro(disk, 0);
  2854. blk_queue_make_request(mddev->queue, md_fail_request);
  2855. mddev->pers->stop(mddev);
  2856. if (mddev->pers->sync_request)
  2857. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  2858. module_put(mddev->pers->owner);
  2859. mddev->pers = NULL;
  2860. if (mddev->ro)
  2861. mddev->ro = 0;
  2862. }
  2863. if (!mddev->in_sync || mddev->sb_dirty) {
  2864. /* mark array as shutdown cleanly */
  2865. mddev->in_sync = 1;
  2866. md_update_sb(mddev);
  2867. }
  2868. if (mode == 1)
  2869. set_disk_ro(disk, 1);
  2870. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2871. }
  2872. /*
  2873. * Free resources if final stop
  2874. */
  2875. if (mode == 0) {
  2876. mdk_rdev_t *rdev;
  2877. struct list_head *tmp;
  2878. struct gendisk *disk;
  2879. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  2880. bitmap_destroy(mddev);
  2881. if (mddev->bitmap_file) {
  2882. restore_bitmap_write_access(mddev->bitmap_file);
  2883. fput(mddev->bitmap_file);
  2884. mddev->bitmap_file = NULL;
  2885. }
  2886. mddev->bitmap_offset = 0;
  2887. ITERATE_RDEV(mddev,rdev,tmp)
  2888. if (rdev->raid_disk >= 0) {
  2889. char nm[20];
  2890. sprintf(nm, "rd%d", rdev->raid_disk);
  2891. sysfs_remove_link(&mddev->kobj, nm);
  2892. }
  2893. export_array(mddev);
  2894. mddev->array_size = 0;
  2895. mddev->size = 0;
  2896. mddev->raid_disks = 0;
  2897. mddev->recovery_cp = 0;
  2898. disk = mddev->gendisk;
  2899. if (disk)
  2900. set_capacity(disk, 0);
  2901. mddev->changed = 1;
  2902. } else if (mddev->pers)
  2903. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  2904. mdname(mddev));
  2905. err = 0;
  2906. md_new_event(mddev);
  2907. out:
  2908. return err;
  2909. }
  2910. static void autorun_array(mddev_t *mddev)
  2911. {
  2912. mdk_rdev_t *rdev;
  2913. struct list_head *tmp;
  2914. int err;
  2915. if (list_empty(&mddev->disks))
  2916. return;
  2917. printk(KERN_INFO "md: running: ");
  2918. ITERATE_RDEV(mddev,rdev,tmp) {
  2919. char b[BDEVNAME_SIZE];
  2920. printk("<%s>", bdevname(rdev->bdev,b));
  2921. }
  2922. printk("\n");
  2923. err = do_md_run (mddev);
  2924. if (err) {
  2925. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  2926. do_md_stop (mddev, 0);
  2927. }
  2928. }
  2929. /*
  2930. * lets try to run arrays based on all disks that have arrived
  2931. * until now. (those are in pending_raid_disks)
  2932. *
  2933. * the method: pick the first pending disk, collect all disks with
  2934. * the same UUID, remove all from the pending list and put them into
  2935. * the 'same_array' list. Then order this list based on superblock
  2936. * update time (freshest comes first), kick out 'old' disks and
  2937. * compare superblocks. If everything's fine then run it.
  2938. *
  2939. * If "unit" is allocated, then bump its reference count
  2940. */
  2941. static void autorun_devices(int part)
  2942. {
  2943. struct list_head *tmp;
  2944. mdk_rdev_t *rdev0, *rdev;
  2945. mddev_t *mddev;
  2946. char b[BDEVNAME_SIZE];
  2947. printk(KERN_INFO "md: autorun ...\n");
  2948. while (!list_empty(&pending_raid_disks)) {
  2949. dev_t dev;
  2950. LIST_HEAD(candidates);
  2951. rdev0 = list_entry(pending_raid_disks.next,
  2952. mdk_rdev_t, same_set);
  2953. printk(KERN_INFO "md: considering %s ...\n",
  2954. bdevname(rdev0->bdev,b));
  2955. INIT_LIST_HEAD(&candidates);
  2956. ITERATE_RDEV_PENDING(rdev,tmp)
  2957. if (super_90_load(rdev, rdev0, 0) >= 0) {
  2958. printk(KERN_INFO "md: adding %s ...\n",
  2959. bdevname(rdev->bdev,b));
  2960. list_move(&rdev->same_set, &candidates);
  2961. }
  2962. /*
  2963. * now we have a set of devices, with all of them having
  2964. * mostly sane superblocks. It's time to allocate the
  2965. * mddev.
  2966. */
  2967. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  2968. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  2969. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  2970. break;
  2971. }
  2972. if (part)
  2973. dev = MKDEV(mdp_major,
  2974. rdev0->preferred_minor << MdpMinorShift);
  2975. else
  2976. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  2977. md_probe(dev, NULL, NULL);
  2978. mddev = mddev_find(dev);
  2979. if (!mddev) {
  2980. printk(KERN_ERR
  2981. "md: cannot allocate memory for md drive.\n");
  2982. break;
  2983. }
  2984. if (mddev_lock(mddev))
  2985. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2986. mdname(mddev));
  2987. else if (mddev->raid_disks || mddev->major_version
  2988. || !list_empty(&mddev->disks)) {
  2989. printk(KERN_WARNING
  2990. "md: %s already running, cannot run %s\n",
  2991. mdname(mddev), bdevname(rdev0->bdev,b));
  2992. mddev_unlock(mddev);
  2993. } else {
  2994. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  2995. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  2996. list_del_init(&rdev->same_set);
  2997. if (bind_rdev_to_array(rdev, mddev))
  2998. export_rdev(rdev);
  2999. }
  3000. autorun_array(mddev);
  3001. mddev_unlock(mddev);
  3002. }
  3003. /* on success, candidates will be empty, on error
  3004. * it won't...
  3005. */
  3006. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3007. export_rdev(rdev);
  3008. mddev_put(mddev);
  3009. }
  3010. printk(KERN_INFO "md: ... autorun DONE.\n");
  3011. }
  3012. /*
  3013. * import RAID devices based on one partition
  3014. * if possible, the array gets run as well.
  3015. */
  3016. static int autostart_array(dev_t startdev)
  3017. {
  3018. char b[BDEVNAME_SIZE];
  3019. int err = -EINVAL, i;
  3020. mdp_super_t *sb = NULL;
  3021. mdk_rdev_t *start_rdev = NULL, *rdev;
  3022. start_rdev = md_import_device(startdev, 0, 0);
  3023. if (IS_ERR(start_rdev))
  3024. return err;
  3025. /* NOTE: this can only work for 0.90.0 superblocks */
  3026. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  3027. if (sb->major_version != 0 ||
  3028. sb->minor_version != 90 ) {
  3029. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  3030. export_rdev(start_rdev);
  3031. return err;
  3032. }
  3033. if (test_bit(Faulty, &start_rdev->flags)) {
  3034. printk(KERN_WARNING
  3035. "md: can not autostart based on faulty %s!\n",
  3036. bdevname(start_rdev->bdev,b));
  3037. export_rdev(start_rdev);
  3038. return err;
  3039. }
  3040. list_add(&start_rdev->same_set, &pending_raid_disks);
  3041. for (i = 0; i < MD_SB_DISKS; i++) {
  3042. mdp_disk_t *desc = sb->disks + i;
  3043. dev_t dev = MKDEV(desc->major, desc->minor);
  3044. if (!dev)
  3045. continue;
  3046. if (dev == startdev)
  3047. continue;
  3048. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  3049. continue;
  3050. rdev = md_import_device(dev, 0, 0);
  3051. if (IS_ERR(rdev))
  3052. continue;
  3053. list_add(&rdev->same_set, &pending_raid_disks);
  3054. }
  3055. /*
  3056. * possibly return codes
  3057. */
  3058. autorun_devices(0);
  3059. return 0;
  3060. }
  3061. static int get_version(void __user * arg)
  3062. {
  3063. mdu_version_t ver;
  3064. ver.major = MD_MAJOR_VERSION;
  3065. ver.minor = MD_MINOR_VERSION;
  3066. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3067. if (copy_to_user(arg, &ver, sizeof(ver)))
  3068. return -EFAULT;
  3069. return 0;
  3070. }
  3071. static int get_array_info(mddev_t * mddev, void __user * arg)
  3072. {
  3073. mdu_array_info_t info;
  3074. int nr,working,active,failed,spare;
  3075. mdk_rdev_t *rdev;
  3076. struct list_head *tmp;
  3077. nr=working=active=failed=spare=0;
  3078. ITERATE_RDEV(mddev,rdev,tmp) {
  3079. nr++;
  3080. if (test_bit(Faulty, &rdev->flags))
  3081. failed++;
  3082. else {
  3083. working++;
  3084. if (test_bit(In_sync, &rdev->flags))
  3085. active++;
  3086. else
  3087. spare++;
  3088. }
  3089. }
  3090. info.major_version = mddev->major_version;
  3091. info.minor_version = mddev->minor_version;
  3092. info.patch_version = MD_PATCHLEVEL_VERSION;
  3093. info.ctime = mddev->ctime;
  3094. info.level = mddev->level;
  3095. info.size = mddev->size;
  3096. if (info.size != mddev->size) /* overflow */
  3097. info.size = -1;
  3098. info.nr_disks = nr;
  3099. info.raid_disks = mddev->raid_disks;
  3100. info.md_minor = mddev->md_minor;
  3101. info.not_persistent= !mddev->persistent;
  3102. info.utime = mddev->utime;
  3103. info.state = 0;
  3104. if (mddev->in_sync)
  3105. info.state = (1<<MD_SB_CLEAN);
  3106. if (mddev->bitmap && mddev->bitmap_offset)
  3107. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3108. info.active_disks = active;
  3109. info.working_disks = working;
  3110. info.failed_disks = failed;
  3111. info.spare_disks = spare;
  3112. info.layout = mddev->layout;
  3113. info.chunk_size = mddev->chunk_size;
  3114. if (copy_to_user(arg, &info, sizeof(info)))
