ib_send.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/in.h>
  35. #include <linux/device.h>
  36. #include <linux/dmapool.h>
  37. #include "rds.h"
  38. #include "ib.h"
  39. /*
  40. * Convert IB-specific error message to RDS error message and call core
  41. * completion handler.
  42. */
  43. static void rds_ib_send_complete(struct rds_message *rm,
  44. int wc_status,
  45. void (*complete)(struct rds_message *rm, int status))
  46. {
  47. int notify_status;
  48. switch (wc_status) {
  49. case IB_WC_WR_FLUSH_ERR:
  50. return;
  51. case IB_WC_SUCCESS:
  52. notify_status = RDS_RDMA_SUCCESS;
  53. break;
  54. case IB_WC_REM_ACCESS_ERR:
  55. notify_status = RDS_RDMA_REMOTE_ERROR;
  56. break;
  57. default:
  58. notify_status = RDS_RDMA_OTHER_ERROR;
  59. break;
  60. }
  61. complete(rm, notify_status);
  62. }
  63. static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
  64. struct rm_data_op *op,
  65. int wc_status)
  66. {
  67. if (op->op_nents)
  68. ib_dma_unmap_sg(ic->i_cm_id->device,
  69. op->op_sg, op->op_nents,
  70. DMA_TO_DEVICE);
  71. }
  72. static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
  73. struct rm_rdma_op *op,
  74. int wc_status)
  75. {
  76. if (op->op_mapped) {
  77. ib_dma_unmap_sg(ic->i_cm_id->device,
  78. op->op_sg, op->op_nents,
  79. op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  80. op->op_mapped = 0;
  81. }
  82. /* If the user asked for a completion notification on this
  83. * message, we can implement three different semantics:
  84. * 1. Notify when we received the ACK on the RDS message
  85. * that was queued with the RDMA. This provides reliable
  86. * notification of RDMA status at the expense of a one-way
  87. * packet delay.
  88. * 2. Notify when the IB stack gives us the completion event for
  89. * the RDMA operation.
  90. * 3. Notify when the IB stack gives us the completion event for
  91. * the accompanying RDS messages.
  92. * Here, we implement approach #3. To implement approach #2,
  93. * we would need to take an event for the rdma WR. To implement #1,
  94. * don't call rds_rdma_send_complete at all, and fall back to the notify
  95. * handling in the ACK processing code.
  96. *
  97. * Note: There's no need to explicitly sync any RDMA buffers using
  98. * ib_dma_sync_sg_for_cpu - the completion for the RDMA
  99. * operation itself unmapped the RDMA buffers, which takes care
  100. * of synching.
  101. */
  102. rds_ib_send_complete(container_of(op, struct rds_message, rdma),
  103. wc_status, rds_rdma_send_complete);
  104. if (op->op_write)
  105. rds_stats_add(s_send_rdma_bytes, op->op_bytes);
  106. else
  107. rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
  108. }
  109. static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
  110. struct rm_atomic_op *op,
  111. int wc_status)
  112. {
  113. /* unmap atomic recvbuf */
  114. if (op->op_mapped) {
  115. ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
  116. DMA_FROM_DEVICE);
  117. op->op_mapped = 0;
  118. }
  119. rds_ib_send_complete(container_of(op, struct rds_message, atomic),
  120. wc_status, rds_atomic_send_complete);
  121. if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
  122. rds_stats_inc(s_atomic_cswp);
  123. else
  124. rds_stats_inc(s_atomic_fadd);
  125. }
  126. /*
  127. * Unmap the resources associated with a struct send_work.
  128. *
  129. * Returns the rm for no good reason other than it is unobtainable
  130. * other than by switching on wr.opcode, currently, and the caller,
  131. * the event handler, needs it.
