sched.c 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. #ifdef CONFIG_SMP
  359. struct cpupri cpupri;
  360. #endif
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static inline
  465. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  466. {
  467. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  468. /*
  469. * A queue event has occurred, and we're going to schedule. In
  470. * this case, we can save a useless back to back clock update.
  471. */
  472. if (test_tsk_need_resched(p))
  473. rq->skip_clock_update = 1;
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_sched_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification
  506. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  507. * holds that lock for each task it moves into the cgroup. Therefore
  508. * by holding that lock, we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&task_rq(p)->lock));
  515. return container_of(css, struct task_group, css);
  516. }
  517. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  518. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  519. {
  520. #ifdef CONFIG_FAIR_GROUP_SCHED
  521. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  522. p->se.parent = task_group(p)->se[cpu];
  523. #endif
  524. #ifdef CONFIG_RT_GROUP_SCHED
  525. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  526. p->rt.parent = task_group(p)->rt_se[cpu];
  527. #endif
  528. }
  529. #else /* CONFIG_CGROUP_SCHED */
  530. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  531. static inline struct task_group *task_group(struct task_struct *p)
  532. {
  533. return NULL;
  534. }
  535. #endif /* CONFIG_CGROUP_SCHED */
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update)
  539. rq->clock = sched_clock_cpu(cpu_of(rq));
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * ratelimit for updating the group shares.
  654. * default: 0.25ms
  655. */
  656. unsigned int sysctl_sched_shares_ratelimit = 250000;
  657. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  658. /*
  659. * Inject some fuzzyness into changing the per-cpu group shares
  660. * this avoids remote rq-locks at the expense of fairness.
  661. * default: 4
  662. */
  663. unsigned int sysctl_sched_shares_thresh = 4;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline int task_running(struct rq *rq, struct task_struct *p)
  704. {
  705. return task_current(rq, p);
  706. }
  707. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  708. {
  709. }
  710. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  711. {
  712. #ifdef CONFIG_DEBUG_SPINLOCK
  713. /* this is a valid case when another task releases the spinlock */
  714. rq->lock.owner = current;
  715. #endif
  716. /*
  717. * If we are tracking spinlock dependencies then we have to
  718. * fix up the runqueue lock - which gets 'carried over' from
  719. * prev into current:
  720. */
  721. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  722. raw_spin_unlock_irq(&rq->lock);
  723. }
  724. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. #ifdef CONFIG_SMP
  728. return p->oncpu;
  729. #else
  730. return task_current(rq, p);
  731. #endif
  732. }
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->oncpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->oncpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->oncpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. #endif /* CONFIG_SMP */
  1083. #if BITS_PER_LONG == 32
  1084. # define WMULT_CONST (~0UL)
  1085. #else
  1086. # define WMULT_CONST (1UL << 32)
  1087. #endif
  1088. #define WMULT_SHIFT 32
  1089. /*
  1090. * Shift right and round:
  1091. */
  1092. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1093. /*
  1094. * delta *= weight / lw
  1095. */
  1096. static unsigned long
  1097. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1098. struct load_weight *lw)
  1099. {
  1100. u64 tmp;
  1101. if (!lw->inv_weight) {
  1102. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1103. lw->inv_weight = 1;
  1104. else
  1105. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1106. / (lw->weight+1);
  1107. }
  1108. tmp = (u64)delta_exec * weight;
  1109. /*
  1110. * Check whether we'd overflow the 64-bit multiplication:
  1111. */
  1112. if (unlikely(tmp > WMULT_CONST))
  1113. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1114. WMULT_SHIFT/2);
  1115. else
  1116. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1117. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1118. }
  1119. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1120. {
  1121. lw->weight += inc;
  1122. lw->inv_weight = 0;
  1123. }
  1124. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1125. {
  1126. lw->weight -= dec;
  1127. lw->inv_weight = 0;
  1128. }
  1129. /*
  1130. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1131. * of tasks with abnormal "nice" values across CPUs the contribution that
  1132. * each task makes to its run queue's load is weighted according to its
  1133. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1134. * scaled version of the new time slice allocation that they receive on time
  1135. * slice expiry etc.
  1136. */
  1137. #define WEIGHT_IDLEPRIO 3
  1138. #define WMULT_IDLEPRIO 1431655765
  1139. /*
  1140. * Nice levels are multiplicative, with a gentle 10% change for every
  1141. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1142. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1143. * that remained on nice 0.
  1144. *
  1145. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1146. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1147. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1148. * If a task goes up by ~10% and another task goes down by ~10% then
  1149. * the relative distance between them is ~25%.)
  1150. */
  1151. static const int prio_to_weight[40] = {
  1152. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1153. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1154. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1155. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1156. /* 0 */ 1024, 820, 655, 526, 423,
  1157. /* 5 */ 335, 272, 215, 172, 137,
  1158. /* 10 */ 110, 87, 70, 56, 45,
  1159. /* 15 */ 36, 29, 23, 18, 15,
  1160. };
  1161. /*
  1162. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1163. *
  1164. * In cases where the weight does not change often, we can use the
  1165. * precalculated inverse to speed up arithmetics by turning divisions
  1166. * into multiplications:
  1167. */
  1168. static const u32 prio_to_wmult[40] = {
  1169. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1170. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1171. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1172. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1173. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1174. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1175. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1176. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1177. };
  1178. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1179. enum cpuacct_stat_index {
  1180. CPUACCT_STAT_USER, /* ... user mode */
  1181. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1182. CPUACCT_STAT_NSTATS,
  1183. };
  1184. #ifdef CONFIG_CGROUP_CPUACCT
  1185. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1186. static void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val);
  1188. #else
  1189. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1190. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1191. enum cpuacct_stat_index idx, cputime_t val) {}
  1192. #endif
  1193. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_add(&rq->load, load);
  1196. }
  1197. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_sub(&rq->load, load);
  1200. }
  1201. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1202. typedef int (*tg_visitor)(struct task_group *, void *);
  1203. /*
  1204. * Iterate the full tree, calling @down when first entering a node and @up when
  1205. * leaving it for the final time.
  1206. */
  1207. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1208. {
  1209. struct task_group *parent, *child;
  1210. int ret;
  1211. rcu_read_lock();
  1212. parent = &root_task_group;
  1213. down:
  1214. ret = (*down)(parent, data);
  1215. if (ret)
  1216. goto out_unlock;
  1217. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1218. parent = child;
  1219. goto down;
  1220. up:
  1221. continue;
  1222. }
  1223. ret = (*up)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. child = parent;
  1227. parent = parent->parent;
  1228. if (parent)
  1229. goto up;
  1230. out_unlock:
  1231. rcu_read_unlock();
  1232. return ret;
  1233. }
  1234. static int tg_nop(struct task_group *tg, void *data)
  1235. {
  1236. return 0;
  1237. }
  1238. #endif
  1239. #ifdef CONFIG_SMP
  1240. /* Used instead of source_load when we know the type == 0 */
  1241. static unsigned long weighted_cpuload(const int cpu)
  1242. {
  1243. return cpu_rq(cpu)->load.weight;
  1244. }
  1245. /*
  1246. * Return a low guess at the load of a migration-source cpu weighted
  1247. * according to the scheduling class and "nice" value.
  1248. *
  1249. * We want to under-estimate the load of migration sources, to
  1250. * balance conservatively.
  1251. */
  1252. static unsigned long source_load(int cpu, int type)
  1253. {
  1254. struct rq *rq = cpu_rq(cpu);
  1255. unsigned long total = weighted_cpuload(cpu);
  1256. if (type == 0 || !sched_feat(LB_BIAS))
  1257. return total;
  1258. return min(rq->cpu_load[type-1], total);
  1259. }
  1260. /*
  1261. * Return a high guess at the load of a migration-target cpu weighted
  1262. * according to the scheduling class and "nice" value.
  1263. */
  1264. static unsigned long target_load(int cpu, int type)
  1265. {
  1266. struct rq *rq = cpu_rq(cpu);
  1267. unsigned long total = weighted_cpuload(cpu);
  1268. if (type == 0 || !sched_feat(LB_BIAS))
  1269. return total;
  1270. return max(rq->cpu_load[type-1], total);
  1271. }
  1272. static unsigned long power_of(int cpu)
  1273. {
  1274. return cpu_rq(cpu)->cpu_power;
  1275. }
  1276. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1277. static unsigned long cpu_avg_load_per_task(int cpu)
  1278. {
  1279. struct rq *rq = cpu_rq(cpu);
  1280. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1281. if (nr_running)
  1282. rq->avg_load_per_task = rq->load.weight / nr_running;
  1283. else
  1284. rq->avg_load_per_task = 0;
  1285. return rq->avg_load_per_task;
  1286. }
  1287. #ifdef CONFIG_FAIR_GROUP_SCHED
  1288. static __read_mostly unsigned long __percpu *update_shares_data;
  1289. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1290. /*
  1291. * Calculate and set the cpu's group shares.
  1292. */
  1293. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1294. unsigned long sd_shares,
  1295. unsigned long sd_rq_weight,
  1296. unsigned long *usd_rq_weight)
  1297. {
  1298. unsigned long shares, rq_weight;
  1299. int boost = 0;
  1300. rq_weight = usd_rq_weight[cpu];
  1301. if (!rq_weight) {
  1302. boost = 1;
  1303. rq_weight = NICE_0_LOAD;
  1304. }
  1305. /*
  1306. * \Sum_j shares_j * rq_weight_i
  1307. * shares_i = -----------------------------
  1308. * \Sum_j rq_weight_j
  1309. */
  1310. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1311. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1312. if (abs(shares - tg->se[cpu]->load.weight) >
  1313. sysctl_sched_shares_thresh) {
  1314. struct rq *rq = cpu_rq(cpu);
  1315. unsigned long flags;
  1316. raw_spin_lock_irqsave(&rq->lock, flags);
  1317. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1318. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1319. __set_se_shares(tg->se[cpu], shares);
  1320. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1321. }
  1322. }
  1323. /*
  1324. * Re-compute the task group their per cpu shares over the given domain.
  1325. * This needs to be done in a bottom-up fashion because the rq weight of a
  1326. * parent group depends on the shares of its child groups.
  1327. */
  1328. static int tg_shares_up(struct task_group *tg, void *data)
  1329. {
  1330. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1331. unsigned long *usd_rq_weight;
  1332. struct sched_domain *sd = data;
  1333. unsigned long flags;
  1334. int i;
  1335. if (!tg->se[0])
  1336. return 0;
  1337. local_irq_save(flags);
  1338. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1339. for_each_cpu(i, sched_domain_span(sd)) {
  1340. weight = tg->cfs_rq[i]->load.weight;
  1341. usd_rq_weight[i] = weight;
  1342. rq_weight += weight;
  1343. /*
  1344. * If there are currently no tasks on the cpu pretend there
  1345. * is one of average load so that when a new task gets to
  1346. * run here it will not get delayed by group starvation.
  1347. */
  1348. if (!weight)
  1349. weight = NICE_0_LOAD;
  1350. sum_weight += weight;
  1351. shares += tg->cfs_rq[i]->shares;
  1352. }
  1353. if (!rq_weight)
  1354. rq_weight = sum_weight;
  1355. if ((!shares && rq_weight) || shares > tg->shares)
  1356. shares = tg->shares;
  1357. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1358. shares = tg->shares;
  1359. for_each_cpu(i, sched_domain_span(sd))
  1360. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1361. local_irq_restore(flags);
  1362. return 0;
  1363. }
  1364. /*
  1365. * Compute the cpu's hierarchical load factor for each task group.
  1366. * This needs to be done in a top-down fashion because the load of a child
  1367. * group is a fraction of its parents load.
  1368. */
  1369. static int tg_load_down(struct task_group *tg, void *data)
  1370. {
  1371. unsigned long load;
  1372. long cpu = (long)data;
  1373. if (!tg->parent) {
  1374. load = cpu_rq(cpu)->load.weight;
  1375. } else {
  1376. load = tg->parent->cfs_rq[cpu]->h_load;
  1377. load *= tg->cfs_rq[cpu]->shares;
  1378. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1379. }
  1380. tg->cfs_rq[cpu]->h_load = load;
  1381. return 0;
  1382. }
  1383. static void update_shares(struct sched_domain *sd)
  1384. {
  1385. s64 elapsed;
  1386. u64 now;
  1387. if (root_task_group_empty())
  1388. return;
  1389. now = local_clock();
  1390. elapsed = now - sd->last_update;
  1391. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1392. sd->last_update = now;
  1393. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1394. }
  1395. }
  1396. static void update_h_load(long cpu)
  1397. {
  1398. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1399. }
  1400. #else
  1401. static inline void update_shares(struct sched_domain *sd)
  1402. {
  1403. }
  1404. #endif
  1405. #ifdef CONFIG_PREEMPT
  1406. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1407. /*
  1408. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1409. * way at the expense of forcing extra atomic operations in all
  1410. * invocations. This assures that the double_lock is acquired using the
  1411. * same underlying policy as the spinlock_t on this architecture, which
  1412. * reduces latency compared to the unfair variant below. However, it
  1413. * also adds more overhead and therefore may reduce throughput.