  3115. return -EFAULT;
  3116. return 0;
  3117. }
  3118. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3119. {
  3120. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3121. char *ptr, *buf = NULL;
  3122. int err = -ENOMEM;
  3123. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3124. if (!file)
  3125. goto out;
  3126. /* bitmap disabled, zero the first byte and copy out */
  3127. if (!mddev->bitmap || !mddev->bitmap->file) {
  3128. file->pathname[0] = '\0';
  3129. goto copy_out;
  3130. }
  3131. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3132. if (!buf)
  3133. goto out;
  3134. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3135. if (!ptr)
  3136. goto out;
  3137. strcpy(file->pathname, ptr);
  3138. copy_out:
  3139. err = 0;
  3140. if (copy_to_user(arg, file, sizeof(*file)))
  3141. err = -EFAULT;
  3142. out:
  3143. kfree(buf);
  3144. kfree(file);
  3145. return err;
  3146. }
  3147. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3148. {
  3149. mdu_disk_info_t info;
  3150. unsigned int nr;
  3151. mdk_rdev_t *rdev;
  3152. if (copy_from_user(&info, arg, sizeof(info)))
  3153. return -EFAULT;
  3154. nr = info.number;
  3155. rdev = find_rdev_nr(mddev, nr);
  3156. if (rdev) {
  3157. info.major = MAJOR(rdev->bdev->bd_dev);
  3158. info.minor = MINOR(rdev->bdev->bd_dev);
  3159. info.raid_disk = rdev->raid_disk;
  3160. info.state = 0;
  3161. if (test_bit(Faulty, &rdev->flags))
  3162. info.state |= (1<<MD_DISK_FAULTY);
  3163. else if (test_bit(In_sync, &rdev->flags)) {
  3164. info.state |= (1<<MD_DISK_ACTIVE);
  3165. info.state |= (1<<MD_DISK_SYNC);
  3166. }
  3167. if (test_bit(WriteMostly, &rdev->flags))
  3168. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3169. } else {
  3170. info.major = info.minor = 0;
  3171. info.raid_disk = -1;
  3172. info.state = (1<<MD_DISK_REMOVED);
  3173. }
  3174. if (copy_to_user(arg, &info, sizeof(info)))
  3175. return -EFAULT;
  3176. return 0;
  3177. }
  3178. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3179. {
  3180. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3181. mdk_rdev_t *rdev;
  3182. dev_t dev = MKDEV(info->major,info->minor);
  3183. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3184. return -EOVERFLOW;
  3185. if (!mddev->raid_disks) {
  3186. int err;
  3187. /* expecting a device which has a superblock */
  3188. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3189. if (IS_ERR(rdev)) {
  3190. printk(KERN_WARNING
  3191. "md: md_import_device returned %ld\n",
  3192. PTR_ERR(rdev));
  3193. return PTR_ERR(rdev);
  3194. }
  3195. if (!list_empty(&mddev->disks)) {
  3196. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3197. mdk_rdev_t, same_set);
  3198. int err = super_types[mddev->major_version]
  3199. .load_super(rdev, rdev0, mddev->minor_version);
  3200. if (err < 0) {
  3201. printk(KERN_WARNING
  3202. "md: %s has different UUID to %s\n",
  3203. bdevname(rdev->bdev,b),
  3204. bdevname(rdev0->bdev,b2));
  3205. export_rdev(rdev);
  3206. return -EINVAL;
  3207. }
  3208. }
  3209. err = bind_rdev_to_array(rdev, mddev);
  3210. if (err)
  3211. export_rdev(rdev);
  3212. return err;
  3213. }
  3214. /*
  3215. * add_new_disk can be used once the array is assembled
  3216. * to add "hot spares". They must already have a superblock
  3217. * written
  3218. */
  3219. if (mddev->pers) {
  3220. int err;
  3221. if (!mddev->pers->hot_add_disk) {
  3222. printk(KERN_WARNING
  3223. "%s: personality does not support diskops!\n",
  3224. mdname(mddev));
  3225. return -EINVAL;
  3226. }
  3227. if (mddev->persistent)
  3228. rdev = md_import_device(dev, mddev->major_version,
  3229. mddev->minor_version);
  3230. else
  3231. rdev = md_import_device(dev, -1, -1);
  3232. if (IS_ERR(rdev)) {
  3233. printk(KERN_WARNING
  3234. "md: md_import_device returned %ld\n",
  3235. PTR_ERR(rdev));
  3236. return PTR_ERR(rdev);
  3237. }
  3238. /* set save_raid_disk if appropriate */
  3239. if (!mddev->persistent) {
  3240. if (info->state & (1<<MD_DISK_SYNC) &&
  3241. info->raid_disk < mddev->raid_disks)
  3242. rdev->raid_disk = info->raid_disk;
  3243. else
  3244. rdev->raid_disk = -1;
  3245. } else
  3246. super_types[mddev->major_version].
  3247. validate_super(mddev, rdev);
  3248. rdev->saved_raid_disk = rdev->raid_disk;
  3249. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3250. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3251. set_bit(WriteMostly, &rdev->flags);
  3252. rdev->raid_disk = -1;
  3253. err = bind_rdev_to_array(rdev, mddev);
  3254. if (!err && !mddev->pers->hot_remove_disk) {
  3255. /* If there is hot_add_disk but no hot_remove_disk
  3256. * then added disks for geometry changes,
  3257. * and should be added immediately.
  3258. */
  3259. super_types[mddev->major_version].
  3260. validate_super(mddev, rdev);
  3261. err = mddev->pers->hot_add_disk(mddev, rdev);
  3262. if (err)
  3263. unbind_rdev_from_array(rdev);
  3264. }
  3265. if (err)
  3266. export_rdev(rdev);
  3267. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3268. md_wakeup_thread(mddev->thread);
  3269. return err;
  3270. }
  3271. /* otherwise, add_new_disk is only allowed
  3272. * for major_version==0 superblocks
  3273. */
  3274. if (mddev->major_version != 0) {
  3275. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3276. mdname(mddev));
  3277. return -EINVAL;
  3278. }
  3279. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3280. int err;
  3281. rdev = md_import_device (dev, -1, 0);
  3282. if (IS_ERR(rdev)) {
  3283. printk(KERN_WARNING
  3284. "md: error, md_import_device() returned %ld\n",
  3285. PTR_ERR(rdev));
  3286. return PTR_ERR(rdev);
  3287. }
  3288. rdev->desc_nr = info->number;
  3289. if (info->raid_disk < mddev->raid_disks)
  3290. rdev->raid_disk = info->raid_disk;
  3291. else
  3292. rdev->raid_disk = -1;
  3293. rdev->flags = 0;
  3294. if (rdev->raid_disk < mddev->raid_disks)
  3295. if (info->state & (1<<MD_DISK_SYNC))
  3296. set_bit(In_sync, &rdev->flags);
  3297. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3298. set_bit(WriteMostly, &rdev->flags);
  3299. if (!mddev->persistent) {
  3300. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3301. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3302. } else
  3303. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3304. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3305. err = bind_rdev_to_array(rdev, mddev);
  3306. if (err) {
  3307. export_rdev(rdev);
  3308. return err;
  3309. }
  3310. }
  3311. return 0;
  3312. }
  3313. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3314. {
  3315. char b[BDEVNAME_SIZE];
  3316. mdk_rdev_t *rdev;
  3317. if (!mddev->pers)
  3318. return -ENODEV;
  3319. rdev = find_rdev(mddev, dev);
  3320. if (!rdev)
  3321. return -ENXIO;
  3322. if (rdev->raid_disk >= 0)
  3323. goto busy;
  3324. kick_rdev_from_array(rdev);
  3325. md_update_sb(mddev);
  3326. md_new_event(mddev);
  3327. return 0;
  3328. busy:
  3329. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3330. bdevname(rdev->bdev,b), mdname(mddev));
  3331. return -EBUSY;
  3332. }
  3333. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3334. {
  3335. char b[BDEVNAME_SIZE];
  3336. int err;
  3337. unsigned int size;
  3338. mdk_rdev_t *rdev;
  3339. if (!mddev->pers)
  3340. return -ENODEV;
  3341. if (mddev->major_version != 0) {
  3342. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3343. " version-0 superblocks.\n",
  3344. mdname(mddev));
  3345. return -EINVAL;
  3346. }
  3347. if (!mddev->pers->hot_add_disk) {
  3348. printk(KERN_WARNING
  3349. "%s: personality does not support diskops!\n",
  3350. mdname(mddev));
  3351. return -EINVAL;
  3352. }
  3353. rdev = md_import_device (dev, -1, 0);
  3354. if (IS_ERR(rdev)) {
  3355. printk(KERN_WARNING
  3356. "md: error, md_import_device() returned %ld\n",
  3357. PTR_ERR(rdev));
  3358. return -EINVAL;
  3359. }
  3360. if (mddev->persistent)
  3361. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3362. else
  3363. rdev->sb_offset =
  3364. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3365. size = calc_dev_size(rdev, mddev->chunk_size);
  3366. rdev->size = size;
  3367. if (test_bit(Faulty, &rdev->flags)) {
  3368. printk(KERN_WARNING
  3369. "md: can not hot-add faulty %s disk to %s!\n",
  3370. bdevname(rdev->bdev,b), mdname(mddev));
  3371. err = -EINVAL;
  3372. goto abort_export;
  3373. }
  3374. clear_bit(In_sync, &rdev->flags);
  3375. rdev->desc_nr = -1;
  3376. err = bind_rdev_to_array(rdev, mddev);
  3377. if (err)
  3378. goto abort_export;
  3379. /*
  3380. * The rest should better be atomic, we can have disk failures
  3381. * noticed in interrupt contexts ...