  132. */
  133. static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
  134. struct rds_ib_send_work *send,
  135. int wc_status)
  136. {
  137. struct rds_message *rm = NULL;
  138. /* In the error case, wc.opcode sometimes contains garbage */
  139. switch (send->s_wr.opcode) {
  140. case IB_WR_SEND:
  141. if (send->s_op) {
  142. rm = container_of(send->s_op, struct rds_message, data);
  143. rds_ib_send_unmap_data(ic, send->s_op, wc_status);
  144. }
  145. break;
  146. case IB_WR_RDMA_WRITE:
  147. case IB_WR_RDMA_READ:
  148. if (send->s_op) {
  149. rm = container_of(send->s_op, struct rds_message, rdma);
  150. rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
  151. }
  152. break;
  153. case IB_WR_ATOMIC_FETCH_AND_ADD:
  154. case IB_WR_ATOMIC_CMP_AND_SWP:
  155. if (send->s_op) {
  156. rm = container_of(send->s_op, struct rds_message, atomic);
  157. rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
  158. }
  159. break;
  160. default:
  161. if (printk_ratelimit())
  162. printk(KERN_NOTICE
  163. "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
  164. __func__, send->s_wr.opcode);
  165. break;
  166. }
  167. send->s_wr.opcode = 0xdead;
  168. return rm;
  169. }
  170. void rds_ib_send_init_ring(struct rds_ib_connection *ic)
  171. {
  172. struct rds_ib_send_work *send;
  173. u32 i;
  174. for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
  175. struct ib_sge *sge;
  176. send->s_op = NULL;
  177. send->s_wr.wr_id = i;
  178. send->s_wr.sg_list = send->s_sge;
  179. send->s_wr.ex.imm_data = 0;
  180. sge = &send->s_sge[0];
  181. sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
  182. sge->length = sizeof(struct rds_header);
  183. sge->lkey = ic->i_mr->lkey;
  184. send->s_sge[1].lkey = ic->i_mr->lkey;
  185. }
  186. }
  187. void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
  188. {
  189. struct rds_ib_send_work *send;
  190. u32 i;
  191. for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
  192. if (send->s_op && send->s_wr.opcode != 0xdead)
  193. rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
  194. }
  195. }
  196. /*
  197. * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
  198. * operations performed in the send path. As the sender allocs and potentially
  199. * unallocs the next free entry in the ring it doesn't alter which is
  200. * the next to be freed, which is what this is concerned with.
  201. */
  202. void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
  203. {
  204. struct rds_connection *conn = context;
  205. struct rds_ib_connection *ic = conn->c_transport_data;
  206. struct rds_message *rm = NULL;
  207. struct ib_wc wc;
  208. struct rds_ib_send_work *send;
  209. u32 completed;
  210. u32 oldest;
  211. u32 i = 0;
  212. int ret;
  213. rdsdebug("cq %p conn %p\n", cq, conn);
  214. rds_ib_stats_inc(s_ib_tx_cq_call);
  215. ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
  216. if (ret)
  217. rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
  218. while (ib_poll_cq(cq, 1, &wc) > 0) {
  219. rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
  220. (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
  221. be32_to_cpu(wc.ex.imm_data));
  222. rds_ib_stats_inc(s_ib_tx_cq_event);
  223. if (wc.wr_id == RDS_IB_ACK_WR_ID) {
  224. if (ic->i_ack_queued + HZ/2 < jiffies)
  225. rds_ib_stats_inc(s_ib_tx_stalled);
  226. rds_ib_ack_send_complete(ic);
  227. continue;
  228. }
  229. oldest = rds_ib_ring_oldest(&ic->i_send_ring);
  230. completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
  231. for (i = 0; i < completed; i++) {
  232. send = &ic->i_sends[oldest];
  233. rm = rds_ib_send_unmap_op(ic, send, wc.status);
  234. if (send->s_queued + HZ/2 < jiffies)
  235. rds_ib_stats_inc(s_ib_tx_stalled);
  236. if (&send->s_op == &rm->m_final_op) {
  237. /* If anyone waited for this message to get flushed out, wake
  238. * them up now */
  239. rds_message_unmapped(rm);
  240. rds_message_put(rm);
  241. send->s_op = NULL;
  242. }
  243. oldest = (oldest + 1) % ic->i_send_ring.w_nr;
  244. }
  245. rds_ib_ring_free(&ic->i_send_ring, completed);
  246. if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
  247. test_bit(0, &conn->c_map_queued))
  248. queue_delayed_work(rds_wq, &conn->c_send_w, 0);
  249. /* We expect errors as the qp is drained during shutdown */
  250. if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
  251. rds_ib_conn_error(conn,
  252. "send completion on %pI4 "
  253. "had status %u, disconnecting and reconnecting\n",
  254. &conn->c_faddr, wc.status);
  255. }
  256. }
  257. }
  258. /*
  259. * This is the main function for allocating credits when sending
  260. * messages.