  1414. */
  1415. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1416. __releases(this_rq->lock)
  1417. __acquires(busiest->lock)
  1418. __acquires(this_rq->lock)
  1419. {
  1420. raw_spin_unlock(&this_rq->lock);
  1421. double_rq_lock(this_rq, busiest);
  1422. return 1;
  1423. }
  1424. #else
  1425. /*
  1426. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1427. * latency by eliminating extra atomic operations when the locks are
  1428. * already in proper order on entry. This favors lower cpu-ids and will
  1429. * grant the double lock to lower cpus over higher ids under contention,
  1430. * regardless of entry order into the function.
  1431. */
  1432. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1433. __releases(this_rq->lock)
  1434. __acquires(busiest->lock)
  1435. __acquires(this_rq->lock)
  1436. {
  1437. int ret = 0;
  1438. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1439. if (busiest < this_rq) {
  1440. raw_spin_unlock(&this_rq->lock);
  1441. raw_spin_lock(&busiest->lock);
  1442. raw_spin_lock_nested(&this_rq->lock,
  1443. SINGLE_DEPTH_NESTING);
  1444. ret = 1;
  1445. } else
  1446. raw_spin_lock_nested(&busiest->lock,
  1447. SINGLE_DEPTH_NESTING);
  1448. }
  1449. return ret;
  1450. }
  1451. #endif /* CONFIG_PREEMPT */
  1452. /*
  1453. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1454. */
  1455. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1456. {
  1457. if (unlikely(!irqs_disabled())) {
  1458. /* printk() doesn't work good under rq->lock */
  1459. raw_spin_unlock(&this_rq->lock);
  1460. BUG_ON(1);
  1461. }
  1462. return _double_lock_balance(this_rq, busiest);
  1463. }
  1464. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1465. __releases(busiest->lock)
  1466. {
  1467. raw_spin_unlock(&busiest->lock);
  1468. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1469. }
  1470. /*
  1471. * double_rq_lock - safely lock two runqueues
  1472. *
  1473. * Note this does not disable interrupts like task_rq_lock,
  1474. * you need to do so manually before calling.
  1475. */
  1476. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1477. __acquires(rq1->lock)
  1478. __acquires(rq2->lock)
  1479. {
  1480. BUG_ON(!irqs_disabled());
  1481. if (rq1 == rq2) {
  1482. raw_spin_lock(&rq1->lock);
  1483. __acquire(rq2->lock); /* Fake it out ;) */
  1484. } else {
  1485. if (rq1 < rq2) {
  1486. raw_spin_lock(&rq1->lock);
  1487. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1488. } else {
  1489. raw_spin_lock(&rq2->lock);
  1490. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1491. }
  1492. }
  1493. }
  1494. /*
  1495. * double_rq_unlock - safely unlock two runqueues
  1496. *
  1497. * Note this does not restore interrupts like task_rq_unlock,
  1498. * you need to do so manually after calling.
  1499. */
  1500. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1501. __releases(rq1->lock)
  1502. __releases(rq2->lock)
  1503. {
  1504. raw_spin_unlock(&rq1->lock);
  1505. if (rq1 != rq2)
  1506. raw_spin_unlock(&rq2->lock);
  1507. else
  1508. __release(rq2->lock);
  1509. }
  1510. #endif
  1511. #ifdef CONFIG_FAIR_GROUP_SCHED
  1512. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1513. {
  1514. #ifdef CONFIG_SMP
  1515. cfs_rq->shares = shares;
  1516. #endif
  1517. }
  1518. #endif
  1519. static void calc_load_account_idle(struct rq *this_rq);
  1520. static void update_sysctl(void);
  1521. static int get_update_sysctl_factor(void);
  1522. static void update_cpu_load(struct rq *this_rq);
  1523. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1524. {
  1525. set_task_rq(p, cpu);
  1526. #ifdef CONFIG_SMP
  1527. /*
  1528. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1529. * successfuly executed on another CPU. We must ensure that updates of
  1530. * per-task data have been completed by this moment.
  1531. */
  1532. smp_wmb();
  1533. task_thread_info(p)->cpu = cpu;
  1534. #endif
  1535. }
  1536. static const struct sched_class rt_sched_class;
  1537. #define sched_class_highest (&rt_sched_class)
  1538. #define for_each_class(class) \
  1539. for (class = sched_class_highest; class; class = class->next)
  1540. #include "sched_stats.h"
  1541. static void inc_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running++;
  1544. }
  1545. static void dec_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running--;
  1548. }
  1549. static void set_load_weight(struct task_struct *p)
  1550. {
  1551. if (task_has_rt_policy(p)) {
  1552. p->se.load.weight = 0;
  1553. p->se.load.inv_weight = WMULT_CONST;
  1554. return;
  1555. }
  1556. /*
  1557. * SCHED_IDLE tasks get minimal weight:
  1558. */
  1559. if (p->policy == SCHED_IDLE) {
  1560. p->se.load.weight = WEIGHT_IDLEPRIO;
  1561. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1562. return;
  1563. }
  1564. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1565. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1566. }
  1567. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1568. {
  1569. update_rq_clock(rq);
  1570. sched_info_queued(p);
  1571. p->sched_class->enqueue_task(rq, p, flags);
  1572. p->se.on_rq = 1;
  1573. }
  1574. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1575. {
  1576. update_rq_clock(rq);
  1577. sched_info_dequeued(p);
  1578. p->sched_class->dequeue_task(rq, p, flags);
  1579. p->se.on_rq = 0;
  1580. }
  1581. /*
  1582. * activate_task - move a task to the runqueue.
  1583. */
  1584. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible--;
  1588. enqueue_task(rq, p, flags);
  1589. inc_nr_running(rq);
  1590. }
  1591. /*
  1592. * deactivate_task - remove a task from the runqueue.
  1593. */
  1594. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1595. {
  1596. if (task_contributes_to_load(p))
  1597. rq->nr_uninterruptible++;
  1598. dequeue_task(rq, p, flags);
  1599. dec_nr_running(rq);
  1600. }
  1601. #include "sched_idletask.c"
  1602. #include "sched_fair.c"
  1603. #include "sched_rt.c"
  1604. #ifdef CONFIG_SCHED_DEBUG
  1605. # include "sched_debug.c"
  1606. #endif
  1607. /*
  1608. * __normal_prio - return the priority that is based on the static prio
  1609. */
  1610. static inline int __normal_prio(struct task_struct *p)
  1611. {
  1612. return p->static_prio;
  1613. }
  1614. /*
  1615. * Calculate the expected normal priority: i.e. priority
  1616. * without taking RT-inheritance into account. Might be
  1617. * boosted by interactivity modifiers. Changes upon fork,
  1618. * setprio syscalls, and whenever the interactivity
  1619. * estimator recalculates.
  1620. */
  1621. static inline int normal_prio(struct task_struct *p)
  1622. {
  1623. int prio;
  1624. if (task_has_rt_policy(p))
  1625. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1626. else
  1627. prio = __normal_prio(p);
  1628. return prio;
  1629. }
  1630. /*
  1631. * Calculate the current priority, i.e. the priority
  1632. * taken into account by the scheduler. This value might
  1633. * be boosted by RT tasks, or might be boosted by
  1634. * interactivity modifiers. Will be RT if the task got
  1635. * RT-boosted. If not then it returns p->normal_prio.
  1636. */
  1637. static int effective_prio(struct task_struct *p)
  1638. {
  1639. p->normal_prio = normal_prio(p);
  1640. /*
  1641. * If we are RT tasks or we were boosted to RT priority,
  1642. * keep the priority unchanged. Otherwise, update priority
  1643. * to the normal priority:
  1644. */
  1645. if (!rt_prio(p->prio))
  1646. return p->normal_prio;
  1647. return p->prio;
  1648. }
  1649. /**
  1650. * task_curr - is this task currently executing on a CPU?
  1651. * @p: the task in question.
  1652. */
  1653. inline int task_curr(const struct task_struct *p)
  1654. {
  1655. return cpu_curr(task_cpu(p)) == p;
  1656. }
  1657. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1658. const struct sched_class *prev_class,
  1659. int oldprio, int running)
  1660. {
  1661. if (prev_class != p->sched_class) {
  1662. if (prev_class->switched_from)
  1663. prev_class->switched_from(rq, p, running);
  1664. p->sched_class->switched_to(rq, p, running);
  1665. } else
  1666. p->sched_class->prio_changed(rq, p, oldprio, running);
  1667. }
  1668. #ifdef CONFIG_SMP
  1669. /*
  1670. * Is this task likely cache-hot:
  1671. */
  1672. static int
  1673. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1674. {
  1675. s64 delta;
  1676. if (p->sched_class != &fair_sched_class)
  1677. return 0;
  1678. /*
  1679. * Buddy candidates are cache hot:
  1680. */
  1681. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1682. (&p->se == cfs_rq_of(&p->se)->next ||
  1683. &p->se == cfs_rq_of(&p->se)->last))
  1684. return 1;
  1685. if (sysctl_sched_migration_cost == -1)
  1686. return 1;
  1687. if (sysctl_sched_migration_cost == 0)
  1688. return 0;
  1689. delta = now - p->se.exec_start;
  1690. return delta < (s64)sysctl_sched_migration_cost;
  1691. }
  1692. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1693. {
  1694. #ifdef CONFIG_SCHED_DEBUG
  1695. /*
  1696. * We should never call set_task_cpu() on a blocked task,
  1697. * ttwu() will sort out the placement.
  1698. */
  1699. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1700. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1701. #endif
  1702. trace_sched_migrate_task(p, new_cpu);
  1703. if (task_cpu(p) != new_cpu) {
  1704. p->se.nr_migrations++;
  1705. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1706. }
  1707. __set_task_cpu(p, new_cpu);
  1708. }
  1709. struct migration_arg {
  1710. struct task_struct *task;
  1711. int dest_cpu;
  1712. };
  1713. static int migration_cpu_stop(void *data);
  1714. /*
  1715. * The task's runqueue lock must be held.
  1716. * Returns true if you have to wait for migration thread.
  1717. */
  1718. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1719. {
  1720. struct rq *rq = task_rq(p);
  1721. /*
  1722. * If the task is not on a runqueue (and not running), then
  1723. * the next wake-up will properly place the task.
  1724. */
  1725. return p->se.on_rq || task_running(rq, p);
  1726. }
  1727. /*
  1728. * wait_task_inactive - wait for a thread to unschedule.
  1729. *
  1730. * If @match_state is nonzero, it's the @p->state value just checked and
  1731. * not expected to change. If it changes, i.e. @p might have woken up,
  1732. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1733. * we return a positive number (its total switch count). If a second call
  1734. * a short while later returns the same number, the caller can be sure that
  1735. * @p has remained unscheduled the whole time.
  1736. *
  1737. * The caller must ensure that the task *will* unschedule sometime soon,
  1738. * else this function might spin for a *long* time. This function can't
  1739. * be called with interrupts off, or it may introduce deadlock with
  1740. * smp_call_function() if an IPI is sent by the same process we are
  1741. * waiting to become inactive.
  1742. */
  1743. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1744. {
  1745. unsigned long flags;
  1746. int running, on_rq;
  1747. unsigned long ncsw;
  1748. struct rq *rq;
  1749. for (;;) {
  1750. /*
  1751. * We do the initial early heuristics without holding
  1752. * any task-queue locks at all. We'll only try to get
  1753. * the runqueue lock when things look like they will
  1754. * work out!
  1755. */
  1756. rq = task_rq(p);
  1757. /*
  1758. * If the task is actively running on another CPU
  1759. * still, just relax and busy-wait without holding
  1760. * any locks.
  1761. *
  1762. * NOTE! Since we don't hold any locks, it's not
  1763. * even sure that "rq" stays as the right runqueue!
  1764. * But we don't care, since "task_running()" will
  1765. * return false if the runqueue has changed and p
  1766. * is actually now running somewhere else!
  1767. */
  1768. while (task_running(rq, p)) {
  1769. if (match_state && unlikely(p->state != match_state))
  1770. return 0;
  1771. cpu_relax();
  1772. }
  1773. /*
  1774. * Ok, time to look more closely! We need the rq
  1775. * lock now, to be *sure*. If we're wrong, we'll
  1776. * just go back and repeat.
  1777. */
  1778. rq = task_rq_lock(p, &flags);
  1779. trace_sched_wait_task(p);
  1780. running = task_running(rq, p);
  1781. on_rq = p->se.on_rq;
  1782. ncsw = 0;
  1783. if (!match_state || p->state == match_state)
  1784. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1785. task_rq_unlock(rq, &flags);
  1786. /*
  1787. * If it changed from the expected state, bail out now.