  3382. */
  3383. if (rdev->desc_nr == mddev->max_disks) {
  3384. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3385. mdname(mddev));
  3386. err = -EBUSY;
  3387. goto abort_unbind_export;
  3388. }
  3389. rdev->raid_disk = -1;
  3390. md_update_sb(mddev);
  3391. /*
  3392. * Kick recovery, maybe this spare has to be added to the
  3393. * array immediately.
  3394. */
  3395. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3396. md_wakeup_thread(mddev->thread);
  3397. md_new_event(mddev);
  3398. return 0;
  3399. abort_unbind_export:
  3400. unbind_rdev_from_array(rdev);
  3401. abort_export:
  3402. export_rdev(rdev);
  3403. return err;
  3404. }
  3405. static int set_bitmap_file(mddev_t *mddev, int fd)
  3406. {
  3407. int err;
  3408. if (mddev->pers) {
  3409. if (!mddev->pers->quiesce)
  3410. return -EBUSY;
  3411. if (mddev->recovery || mddev->sync_thread)
  3412. return -EBUSY;
  3413. /* we should be able to change the bitmap.. */
  3414. }
  3415. if (fd >= 0) {
  3416. if (mddev->bitmap)
  3417. return -EEXIST; /* cannot add when bitmap is present */
  3418. mddev->bitmap_file = fget(fd);
  3419. if (mddev->bitmap_file == NULL) {
  3420. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3421. mdname(mddev));
  3422. return -EBADF;
  3423. }
  3424. err = deny_bitmap_write_access(mddev->bitmap_file);
  3425. if (err) {
  3426. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3427. mdname(mddev));
  3428. fput(mddev->bitmap_file);
  3429. mddev->bitmap_file = NULL;
  3430. return err;
  3431. }
  3432. mddev->bitmap_offset = 0; /* file overrides offset */
  3433. } else if (mddev->bitmap == NULL)
  3434. return -ENOENT; /* cannot remove what isn't there */
  3435. err = 0;
  3436. if (mddev->pers) {
  3437. mddev->pers->quiesce(mddev, 1);
  3438. if (fd >= 0)
  3439. err = bitmap_create(mddev);
  3440. if (fd < 0 || err) {
  3441. bitmap_destroy(mddev);
  3442. fd = -1; /* make sure to put the file */
  3443. }
  3444. mddev->pers->quiesce(mddev, 0);
  3445. }
  3446. if (fd < 0) {
  3447. if (mddev->bitmap_file) {
  3448. restore_bitmap_write_access(mddev->bitmap_file);
  3449. fput(mddev->bitmap_file);
  3450. }
  3451. mddev->bitmap_file = NULL;
  3452. }
  3453. return err;
  3454. }
  3455. /*
  3456. * set_array_info is used two different ways
  3457. * The original usage is when creating a new array.
  3458. * In this usage, raid_disks is > 0 and it together with
  3459. * level, size, not_persistent,layout,chunksize determine the
  3460. * shape of the array.
  3461. * This will always create an array with a type-0.90.0 superblock.
  3462. * The newer usage is when assembling an array.
  3463. * In this case raid_disks will be 0, and the major_version field is
  3464. * use to determine which style super-blocks are to be found on the devices.
  3465. * The minor and patch _version numbers are also kept incase the
  3466. * super_block handler wishes to interpret them.
  3467. */
  3468. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3469. {
  3470. if (info->raid_disks == 0) {
  3471. /* just setting version number for superblock loading */
  3472. if (info->major_version < 0 ||
  3473. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  3474. super_types[info->major_version].name == NULL) {
  3475. /* maybe try to auto-load a module? */
  3476. printk(KERN_INFO
  3477. "md: superblock version %d not known\n",
  3478. info->major_version);
  3479. return -EINVAL;
  3480. }
  3481. mddev->major_version = info->major_version;
  3482. mddev->minor_version = info->minor_version;
  3483. mddev->patch_version = info->patch_version;
  3484. return 0;
  3485. }
  3486. mddev->major_version = MD_MAJOR_VERSION;
  3487. mddev->minor_version = MD_MINOR_VERSION;
  3488. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3489. mddev->ctime = get_seconds();
  3490. mddev->level = info->level;
  3491. mddev->clevel[0] = 0;
  3492. mddev->size = info->size;
  3493. mddev->raid_disks = info->raid_disks;
  3494. /* don't set md_minor, it is determined by which /dev/md* was
  3495. * openned
  3496. */
  3497. if (info->state & (1<<MD_SB_CLEAN))
  3498. mddev->recovery_cp = MaxSector;
  3499. else
  3500. mddev->recovery_cp = 0;
  3501. mddev->persistent = ! info->not_persistent;
  3502. mddev->layout = info->layout;
  3503. mddev->chunk_size = info->chunk_size;
  3504. mddev->max_disks = MD_SB_DISKS;
  3505. mddev->sb_dirty = 1;
  3506. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3507. mddev->bitmap_offset = 0;
  3508. mddev->reshape_position = MaxSector;
  3509. /*
  3510. * Generate a 128 bit UUID
  3511. */
  3512. get_random_bytes(mddev->uuid, 16);
  3513. mddev->new_level = mddev->level;
  3514. mddev->new_chunk = mddev->chunk_size;
  3515. mddev->new_layout = mddev->layout;
  3516. mddev->delta_disks = 0;
  3517. return 0;
  3518. }
  3519. static int update_size(mddev_t *mddev, unsigned long size)
  3520. {
  3521. mdk_rdev_t * rdev;
  3522. int rv;
  3523. struct list_head *tmp;
  3524. int fit = (size == 0);
  3525. if (mddev->pers->resize == NULL)
  3526. return -EINVAL;
  3527. /* The "size" is the amount of each device that is used.
  3528. * This can only make sense for arrays with redundancy.
  3529. * linear and raid0 always use whatever space is available
  3530. * We can only consider changing the size if no resync
  3531. * or reconstruction is happening, and if the new size
  3532. * is acceptable. It must fit before the sb_offset or,
  3533. * if that is <data_offset, it must fit before the
  3534. * size of each device.
  3535. * If size is zero, we find the largest size that fits.
  3536. */
  3537. if (mddev->sync_thread)
  3538. return -EBUSY;
  3539. ITERATE_RDEV(mddev,rdev,tmp) {
  3540. sector_t avail;
  3541. if (rdev->sb_offset > rdev->data_offset)
  3542. avail = (rdev->sb_offset*2) - rdev->data_offset;
  3543. else
  3544. avail = get_capacity(rdev->bdev->bd_disk)
  3545. - rdev->data_offset;
  3546. if (fit && (size == 0 || size > avail/2))
  3547. size = avail/2;
  3548. if (avail < ((sector_t)size << 1))
  3549. return -ENOSPC;
  3550. }
  3551. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3552. if (!rv) {
  3553. struct block_device *bdev;
  3554. bdev = bdget_disk(mddev->gendisk, 0);
  3555. if (bdev) {
  3556. mutex_lock(&bdev->bd_inode->i_mutex);
  3557. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3558. mutex_unlock(&bdev->bd_inode->i_mutex);
  3559. bdput(bdev);
  3560. }
  3561. }
  3562. return rv;
  3563. }
  3564. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3565. {
  3566. int rv;
  3567. /* change the number of raid disks */
  3568. if (mddev->pers->check_reshape == NULL)
  3569. return -EINVAL;
  3570. if (raid_disks <= 0 ||
  3571. raid_disks >= mddev->max_disks)
  3572. return -EINVAL;
  3573. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3574. return -EBUSY;
  3575. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3576. rv = mddev->pers->check_reshape(mddev);
  3577. return rv;
  3578. }
  3579. /*
  3580. * update_array_info is used to change the configuration of an
  3581. * on-line array.
  3582. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3583. * fields in the info are checked against the array.
  3584. * Any differences that cannot be handled will cause an error.
  3585. * Normally, only one change can be managed at a time.
  3586. */
  3587. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3588. {
  3589. int rv = 0;
  3590. int cnt = 0;
  3591. int state = 0;
  3592. /* calculate expected state,ignoring low bits */
  3593. if (mddev->bitmap && mddev->bitmap_offset)
  3594. state |= (1 << MD_SB_BITMAP_PRESENT);
  3595. if (mddev->major_version != info->major_version ||
  3596. mddev->minor_version != info->minor_version ||
  3597. /* mddev->patch_version != info->patch_version || */
  3598. mddev->ctime != info->ctime ||
  3599. mddev->level != info->level ||
  3600. /* mddev->layout != info->layout || */
  3601. !mddev->persistent != info->not_persistent||
  3602. mddev->chunk_size != info->chunk_size ||
  3603. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3604. ((state^info->state) & 0xfffffe00)
  3605. )
  3606. return -EINVAL;
  3607. /* Check there is only one change */
  3608. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3609. if (mddev->raid_disks != info->raid_disks) cnt++;
  3610. if (mddev->layout != info->layout) cnt++;
  3611. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3612. if (cnt == 0) return 0;
  3613. if (cnt > 1) return -EINVAL;
  3614. if (mddev->layout != info->layout) {
  3615. /* Change layout
  3616. * we don't need to do anything at the md level, the
  3617. * personality will take care of it all.