  261. *
  262. * Conceptually, we have two counters:
  263. * - send credits: this tells us how many WRs we're allowed
  264. * to submit without overruning the reciever's queue. For
  265. * each SEND WR we post, we decrement this by one.
  266. *
  267. * - posted credits: this tells us how many WRs we recently
  268. * posted to the receive queue. This value is transferred
  269. * to the peer as a "credit update" in a RDS header field.
  270. * Every time we transmit credits to the peer, we subtract
  271. * the amount of transferred credits from this counter.
  272. *
  273. * It is essential that we avoid situations where both sides have
  274. * exhausted their send credits, and are unable to send new credits
  275. * to the peer. We achieve this by requiring that we send at least
  276. * one credit update to the peer before exhausting our credits.
  277. * When new credits arrive, we subtract one credit that is withheld
  278. * until we've posted new buffers and are ready to transmit these
  279. * credits (see rds_ib_send_add_credits below).
  280. *
  281. * The RDS send code is essentially single-threaded; rds_send_xmit
  282. * grabs c_send_lock to ensure exclusive access to the send ring.
  283. * However, the ACK sending code is independent and can race with
  284. * message SENDs.
  285. *
  286. * In the send path, we need to update the counters for send credits
  287. * and the counter of posted buffers atomically - when we use the
  288. * last available credit, we cannot allow another thread to race us
  289. * and grab the posted credits counter. Hence, we have to use a
  290. * spinlock to protect the credit counter, or use atomics.
  291. *
  292. * Spinlocks shared between the send and the receive path are bad,
  293. * because they create unnecessary delays. An early implementation
  294. * using a spinlock showed a 5% degradation in throughput at some
  295. * loads.
  296. *
  297. * This implementation avoids spinlocks completely, putting both
  298. * counters into a single atomic, and updating that atomic using
  299. * atomic_add (in the receive path, when receiving fresh credits),
  300. * and using atomic_cmpxchg when updating the two counters.
  301. */
  302. int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
  303. u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
  304. {
  305. unsigned int avail, posted, got = 0, advertise;
  306. long oldval, newval;
  307. *adv_credits = 0;
  308. if (!ic->i_flowctl)
  309. return wanted;
  310. try_again:
  311. advertise = 0;
  312. oldval = newval = atomic_read(&ic->i_credits);
  313. posted = IB_GET_POST_CREDITS(oldval);
  314. avail = IB_GET_SEND_CREDITS(oldval);
  315. rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
  316. wanted, avail, posted);
  317. /* The last credit must be used to send a credit update. */
  318. if (avail && !posted)
  319. avail--;
  320. if (avail < wanted) {
  321. struct rds_connection *conn = ic->i_cm_id->context;
  322. /* Oops, there aren't that many credits left! */
  323. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  324. got = avail;
  325. } else {
  326. /* Sometimes you get what you want, lalala. */
  327. got = wanted;
  328. }
  329. newval -= IB_SET_SEND_CREDITS(got);
  330. /*
  331. * If need_posted is non-zero, then the caller wants
  332. * the posted regardless of whether any send credits are
  333. * available.
  334. */
  335. if (posted && (got || need_posted)) {
  336. advertise = min_t(unsigned int, posted, max_posted);
  337. newval -= IB_SET_POST_CREDITS(advertise);
  338. }
  339. /* Finally bill everything */
  340. if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
  341. goto try_again;
  342. *adv_credits = advertise;
  343. return got;
  344. }
  345. void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
  346. {
  347. struct rds_ib_connection *ic = conn->c_transport_data;
  348. if (credits == 0)
  349. return;
  350. rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
  351. credits,
  352. IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
  353. test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
  354. atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
  355. if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
  356. queue_delayed_work(rds_wq, &conn->c_send_w, 0);
  357. WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
  358. rds_ib_stats_inc(s_ib_rx_credit_updates);
  359. }
  360. void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
  361. {
  362. struct rds_ib_connection *ic = conn->c_transport_data;
  363. if (posted == 0)
  364. return;
  365. atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
  366. /* Decide whether to send an update to the peer now.