  1788. */
  1789. if (unlikely(!ncsw))
  1790. break;
  1791. /*
  1792. * Was it really running after all now that we
  1793. * checked with the proper locks actually held?
  1794. *
  1795. * Oops. Go back and try again..
  1796. */
  1797. if (unlikely(running)) {
  1798. cpu_relax();
  1799. continue;
  1800. }
  1801. /*
  1802. * It's not enough that it's not actively running,
  1803. * it must be off the runqueue _entirely_, and not
  1804. * preempted!
  1805. *
  1806. * So if it was still runnable (but just not actively
  1807. * running right now), it's preempted, and we should
  1808. * yield - it could be a while.
  1809. */
  1810. if (unlikely(on_rq)) {
  1811. schedule_timeout_uninterruptible(1);
  1812. continue;
  1813. }
  1814. /*
  1815. * Ahh, all good. It wasn't running, and it wasn't
  1816. * runnable, which means that it will never become
  1817. * running in the future either. We're all done!
  1818. */
  1819. break;
  1820. }
  1821. return ncsw;
  1822. }
  1823. /***
  1824. * kick_process - kick a running thread to enter/exit the kernel
  1825. * @p: the to-be-kicked thread
  1826. *
  1827. * Cause a process which is running on another CPU to enter
  1828. * kernel-mode, without any delay. (to get signals handled.)
  1829. *
  1830. * NOTE: this function doesnt have to take the runqueue lock,
  1831. * because all it wants to ensure is that the remote task enters
  1832. * the kernel. If the IPI races and the task has been migrated
  1833. * to another CPU then no harm is done and the purpose has been
  1834. * achieved as well.
  1835. */
  1836. void kick_process(struct task_struct *p)
  1837. {
  1838. int cpu;
  1839. preempt_disable();
  1840. cpu = task_cpu(p);
  1841. if ((cpu != smp_processor_id()) && task_curr(p))
  1842. smp_send_reschedule(cpu);
  1843. preempt_enable();
  1844. }
  1845. EXPORT_SYMBOL_GPL(kick_process);
  1846. #endif /* CONFIG_SMP */
  1847. /**
  1848. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1849. * @p: the task to evaluate
  1850. * @func: the function to be called
  1851. * @info: the function call argument
  1852. *
  1853. * Calls the function @func when the task is currently running. This might
  1854. * be on the current CPU, which just calls the function directly
  1855. */
  1856. void task_oncpu_function_call(struct task_struct *p,
  1857. void (*func) (void *info), void *info)
  1858. {
  1859. int cpu;
  1860. preempt_disable();
  1861. cpu = task_cpu(p);
  1862. if (task_curr(p))
  1863. smp_call_function_single(cpu, func, info, 1);
  1864. preempt_enable();
  1865. }
  1866. #ifdef CONFIG_SMP
  1867. /*
  1868. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1869. */
  1870. static int select_fallback_rq(int cpu, struct task_struct *p)
  1871. {
  1872. int dest_cpu;
  1873. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1874. /* Look for allowed, online CPU in same node. */
  1875. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1876. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1877. return dest_cpu;
  1878. /* Any allowed, online CPU? */
  1879. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1880. if (dest_cpu < nr_cpu_ids)
  1881. return dest_cpu;
  1882. /* No more Mr. Nice Guy. */
  1883. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1884. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1885. /*
  1886. * Don't tell them about moving exiting tasks or
  1887. * kernel threads (both mm NULL), since they never
  1888. * leave kernel.
  1889. */
  1890. if (p->mm && printk_ratelimit()) {
  1891. printk(KERN_INFO "process %d (%s) no "
  1892. "longer affine to cpu%d\n",
  1893. task_pid_nr(p), p->comm, cpu);
  1894. }
  1895. }
  1896. return dest_cpu;
  1897. }
  1898. /*
  1899. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1900. */
  1901. static inline
  1902. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1903. {
  1904. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1905. /*
  1906. * In order not to call set_task_cpu() on a blocking task we need
  1907. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1908. * cpu.
  1909. *
  1910. * Since this is common to all placement strategies, this lives here.
  1911. *
  1912. * [ this allows ->select_task() to simply return task_cpu(p) and
  1913. * not worry about this generic constraint ]
  1914. */
  1915. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1916. !cpu_online(cpu)))
  1917. cpu = select_fallback_rq(task_cpu(p), p);
  1918. return cpu;
  1919. }
  1920. static void update_avg(u64 *avg, u64 sample)
  1921. {
  1922. s64 diff = sample - *avg;
  1923. *avg += diff >> 3;
  1924. }
  1925. #endif
  1926. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1927. bool is_sync, bool is_migrate, bool is_local,
  1928. unsigned long en_flags)
  1929. {
  1930. schedstat_inc(p, se.statistics.nr_wakeups);
  1931. if (is_sync)
  1932. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1933. if (is_migrate)
  1934. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1935. if (is_local)
  1936. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1937. else
  1938. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1939. activate_task(rq, p, en_flags);
  1940. }
  1941. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1942. int wake_flags, bool success)
  1943. {
  1944. trace_sched_wakeup(p, success);
  1945. check_preempt_curr(rq, p, wake_flags);
  1946. p->state = TASK_RUNNING;
  1947. #ifdef CONFIG_SMP
  1948. if (p->sched_class->task_woken)
  1949. p->sched_class->task_woken(rq, p);
  1950. if (unlikely(rq->idle_stamp)) {
  1951. u64 delta = rq->clock - rq->idle_stamp;
  1952. u64 max = 2*sysctl_sched_migration_cost;
  1953. if (delta > max)
  1954. rq->avg_idle = max;
  1955. else
  1956. update_avg(&rq->avg_idle, delta);
  1957. rq->idle_stamp = 0;
  1958. }
  1959. #endif
  1960. /* if a worker is waking up, notify workqueue */
  1961. if ((p->flags & PF_WQ_WORKER) && success)
  1962. wq_worker_waking_up(p, cpu_of(rq));
  1963. }
  1964. /**
  1965. * try_to_wake_up - wake up a thread
  1966. * @p: the thread to be awakened
  1967. * @state: the mask of task states that can be woken
  1968. * @wake_flags: wake modifier flags (WF_*)
  1969. *
  1970. * Put it on the run-queue if it's not already there. The "current"
  1971. * thread is always on the run-queue (except when the actual
  1972. * re-schedule is in progress), and as such you're allowed to do
  1973. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1974. * runnable without the overhead of this.
  1975. *
  1976. * Returns %true if @p was woken up, %false if it was already running
  1977. * or @state didn't match @p's state.
  1978. */
  1979. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1980. int wake_flags)
  1981. {
  1982. int cpu, orig_cpu, this_cpu, success = 0;
  1983. unsigned long flags;
  1984. unsigned long en_flags = ENQUEUE_WAKEUP;
  1985. struct rq *rq;
  1986. this_cpu = get_cpu();
  1987. smp_wmb();
  1988. rq = task_rq_lock(p, &flags);
  1989. if (!(p->state & state))
  1990. goto out;
  1991. if (p->se.on_rq)
  1992. goto out_running;
  1993. cpu = task_cpu(p);
  1994. orig_cpu = cpu;
  1995. #ifdef CONFIG_SMP
  1996. if (unlikely(task_running(rq, p)))
  1997. goto out_activate;
  1998. /*
  1999. * In order to handle concurrent wakeups and release the rq->lock
  2000. * we put the task in TASK_WAKING state.
  2001. *
  2002. * First fix up the nr_uninterruptible count:
  2003. */
  2004. if (task_contributes_to_load(p)) {
  2005. if (likely(cpu_online(orig_cpu)))
  2006. rq->nr_uninterruptible--;
  2007. else
  2008. this_rq()->nr_uninterruptible--;
  2009. }
  2010. p->state = TASK_WAKING;
  2011. if (p->sched_class->task_waking) {
  2012. p->sched_class->task_waking(rq, p);
  2013. en_flags |= ENQUEUE_WAKING;
  2014. }
  2015. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2016. if (cpu != orig_cpu)
  2017. set_task_cpu(p, cpu);
  2018. __task_rq_unlock(rq);
  2019. rq = cpu_rq(cpu);
  2020. raw_spin_lock(&rq->lock);
  2021. /*
  2022. * We migrated the task without holding either rq->lock, however
  2023. * since the task is not on the task list itself, nobody else
  2024. * will try and migrate the task, hence the rq should match the
  2025. * cpu we just moved it to.
  2026. */
  2027. WARN_ON(task_cpu(p) != cpu);
  2028. WARN_ON(p->state != TASK_WAKING);
  2029. #ifdef CONFIG_SCHEDSTATS
  2030. schedstat_inc(rq, ttwu_count);
  2031. if (cpu == this_cpu)
  2032. schedstat_inc(rq, ttwu_local);
  2033. else {
  2034. struct sched_domain *sd;
  2035. for_each_domain(this_cpu, sd) {
  2036. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2037. schedstat_inc(sd, ttwu_wake_remote);
  2038. break;
  2039. }
  2040. }
  2041. }
  2042. #endif /* CONFIG_SCHEDSTATS */
  2043. out_activate:
  2044. #endif /* CONFIG_SMP */
  2045. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2046. cpu == this_cpu, en_flags);
  2047. success = 1;
  2048. out_running:
  2049. ttwu_post_activation(p, rq, wake_flags, success);
  2050. out:
  2051. task_rq_unlock(rq, &flags);
  2052. put_cpu();
  2053. return success;
  2054. }
  2055. /**
  2056. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2057. * @p: the thread to be awakened
  2058. *
  2059. * Put @p on the run-queue if it's not alredy there. The caller must
  2060. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2061. * the current task. this_rq() stays locked over invocation.
  2062. */
  2063. static void try_to_wake_up_local(struct task_struct *p)
  2064. {
  2065. struct rq *rq = task_rq(p);
  2066. bool success = false;
  2067. BUG_ON(rq != this_rq());
  2068. BUG_ON(p == current);
  2069. lockdep_assert_held(&rq->lock);
  2070. if (!(p->state & TASK_NORMAL))
  2071. return;
  2072. if (!p->se.on_rq) {
  2073. if (likely(!task_running(rq, p))) {
  2074. schedstat_inc(rq, ttwu_count);
  2075. schedstat_inc(rq, ttwu_local);
  2076. }
  2077. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2078. success = true;
  2079. }
  2080. ttwu_post_activation(p, rq, 0, success);
  2081. }
  2082. /**
  2083. * wake_up_process - Wake up a specific process
  2084. * @p: The process to be woken up.
  2085. *
  2086. * Attempt to wake up the nominated process and move it to the set of runnable
  2087. * processes. Returns 1 if the process was woken up, 0 if it was already
  2088. * running.
  2089. *
  2090. * It may be assumed that this function implies a write memory barrier before
  2091. * changing the task state if and only if any tasks are woken up.
  2092. */
  2093. int wake_up_process(struct task_struct *p)
  2094. {
  2095. return try_to_wake_up(p, TASK_ALL, 0);
  2096. }
  2097. EXPORT_SYMBOL(wake_up_process);
  2098. int wake_up_state(struct task_struct *p, unsigned int state)
  2099. {
  2100. return try_to_wake_up(p, state, 0);
  2101. }
  2102. /*
  2103. * Perform scheduler related setup for a newly forked process p.
  2104. * p is forked by current.
  2105. *
  2106. * __sched_fork() is basic setup used by init_idle() too:
  2107. */
  2108. static void __sched_fork(struct task_struct *p)
  2109. {
  2110. p->se.exec_start = 0;
  2111. p->se.sum_exec_runtime = 0;
  2112. p->se.prev_sum_exec_runtime = 0;
  2113. p->se.nr_migrations = 0;
  2114. #ifdef CONFIG_SCHEDSTATS
  2115. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2116. #endif
  2117. INIT_LIST_HEAD(&p->rt.run_list);
  2118. p->se.on_rq = 0;
  2119. INIT_LIST_HEAD(&p->se.group_node);
  2120. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2121. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2122. #endif
  2123. }
  2124. /*
  2125. * fork()/clone()-time setup:
  2126. */
  2127. void sched_fork(struct task_struct *p, int clone_flags)
  2128. {
  2129. int cpu = get_cpu();
  2130. __sched_fork(p);
  2131. /*
  2132. * We mark the process as running here. This guarantees that
  2133. * nobody will actually run it, and a signal or other external
  2134. * event cannot wake it up and insert it on the runqueue either.
  2135. */
  2136. p->state = TASK_RUNNING;
  2137. /*
  2138. * Revert to default priority/policy on fork if requested.