  3618. */
  3619. if (mddev->pers->reconfig == NULL)
  3620. return -EINVAL;
  3621. else
  3622. return mddev->pers->reconfig(mddev, info->layout, -1);
  3623. }
  3624. if (info->size >= 0 && mddev->size != info->size)
  3625. rv = update_size(mddev, info->size);
  3626. if (mddev->raid_disks != info->raid_disks)
  3627. rv = update_raid_disks(mddev, info->raid_disks);
  3628. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3629. if (mddev->pers->quiesce == NULL)
  3630. return -EINVAL;
  3631. if (mddev->recovery || mddev->sync_thread)
  3632. return -EBUSY;
  3633. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3634. /* add the bitmap */
  3635. if (mddev->bitmap)
  3636. return -EEXIST;
  3637. if (mddev->default_bitmap_offset == 0)
  3638. return -EINVAL;
  3639. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3640. mddev->pers->quiesce(mddev, 1);
  3641. rv = bitmap_create(mddev);
  3642. if (rv)
  3643. bitmap_destroy(mddev);
  3644. mddev->pers->quiesce(mddev, 0);
  3645. } else {
  3646. /* remove the bitmap */
  3647. if (!mddev->bitmap)
  3648. return -ENOENT;
  3649. if (mddev->bitmap->file)
  3650. return -EINVAL;
  3651. mddev->pers->quiesce(mddev, 1);
  3652. bitmap_destroy(mddev);
  3653. mddev->pers->quiesce(mddev, 0);
  3654. mddev->bitmap_offset = 0;
  3655. }
  3656. }
  3657. md_update_sb(mddev);
  3658. return rv;
  3659. }
  3660. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3661. {
  3662. mdk_rdev_t *rdev;
  3663. if (mddev->pers == NULL)
  3664. return -ENODEV;
  3665. rdev = find_rdev(mddev, dev);
  3666. if (!rdev)
  3667. return -ENODEV;
  3668. md_error(mddev, rdev);
  3669. return 0;
  3670. }
  3671. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3672. {
  3673. mddev_t *mddev = bdev->bd_disk->private_data;
  3674. geo->heads = 2;
  3675. geo->sectors = 4;
  3676. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3677. return 0;
  3678. }
  3679. static int md_ioctl(struct inode *inode, struct file *file,
  3680. unsigned int cmd, unsigned long arg)
  3681. {
  3682. int err = 0;
  3683. void __user *argp = (void __user *)arg;
  3684. mddev_t *mddev = NULL;
  3685. if (!capable(CAP_SYS_ADMIN))
  3686. return -EACCES;
  3687. /*
  3688. * Commands dealing with the RAID driver but not any
  3689. * particular array:
  3690. */
  3691. switch (cmd)
  3692. {
  3693. case RAID_VERSION:
  3694. err = get_version(argp);
  3695. goto done;
  3696. case PRINT_RAID_DEBUG:
  3697. err = 0;
  3698. md_print_devices();
  3699. goto done;
  3700. #ifndef MODULE
  3701. case RAID_AUTORUN:
  3702. err = 0;
  3703. autostart_arrays(arg);
  3704. goto done;
  3705. #endif
  3706. default:;
  3707. }
  3708. /*
  3709. * Commands creating/starting a new array:
  3710. */
  3711. mddev = inode->i_bdev->bd_disk->private_data;
  3712. if (!mddev) {
  3713. BUG();
  3714. goto abort;
  3715. }
  3716. if (cmd == START_ARRAY) {
  3717. /* START_ARRAY doesn't need to lock the array as autostart_array
  3718. * does the locking, and it could even be a different array
  3719. */
  3720. static int cnt = 3;
  3721. if (cnt > 0 ) {
  3722. printk(KERN_WARNING
  3723. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  3724. "This will not be supported beyond July 2006\n",
  3725. current->comm, current->pid);
  3726. cnt--;
  3727. }
  3728. err = autostart_array(new_decode_dev(arg));
  3729. if (err) {
  3730. printk(KERN_WARNING "md: autostart failed!\n");
  3731. goto abort;
  3732. }
  3733. goto done;
  3734. }
  3735. err = mddev_lock(mddev);
  3736. if (err) {
  3737. printk(KERN_INFO
  3738. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3739. err, cmd);
  3740. goto abort;
  3741. }
  3742. switch (cmd)
  3743. {
  3744. case SET_ARRAY_INFO:
  3745. {
  3746. mdu_array_info_t info;
  3747. if (!arg)
  3748. memset(&info, 0, sizeof(info));
  3749. else if (copy_from_user(&info, argp, sizeof(info))) {
  3750. err = -EFAULT;
  3751. goto abort_unlock;
  3752. }
  3753. if (mddev->pers) {
  3754. err = update_array_info(mddev, &info);
  3755. if (err) {
  3756. printk(KERN_WARNING "md: couldn't update"
  3757. " array info. %d\n", err);
  3758. goto abort_unlock;
  3759. }
  3760. goto done_unlock;
  3761. }
  3762. if (!list_empty(&mddev->disks)) {
  3763. printk(KERN_WARNING
  3764. "md: array %s already has disks!\n",
  3765. mdname(mddev));
  3766. err = -EBUSY;
  3767. goto abort_unlock;
  3768. }
  3769. if (mddev->raid_disks) {
  3770. printk(KERN_WARNING
  3771. "md: array %s already initialised!\n",
  3772. mdname(mddev));
  3773. err = -EBUSY;
  3774. goto abort_unlock;
  3775. }
  3776. err = set_array_info(mddev, &info);
  3777. if (err) {
  3778. printk(KERN_WARNING "md: couldn't set"
  3779. " array info. %d\n", err);
  3780. goto abort_unlock;
  3781. }
  3782. }
  3783. goto done_unlock;
  3784. default:;
  3785. }
  3786. /*
  3787. * Commands querying/configuring an existing array:
  3788. */
  3789. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3790. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  3791. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3792. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  3793. err = -ENODEV;
  3794. goto abort_unlock;
  3795. }
  3796. /*
  3797. * Commands even a read-only array can execute:
  3798. */
  3799. switch (cmd)
  3800. {
  3801. case GET_ARRAY_INFO:
  3802. err = get_array_info(mddev, argp);
  3803. goto done_unlock;
  3804. case GET_BITMAP_FILE:
  3805. err = get_bitmap_file(mddev, argp);
  3806. goto done_unlock;
  3807. case GET_DISK_INFO:
  3808. err = get_disk_info(mddev, argp);
  3809. goto done_unlock;
  3810. case RESTART_ARRAY_RW:
  3811. err = restart_array(mddev);
  3812. goto done_unlock;
  3813. case STOP_ARRAY:
  3814. err = do_md_stop (mddev, 0);
  3815. goto done_unlock;
  3816. case STOP_ARRAY_RO:
  3817. err = do_md_stop (mddev, 1);
  3818. goto done_unlock;
  3819. /*
  3820. * We have a problem here : there is no easy way to give a CHS
  3821. * virtual geometry. We currently pretend that we have a 2 heads
  3822. * 4 sectors (with a BIG number of cylinders...). This drives
  3823. * dosfs just mad... ;-)
  3824. */
  3825. }
  3826. /*
  3827. * The remaining ioctls are changing the state of the
  3828. * superblock, so we do not allow them on read-only arrays.
  3829. * However non-MD ioctls (e.g. get-size) will still come through
  3830. * here and hit the 'default' below, so only disallow
  3831. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3832. */
  3833. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3834. mddev->ro && mddev->pers) {
  3835. if (mddev->ro == 2) {
  3836. mddev->ro = 0;
  3837. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3838. md_wakeup_thread(mddev->thread);
  3839. } else {
  3840. err = -EROFS;
  3841. goto abort_unlock;
  3842. }
  3843. }
  3844. switch (cmd)
  3845. {
  3846. case ADD_NEW_DISK:
  3847. {
  3848. mdu_disk_info_t info;
  3849. if (copy_from_user(&info, argp, sizeof(info)))
  3850. err = -EFAULT;
  3851. else
  3852. err = add_new_disk(mddev, &info);
  3853. goto done_unlock;
  3854. }
  3855. case HOT_REMOVE_DISK:
  3856. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3857. goto done_unlock;
  3858. case HOT_ADD_DISK:
  3859. err = hot_add_disk(mddev, new_decode_dev(arg));
  3860. goto done_unlock;
  3861. case SET_DISK_FAULTY:
  3862. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3863. goto done_unlock;
  3864. case RUN_ARRAY:
  3865. err = do_md_run (mddev);
  3866. goto done_unlock;
  3867. case SET_BITMAP_FILE:
  3868. err = set_bitmap_file(mddev, (int)arg);
  3869. goto done_unlock;
  3870. default:
  3871. err = -EINVAL;
  3872. goto abort_unlock;
  3873. }
  3874. done_unlock:
  3875. abort_unlock:
  3876. mddev_unlock(mddev);
  3877. return err;
  3878. done:
  3879. if (err)
  3880. MD_BUG();
  3881. abort:
  3882. return err;
  3883. }
  3884. static int md_open(struct inode *inode, struct file *file)
  3885. {
  3886. /*
  3887. * Succeed if we can lock the mddev, which confirms that
  3888. * it isn't being stopped right now.