  367. * If we would send a credit update for every single buffer we
  368. * post, we would end up with an ACK storm (ACK arrives,
  369. * consumes buffer, we refill the ring, send ACK to remote
  370. * advertising the newly posted buffer... ad inf)
  371. *
  372. * Performance pretty much depends on how often we send
  373. * credit updates - too frequent updates mean lots of ACKs.
  374. * Too infrequent updates, and the peer will run out of
  375. * credits and has to throttle.
  376. * For the time being, 16 seems to be a good compromise.
  377. */
  378. if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
  379. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  380. }
  381. static inline void rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
  382. struct rds_ib_send_work *send,
  383. bool notify)
  384. {
  385. /*
  386. * We want to delay signaling completions just enough to get
  387. * the batching benefits but not so much that we create dead time
  388. * on the wire.
  389. */
  390. if (ic->i_unsignaled_wrs-- == 0 || notify) {
  391. ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
  392. send->s_wr.send_flags |= IB_SEND_SIGNALED;
  393. }
  394. }
  395. /*
  396. * This can be called multiple times for a given message. The first time
  397. * we see a message we map its scatterlist into the IB device so that
  398. * we can provide that mapped address to the IB scatter gather entries
  399. * in the IB work requests. We translate the scatterlist into a series
  400. * of work requests that fragment the message. These work requests complete
  401. * in order so we pass ownership of the message to the completion handler
  402. * once we send the final fragment.
  403. *
  404. * The RDS core uses the c_send_lock to only enter this function once
  405. * per connection. This makes sure that the tx ring alloc/unalloc pairs
  406. * don't get out of sync and confuse the ring.
  407. */
  408. int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
  409. unsigned int hdr_off, unsigned int sg, unsigned int off)
  410. {
  411. struct rds_ib_connection *ic = conn->c_transport_data;
  412. struct ib_device *dev = ic->i_cm_id->device;
  413. struct rds_ib_send_work *send = NULL;
  414. struct rds_ib_send_work *first;
  415. struct rds_ib_send_work *prev;
  416. struct ib_send_wr *failed_wr;
  417. struct scatterlist *scat;
  418. u32 pos;
  419. u32 i;
  420. u32 work_alloc;
  421. u32 credit_alloc = 0;
  422. u32 posted;
  423. u32 adv_credits = 0;
  424. int send_flags = 0;
  425. int bytes_sent = 0;
  426. int ret;
  427. int flow_controlled = 0;
  428. BUG_ON(off % RDS_FRAG_SIZE);
  429. BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
  430. /* Do not send cong updates to IB loopback */
  431. if (conn->c_loopback
  432. && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
  433. rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
  434. return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES;
  435. }
  436. /* FIXME we may overallocate here */
  437. if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
  438. i = 1;
  439. else
  440. i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
  441. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
  442. if (work_alloc == 0) {
  443. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  444. rds_ib_stats_inc(s_ib_tx_ring_full);
  445. ret = -ENOMEM;
  446. goto out;
  447. }
  448. if (ic->i_flowctl) {
  449. credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
  450. adv_credits += posted;
  451. if (credit_alloc < work_alloc) {
  452. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
  453. work_alloc = credit_alloc;
  454. flow_controlled = 1;
  455. }
  456. if (work_alloc == 0) {
  457. set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
  458. rds_ib_stats_inc(s_ib_tx_throttle);
  459. ret = -ENOMEM;
  460. goto out;
  461. }
  462. }
  463. /* map the message the first time we see it */
  464. if (!ic->i_data_op) {
  465. if (rm->data.op_nents) {
  466. rm->data.op_count = ib_dma_map_sg(dev,
  467. rm->data.op_sg,
  468. rm->data.op_nents,
  469. DMA_TO_DEVICE);
  470. rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
  471. if (rm->data.op_count == 0) {