  2139. */
  2140. if (unlikely(p->sched_reset_on_fork)) {
  2141. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2142. p->policy = SCHED_NORMAL;
  2143. p->normal_prio = p->static_prio;
  2144. }
  2145. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2146. p->static_prio = NICE_TO_PRIO(0);
  2147. p->normal_prio = p->static_prio;
  2148. set_load_weight(p);
  2149. }
  2150. /*
  2151. * We don't need the reset flag anymore after the fork. It has
  2152. * fulfilled its duty:
  2153. */
  2154. p->sched_reset_on_fork = 0;
  2155. }
  2156. /*
  2157. * Make sure we do not leak PI boosting priority to the child.
  2158. */
  2159. p->prio = current->normal_prio;
  2160. if (!rt_prio(p->prio))
  2161. p->sched_class = &fair_sched_class;
  2162. if (p->sched_class->task_fork)
  2163. p->sched_class->task_fork(p);
  2164. /*
  2165. * The child is not yet in the pid-hash so no cgroup attach races,
  2166. * and the cgroup is pinned to this child due to cgroup_fork()
  2167. * is ran before sched_fork().
  2168. *
  2169. * Silence PROVE_RCU.
  2170. */
  2171. rcu_read_lock();
  2172. set_task_cpu(p, cpu);
  2173. rcu_read_unlock();
  2174. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2175. if (likely(sched_info_on()))
  2176. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2177. #endif
  2178. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2179. p->oncpu = 0;
  2180. #endif
  2181. #ifdef CONFIG_PREEMPT
  2182. /* Want to start with kernel preemption disabled. */
  2183. task_thread_info(p)->preempt_count = 1;
  2184. #endif
  2185. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2186. put_cpu();
  2187. }
  2188. /*
  2189. * wake_up_new_task - wake up a newly created task for the first time.
  2190. *
  2191. * This function will do some initial scheduler statistics housekeeping
  2192. * that must be done for every newly created context, then puts the task
  2193. * on the runqueue and wakes it.
  2194. */
  2195. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2196. {
  2197. unsigned long flags;
  2198. struct rq *rq;
  2199. int cpu __maybe_unused = get_cpu();
  2200. #ifdef CONFIG_SMP
  2201. rq = task_rq_lock(p, &flags);
  2202. p->state = TASK_WAKING;
  2203. /*
  2204. * Fork balancing, do it here and not earlier because:
  2205. * - cpus_allowed can change in the fork path
  2206. * - any previously selected cpu might disappear through hotplug
  2207. *
  2208. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2209. * without people poking at ->cpus_allowed.
  2210. */
  2211. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2212. set_task_cpu(p, cpu);
  2213. p->state = TASK_RUNNING;
  2214. task_rq_unlock(rq, &flags);
  2215. #endif
  2216. rq = task_rq_lock(p, &flags);
  2217. activate_task(rq, p, 0);
  2218. trace_sched_wakeup_new(p, 1);
  2219. check_preempt_curr(rq, p, WF_FORK);
  2220. #ifdef CONFIG_SMP
  2221. if (p->sched_class->task_woken)
  2222. p->sched_class->task_woken(rq, p);
  2223. #endif
  2224. task_rq_unlock(rq, &flags);
  2225. put_cpu();
  2226. }
  2227. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2228. /**
  2229. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2230. * @notifier: notifier struct to register
  2231. */
  2232. void preempt_notifier_register(struct preempt_notifier *notifier)
  2233. {
  2234. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2235. }
  2236. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2237. /**
  2238. * preempt_notifier_unregister - no longer interested in preemption notifications
  2239. * @notifier: notifier struct to unregister
  2240. *
  2241. * This is safe to call from within a preemption notifier.
  2242. */
  2243. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2244. {
  2245. hlist_del(&notifier->link);
  2246. }
  2247. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2248. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2249. {
  2250. struct preempt_notifier *notifier;
  2251. struct hlist_node *node;
  2252. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2253. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2254. }
  2255. static void
  2256. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. struct preempt_notifier *notifier;
  2260. struct hlist_node *node;
  2261. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2262. notifier->ops->sched_out(notifier, next);
  2263. }
  2264. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2265. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2266. {
  2267. }
  2268. static void
  2269. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2270. struct task_struct *next)
  2271. {
  2272. }
  2273. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2274. /**
  2275. * prepare_task_switch - prepare to switch tasks
  2276. * @rq: the runqueue preparing to switch
  2277. * @prev: the current task that is being switched out
  2278. * @next: the task we are going to switch to.
  2279. *
  2280. * This is called with the rq lock held and interrupts off. It must
  2281. * be paired with a subsequent finish_task_switch after the context
  2282. * switch.
  2283. *
  2284. * prepare_task_switch sets up locking and calls architecture specific
  2285. * hooks.
  2286. */
  2287. static inline void
  2288. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2289. struct task_struct *next)
  2290. {
  2291. fire_sched_out_preempt_notifiers(prev, next);
  2292. prepare_lock_switch(rq, next);
  2293. prepare_arch_switch(next);
  2294. }
  2295. /**
  2296. * finish_task_switch - clean up after a task-switch
  2297. * @rq: runqueue associated with task-switch
  2298. * @prev: the thread we just switched away from.
  2299. *
  2300. * finish_task_switch must be called after the context switch, paired
  2301. * with a prepare_task_switch call before the context switch.
  2302. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2303. * and do any other architecture-specific cleanup actions.
  2304. *
  2305. * Note that we may have delayed dropping an mm in context_switch(). If
  2306. * so, we finish that here outside of the runqueue lock. (Doing it
  2307. * with the lock held can cause deadlocks; see schedule() for
  2308. * details.)
  2309. */
  2310. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2311. __releases(rq->lock)
  2312. {
  2313. struct mm_struct *mm = rq->prev_mm;
  2314. long prev_state;
  2315. rq->prev_mm = NULL;
  2316. /*
  2317. * A task struct has one reference for the use as "current".
  2318. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2319. * schedule one last time. The schedule call will never return, and
  2320. * the scheduled task must drop that reference.
  2321. * The test for TASK_DEAD must occur while the runqueue locks are
  2322. * still held, otherwise prev could be scheduled on another cpu, die
  2323. * there before we look at prev->state, and then the reference would
  2324. * be dropped twice.
  2325. * Manfred Spraul <manfred@colorfullife.com>
  2326. */
  2327. prev_state = prev->state;
  2328. finish_arch_switch(prev);
  2329. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2330. local_irq_disable();
  2331. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2332. perf_event_task_sched_in(current);
  2333. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2334. local_irq_enable();
  2335. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2336. finish_lock_switch(rq, prev);
  2337. fire_sched_in_preempt_notifiers(current);
  2338. if (mm)
  2339. mmdrop(mm);
  2340. if (unlikely(prev_state == TASK_DEAD)) {
  2341. /*
  2342. * Remove function-return probe instances associated with this
  2343. * task and put them back on the free list.
  2344. */
  2345. kprobe_flush_task(prev);
  2346. put_task_struct(prev);
  2347. }
  2348. }
  2349. #ifdef CONFIG_SMP
  2350. /* assumes rq->lock is held */
  2351. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2352. {
  2353. if (prev->sched_class->pre_schedule)
  2354. prev->sched_class->pre_schedule(rq, prev);
  2355. }
  2356. /* rq->lock is NOT held, but preemption is disabled */
  2357. static inline void post_schedule(struct rq *rq)
  2358. {
  2359. if (rq->post_schedule) {
  2360. unsigned long flags;
  2361. raw_spin_lock_irqsave(&rq->lock, flags);
  2362. if (rq->curr->sched_class->post_schedule)
  2363. rq->curr->sched_class->post_schedule(rq);
  2364. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2365. rq->post_schedule = 0;
  2366. }
  2367. }
  2368. #else
  2369. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2370. {
  2371. }
  2372. static inline void post_schedule(struct rq *rq)
  2373. {
  2374. }
  2375. #endif
  2376. /**
  2377. * schedule_tail - first thing a freshly forked thread must call.
  2378. * @prev: the thread we just switched away from.
  2379. */
  2380. asmlinkage void schedule_tail(struct task_struct *prev)
  2381. __releases(rq->lock)
  2382. {
  2383. struct rq *rq = this_rq();
  2384. finish_task_switch(rq, prev);
  2385. /*
  2386. * FIXME: do we need to worry about rq being invalidated by the
  2387. * task_switch?
  2388. */
  2389. post_schedule(rq);
  2390. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2391. /* In this case, finish_task_switch does not reenable preemption */
  2392. preempt_enable();
  2393. #endif
  2394. if (current->set_child_tid)
  2395. put_user(task_pid_vnr(current), current->set_child_tid);
  2396. }
  2397. /*
  2398. * context_switch - switch to the new MM and the new
  2399. * thread's register state.
  2400. */
  2401. static inline void
  2402. context_switch(struct rq *rq, struct task_struct *prev,
  2403. struct task_struct *next)
  2404. {
  2405. struct mm_struct *mm, *oldmm;
  2406. prepare_task_switch(rq, prev, next);
  2407. trace_sched_switch(prev, next);
  2408. mm = next->mm;
  2409. oldmm = prev->active_mm;
  2410. /*
  2411. * For paravirt, this is coupled with an exit in switch_to to
  2412. * combine the page table reload and the switch backend into
  2413. * one hypercall.
  2414. */
  2415. arch_start_context_switch(prev);
  2416. if (likely(!mm)) {
  2417. next->active_mm = oldmm;
  2418. atomic_inc(&oldmm->mm_count);
  2419. enter_lazy_tlb(oldmm, next);
  2420. } else
  2421. switch_mm(oldmm, mm, next);
  2422. if (likely(!prev->mm)) {
  2423. prev->active_mm = NULL;
  2424. rq->prev_mm = oldmm;
  2425. }
  2426. /*
  2427. * Since the runqueue lock will be released by the next
  2428. * task (which is an invalid locking op but in the case
  2429. * of the scheduler it's an obvious special-case), so we
  2430. * do an early lockdep release here:
  2431. */
  2432. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2433. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2434. #endif
  2435. /* Here we just switch the register state and the stack. */
  2436. switch_to(prev, next, prev);
  2437. barrier();
  2438. /*
  2439. * this_rq must be evaluated again because prev may have moved
  2440. * CPUs since it called schedule(), thus the 'rq' on its stack
  2441. * frame will be invalid.
  2442. */
  2443. finish_task_switch(this_rq(), prev);
  2444. }
  2445. /*
  2446. * nr_running, nr_uninterruptible and nr_context_switches:
  2447. *
  2448. * externally visible scheduler statistics: current number of runnable
  2449. * threads, current number of uninterruptible-sleeping threads, total
  2450. * number of context switches performed since bootup.
  2451. */
  2452. unsigned long nr_running(void)
  2453. {
  2454. unsigned long i, sum = 0;
  2455. for_each_online_cpu(i)
  2456. sum += cpu_rq(i)->nr_running;
  2457. return sum;
  2458. }
  2459. unsigned long nr_uninterruptible(void)
  2460. {
  2461. unsigned long i, sum = 0;
  2462. for_each_possible_cpu(i)
  2463. sum += cpu_rq(i)->nr_uninterruptible;
  2464. /*
  2465. * Since we read the counters lockless, it might be slightly
  2466. * inaccurate. Do not allow it to go below zero though:
  2467. */
  2468. if (unlikely((long)sum < 0))
  2469. sum = 0;
  2470. return sum;
  2471. }
  2472. unsigned long long nr_context_switches(void)
  2473. {
  2474. int i;
  2475. unsigned long long sum = 0;
  2476. for_each_possible_cpu(i)
  2477. sum += cpu_rq(i)->nr_switches;
  2478. return sum;
  2479. }
  2480. unsigned long nr_iowait(void)
  2481. {
  2482. unsigned long i, sum = 0;
  2483. for_each_possible_cpu(i)
  2484. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2485. return sum;
  2486. }
  2487. unsigned long nr_iowait_cpu(int cpu)
  2488. {
  2489. struct rq *this = cpu_rq(cpu);
  2490. return atomic_read(&this->nr_iowait);
  2491. }
  2492. unsigned long this_cpu_load(void)
  2493. {
  2494. struct rq *this = this_rq();
  2495. return this->cpu_load[0];
  2496. }
  2497. /* Variables and functions for calc_load */
  2498. static atomic_long_t calc_load_tasks;
  2499. static unsigned long calc_load_update;
  2500. unsigned long avenrun[3];
  2501. EXPORT_SYMBOL(avenrun);
  2502. static long calc_load_fold_active(struct rq *this_rq)
  2503. {
  2504. long nr_active, delta = 0;
  2505. nr_active = this_rq->nr_running;
  2506. nr_active += (long) this_rq->nr_uninterruptible;
  2507. if (nr_active != this_rq->calc_load_active) {
  2508. delta = nr_active - this_rq->calc_load_active;
  2509. this_rq->calc_load_active = nr_active;
  2510. }
  2511. return delta;
  2512. }
  2513. #ifdef CONFIG_NO_HZ
  2514. /*
  2515. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2516. *
  2517. * When making the ILB scale, we should try to pull this in as well.