  3889. */
  3890. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3891. int err;
  3892. if ((err = mddev_lock(mddev)))
  3893. goto out;
  3894. err = 0;
  3895. mddev_get(mddev);
  3896. mddev_unlock(mddev);
  3897. check_disk_change(inode->i_bdev);
  3898. out:
  3899. return err;
  3900. }
  3901. static int md_release(struct inode *inode, struct file * file)
  3902. {
  3903. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  3904. if (!mddev)
  3905. BUG();
  3906. mddev_put(mddev);
  3907. return 0;
  3908. }
  3909. static int md_media_changed(struct gendisk *disk)
  3910. {
  3911. mddev_t *mddev = disk->private_data;
  3912. return mddev->changed;
  3913. }
  3914. static int md_revalidate(struct gendisk *disk)
  3915. {
  3916. mddev_t *mddev = disk->private_data;
  3917. mddev->changed = 0;
  3918. return 0;
  3919. }
  3920. static struct block_device_operations md_fops =
  3921. {
  3922. .owner = THIS_MODULE,
  3923. .open = md_open,
  3924. .release = md_release,
  3925. .ioctl = md_ioctl,
  3926. .getgeo = md_getgeo,
  3927. .media_changed = md_media_changed,
  3928. .revalidate_disk= md_revalidate,
  3929. };
  3930. static int md_thread(void * arg)
  3931. {
  3932. mdk_thread_t *thread = arg;
  3933. /*
  3934. * md_thread is a 'system-thread', it's priority should be very
  3935. * high. We avoid resource deadlocks individually in each
  3936. * raid personality. (RAID5 does preallocation) We also use RR and
  3937. * the very same RT priority as kswapd, thus we will never get
  3938. * into a priority inversion deadlock.
  3939. *
  3940. * we definitely have to have equal or higher priority than
  3941. * bdflush, otherwise bdflush will deadlock if there are too
  3942. * many dirty RAID5 blocks.
  3943. */
  3944. allow_signal(SIGKILL);
  3945. while (!kthread_should_stop()) {
  3946. /* We need to wait INTERRUPTIBLE so that
  3947. * we don't add to the load-average.
  3948. * That means we need to be sure no signals are
  3949. * pending
  3950. */
  3951. if (signal_pending(current))
  3952. flush_signals(current);
  3953. wait_event_interruptible_timeout
  3954. (thread->wqueue,
  3955. test_bit(THREAD_WAKEUP, &thread->flags)
  3956. || kthread_should_stop(),
  3957. thread->timeout);
  3958. try_to_freeze();
  3959. clear_bit(THREAD_WAKEUP, &thread->flags);
  3960. thread->run(thread->mddev);
  3961. }
  3962. return 0;
  3963. }
  3964. void md_wakeup_thread(mdk_thread_t *thread)
  3965. {
  3966. if (thread) {
  3967. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3968. set_bit(THREAD_WAKEUP, &thread->flags);
  3969. wake_up(&thread->wqueue);
  3970. }
  3971. }
  3972. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3973. const char *name)
  3974. {
  3975. mdk_thread_t *thread;
  3976. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3977. if (!thread)
  3978. return NULL;
  3979. init_waitqueue_head(&thread->wqueue);
  3980. thread->run = run;
  3981. thread->mddev = mddev;
  3982. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3983. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3984. if (IS_ERR(thread->tsk)) {
  3985. kfree(thread);
  3986. return NULL;
  3987. }
  3988. return thread;
  3989. }
  3990. void md_unregister_thread(mdk_thread_t *thread)
  3991. {
  3992. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3993. kthread_stop(thread->tsk);
  3994. kfree(thread);
  3995. }
  3996. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3997. {
  3998. if (!mddev) {
  3999. MD_BUG();
  4000. return;
  4001. }
  4002. if (!rdev || test_bit(Faulty, &rdev->flags))
  4003. return;
  4004. /*
  4005. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4006. mdname(mddev),
  4007. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4008. __builtin_return_address(0),__builtin_return_address(1),
  4009. __builtin_return_address(2),__builtin_return_address(3));
  4010. */
  4011. if (!mddev->pers->error_handler)
  4012. return;
  4013. mddev->pers->error_handler(mddev,rdev);
  4014. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4015. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4016. md_wakeup_thread(mddev->thread);
  4017. md_new_event_inintr(mddev);
  4018. }
  4019. /* seq_file implementation /proc/mdstat */
  4020. static void status_unused(struct seq_file *seq)
  4021. {
  4022. int i = 0;
  4023. mdk_rdev_t *rdev;
  4024. struct list_head *tmp;
  4025. seq_printf(seq, "unused devices: ");
  4026. ITERATE_RDEV_PENDING(rdev,tmp) {
  4027. char b[BDEVNAME_SIZE];
  4028. i++;
  4029. seq_printf(seq, "%s ",
  4030. bdevname(rdev->bdev,b));
  4031. }
  4032. if (!i)
  4033. seq_printf(seq, "<none>");
  4034. seq_printf(seq, "\n");
  4035. }
  4036. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4037. {
  4038. sector_t max_blocks, resync, res;
  4039. unsigned long dt, db, rt;
  4040. int scale;
  4041. unsigned int per_milli;
  4042. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4043. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4044. max_blocks = mddev->resync_max_sectors >> 1;
  4045. else
  4046. max_blocks = mddev->size;
  4047. /*
  4048. * Should not happen.
  4049. */
  4050. if (!max_blocks) {
  4051. MD_BUG();
  4052. return;
  4053. }
  4054. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4055. * in a sector_t, and (max_blocks>>scale) will fit in a
  4056. * u32, as those are the requirements for sector_div.
  4057. * Thus 'scale' must be at least 10
  4058. */
  4059. scale = 10;
  4060. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4061. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4062. scale++;
  4063. }
  4064. res = (resync>>scale)*1000;
  4065. sector_div(res, (u32)((max_blocks>>scale)+1));
  4066. per_milli = res;
  4067. {
  4068. int i, x = per_milli/50, y = 20-x;
  4069. seq_printf(seq, "[");
  4070. for (i = 0; i < x; i++)
  4071. seq_printf(seq, "=");
  4072. seq_printf(seq, ">");
  4073. for (i = 0; i < y; i++)
  4074. seq_printf(seq, ".");
  4075. seq_printf(seq, "] ");
  4076. }
  4077. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4078. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4079. "reshape" :
  4080. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4081. "resync" : "recovery")),
  4082. per_milli/10, per_milli % 10,
  4083. (unsigned long long) resync,
  4084. (unsigned long long) max_blocks);
  4085. /*
  4086. * We do not want to overflow, so the order of operands and
  4087. * the * 100 / 100 trick are important. We do a +1 to be
  4088. * safe against division by zero. We only estimate anyway.
  4089. *
  4090. * dt: time from mark until now
  4091. * db: blocks written from mark until now
  4092. * rt: remaining time
  4093. */
  4094. dt = ((jiffies - mddev->resync_mark) / HZ);
  4095. if (!dt) dt++;
  4096. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4097. - mddev->resync_mark_cnt;
  4098. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4099. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4100. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4101. }
  4102. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4103. {
  4104. struct list_head *tmp;
  4105. loff_t l = *pos;
  4106. mddev_t *mddev;
  4107. if (l >= 0x10000)
  4108. return NULL;
  4109. if (!l--)
  4110. /* header */
  4111. return (void*)1;
  4112. spin_lock(&all_mddevs_lock);
  4113. list_for_each(tmp,&all_mddevs)
  4114. if (!l--) {
  4115. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4116. mddev_get(mddev);
  4117. spin_unlock(&all_mddevs_lock);
  4118. return mddev;
  4119. }
  4120. spin_unlock(&all_mddevs_lock);
  4121. if (!l--)
  4122. return (void*)2;/* tail */
  4123. return NULL;
  4124. }
  4125. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4126. {
  4127. struct list_head *tmp;
  4128. mddev_t *next_mddev, *mddev = v;
  4129. ++*pos;
  4130. if (v == (void*)2)
  4131. return NULL;
  4132. spin_lock(&all_mddevs_lock);
  4133. if (v == (void*)1)
  4134. tmp = all_mddevs.next;
  4135. else
  4136. tmp = mddev->all_mddevs.next;
  4137. if (tmp != &all_mddevs)
  4138. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4139. else {
  4140. next_mddev = (void*)2;
  4141. *pos = 0x10000;
  4142. }
  4143. spin_unlock(&all_mddevs_lock);
  4144. if (v != (void*)1)
  4145. mddev_put(mddev);
  4146. return next_mddev;
  4147. }
  4148. static void md_seq_stop(struct seq_file *seq, void *v)
  4149. {
  4150. mddev_t *mddev = v;
  4151. if (mddev && v != (void*)1 && v != (void*)2)
  4152. mddev_put(mddev);
  4153. }
  4154. struct mdstat_info {
  4155. int event;
  4156. };
  4157. static int md_seq_show(struct seq_file *seq, void *v)
  4158. {
  4159. mddev_t *mddev = v;
  4160. sector_t size;
  4161. struct list_head *tmp2;
  4162. mdk_rdev_t *rdev;
  4163. struct mdstat_info *mi = seq->private;
  4164. struct bitmap *bitmap;
  4165. if (v == (void*)1) {
  4166. struct mdk_personality *pers;
  4167. seq_printf(seq, "Personalities : ");