  472. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  473. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  474. ret = -ENOMEM; /* XXX ? */
  475. goto out;
  476. }
  477. } else {
  478. rm->data.op_count = 0;
  479. }
  480. rds_message_addref(rm);
  481. ic->i_data_op = &rm->data;
  482. /* Finalize the header */
  483. if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
  484. rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
  485. if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
  486. rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
  487. /* If it has a RDMA op, tell the peer we did it. This is
  488. * used by the peer to release use-once RDMA MRs. */
  489. if (rm->rdma.op_active) {
  490. struct rds_ext_header_rdma ext_hdr;
  491. ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
  492. rds_message_add_extension(&rm->m_inc.i_hdr,
  493. RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
  494. }
  495. if (rm->m_rdma_cookie) {
  496. rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
  497. rds_rdma_cookie_key(rm->m_rdma_cookie),
  498. rds_rdma_cookie_offset(rm->m_rdma_cookie));
  499. }
  500. /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
  501. * we should not do this unless we have a chance of at least
  502. * sticking the header into the send ring. Which is why we
  503. * should call rds_ib_ring_alloc first. */
  504. rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
  505. rds_message_make_checksum(&rm->m_inc.i_hdr);
  506. /*
  507. * Update adv_credits since we reset the ACK_REQUIRED bit.
  508. */
  509. if (ic->i_flowctl) {
  510. rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
  511. adv_credits += posted;
  512. BUG_ON(adv_credits > 255);
  513. }
  514. }
  515. /* Sometimes you want to put a fence between an RDMA
  516. * READ and the following SEND.
  517. * We could either do this all the time
  518. * or when requested by the user. Right now, we let
  519. * the application choose.
  520. */
  521. if (rm->rdma.op_active && rm->rdma.op_fence)
  522. send_flags = IB_SEND_FENCE;
  523. /* Each frag gets a header. Msgs may be 0 bytes */
  524. send = &ic->i_sends[pos];
  525. first = send;
  526. prev = NULL;
  527. scat = &ic->i_data_op->op_sg[sg];
  528. i = 0;
  529. do {
  530. unsigned int len = 0;
  531. /* Set up the header */
  532. send->s_wr.send_flags = send_flags;
  533. send->s_wr.opcode = IB_WR_SEND;
  534. send->s_wr.num_sge = 1;
  535. send->s_wr.next = NULL;
  536. send->s_queued = jiffies;
  537. send->s_op = NULL;
  538. send->s_sge[0].addr = ic->i_send_hdrs_dma
  539. + (pos * sizeof(struct rds_header));
  540. send->s_sge[0].length = sizeof(struct rds_header);
  541. memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
  542. /* Set up the data, if present */
  543. if (i < work_alloc
  544. && scat != &rm->data.op_sg[rm->data.op_count]) {
  545. len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
  546. send->s_wr.num_sge = 2;
  547. send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off;
  548. send->s_sge[1].length = len;
  549. bytes_sent += len;
  550. off += len;
  551. if (off == ib_sg_dma_len(dev, scat)) {
  552. scat++;
  553. off = 0;
  554. }
  555. }
  556. rds_ib_set_wr_signal_state(ic, send, 0);
  557. /*
  558. * Always signal the last one if we're stopping due to flow control.
  559. */
  560. if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
  561. send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  562. rdsdebug("send %p wr %p num_sge %u next %p\n", send,
  563. &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
  564. if (ic->i_flowctl && adv_credits) {
  565. struct rds_header *hdr = &ic->i_send_hdrs[pos];
  566. /* add credit and redo the header checksum */
  567. hdr->h_credit = adv_credits;
  568. rds_message_make_checksum(hdr);
  569. adv_credits = 0;
  570. rds_ib_stats_inc(s_ib_tx_credit_updates);
  571. }
  572. if (prev)
  573. prev->s_wr.next = &send->s_wr;
  574. prev = send;
  575. pos = (pos + 1) % ic->i_send_ring.w_nr;
  576. send = &ic->i_sends[pos];
  577. i++;
  578. } while (i < work_alloc
  579. && scat != &rm->data.op_sg[rm->data.op_count]);
  580. /* Account the RDS header in the number of bytes we sent, but just once.