  2518. */
  2519. static atomic_long_t calc_load_tasks_idle;
  2520. static void calc_load_account_idle(struct rq *this_rq)
  2521. {
  2522. long delta;
  2523. delta = calc_load_fold_active(this_rq);
  2524. if (delta)
  2525. atomic_long_add(delta, &calc_load_tasks_idle);
  2526. }
  2527. static long calc_load_fold_idle(void)
  2528. {
  2529. long delta = 0;
  2530. /*
  2531. * Its got a race, we don't care...
  2532. */
  2533. if (atomic_long_read(&calc_load_tasks_idle))
  2534. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2535. return delta;
  2536. }
  2537. #else
  2538. static void calc_load_account_idle(struct rq *this_rq)
  2539. {
  2540. }
  2541. static inline long calc_load_fold_idle(void)
  2542. {
  2543. return 0;
  2544. }
  2545. #endif
  2546. /**
  2547. * get_avenrun - get the load average array
  2548. * @loads: pointer to dest load array
  2549. * @offset: offset to add
  2550. * @shift: shift count to shift the result left
  2551. *
  2552. * These values are estimates at best, so no need for locking.
  2553. */
  2554. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2555. {
  2556. loads[0] = (avenrun[0] + offset) << shift;
  2557. loads[1] = (avenrun[1] + offset) << shift;
  2558. loads[2] = (avenrun[2] + offset) << shift;
  2559. }
  2560. static unsigned long
  2561. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2562. {
  2563. load *= exp;
  2564. load += active * (FIXED_1 - exp);
  2565. return load >> FSHIFT;
  2566. }
  2567. /*
  2568. * calc_load - update the avenrun load estimates 10 ticks after the
  2569. * CPUs have updated calc_load_tasks.
  2570. */
  2571. void calc_global_load(void)
  2572. {
  2573. unsigned long upd = calc_load_update + 10;
  2574. long active;
  2575. if (time_before(jiffies, upd))
  2576. return;
  2577. active = atomic_long_read(&calc_load_tasks);
  2578. active = active > 0 ? active * FIXED_1 : 0;
  2579. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2580. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2581. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2582. calc_load_update += LOAD_FREQ;
  2583. }
  2584. /*
  2585. * Called from update_cpu_load() to periodically update this CPU's
  2586. * active count.
  2587. */
  2588. static void calc_load_account_active(struct rq *this_rq)
  2589. {
  2590. long delta;
  2591. if (time_before(jiffies, this_rq->calc_load_update))
  2592. return;
  2593. delta = calc_load_fold_active(this_rq);
  2594. delta += calc_load_fold_idle();
  2595. if (delta)
  2596. atomic_long_add(delta, &calc_load_tasks);
  2597. this_rq->calc_load_update += LOAD_FREQ;
  2598. }
  2599. /*
  2600. * The exact cpuload at various idx values, calculated at every tick would be
  2601. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2602. *
  2603. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2604. * on nth tick when cpu may be busy, then we have:
  2605. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2606. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2607. *
  2608. * decay_load_missed() below does efficient calculation of
  2609. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2610. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2611. *
  2612. * The calculation is approximated on a 128 point scale.
  2613. * degrade_zero_ticks is the number of ticks after which load at any
  2614. * particular idx is approximated to be zero.
  2615. * degrade_factor is a precomputed table, a row for each load idx.
  2616. * Each column corresponds to degradation factor for a power of two ticks,
  2617. * based on 128 point scale.
  2618. * Example:
  2619. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2620. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2621. *
  2622. * With this power of 2 load factors, we can degrade the load n times
  2623. * by looking at 1 bits in n and doing as many mult/shift instead of
  2624. * n mult/shifts needed by the exact degradation.
  2625. */
  2626. #define DEGRADE_SHIFT 7
  2627. static const unsigned char
  2628. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2629. static const unsigned char
  2630. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2631. {0, 0, 0, 0, 0, 0, 0, 0},
  2632. {64, 32, 8, 0, 0, 0, 0, 0},
  2633. {96, 72, 40, 12, 1, 0, 0},
  2634. {112, 98, 75, 43, 15, 1, 0},
  2635. {120, 112, 98, 76, 45, 16, 2} };
  2636. /*
  2637. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2638. * would be when CPU is idle and so we just decay the old load without
  2639. * adding any new load.
  2640. */
  2641. static unsigned long
  2642. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2643. {
  2644. int j = 0;
  2645. if (!missed_updates)
  2646. return load;
  2647. if (missed_updates >= degrade_zero_ticks[idx])
  2648. return 0;
  2649. if (idx == 1)
  2650. return load >> missed_updates;
  2651. while (missed_updates) {
  2652. if (missed_updates % 2)
  2653. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2654. missed_updates >>= 1;
  2655. j++;
  2656. }
  2657. return load;
  2658. }
  2659. /*
  2660. * Update rq->cpu_load[] statistics. This function is usually called every
  2661. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2662. * every tick. We fix it up based on jiffies.
  2663. */
  2664. static void update_cpu_load(struct rq *this_rq)
  2665. {
  2666. unsigned long this_load = this_rq->load.weight;
  2667. unsigned long curr_jiffies = jiffies;
  2668. unsigned long pending_updates;
  2669. int i, scale;
  2670. this_rq->nr_load_updates++;
  2671. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2672. if (curr_jiffies == this_rq->last_load_update_tick)
  2673. return;
  2674. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2675. this_rq->last_load_update_tick = curr_jiffies;
  2676. /* Update our load: */
  2677. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2678. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2679. unsigned long old_load, new_load;
  2680. /* scale is effectively 1 << i now, and >> i divides by scale */
  2681. old_load = this_rq->cpu_load[i];
  2682. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2683. new_load = this_load;
  2684. /*
  2685. * Round up the averaging division if load is increasing. This
  2686. * prevents us from getting stuck on 9 if the load is 10, for
  2687. * example.
  2688. */
  2689. if (new_load > old_load)
  2690. new_load += scale - 1;
  2691. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2692. }
  2693. }
  2694. static void update_cpu_load_active(struct rq *this_rq)
  2695. {
  2696. update_cpu_load(this_rq);
  2697. calc_load_account_active(this_rq);
  2698. }
  2699. #ifdef CONFIG_SMP
  2700. /*
  2701. * sched_exec - execve() is a valuable balancing opportunity, because at
  2702. * this point the task has the smallest effective memory and cache footprint.
  2703. */
  2704. void sched_exec(void)
  2705. {
  2706. struct task_struct *p = current;
  2707. unsigned long flags;
  2708. struct rq *rq;
  2709. int dest_cpu;
  2710. rq = task_rq_lock(p, &flags);
  2711. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2712. if (dest_cpu == smp_processor_id())
  2713. goto unlock;
  2714. /*
  2715. * select_task_rq() can race against ->cpus_allowed
  2716. */
  2717. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2718. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2719. struct migration_arg arg = { p, dest_cpu };
  2720. task_rq_unlock(rq, &flags);
  2721. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2722. return;
  2723. }
  2724. unlock:
  2725. task_rq_unlock(rq, &flags);
  2726. }
  2727. #endif
  2728. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2729. EXPORT_PER_CPU_SYMBOL(kstat);
  2730. /*
  2731. * Return any ns on the sched_clock that have not yet been accounted in
  2732. * @p in case that task is currently running.
  2733. *
  2734. * Called with task_rq_lock() held on @rq.
  2735. */
  2736. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2737. {
  2738. u64 ns = 0;
  2739. if (task_current(rq, p)) {
  2740. update_rq_clock(rq);
  2741. ns = rq->clock - p->se.exec_start;
  2742. if ((s64)ns < 0)
  2743. ns = 0;
  2744. }
  2745. return ns;
  2746. }
  2747. unsigned long long task_delta_exec(struct task_struct *p)
  2748. {
  2749. unsigned long flags;
  2750. struct rq *rq;
  2751. u64 ns = 0;
  2752. rq = task_rq_lock(p, &flags);
  2753. ns = do_task_delta_exec(p, rq);
  2754. task_rq_unlock(rq, &flags);
  2755. return ns;
  2756. }
  2757. /*
  2758. * Return accounted runtime for the task.
  2759. * In case the task is currently running, return the runtime plus current's
  2760. * pending runtime that have not been accounted yet.
  2761. */
  2762. unsigned long long task_sched_runtime(struct task_struct *p)
  2763. {
  2764. unsigned long flags;
  2765. struct rq *rq;
  2766. u64 ns = 0;
  2767. rq = task_rq_lock(p, &flags);
  2768. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2769. task_rq_unlock(rq, &flags);
  2770. return ns;
  2771. }
  2772. /*
  2773. * Return sum_exec_runtime for the thread group.
  2774. * In case the task is currently running, return the sum plus current's
  2775. * pending runtime that have not been accounted yet.
  2776. *
  2777. * Note that the thread group might have other running tasks as well,
  2778. * so the return value not includes other pending runtime that other
  2779. * running tasks might have.
  2780. */
  2781. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2782. {
  2783. struct task_cputime totals;
  2784. unsigned long flags;
  2785. struct rq *rq;
  2786. u64 ns;
  2787. rq = task_rq_lock(p, &flags);
  2788. thread_group_cputime(p, &totals);
  2789. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2790. task_rq_unlock(rq, &flags);
  2791. return ns;
  2792. }
  2793. /*
  2794. * Account user cpu time to a process.
  2795. * @p: the process that the cpu time gets accounted to
  2796. * @cputime: the cpu time spent in user space since the last update
  2797. * @cputime_scaled: cputime scaled by cpu frequency
  2798. */
  2799. void account_user_time(struct task_struct *p, cputime_t cputime,
  2800. cputime_t cputime_scaled)
  2801. {
  2802. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2803. cputime64_t tmp;
  2804. /* Add user time to process. */
  2805. p->utime = cputime_add(p->utime, cputime);
  2806. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2807. account_group_user_time(p, cputime);
  2808. /* Add user time to cpustat. */
  2809. tmp = cputime_to_cputime64(cputime);
  2810. if (TASK_NICE(p) > 0)
  2811. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2812. else
  2813. cpustat->user = cputime64_add(cpustat->user, tmp);
  2814. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2815. /* Account for user time used */
  2816. acct_update_integrals(p);
  2817. }
  2818. /*
  2819. * Account guest cpu time to a process.
  2820. * @p: the process that the cpu time gets accounted to
  2821. * @cputime: the cpu time spent in virtual machine since the last update
  2822. * @cputime_scaled: cputime scaled by cpu frequency
  2823. */
  2824. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2825. cputime_t cputime_scaled)
  2826. {
  2827. cputime64_t tmp;
  2828. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2829. tmp = cputime_to_cputime64(cputime);
  2830. /* Add guest time to process. */
  2831. p->utime = cputime_add(p->utime, cputime);
  2832. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2833. account_group_user_time(p, cputime);
  2834. p->gtime = cputime_add(p->gtime, cputime);
  2835. /* Add guest time to cpustat. */
  2836. if (TASK_NICE(p) > 0) {
  2837. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2838. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2839. } else {
  2840. cpustat->user = cputime64_add(cpustat->user, tmp);
  2841. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2842. }
  2843. }
  2844. /*
  2845. * Account system cpu time to a process.
  2846. * @p: the process that the cpu time gets accounted to
  2847. * @hardirq_offset: the offset to subtract from hardirq_count()
  2848. * @cputime: the cpu time spent in kernel space since the last update
  2849. * @cputime_scaled: cputime scaled by cpu frequency
  2850. */
  2851. void account_system_time(struct task_struct *p, int hardirq_offset,
  2852. cputime_t cputime, cputime_t cputime_scaled)
  2853. {
  2854. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2855. cputime64_t tmp;
  2856. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2857. account_guest_time(p, cputime, cputime_scaled);
  2858. return;
  2859. }
  2860. /* Add system time to process. */
  2861. p->stime = cputime_add(p->stime, cputime);
  2862. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2863. account_group_system_time(p, cputime);
  2864. /* Add system time to cpustat. */
  2865. tmp = cputime_to_cputime64(cputime);
  2866. if (hardirq_count() - hardirq_offset)
  2867. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2868. else if (softirq_count())
  2869. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2870. else
  2871. cpustat->system = cputime64_add(cpustat->system, tmp);
  2872. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2873. /* Account for system time used */
  2874. acct_update_integrals(p);
  2875. }
  2876. /*
  2877. * Account for involuntary wait time.
  2878. * @steal: the cpu time spent in involuntary wait
  2879. */
  2880. void account_steal_time(cputime_t cputime)
  2881. {
  2882. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2883. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2884. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2885. }
  2886. /*
  2887. * Account for idle time.