  4168. spin_lock(&pers_lock);
  4169. list_for_each_entry(pers, &pers_list, list)
  4170. seq_printf(seq, "[%s] ", pers->name);
  4171. spin_unlock(&pers_lock);
  4172. seq_printf(seq, "\n");
  4173. mi->event = atomic_read(&md_event_count);
  4174. return 0;
  4175. }
  4176. if (v == (void*)2) {
  4177. status_unused(seq);
  4178. return 0;
  4179. }
  4180. if (mddev_lock(mddev) < 0)
  4181. return -EINTR;
  4182. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4183. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4184. mddev->pers ? "" : "in");
  4185. if (mddev->pers) {
  4186. if (mddev->ro==1)
  4187. seq_printf(seq, " (read-only)");
  4188. if (mddev->ro==2)
  4189. seq_printf(seq, "(auto-read-only)");
  4190. seq_printf(seq, " %s", mddev->pers->name);
  4191. }
  4192. size = 0;
  4193. ITERATE_RDEV(mddev,rdev,tmp2) {
  4194. char b[BDEVNAME_SIZE];
  4195. seq_printf(seq, " %s[%d]",
  4196. bdevname(rdev->bdev,b), rdev->desc_nr);
  4197. if (test_bit(WriteMostly, &rdev->flags))
  4198. seq_printf(seq, "(W)");
  4199. if (test_bit(Faulty, &rdev->flags)) {
  4200. seq_printf(seq, "(F)");
  4201. continue;
  4202. } else if (rdev->raid_disk < 0)
  4203. seq_printf(seq, "(S)"); /* spare */
  4204. size += rdev->size;
  4205. }
  4206. if (!list_empty(&mddev->disks)) {
  4207. if (mddev->pers)
  4208. seq_printf(seq, "\n %llu blocks",
  4209. (unsigned long long)mddev->array_size);
  4210. else
  4211. seq_printf(seq, "\n %llu blocks",
  4212. (unsigned long long)size);
  4213. }
  4214. if (mddev->persistent) {
  4215. if (mddev->major_version != 0 ||
  4216. mddev->minor_version != 90) {
  4217. seq_printf(seq," super %d.%d",
  4218. mddev->major_version,
  4219. mddev->minor_version);
  4220. }
  4221. } else
  4222. seq_printf(seq, " super non-persistent");
  4223. if (mddev->pers) {
  4224. mddev->pers->status (seq, mddev);
  4225. seq_printf(seq, "\n ");
  4226. if (mddev->pers->sync_request) {
  4227. if (mddev->curr_resync > 2) {
  4228. status_resync (seq, mddev);
  4229. seq_printf(seq, "\n ");
  4230. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4231. seq_printf(seq, "\tresync=DELAYED\n ");
  4232. else if (mddev->recovery_cp < MaxSector)
  4233. seq_printf(seq, "\tresync=PENDING\n ");
  4234. }
  4235. } else
  4236. seq_printf(seq, "\n ");
  4237. if ((bitmap = mddev->bitmap)) {
  4238. unsigned long chunk_kb;
  4239. unsigned long flags;
  4240. spin_lock_irqsave(&bitmap->lock, flags);
  4241. chunk_kb = bitmap->chunksize >> 10;
  4242. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4243. "%lu%s chunk",
  4244. bitmap->pages - bitmap->missing_pages,
  4245. bitmap->pages,
  4246. (bitmap->pages - bitmap->missing_pages)
  4247. << (PAGE_SHIFT - 10),
  4248. chunk_kb ? chunk_kb : bitmap->chunksize,
  4249. chunk_kb ? "KB" : "B");
  4250. if (bitmap->file) {
  4251. seq_printf(seq, ", file: ");
  4252. seq_path(seq, bitmap->file->f_vfsmnt,
  4253. bitmap->file->f_dentry," \t\n");
  4254. }
  4255. seq_printf(seq, "\n");
  4256. spin_unlock_irqrestore(&bitmap->lock, flags);
  4257. }
  4258. seq_printf(seq, "\n");
  4259. }
  4260. mddev_unlock(mddev);
  4261. return 0;
  4262. }
  4263. static struct seq_operations md_seq_ops = {
  4264. .start = md_seq_start,
  4265. .next = md_seq_next,
  4266. .stop = md_seq_stop,
  4267. .show = md_seq_show,
  4268. };
  4269. static int md_seq_open(struct inode *inode, struct file *file)
  4270. {
  4271. int error;
  4272. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4273. if (mi == NULL)
  4274. return -ENOMEM;
  4275. error = seq_open(file, &md_seq_ops);
  4276. if (error)
  4277. kfree(mi);
  4278. else {
  4279. struct seq_file *p = file->private_data;
  4280. p->private = mi;
  4281. mi->event = atomic_read(&md_event_count);
  4282. }
  4283. return error;
  4284. }
  4285. static int md_seq_release(struct inode *inode, struct file *file)
  4286. {
  4287. struct seq_file *m = file->private_data;
  4288. struct mdstat_info *mi = m->private;
  4289. m->private = NULL;
  4290. kfree(mi);
  4291. return seq_release(inode, file);
  4292. }
  4293. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4294. {
  4295. struct seq_file *m = filp->private_data;
  4296. struct mdstat_info *mi = m->private;
  4297. int mask;
  4298. poll_wait(filp, &md_event_waiters, wait);
  4299. /* always allow read */
  4300. mask = POLLIN | POLLRDNORM;
  4301. if (mi->event != atomic_read(&md_event_count))
  4302. mask |= POLLERR | POLLPRI;
  4303. return mask;
  4304. }
  4305. static struct file_operations md_seq_fops = {
  4306. .open = md_seq_open,
  4307. .read = seq_read,
  4308. .llseek = seq_lseek,
  4309. .release = md_seq_release,
  4310. .poll = mdstat_poll,
  4311. };
  4312. int register_md_personality(struct mdk_personality *p)
  4313. {
  4314. spin_lock(&pers_lock);
  4315. list_add_tail(&p->list, &pers_list);
  4316. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4317. spin_unlock(&pers_lock);
  4318. return 0;
  4319. }
  4320. int unregister_md_personality(struct mdk_personality *p)
  4321. {
  4322. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4323. spin_lock(&pers_lock);
  4324. list_del_init(&p->list);
  4325. spin_unlock(&pers_lock);
  4326. return 0;
  4327. }
  4328. static int is_mddev_idle(mddev_t *mddev)
  4329. {
  4330. mdk_rdev_t * rdev;
  4331. struct list_head *tmp;
  4332. int idle;
  4333. unsigned long curr_events;
  4334. idle = 1;
  4335. ITERATE_RDEV(mddev,rdev,tmp) {
  4336. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4337. curr_events = disk_stat_read(disk, sectors[0]) +
  4338. disk_stat_read(disk, sectors[1]) -
  4339. atomic_read(&disk->sync_io);
  4340. /* The difference between curr_events and last_events
  4341. * will be affected by any new non-sync IO (making
  4342. * curr_events bigger) and any difference in the amount of
  4343. * in-flight syncio (making current_events bigger or smaller)
  4344. * The amount in-flight is currently limited to
  4345. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4346. * which is at most 4096 sectors.
  4347. * These numbers are fairly fragile and should be made
  4348. * more robust, probably by enforcing the
  4349. * 'window size' that md_do_sync sort-of uses.
  4350. *
  4351. * Note: the following is an unsigned comparison.
  4352. */
  4353. if ((curr_events - rdev->last_events + 4096) > 8192) {
  4354. rdev->last_events = curr_events;
  4355. idle = 0;
  4356. }
  4357. }
  4358. return idle;
  4359. }
  4360. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4361. {
  4362. /* another "blocks" (512byte) blocks have been synced */
  4363. atomic_sub(blocks, &mddev->recovery_active);
  4364. wake_up(&mddev->recovery_wait);
  4365. if (!ok) {
  4366. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4367. md_wakeup_thread(mddev->thread);
  4368. // stop recovery, signal do_sync ....
  4369. }
  4370. }
  4371. /* md_write_start(mddev, bi)
  4372. * If we need to update some array metadata (e.g. 'active' flag
  4373. * in superblock) before writing, schedule a superblock update
  4374. * and wait for it to complete.
  4375. */
  4376. void md_write_start(mddev_t *mddev, struct bio *bi)
  4377. {
  4378. if (bio_data_dir(bi) != WRITE)
  4379. return;
  4380. BUG_ON(mddev->ro == 1);
  4381. if (mddev->ro == 2) {
  4382. /* need to switch to read/write */
  4383. mddev->ro = 0;
  4384. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4385. md_wakeup_thread(mddev->thread);
  4386. }
  4387. atomic_inc(&mddev->writes_pending);
  4388. if (mddev->in_sync) {
  4389. spin_lock_irq(&mddev->write_lock);
  4390. if (mddev->in_sync) {
  4391. mddev->in_sync = 0;
  4392. mddev->sb_dirty = 3;
  4393. md_wakeup_thread(mddev->thread);
  4394. }
  4395. spin_unlock_irq(&mddev->write_lock);
  4396. }
  4397. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  4398. }
  4399. void md_write_end(mddev_t *mddev)
  4400. {
  4401. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4402. if (mddev->safemode == 2)
  4403. md_wakeup_thread(mddev->thread);
  4404. else if (mddev->safemode_delay)
  4405. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4406. }
  4407. }
  4408. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4409. #define SYNC_MARKS 10
  4410. #define SYNC_MARK_STEP (3*HZ)
  4411. void md_do_sync(mddev_t *mddev)
  4412. {
  4413. mddev_t *mddev2;
  4414. unsigned int currspeed = 0,
  4415. window;
  4416. sector_t max_sectors,j, io_sectors;
  4417. unsigned long mark[SYNC_MARKS];
  4418. sector_t mark_cnt[SYNC_MARKS];
  4419. int last_mark,m;
  4420. struct list_head *tmp;
  4421. sector_t last_check;
  4422. int skipped = 0;
  4423. struct list_head *rtmp;
  4424. mdk_rdev_t *rdev;
  4425. /* just incase thread restarts... */
  4426. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4427. return;
  4428. if (mddev->ro) /* never try to sync a read-only array */
  4429. return;
  4430. /* we overload curr_resync somewhat here.