  581. * The caller has no concept of fragmentation. */
  582. if (hdr_off == 0)
  583. bytes_sent += sizeof(struct rds_header);
  584. /* if we finished the message then send completion owns it */
  585. if (scat == &rm->data.op_sg[rm->data.op_count]) {
  586. prev->s_op = ic->i_data_op;
  587. prev->s_wr.send_flags |= IB_SEND_SOLICITED;
  588. ic->i_data_op = NULL;
  589. }
  590. /* Put back wrs & credits we didn't use */
  591. if (i < work_alloc) {
  592. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
  593. work_alloc = i;
  594. }
  595. if (ic->i_flowctl && i < credit_alloc)
  596. rds_ib_send_add_credits(conn, credit_alloc - i);
  597. /* XXX need to worry about failed_wr and partial sends. */
  598. failed_wr = &first->s_wr;
  599. ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
  600. rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
  601. first, &first->s_wr, ret, failed_wr);
  602. BUG_ON(failed_wr != &first->s_wr);
  603. if (ret) {
  604. printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
  605. "returned %d\n", &conn->c_faddr, ret);
  606. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  607. if (prev->s_op) {
  608. ic->i_data_op = prev->s_op;
  609. prev->s_op = NULL;
  610. }
  611. rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
  612. goto out;
  613. }
  614. ret = bytes_sent;
  615. out:
  616. BUG_ON(adv_credits);
  617. return ret;
  618. }
  619. /*
  620. * Issue atomic operation.
  621. * A simplified version of the rdma case, we always map 1 SG, and
  622. * only 8 bytes, for the return value from the atomic operation.
  623. */
  624. int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
  625. {
  626. struct rds_ib_connection *ic = conn->c_transport_data;
  627. struct rds_ib_send_work *send = NULL;
  628. struct ib_send_wr *failed_wr;
  629. struct rds_ib_device *rds_ibdev;
  630. u32 pos;
  631. u32 work_alloc;
  632. int ret;
  633. rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
  634. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
  635. if (work_alloc != 1) {
  636. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  637. rds_ib_stats_inc(s_ib_tx_ring_full);
  638. ret = -ENOMEM;
  639. goto out;
  640. }
  641. /* address of send request in ring */
  642. send = &ic->i_sends[pos];
  643. send->s_queued = jiffies;
  644. if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
  645. send->s_wr.opcode = IB_WR_ATOMIC_CMP_AND_SWP;
  646. send->s_wr.wr.atomic.compare_add = op->op_compare;
  647. send->s_wr.wr.atomic.swap = op->op_swap_add;
  648. } else { /* FADD */
  649. send->s_wr.opcode = IB_WR_ATOMIC_FETCH_AND_ADD;
  650. send->s_wr.wr.atomic.compare_add = op->op_swap_add;
  651. send->s_wr.wr.atomic.swap = 0;
  652. }
  653. rds_ib_set_wr_signal_state(ic, send, op->op_notify);
  654. send->s_wr.num_sge = 1;
  655. send->s_wr.next = NULL;
  656. send->s_wr.wr.atomic.remote_addr = op->op_remote_addr;
  657. send->s_wr.wr.atomic.rkey = op->op_rkey;
  658. /* map 8 byte retval buffer to the device */
  659. ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
  660. rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
  661. if (ret != 1) {
  662. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  663. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  664. ret = -ENOMEM; /* XXX ? */
  665. goto out;
  666. }
  667. /* Convert our struct scatterlist to struct ib_sge */
  668. send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
  669. send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
  670. send->s_sge[0].lkey = ic->i_mr->lkey;
  671. rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
  672. send->s_sge[0].addr, send->s_sge[0].length);
  673. failed_wr = &send->s_wr;
  674. ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr);
  675. rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
  676. send, &send->s_wr, ret, failed_wr);
  677. BUG_ON(failed_wr != &send->s_wr);
  678. if (ret) {
  679. printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
  680. "returned %d\n", &conn->c_faddr, ret);
  681. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  682. goto out;
  683. }
  684. if (unlikely(failed_wr != &send->s_wr)) {
  685. printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
  686. BUG_ON(failed_wr != &send->s_wr);
  687. }
  688. out:
  689. return ret;
  690. }
  691. int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
  692. {
  693. struct rds_ib_connection *ic = conn->c_transport_data;
  694. struct rds_ib_send_work *send = NULL;
  695. struct rds_ib_send_work *first;
  696. struct rds_ib_send_work *prev;
  697. struct ib_send_wr *failed_wr;
  698. struct rds_ib_device *rds_ibdev;
  699. struct scatterlist *scat;
  700. unsigned long len;
  701. u64 remote_addr = op->op_remote_addr;
  702. u32 pos;
  703. u32 work_alloc;
  704. u32 i;
  705. u32 j;
  706. int sent;
  707. int ret;
  708. int num_sge;
  709. rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
  710. /* map the op the first time we see it */
  711. if (!op->op_mapped) {
  712. op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
  713. op->op_sg, op->op_nents, (op->op_write) ?