  2888. * @cputime: the cpu time spent in idle wait
  2889. */
  2890. void account_idle_time(cputime_t cputime)
  2891. {
  2892. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2893. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2894. struct rq *rq = this_rq();
  2895. if (atomic_read(&rq->nr_iowait) > 0)
  2896. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2897. else
  2898. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2899. }
  2900. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2901. /*
  2902. * Account a single tick of cpu time.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @user_tick: indicates if the tick is a user or a system tick
  2905. */
  2906. void account_process_tick(struct task_struct *p, int user_tick)
  2907. {
  2908. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2909. struct rq *rq = this_rq();
  2910. if (user_tick)
  2911. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2912. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2913. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2914. one_jiffy_scaled);
  2915. else
  2916. account_idle_time(cputime_one_jiffy);
  2917. }
  2918. /*
  2919. * Account multiple ticks of steal time.
  2920. * @p: the process from which the cpu time has been stolen
  2921. * @ticks: number of stolen ticks
  2922. */
  2923. void account_steal_ticks(unsigned long ticks)
  2924. {
  2925. account_steal_time(jiffies_to_cputime(ticks));
  2926. }
  2927. /*
  2928. * Account multiple ticks of idle time.
  2929. * @ticks: number of stolen ticks
  2930. */
  2931. void account_idle_ticks(unsigned long ticks)
  2932. {
  2933. account_idle_time(jiffies_to_cputime(ticks));
  2934. }
  2935. #endif
  2936. /*
  2937. * Use precise platform statistics if available:
  2938. */
  2939. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2940. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2941. {
  2942. *ut = p->utime;
  2943. *st = p->stime;
  2944. }
  2945. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2946. {
  2947. struct task_cputime cputime;
  2948. thread_group_cputime(p, &cputime);
  2949. *ut = cputime.utime;
  2950. *st = cputime.stime;
  2951. }
  2952. #else
  2953. #ifndef nsecs_to_cputime
  2954. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2955. #endif
  2956. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2957. {
  2958. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2959. /*
  2960. * Use CFS's precise accounting:
  2961. */
  2962. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2963. if (total) {
  2964. u64 temp;
  2965. temp = (u64)(rtime * utime);
  2966. do_div(temp, total);
  2967. utime = (cputime_t)temp;
  2968. } else
  2969. utime = rtime;
  2970. /*
  2971. * Compare with previous values, to keep monotonicity:
  2972. */
  2973. p->prev_utime = max(p->prev_utime, utime);
  2974. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2975. *ut = p->prev_utime;
  2976. *st = p->prev_stime;
  2977. }
  2978. /*
  2979. * Must be called with siglock held.
  2980. */
  2981. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2982. {
  2983. struct signal_struct *sig = p->signal;
  2984. struct task_cputime cputime;
  2985. cputime_t rtime, utime, total;
  2986. thread_group_cputime(p, &cputime);
  2987. total = cputime_add(cputime.utime, cputime.stime);
  2988. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2989. if (total) {
  2990. u64 temp;
  2991. temp = (u64)(rtime * cputime.utime);
  2992. do_div(temp, total);
  2993. utime = (cputime_t)temp;
  2994. } else
  2995. utime = rtime;
  2996. sig->prev_utime = max(sig->prev_utime, utime);
  2997. sig->prev_stime = max(sig->prev_stime,
  2998. cputime_sub(rtime, sig->prev_utime));
  2999. *ut = sig->prev_utime;
  3000. *st = sig->prev_stime;
  3001. }
  3002. #endif
  3003. /*
  3004. * This function gets called by the timer code, with HZ frequency.
  3005. * We call it with interrupts disabled.
  3006. *
  3007. * It also gets called by the fork code, when changing the parent's
  3008. * timeslices.
  3009. */
  3010. void scheduler_tick(void)
  3011. {
  3012. int cpu = smp_processor_id();
  3013. struct rq *rq = cpu_rq(cpu);
  3014. struct task_struct *curr = rq->curr;
  3015. sched_clock_tick();
  3016. raw_spin_lock(&rq->lock);
  3017. update_rq_clock(rq);
  3018. update_cpu_load_active(rq);
  3019. curr->sched_class->task_tick(rq, curr, 0);
  3020. raw_spin_unlock(&rq->lock);
  3021. perf_event_task_tick(curr);
  3022. #ifdef CONFIG_SMP
  3023. rq->idle_at_tick = idle_cpu(cpu);
  3024. trigger_load_balance(rq, cpu);
  3025. #endif
  3026. }
  3027. notrace unsigned long get_parent_ip(unsigned long addr)
  3028. {
  3029. if (in_lock_functions(addr)) {
  3030. addr = CALLER_ADDR2;
  3031. if (in_lock_functions(addr))
  3032. addr = CALLER_ADDR3;
  3033. }
  3034. return addr;
  3035. }
  3036. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3037. defined(CONFIG_PREEMPT_TRACER))
  3038. void __kprobes add_preempt_count(int val)
  3039. {
  3040. #ifdef CONFIG_DEBUG_PREEMPT
  3041. /*
  3042. * Underflow?
  3043. */
  3044. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3045. return;
  3046. #endif
  3047. preempt_count() += val;
  3048. #ifdef CONFIG_DEBUG_PREEMPT
  3049. /*
  3050. * Spinlock count overflowing soon?
  3051. */
  3052. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3053. PREEMPT_MASK - 10);
  3054. #endif
  3055. if (preempt_count() == val)
  3056. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3057. }
  3058. EXPORT_SYMBOL(add_preempt_count);
  3059. void __kprobes sub_preempt_count(int val)
  3060. {
  3061. #ifdef CONFIG_DEBUG_PREEMPT
  3062. /*
  3063. * Underflow?
  3064. */
  3065. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3066. return;
  3067. /*
  3068. * Is the spinlock portion underflowing?
  3069. */
  3070. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3071. !(preempt_count() & PREEMPT_MASK)))
  3072. return;
  3073. #endif
  3074. if (preempt_count() == val)
  3075. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3076. preempt_count() -= val;
  3077. }
  3078. EXPORT_SYMBOL(sub_preempt_count);
  3079. #endif
  3080. /*
  3081. * Print scheduling while atomic bug:
  3082. */
  3083. static noinline void __schedule_bug(struct task_struct *prev)
  3084. {
  3085. struct pt_regs *regs = get_irq_regs();
  3086. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3087. prev->comm, prev->pid, preempt_count());
  3088. debug_show_held_locks(prev);
  3089. print_modules();
  3090. if (irqs_disabled())
  3091. print_irqtrace_events(prev);
  3092. if (regs)
  3093. show_regs(regs);
  3094. else
  3095. dump_stack();
  3096. }
  3097. /*
  3098. * Various schedule()-time debugging checks and statistics:
  3099. */
  3100. static inline void schedule_debug(struct task_struct *prev)
  3101. {
  3102. /*
  3103. * Test if we are atomic. Since do_exit() needs to call into
  3104. * schedule() atomically, we ignore that path for now.
  3105. * Otherwise, whine if we are scheduling when we should not be.
  3106. */
  3107. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3108. __schedule_bug(prev);
  3109. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3110. schedstat_inc(this_rq(), sched_count);
  3111. #ifdef CONFIG_SCHEDSTATS
  3112. if (unlikely(prev->lock_depth >= 0)) {
  3113. schedstat_inc(this_rq(), bkl_count);
  3114. schedstat_inc(prev, sched_info.bkl_count);
  3115. }
  3116. #endif
  3117. }
  3118. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3119. {
  3120. if (prev->se.on_rq)
  3121. update_rq_clock(rq);
  3122. rq->skip_clock_update = 0;
  3123. prev->sched_class->put_prev_task(rq, prev);
  3124. }
  3125. /*
  3126. * Pick up the highest-prio task:
  3127. */
  3128. static inline struct task_struct *
  3129. pick_next_task(struct rq *rq)
  3130. {
  3131. const struct sched_class *class;
  3132. struct task_struct *p;
  3133. /*
  3134. * Optimization: we know that if all tasks are in
  3135. * the fair class we can call that function directly:
  3136. */
  3137. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3138. p = fair_sched_class.pick_next_task(rq);
  3139. if (likely(p))
  3140. return p;
  3141. }
  3142. class = sched_class_highest;
  3143. for ( ; ; ) {
  3144. p = class->pick_next_task(rq);
  3145. if (p)
  3146. return p;
  3147. /*
  3148. * Will never be NULL as the idle class always
  3149. * returns a non-NULL p:
  3150. */
  3151. class = class->next;
  3152. }
  3153. }
  3154. /*
  3155. * schedule() is the main scheduler function.
  3156. */
  3157. asmlinkage void __sched schedule(void)
  3158. {
  3159. struct task_struct *prev, *next;
  3160. unsigned long *switch_count;
  3161. struct rq *rq;
  3162. int cpu;
  3163. need_resched:
  3164. preempt_disable();
  3165. cpu = smp_processor_id();
  3166. rq = cpu_rq(cpu);
  3167. rcu_note_context_switch(cpu);
  3168. prev = rq->curr;
  3169. release_kernel_lock(prev);
  3170. need_resched_nonpreemptible:
  3171. schedule_debug(prev);
  3172. if (sched_feat(HRTICK))
  3173. hrtick_clear(rq);
  3174. raw_spin_lock_irq(&rq->lock);
  3175. clear_tsk_need_resched(prev);
  3176. switch_count = &prev->nivcsw;
  3177. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3178. if (unlikely(signal_pending_state(prev->state, prev))) {
  3179. prev->state = TASK_RUNNING;
  3180. } else {
  3181. /*
  3182. * If a worker is going to sleep, notify and
  3183. * ask workqueue whether it wants to wake up a
  3184. * task to maintain concurrency. If so, wake
  3185. * up the task.
  3186. */
  3187. if (prev->flags & PF_WQ_WORKER) {
  3188. struct task_struct *to_wakeup;
  3189. to_wakeup = wq_worker_sleeping(prev, cpu);
  3190. if (to_wakeup)
  3191. try_to_wake_up_local(to_wakeup);
  3192. }
  3193. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3194. }
  3195. switch_count = &prev->nvcsw;
  3196. }
  3197. pre_schedule(rq, prev);
  3198. if (unlikely(!rq->nr_running))
  3199. idle_balance(cpu, rq);
  3200. put_prev_task(rq, prev);
  3201. next = pick_next_task(rq);
  3202. if (likely(prev != next)) {
  3203. sched_info_switch(prev, next);
  3204. perf_event_task_sched_out(prev, next);
  3205. rq->nr_switches++;
  3206. rq->curr = next;
  3207. ++*switch_count;
  3208. context_switch(rq, prev, next); /* unlocks the rq */
  3209. /*
  3210. * The context switch have flipped the stack from under us
  3211. * and restored the local variables which were saved when
  3212. * this task called schedule() in the past. prev == current
  3213. * is still correct, but it can be moved to another cpu/rq.
  3214. */
  3215. cpu = smp_processor_id();
  3216. rq = cpu_rq(cpu);
  3217. } else
  3218. raw_spin_unlock_irq(&rq->lock);
  3219. post_schedule(rq);
  3220. if (unlikely(reacquire_kernel_lock(prev)))
  3221. goto need_resched_nonpreemptible;
  3222. preempt_enable_no_resched();
  3223. if (need_resched())
  3224. goto need_resched;
  3225. }
  3226. EXPORT_SYMBOL(schedule);
  3227. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3228. /*
  3229. * Look out! "owner" is an entirely speculative pointer
  3230. * access and not reliable.
  3231. */
  3232. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3233. {
  3234. unsigned int cpu;
  3235. struct rq *rq;
  3236. if (!sched_feat(OWNER_SPIN))
  3237. return 0;
  3238. #ifdef CONFIG_DEBUG_PAGEALLOC
  3239. /*
  3240. * Need to access the cpu field knowing that
  3241. * DEBUG_PAGEALLOC could have unmapped it if
  3242. * the mutex owner just released it and exited.
  3243. */
  3244. if (probe_kernel_address(&owner->cpu, cpu))
  3245. return 0;
  3246. #else
  3247. cpu = owner->cpu;
  3248. #endif
  3249. /*
  3250. * Even if the access succeeded (likely case),
  3251. * the cpu field may no longer be valid.
  3252. */
  3253. if (cpu >= nr_cpumask_bits)
  3254. return 0;
  3255. /*
  3256. * We need to validate that we can do a
  3257. * get_cpu() and that we have the percpu area.
  3258. */
  3259. if (!cpu_online(cpu))
  3260. return 0;
  3261. rq = cpu_rq(cpu);
  3262. for (;;) {
  3263. /*
  3264. * Owner changed, break to re-assess state.