  4431. * 0 == not engaged in resync at all
  4432. * 2 == checking that there is no conflict with another sync
  4433. * 1 == like 2, but have yielded to allow conflicting resync to
  4434. * commense
  4435. * other == active in resync - this many blocks
  4436. *
  4437. * Before starting a resync we must have set curr_resync to
  4438. * 2, and then checked that every "conflicting" array has curr_resync
  4439. * less than ours. When we find one that is the same or higher
  4440. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4441. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4442. * This will mean we have to start checking from the beginning again.
  4443. *
  4444. */
  4445. do {
  4446. mddev->curr_resync = 2;
  4447. try_again:
  4448. if (kthread_should_stop()) {
  4449. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4450. goto skip;
  4451. }
  4452. ITERATE_MDDEV(mddev2,tmp) {
  4453. if (mddev2 == mddev)
  4454. continue;
  4455. if (mddev2->curr_resync &&
  4456. match_mddev_units(mddev,mddev2)) {
  4457. DEFINE_WAIT(wq);
  4458. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4459. /* arbitrarily yield */
  4460. mddev->curr_resync = 1;
  4461. wake_up(&resync_wait);
  4462. }
  4463. if (mddev > mddev2 && mddev->curr_resync == 1)
  4464. /* no need to wait here, we can wait the next
  4465. * time 'round when curr_resync == 2
  4466. */
  4467. continue;
  4468. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4469. if (!kthread_should_stop() &&
  4470. mddev2->curr_resync >= mddev->curr_resync) {
  4471. printk(KERN_INFO "md: delaying resync of %s"
  4472. " until %s has finished resync (they"
  4473. " share one or more physical units)\n",
  4474. mdname(mddev), mdname(mddev2));
  4475. mddev_put(mddev2);
  4476. schedule();
  4477. finish_wait(&resync_wait, &wq);
  4478. goto try_again;
  4479. }
  4480. finish_wait(&resync_wait, &wq);
  4481. }
  4482. }
  4483. } while (mddev->curr_resync < 2);
  4484. j = 0;
  4485. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4486. /* resync follows the size requested by the personality,
  4487. * which defaults to physical size, but can be virtual size
  4488. */
  4489. max_sectors = mddev->resync_max_sectors;
  4490. mddev->resync_mismatches = 0;
  4491. /* we don't use the checkpoint if there's a bitmap */
  4492. if (!mddev->bitmap &&
  4493. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4494. j = mddev->recovery_cp;
  4495. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4496. max_sectors = mddev->size << 1;
  4497. else {
  4498. /* recovery follows the physical size of devices */
  4499. max_sectors = mddev->size << 1;
  4500. j = MaxSector;
  4501. ITERATE_RDEV(mddev,rdev,rtmp)
  4502. if (rdev->raid_disk >= 0 &&
  4503. !test_bit(Faulty, &rdev->flags) &&
  4504. !test_bit(In_sync, &rdev->flags) &&
  4505. rdev->recovery_offset < j)
  4506. j = rdev->recovery_offset;
  4507. }
  4508. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  4509. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  4510. " %d KB/sec/disc.\n", speed_min(mddev));
  4511. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4512. "(but not more than %d KB/sec) for reconstruction.\n",
  4513. speed_max(mddev));
  4514. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4515. io_sectors = 0;
  4516. for (m = 0; m < SYNC_MARKS; m++) {
  4517. mark[m] = jiffies;
  4518. mark_cnt[m] = io_sectors;
  4519. }
  4520. last_mark = 0;
  4521. mddev->resync_mark = mark[last_mark];
  4522. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4523. /*
  4524. * Tune reconstruction:
  4525. */
  4526. window = 32*(PAGE_SIZE/512);
  4527. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4528. window/2,(unsigned long long) max_sectors/2);
  4529. atomic_set(&mddev->recovery_active, 0);
  4530. init_waitqueue_head(&mddev->recovery_wait);
  4531. last_check = 0;
  4532. if (j>2) {
  4533. printk(KERN_INFO
  4534. "md: resuming recovery of %s from checkpoint.\n",
  4535. mdname(mddev));
  4536. mddev->curr_resync = j;
  4537. }
  4538. while (j < max_sectors) {
  4539. sector_t sectors;
  4540. skipped = 0;
  4541. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4542. currspeed < speed_min(mddev));
  4543. if (sectors == 0) {
  4544. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4545. goto out;
  4546. }
  4547. if (!skipped) { /* actual IO requested */
  4548. io_sectors += sectors;
  4549. atomic_add(sectors, &mddev->recovery_active);
  4550. }
  4551. j += sectors;
  4552. if (j>1) mddev->curr_resync = j;
  4553. mddev->curr_mark_cnt = io_sectors;
  4554. if (last_check == 0)
  4555. /* this is the earliers that rebuilt will be
  4556. * visible in /proc/mdstat
  4557. */
  4558. md_new_event(mddev);
  4559. if (last_check + window > io_sectors || j == max_sectors)
  4560. continue;
  4561. last_check = io_sectors;
  4562. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4563. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4564. break;
  4565. repeat:
  4566. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4567. /* step marks */
  4568. int next = (last_mark+1) % SYNC_MARKS;
  4569. mddev->resync_mark = mark[next];
  4570. mddev->resync_mark_cnt = mark_cnt[next];
  4571. mark[next] = jiffies;
  4572. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4573. last_mark = next;
  4574. }
  4575. if (kthread_should_stop()) {
  4576. /*
  4577. * got a signal, exit.
  4578. */
  4579. printk(KERN_INFO
  4580. "md: md_do_sync() got signal ... exiting\n");
  4581. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4582. goto out;
  4583. }
  4584. /*
  4585. * this loop exits only if either when we are slower than
  4586. * the 'hard' speed limit, or the system was IO-idle for
  4587. * a jiffy.
  4588. * the system might be non-idle CPU-wise, but we only care
  4589. * about not overloading the IO subsystem. (things like an
  4590. * e2fsck being done on the RAID array should execute fast)
  4591. */
  4592. mddev->queue->unplug_fn(mddev->queue);
  4593. cond_resched();
  4594. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4595. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4596. if (currspeed > speed_min(mddev)) {
  4597. if ((currspeed > speed_max(mddev)) ||
  4598. !is_mddev_idle(mddev)) {
  4599. msleep(500);
  4600. goto repeat;
  4601. }
  4602. }
  4603. }
  4604. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  4605. /*
  4606. * this also signals 'finished resyncing' to md_stop
  4607. */
  4608. out:
  4609. mddev->queue->unplug_fn(mddev->queue);
  4610. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4611. /* tell personality that we are finished */
  4612. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4613. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4614. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  4615. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4616. mddev->curr_resync > 2) {
  4617. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4618. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4619. if (mddev->curr_resync >= mddev->recovery_cp) {
  4620. printk(KERN_INFO
  4621. "md: checkpointing recovery of %s.\n",
  4622. mdname(mddev));
  4623. mddev->recovery_cp = mddev->curr_resync;
  4624. }
  4625. } else
  4626. mddev->recovery_cp = MaxSector;
  4627. } else {
  4628. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4629. mddev->curr_resync = MaxSector;
  4630. ITERATE_RDEV(mddev,rdev,rtmp)
  4631. if (rdev->raid_disk >= 0 &&
  4632. !test_bit(Faulty, &rdev->flags) &&
  4633. !test_bit(In_sync, &rdev->flags) &&
  4634. rdev->recovery_offset < mddev->curr_resync)
  4635. rdev->recovery_offset = mddev->curr_resync;
  4636. mddev->sb_dirty = 1;
  4637. }
  4638. }
  4639. skip:
  4640. mddev->curr_resync = 0;
  4641. wake_up(&resync_wait);
  4642. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4643. md_wakeup_thread(mddev->thread);
  4644. }
  4645. EXPORT_SYMBOL_GPL(md_do_sync);
  4646. /*
  4647. * This routine is regularly called by all per-raid-array threads to
  4648. * deal with generic issues like resync and super-block update.
  4649. * Raid personalities that don't have a thread (linear/raid0) do not
  4650. * need this as they never do any recovery or update the superblock.
  4651. *
  4652. * It does not do any resync itself, but rather "forks" off other threads
  4653. * to do that as needed.
  4654. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4655. * "->recovery" and create a thread at ->sync_thread.
  4656. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4657. * and wakeups up this thread which will reap the thread and finish up.
  4658. * This thread also removes any faulty devices (with nr_pending == 0).
  4659. *
  4660. * The overall approach is:
  4661. * 1/ if the superblock needs updating, update it.
  4662. * 2/ If a recovery thread is running, don't do anything else.
  4663. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4664. * 4/ If there are any faulty devices, remove them.
  4665. * 5/ If array is degraded, try to add spares devices
  4666. * 6/ If array has spares or is not in-sync, start a resync thread.