  714. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  715. rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
  716. if (op->op_count == 0) {
  717. rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
  718. ret = -ENOMEM; /* XXX ? */
  719. goto out;
  720. }
  721. op->op_mapped = 1;
  722. }
  723. /*
  724. * Instead of knowing how to return a partial rdma read/write we insist that there
  725. * be enough work requests to send the entire message.
  726. */
  727. i = ceil(op->op_count, rds_ibdev->max_sge);
  728. work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
  729. if (work_alloc != i) {
  730. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  731. rds_ib_stats_inc(s_ib_tx_ring_full);
  732. ret = -ENOMEM;
  733. goto out;
  734. }
  735. send = &ic->i_sends[pos];
  736. first = send;
  737. prev = NULL;
  738. scat = &op->op_sg[0];
  739. sent = 0;
  740. num_sge = op->op_count;
  741. for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
  742. send->s_wr.send_flags = 0;
  743. send->s_queued = jiffies;
  744. rds_ib_set_wr_signal_state(ic, send, op->op_notify);
  745. send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
  746. send->s_wr.wr.rdma.remote_addr = remote_addr;
  747. send->s_wr.wr.rdma.rkey = op->op_rkey;
  748. send->s_op = op;
  749. if (num_sge > rds_ibdev->max_sge) {
  750. send->s_wr.num_sge = rds_ibdev->max_sge;
  751. num_sge -= rds_ibdev->max_sge;
  752. } else {
  753. send->s_wr.num_sge = num_sge;
  754. }
  755. send->s_wr.next = NULL;
  756. if (prev)
  757. prev->s_wr.next = &send->s_wr;
  758. for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
  759. len = ib_sg_dma_len(ic->i_cm_id->device, scat);
  760. send->s_sge[j].addr =
  761. ib_sg_dma_address(ic->i_cm_id->device, scat);
  762. send->s_sge[j].length = len;
  763. send->s_sge[j].lkey = ic->i_mr->lkey;
  764. sent += len;
  765. rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
  766. remote_addr += len;
  767. scat++;
  768. }
  769. rdsdebug("send %p wr %p num_sge %u next %p\n", send,
  770. &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
  771. prev = send;
  772. if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
  773. send = ic->i_sends;
  774. }
  775. if (i < work_alloc) {
  776. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
  777. work_alloc = i;
  778. }
  779. failed_wr = &first->s_wr;
  780. ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
  781. rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
  782. first, &first->s_wr, ret, failed_wr);
  783. BUG_ON(failed_wr != &first->s_wr);
  784. if (ret) {
  785. printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
  786. "returned %d\n", &conn->c_faddr, ret);
  787. rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
  788. goto out;
  789. }
  790. if (unlikely(failed_wr != &first->s_wr)) {
  791. printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
  792. BUG_ON(failed_wr != &first->s_wr);
  793. }
  794. out:
  795. return ret;
  796. }
  797. void rds_ib_xmit_complete(struct rds_connection *conn)
  798. {
  799. struct rds_ib_connection *ic = conn->c_transport_data;
  800. /* We may have a pending ACK or window update we were unable
  801. * to send previously (due to flow control). Try again. */
  802. rds_ib_attempt_ack(ic);
  803. }