  3265. */
  3266. if (lock->owner != owner) {
  3267. /*
  3268. * If the lock has switched to a different owner,
  3269. * we likely have heavy contention. Return 0 to quit
  3270. * optimistic spinning and not contend further:
  3271. */
  3272. if (lock->owner)
  3273. return 0;
  3274. break;
  3275. }
  3276. /*
  3277. * Is that owner really running on that cpu?
  3278. */
  3279. if (task_thread_info(rq->curr) != owner || need_resched())
  3280. return 0;
  3281. cpu_relax();
  3282. }
  3283. return 1;
  3284. }
  3285. #endif
  3286. #ifdef CONFIG_PREEMPT
  3287. /*
  3288. * this is the entry point to schedule() from in-kernel preemption
  3289. * off of preempt_enable. Kernel preemptions off return from interrupt
  3290. * occur there and call schedule directly.
  3291. */
  3292. asmlinkage void __sched notrace preempt_schedule(void)
  3293. {
  3294. struct thread_info *ti = current_thread_info();
  3295. /*
  3296. * If there is a non-zero preempt_count or interrupts are disabled,
  3297. * we do not want to preempt the current task. Just return..
  3298. */
  3299. if (likely(ti->preempt_count || irqs_disabled()))
  3300. return;
  3301. do {
  3302. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3303. schedule();
  3304. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3305. /*
  3306. * Check again in case we missed a preemption opportunity
  3307. * between schedule and now.
  3308. */
  3309. barrier();
  3310. } while (need_resched());
  3311. }
  3312. EXPORT_SYMBOL(preempt_schedule);
  3313. /*
  3314. * this is the entry point to schedule() from kernel preemption
  3315. * off of irq context.
  3316. * Note, that this is called and return with irqs disabled. This will
  3317. * protect us against recursive calling from irq.
  3318. */
  3319. asmlinkage void __sched preempt_schedule_irq(void)
  3320. {
  3321. struct thread_info *ti = current_thread_info();
  3322. /* Catch callers which need to be fixed */
  3323. BUG_ON(ti->preempt_count || !irqs_disabled());
  3324. do {
  3325. add_preempt_count(PREEMPT_ACTIVE);
  3326. local_irq_enable();
  3327. schedule();
  3328. local_irq_disable();
  3329. sub_preempt_count(PREEMPT_ACTIVE);
  3330. /*
  3331. * Check again in case we missed a preemption opportunity
  3332. * between schedule and now.
  3333. */
  3334. barrier();
  3335. } while (need_resched());
  3336. }
  3337. #endif /* CONFIG_PREEMPT */
  3338. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3339. void *key)
  3340. {
  3341. return try_to_wake_up(curr->private, mode, wake_flags);
  3342. }
  3343. EXPORT_SYMBOL(default_wake_function);
  3344. /*
  3345. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3346. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3347. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3348. *
  3349. * There are circumstances in which we can try to wake a task which has already
  3350. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3351. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3352. */
  3353. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3354. int nr_exclusive, int wake_flags, void *key)
  3355. {
  3356. wait_queue_t *curr, *next;
  3357. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3358. unsigned flags = curr->flags;
  3359. if (curr->func(curr, mode, wake_flags, key) &&
  3360. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3361. break;
  3362. }
  3363. }
  3364. /**
  3365. * __wake_up - wake up threads blocked on a waitqueue.
  3366. * @q: the waitqueue
  3367. * @mode: which threads
  3368. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3369. * @key: is directly passed to the wakeup function
  3370. *
  3371. * It may be assumed that this function implies a write memory barrier before
  3372. * changing the task state if and only if any tasks are woken up.
  3373. */
  3374. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3375. int nr_exclusive, void *key)
  3376. {
  3377. unsigned long flags;
  3378. spin_lock_irqsave(&q->lock, flags);
  3379. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3380. spin_unlock_irqrestore(&q->lock, flags);
  3381. }
  3382. EXPORT_SYMBOL(__wake_up);
  3383. /*
  3384. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3385. */
  3386. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3387. {
  3388. __wake_up_common(q, mode, 1, 0, NULL);
  3389. }
  3390. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3391. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3392. {
  3393. __wake_up_common(q, mode, 1, 0, key);
  3394. }
  3395. /**
  3396. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3397. * @q: the waitqueue
  3398. * @mode: which threads
  3399. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3400. * @key: opaque value to be passed to wakeup targets
  3401. *
  3402. * The sync wakeup differs that the waker knows that it will schedule
  3403. * away soon, so while the target thread will be woken up, it will not
  3404. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3405. * with each other. This can prevent needless bouncing between CPUs.
  3406. *
  3407. * On UP it can prevent extra preemption.
  3408. *
  3409. * It may be assumed that this function implies a write memory barrier before
  3410. * changing the task state if and only if any tasks are woken up.
  3411. */
  3412. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3413. int nr_exclusive, void *key)
  3414. {
  3415. unsigned long flags;
  3416. int wake_flags = WF_SYNC;
  3417. if (unlikely(!q))
  3418. return;
  3419. if (unlikely(!nr_exclusive))
  3420. wake_flags = 0;
  3421. spin_lock_irqsave(&q->lock, flags);
  3422. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3423. spin_unlock_irqrestore(&q->lock, flags);
  3424. }
  3425. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3426. /*
  3427. * __wake_up_sync - see __wake_up_sync_key()
  3428. */
  3429. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3430. {
  3431. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3432. }
  3433. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3434. /**
  3435. * complete: - signals a single thread waiting on this completion
  3436. * @x: holds the state of this particular completion
  3437. *
  3438. * This will wake up a single thread waiting on this completion. Threads will be
  3439. * awakened in the same order in which they were queued.
  3440. *
  3441. * See also complete_all(), wait_for_completion() and related routines.
  3442. *
  3443. * It may be assumed that this function implies a write memory barrier before
  3444. * changing the task state if and only if any tasks are woken up.
  3445. */
  3446. void complete(struct completion *x)
  3447. {
  3448. unsigned long flags;
  3449. spin_lock_irqsave(&x->wait.lock, flags);
  3450. x->done++;
  3451. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3452. spin_unlock_irqrestore(&x->wait.lock, flags);
  3453. }
  3454. EXPORT_SYMBOL(complete);
  3455. /**
  3456. * complete_all: - signals all threads waiting on this completion
  3457. * @x: holds the state of this particular completion
  3458. *
  3459. * This will wake up all threads waiting on this particular completion event.
  3460. *
  3461. * It may be assumed that this function implies a write memory barrier before
  3462. * changing the task state if and only if any tasks are woken up.
  3463. */
  3464. void complete_all(struct completion *x)
  3465. {
  3466. unsigned long flags;
  3467. spin_lock_irqsave(&x->wait.lock, flags);
  3468. x->done += UINT_MAX/2;
  3469. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3470. spin_unlock_irqrestore(&x->wait.lock, flags);
  3471. }
  3472. EXPORT_SYMBOL(complete_all);
  3473. static inline long __sched
  3474. do_wait_for_common(struct completion *x, long timeout, int state)
  3475. {
  3476. if (!x->done) {
  3477. DECLARE_WAITQUEUE(wait, current);
  3478. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3479. do {
  3480. if (signal_pending_state(state, current)) {
  3481. timeout = -ERESTARTSYS;
  3482. break;
  3483. }
  3484. __set_current_state(state);
  3485. spin_unlock_irq(&x->wait.lock);
  3486. timeout = schedule_timeout(timeout);
  3487. spin_lock_irq(&x->wait.lock);
  3488. } while (!x->done && timeout);
  3489. __remove_wait_queue(&x->wait, &wait);
  3490. if (!x->done)
  3491. return timeout;
  3492. }
  3493. x->done--;
  3494. return timeout ?: 1;
  3495. }
  3496. static long __sched
  3497. wait_for_common(struct completion *x, long timeout, int state)
  3498. {
  3499. might_sleep();
  3500. spin_lock_irq(&x->wait.lock);
  3501. timeout = do_wait_for_common(x, timeout, state);
  3502. spin_unlock_irq(&x->wait.lock);
  3503. return timeout;
  3504. }
  3505. /**
  3506. * wait_for_completion: - waits for completion of a task
  3507. * @x: holds the state of this particular completion
  3508. *
  3509. * This waits to be signaled for completion of a specific task. It is NOT
  3510. * interruptible and there is no timeout.
  3511. *
  3512. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3513. * and interrupt capability. Also see complete().
  3514. */
  3515. void __sched wait_for_completion(struct completion *x)
  3516. {
  3517. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3518. }
  3519. EXPORT_SYMBOL(wait_for_completion);
  3520. /**
  3521. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3522. * @x: holds the state of this particular completion
  3523. * @timeout: timeout value in jiffies
  3524. *
  3525. * This waits for either a completion of a specific task to be signaled or for a
  3526. * specified timeout to expire. The timeout is in jiffies. It is not
  3527. * interruptible.
  3528. */
  3529. unsigned long __sched
  3530. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3531. {
  3532. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3533. }
  3534. EXPORT_SYMBOL(wait_for_completion_timeout);
  3535. /**
  3536. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3537. * @x: holds the state of this particular completion
  3538. *
  3539. * This waits for completion of a specific task to be signaled. It is
  3540. * interruptible.
  3541. */
  3542. int __sched wait_for_completion_interruptible(struct completion *x)
  3543. {
  3544. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3545. if (t == -ERESTARTSYS)
  3546. return t;
  3547. return 0;
  3548. }
  3549. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3550. /**
  3551. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3552. * @x: holds the state of this particular completion
  3553. * @timeout: timeout value in jiffies
  3554. *
  3555. * This waits for either a completion of a specific task to be signaled or for a
  3556. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3557. */
  3558. unsigned long __sched
  3559. wait_for_completion_interruptible_timeout(struct completion *x,
  3560. unsigned long timeout)
  3561. {
  3562. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3563. }
  3564. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3565. /**
  3566. * wait_for_completion_killable: - waits for completion of a task (killable)
  3567. * @x: holds the state of this particular completion
  3568. *
  3569. * This waits to be signaled for completion of a specific task. It can be
  3570. * interrupted by a kill signal.
  3571. */
  3572. int __sched wait_for_completion_killable(struct completion *x)
  3573. {
  3574. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3575. if (t == -ERESTARTSYS)
  3576. return t;
  3577. return 0;
  3578. }
  3579. EXPORT_SYMBOL(wait_for_completion_killable);
  3580. /**
  3581. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3582. * @x: holds the state of this particular completion
  3583. * @timeout: timeout value in jiffies
  3584. *
  3585. * This waits for either a completion of a specific task to be
  3586. * signaled or for a specified timeout to expire. It can be
  3587. * interrupted by a kill signal. The timeout is in jiffies.
  3588. */
  3589. unsigned long __sched
  3590. wait_for_completion_killable_timeout(struct completion *x,
  3591. unsigned long timeout)
  3592. {
  3593. return wait_for_common(x, timeout, TASK_KILLABLE);
  3594. }
  3595. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3596. /**
  3597. * try_wait_for_completion - try to decrement a completion without blocking
  3598. * @x: completion structure
  3599. *
  3600. * Returns: 0 if a decrement cannot be done without blocking
  3601. * 1 if a decrement succeeded.
  3602. *
  3603. * If a completion is being used as a counting completion,
  3604. * attempt to decrement the counter without blocking. This
  3605. * enables us to avoid waiting if the resource the completion
  3606. * is protecting is not available.
  3607. */
  3608. bool try_wait_for_completion(struct completion *x)
  3609. {
  3610. unsigned long flags;
  3611. int ret = 1;
  3612. spin_lock_irqsave(&x->wait.lock, flags);
  3613. if (!x->done)
  3614. ret = 0;
  3615. else
  3616. x->done--;
  3617. spin_unlock_irqrestore(&x->wait.lock, flags);
  3618. return ret;
  3619. }
  3620. EXPORT_SYMBOL(try_wait_for_completion);
  3621. /**
  3622. * completion_done - Test to see if a completion has any waiters
  3623. * @x: completion structure
  3624. *
  3625. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3626. * 1 if there are no waiters.