  4667. */
  4668. void md_check_recovery(mddev_t *mddev)
  4669. {
  4670. mdk_rdev_t *rdev;
  4671. struct list_head *rtmp;
  4672. if (mddev->bitmap)
  4673. bitmap_daemon_work(mddev->bitmap);
  4674. if (mddev->ro)
  4675. return;
  4676. if (signal_pending(current)) {
  4677. if (mddev->pers->sync_request) {
  4678. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4679. mdname(mddev));
  4680. mddev->safemode = 2;
  4681. }
  4682. flush_signals(current);
  4683. }
  4684. if ( ! (
  4685. mddev->sb_dirty ||
  4686. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4687. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4688. (mddev->safemode == 1) ||
  4689. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4690. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4691. ))
  4692. return;
  4693. if (mddev_trylock(mddev)) {
  4694. int spares =0;
  4695. spin_lock_irq(&mddev->write_lock);
  4696. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4697. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4698. mddev->in_sync = 1;
  4699. mddev->sb_dirty = 3;
  4700. }
  4701. if (mddev->safemode == 1)
  4702. mddev->safemode = 0;
  4703. spin_unlock_irq(&mddev->write_lock);
  4704. if (mddev->sb_dirty)
  4705. md_update_sb(mddev);
  4706. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4707. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4708. /* resync/recovery still happening */
  4709. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4710. goto unlock;
  4711. }
  4712. if (mddev->sync_thread) {
  4713. /* resync has finished, collect result */
  4714. md_unregister_thread(mddev->sync_thread);
  4715. mddev->sync_thread = NULL;
  4716. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4717. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4718. /* success...*/
  4719. /* activate any spares */
  4720. mddev->pers->spare_active(mddev);
  4721. }
  4722. md_update_sb(mddev);
  4723. /* if array is no-longer degraded, then any saved_raid_disk
  4724. * information must be scrapped
  4725. */
  4726. if (!mddev->degraded)
  4727. ITERATE_RDEV(mddev,rdev,rtmp)
  4728. rdev->saved_raid_disk = -1;
  4729. mddev->recovery = 0;
  4730. /* flag recovery needed just to double check */
  4731. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4732. md_new_event(mddev);
  4733. goto unlock;
  4734. }
  4735. /* Clear some bits that don't mean anything, but
  4736. * might be left set
  4737. */
  4738. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4739. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4740. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4741. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4742. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4743. goto unlock;
  4744. /* no recovery is running.
  4745. * remove any failed drives, then
  4746. * add spares if possible.
  4747. * Spare are also removed and re-added, to allow
  4748. * the personality to fail the re-add.
  4749. */
  4750. ITERATE_RDEV(mddev,rdev,rtmp)
  4751. if (rdev->raid_disk >= 0 &&
  4752. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  4753. atomic_read(&rdev->nr_pending)==0) {
  4754. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  4755. char nm[20];
  4756. sprintf(nm,"rd%d", rdev->raid_disk);
  4757. sysfs_remove_link(&mddev->kobj, nm);
  4758. rdev->raid_disk = -1;
  4759. }
  4760. }
  4761. if (mddev->degraded) {
  4762. ITERATE_RDEV(mddev,rdev,rtmp)
  4763. if (rdev->raid_disk < 0
  4764. && !test_bit(Faulty, &rdev->flags)) {
  4765. rdev->recovery_offset = 0;
  4766. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4767. char nm[20];
  4768. sprintf(nm, "rd%d", rdev->raid_disk);
  4769. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  4770. spares++;
  4771. md_new_event(mddev);
  4772. } else
  4773. break;
  4774. }
  4775. }
  4776. if (spares) {
  4777. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4778. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4779. } else if (mddev->recovery_cp < MaxSector) {
  4780. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4781. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4782. /* nothing to be done ... */
  4783. goto unlock;
  4784. if (mddev->pers->sync_request) {
  4785. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4786. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4787. /* We are adding a device or devices to an array
  4788. * which has the bitmap stored on all devices.
  4789. * So make sure all bitmap pages get written
  4790. */
  4791. bitmap_write_all(mddev->bitmap);
  4792. }
  4793. mddev->sync_thread = md_register_thread(md_do_sync,
  4794. mddev,
  4795. "%s_resync");
  4796. if (!mddev->sync_thread) {
  4797. printk(KERN_ERR "%s: could not start resync"
  4798. " thread...\n",
  4799. mdname(mddev));
  4800. /* leave the spares where they are, it shouldn't hurt */
  4801. mddev->recovery = 0;
  4802. } else
  4803. md_wakeup_thread(mddev->sync_thread);
  4804. md_new_event(mddev);
  4805. }
  4806. unlock:
  4807. mddev_unlock(mddev);
  4808. }
  4809. }
  4810. static int md_notify_reboot(struct notifier_block *this,
  4811. unsigned long code, void *x)
  4812. {
  4813. struct list_head *tmp;
  4814. mddev_t *mddev;
  4815. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4816. printk(KERN_INFO "md: stopping all md devices.\n");
  4817. ITERATE_MDDEV(mddev,tmp)
  4818. if (mddev_trylock(mddev)) {
  4819. do_md_stop (mddev, 1);
  4820. mddev_unlock(mddev);
  4821. }
  4822. /*
  4823. * certain more exotic SCSI devices are known to be
  4824. * volatile wrt too early system reboots. While the
  4825. * right place to handle this issue is the given
  4826. * driver, we do want to have a safe RAID driver ...
  4827. */
  4828. mdelay(1000*1);
  4829. }
  4830. return NOTIFY_DONE;
  4831. }
  4832. static struct notifier_block md_notifier = {
  4833. .notifier_call = md_notify_reboot,
  4834. .next = NULL,
  4835. .priority = INT_MAX, /* before any real devices */
  4836. };
  4837. static void md_geninit(void)
  4838. {
  4839. struct proc_dir_entry *p;
  4840. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  4841. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  4842. if (p)
  4843. p->proc_fops = &md_seq_fops;
  4844. }
  4845. static int __init md_init(void)
  4846. {
  4847. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  4848. " MD_SB_DISKS=%d\n",
  4849. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  4850. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  4851. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  4852. BITMAP_MINOR);
  4853. if (register_blkdev(MAJOR_NR, "md"))
  4854. return -1;
  4855. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  4856. unregister_blkdev(MAJOR_NR, "md");
  4857. return -1;
  4858. }
  4859. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  4860. md_probe, NULL, NULL);
  4861. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  4862. md_probe, NULL, NULL);
  4863. register_reboot_notifier(&md_notifier);
  4864. raid_table_header = register_sysctl_table(raid_root_table, 1);
  4865. md_geninit();
  4866. return (0);
  4867. }
  4868. #ifndef MODULE
  4869. /*
  4870. * Searches all registered partitions for autorun RAID arrays
  4871. * at boot time.
  4872. */
  4873. static dev_t detected_devices[128];
  4874. static int dev_cnt;
  4875. void md_autodetect_dev(dev_t dev)
  4876. {
  4877. if (dev_cnt >= 0 && dev_cnt < 127)
  4878. detected_devices[dev_cnt++] = dev;
  4879. }
  4880. static void autostart_arrays(int part)
  4881. {
  4882. mdk_rdev_t *rdev;
  4883. int i;
  4884. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  4885. for (i = 0; i < dev_cnt; i++) {
  4886. dev_t dev = detected_devices[i];
  4887. rdev = md_import_device(dev,0, 0);
  4888. if (IS_ERR(rdev))
  4889. continue;
  4890. if (test_bit(Faulty, &rdev->flags)) {
  4891. MD_BUG();
  4892. continue;
  4893. }
  4894. list_add(&rdev->same_set, &pending_raid_disks);
  4895. }
  4896. dev_cnt = 0;
  4897. autorun_devices(part);
  4898. }
  4899. #endif
  4900. static __exit void md_exit(void)
  4901. {
  4902. mddev_t *mddev;
  4903. struct list_head *tmp;
  4904. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  4905. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  4906. unregister_blkdev(MAJOR_NR,"md");
  4907. unregister_blkdev(mdp_major, "mdp");
  4908. unregister_reboot_notifier(&md_notifier);
  4909. unregister_sysctl_table(raid_table_header);
  4910. remove_proc_entry("mdstat", NULL);
  4911. ITERATE_MDDEV(mddev,tmp) {
  4912. struct gendisk *disk = mddev->gendisk;
  4913. if (!disk)
  4914. continue;
  4915. export_array(mddev);
  4916. del_gendisk(disk);
  4917. put_disk(disk);
  4918. mddev->gendisk = NULL;
  4919. mddev_put(mddev);
  4920. }
  4921. }
  4922. module_init(md_init)
  4923. module_exit(md_exit)
  4924. static int get_ro(char *buffer, struct kernel_param *kp)
  4925. {
  4926. return sprintf(buffer, "%d", start_readonly);
  4927. }
  4928. static int set_ro(const char *val, struct kernel_param *kp)
  4929. {
  4930. char *e;
  4931. int num = simple_strtoul(val, &e, 10);
  4932. if (*val && (*e == '\0' || *e == '\n')) {
  4933. start_readonly = num;
  4934. return 0;
  4935. }
  4936. return -EINVAL;
  4937. }
  4938. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  4939. module_param(start_dirty_degraded, int, 0644);
  4940. EXPORT_SYMBOL(register_md_personality);
  4941. EXPORT_SYMBOL(unregister_md_personality);
  4942. EXPORT_SYMBOL(md_error);
  4943. EXPORT_SYMBOL(md_done_sync);
  4944. EXPORT_SYMBOL(md_write_start);
  4945. EXPORT_SYMBOL(md_write_end);
  4946. EXPORT_SYMBOL(md_register_thread);
  4947. EXPORT_SYMBOL(md_unregister_thread);
  4948. EXPORT_SYMBOL(md_wakeup_thread);
  4949. EXPORT_SYMBOL(md_check_recovery);
  4950. MODULE_LICENSE("GPL");
  4951. MODULE_ALIAS("md");
  4952. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);