  3627. *
  3628. */
  3629. bool completion_done(struct completion *x)
  3630. {
  3631. unsigned long flags;
  3632. int ret = 1;
  3633. spin_lock_irqsave(&x->wait.lock, flags);
  3634. if (!x->done)
  3635. ret = 0;
  3636. spin_unlock_irqrestore(&x->wait.lock, flags);
  3637. return ret;
  3638. }
  3639. EXPORT_SYMBOL(completion_done);
  3640. static long __sched
  3641. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3642. {
  3643. unsigned long flags;
  3644. wait_queue_t wait;
  3645. init_waitqueue_entry(&wait, current);
  3646. __set_current_state(state);
  3647. spin_lock_irqsave(&q->lock, flags);
  3648. __add_wait_queue(q, &wait);
  3649. spin_unlock(&q->lock);
  3650. timeout = schedule_timeout(timeout);
  3651. spin_lock_irq(&q->lock);
  3652. __remove_wait_queue(q, &wait);
  3653. spin_unlock_irqrestore(&q->lock, flags);
  3654. return timeout;
  3655. }
  3656. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3657. {
  3658. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3659. }
  3660. EXPORT_SYMBOL(interruptible_sleep_on);
  3661. long __sched
  3662. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3663. {
  3664. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3665. }
  3666. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3667. void __sched sleep_on(wait_queue_head_t *q)
  3668. {
  3669. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3670. }
  3671. EXPORT_SYMBOL(sleep_on);
  3672. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3673. {
  3674. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3675. }
  3676. EXPORT_SYMBOL(sleep_on_timeout);
  3677. #ifdef CONFIG_RT_MUTEXES
  3678. /*
  3679. * rt_mutex_setprio - set the current priority of a task
  3680. * @p: task
  3681. * @prio: prio value (kernel-internal form)
  3682. *
  3683. * This function changes the 'effective' priority of a task. It does
  3684. * not touch ->normal_prio like __setscheduler().
  3685. *
  3686. * Used by the rt_mutex code to implement priority inheritance logic.
  3687. */
  3688. void rt_mutex_setprio(struct task_struct *p, int prio)
  3689. {
  3690. unsigned long flags;
  3691. int oldprio, on_rq, running;
  3692. struct rq *rq;
  3693. const struct sched_class *prev_class;
  3694. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3695. rq = task_rq_lock(p, &flags);
  3696. oldprio = p->prio;
  3697. prev_class = p->sched_class;
  3698. on_rq = p->se.on_rq;
  3699. running = task_current(rq, p);
  3700. if (on_rq)
  3701. dequeue_task(rq, p, 0);
  3702. if (running)
  3703. p->sched_class->put_prev_task(rq, p);
  3704. if (rt_prio(prio))
  3705. p->sched_class = &rt_sched_class;
  3706. else
  3707. p->sched_class = &fair_sched_class;
  3708. p->prio = prio;
  3709. if (running)
  3710. p->sched_class->set_curr_task(rq);
  3711. if (on_rq) {
  3712. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3713. check_class_changed(rq, p, prev_class, oldprio, running);
  3714. }
  3715. task_rq_unlock(rq, &flags);
  3716. }
  3717. #endif
  3718. void set_user_nice(struct task_struct *p, long nice)
  3719. {
  3720. int old_prio, delta, on_rq;
  3721. unsigned long flags;
  3722. struct rq *rq;
  3723. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3724. return;
  3725. /*
  3726. * We have to be careful, if called from sys_setpriority(),
  3727. * the task might be in the middle of scheduling on another CPU.
  3728. */
  3729. rq = task_rq_lock(p, &flags);
  3730. /*
  3731. * The RT priorities are set via sched_setscheduler(), but we still
  3732. * allow the 'normal' nice value to be set - but as expected
  3733. * it wont have any effect on scheduling until the task is
  3734. * SCHED_FIFO/SCHED_RR:
  3735. */
  3736. if (task_has_rt_policy(p)) {
  3737. p->static_prio = NICE_TO_PRIO(nice);
  3738. goto out_unlock;
  3739. }
  3740. on_rq = p->se.on_rq;
  3741. if (on_rq)
  3742. dequeue_task(rq, p, 0);
  3743. p->static_prio = NICE_TO_PRIO(nice);
  3744. set_load_weight(p);
  3745. old_prio = p->prio;
  3746. p->prio = effective_prio(p);
  3747. delta = p->prio - old_prio;
  3748. if (on_rq) {
  3749. enqueue_task(rq, p, 0);
  3750. /*
  3751. * If the task increased its priority or is running and
  3752. * lowered its priority, then reschedule its CPU:
  3753. */
  3754. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3755. resched_task(rq->curr);
  3756. }
  3757. out_unlock:
  3758. task_rq_unlock(rq, &flags);
  3759. }
  3760. EXPORT_SYMBOL(set_user_nice);
  3761. /*
  3762. * can_nice - check if a task can reduce its nice value
  3763. * @p: task
  3764. * @nice: nice value
  3765. */
  3766. int can_nice(const struct task_struct *p, const int nice)
  3767. {
  3768. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3769. int nice_rlim = 20 - nice;
  3770. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3771. capable(CAP_SYS_NICE));
  3772. }
  3773. #ifdef __ARCH_WANT_SYS_NICE
  3774. /*
  3775. * sys_nice - change the priority of the current process.
  3776. * @increment: priority increment
  3777. *
  3778. * sys_setpriority is a more generic, but much slower function that
  3779. * does similar things.
  3780. */
  3781. SYSCALL_DEFINE1(nice, int, increment)
  3782. {
  3783. long nice, retval;
  3784. /*
  3785. * Setpriority might change our priority at the same moment.
  3786. * We don't have to worry. Conceptually one call occurs first
  3787. * and we have a single winner.
  3788. */
  3789. if (increment < -40)
  3790. increment = -40;
  3791. if (increment > 40)
  3792. increment = 40;
  3793. nice = TASK_NICE(current) + increment;
  3794. if (nice < -20)
  3795. nice = -20;
  3796. if (nice > 19)
  3797. nice = 19;
  3798. if (increment < 0 && !can_nice(current, nice))
  3799. return -EPERM;
  3800. retval = security_task_setnice(current, nice);
  3801. if (retval)
  3802. return retval;
  3803. set_user_nice(current, nice);
  3804. return 0;
  3805. }
  3806. #endif
  3807. /**
  3808. * task_prio - return the priority value of a given task.
  3809. * @p: the task in question.
  3810. *
  3811. * This is the priority value as seen by users in /proc.
  3812. * RT tasks are offset by -200. Normal tasks are centered
  3813. * around 0, value goes from -16 to +15.
  3814. */
  3815. int task_prio(const struct task_struct *p)
  3816. {
  3817. return p->prio - MAX_RT_PRIO;
  3818. }
  3819. /**
  3820. * task_nice - return the nice value of a given task.
  3821. * @p: the task in question.
  3822. */
  3823. int task_nice(const struct task_struct *p)
  3824. {
  3825. return TASK_NICE(p);
  3826. }
  3827. EXPORT_SYMBOL(task_nice);
  3828. /**
  3829. * idle_cpu - is a given cpu idle currently?
  3830. * @cpu: the processor in question.
  3831. */
  3832. int idle_cpu(int cpu)
  3833. {
  3834. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3835. }
  3836. /**
  3837. * idle_task - return the idle task for a given cpu.
  3838. * @cpu: the processor in question.
  3839. */
  3840. struct task_struct *idle_task(int cpu)
  3841. {
  3842. return cpu_rq(cpu)->idle;
  3843. }
  3844. /**
  3845. * find_process_by_pid - find a process with a matching PID value.
  3846. * @pid: the pid in question.
  3847. */
  3848. static struct task_struct *find_process_by_pid(pid_t pid)
  3849. {
  3850. return pid ? find_task_by_vpid(pid) : current;
  3851. }
  3852. /* Actually do priority change: must hold rq lock. */
  3853. static void
  3854. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3855. {
  3856. BUG_ON(p->se.on_rq);
  3857. p->policy = policy;
  3858. p->rt_priority = prio;
  3859. p->normal_prio = normal_prio(p);
  3860. /* we are holding p->pi_lock already */
  3861. p->prio = rt_mutex_getprio(p);
  3862. if (rt_prio(p->prio))
  3863. p->sched_class = &rt_sched_class;
  3864. else
  3865. p->sched_class = &fair_sched_class;
  3866. set_load_weight(p);
  3867. }
  3868. /*
  3869. * check the target process has a UID that matches the current process's
  3870. */
  3871. static bool check_same_owner(struct task_struct *p)
  3872. {
  3873. const struct cred *cred = current_cred(), *pcred;
  3874. bool match;
  3875. rcu_read_lock();
  3876. pcred = __task_cred(p);
  3877. match = (cred->euid == pcred->euid ||
  3878. cred->euid == pcred->uid);
  3879. rcu_read_unlock();
  3880. return match;
  3881. }
  3882. static int __sched_setscheduler(struct task_struct *p, int policy,
  3883. struct sched_param *param, bool user)
  3884. {
  3885. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3886. unsigned long flags;
  3887. const struct sched_class *prev_class;
  3888. struct rq *rq;
  3889. int reset_on_fork;
  3890. /* may grab non-irq protected spin_locks */
  3891. BUG_ON(in_interrupt());
  3892. recheck:
  3893. /* double check policy once rq lock held */
  3894. if (policy < 0) {
  3895. reset_on_fork = p->sched_reset_on_fork;
  3896. policy = oldpolicy = p->policy;
  3897. } else {
  3898. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3899. policy &= ~SCHED_RESET_ON_FORK;
  3900. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3901. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3902. policy != SCHED_IDLE)
  3903. return -EINVAL;
  3904. }
  3905. /*
  3906. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3907. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3908. * SCHED_BATCH and SCHED_IDLE is 0.
  3909. */
  3910. if (param->sched_priority < 0 ||
  3911. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3912. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3913. return -EINVAL;
  3914. if (rt_policy(policy) != (param->sched_priority != 0))
  3915. return -EINVAL;
  3916. /*
  3917. * Allow unprivileged RT tasks to decrease priority:
  3918. */
  3919. if (user && !capable(CAP_SYS_NICE)) {
  3920. if (rt_policy(policy)) {
  3921. unsigned long rlim_rtprio =
  3922. task_rlimit(p, RLIMIT_RTPRIO);
  3923. /* can't set/change the rt policy */
  3924. if (policy != p->policy && !rlim_rtprio)
  3925. return -EPERM;
  3926. /* can't increase priority */
  3927. if (param->sched_priority > p->rt_priority &&
  3928. param->sched_priority > rlim_rtprio)
  3929. return -EPERM;
  3930. }
  3931. /*
  3932. * Like positive nice levels, dont allow tasks to
  3933. * move out of SCHED_IDLE either:
  3934. */
  3935. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3936. return -EPERM;
  3937. /* can't change other user's priorities */
  3938. if (!check_same_owner(p))
  3939. return -EPERM;
  3940. /* Normal users shall not reset the sched_reset_on_fork flag */
  3941. if (p->sched_reset_on_fork && !reset_on_fork)
  3942. return -EPERM;
  3943. }
  3944. if (user) {
  3945. retval = security_task_setscheduler(p, policy, param);
  3946. if (retval)
  3947. return retval;
  3948. }
  3949. /*
  3950. * make sure no PI-waiters arrive (or leave) while we are
  3951. * changing the priority of the task:
  3952. */
  3953. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3954. /*
  3955. * To be able to change p->policy safely, the apropriate
  3956. * runqueue lock must be held.
  3957. */
  3958. rq = __task_rq_lock(p);
  3959. #ifdef CONFIG_RT_GROUP_SCHED
  3960. if (user) {
  3961. /*
  3962. * Do not allow realtime tasks into groups that have no runtime
  3963. * assigned.
  3964. */
  3965. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3966. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3967. __task_rq_unlock(rq);
  3968. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3969. return -EPERM;
  3970. }
  3971. }
  3972. #endif
  3973. /* recheck policy now with rq lock held */
  3974. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3975. policy = oldpolicy = -1;
  3976. __task_rq_unlock(rq);
  3977. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3978. goto recheck;
  3979. }
  3980. on_rq = p->se.on_rq;
  3981. running = task_current(rq, p);
  3982. if (on_rq)
  3983. deactivate_task(rq, p, 0);
  3984. if (running)
  3985. p->sched_class->put_prev_task(rq, p);
  3986. p->sched_reset_on_fork = reset_on_fork;
  3987. oldprio = p->prio;
  3988. prev_class = p->sched_class;
  3989. __setscheduler(rq, p, policy, param->sched_priority);
  3990. if (running)
  3991. p->sched_class->set_curr_task(rq);
  3992. if (on_rq) {
  3993. activate_task(rq, p, 0);
  3994. check_class_changed(rq, p, prev_class, oldprio, running);
  3995. }
  3996. __task_rq_unlock(rq);
  3997. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3998. rt_mutex_adjust_pi(p);
  3999. return 0;
  4000. }
  4001. /**
  4002. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4003. * @p: the task in question.
  4004. * @policy: new policy.
  4005. * @param: structure containing the new RT priority.
  4006. *
  4007. * NOTE that the task may be already dead.
  4008. */
  4009. int sched_setscheduler(struct task_struct *p, int policy,
  4010. struct sched_param *param)
  4011. {
  4012. return __sched_setscheduler(p, policy, param, true);
  4013. }
  4014. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4015. /**
  4016. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4017. * @p: the task in question.
  4018. * @policy: new policy.
  4019. * @param: structure containing the new RT priority.
  4020. *
  4021. * Just like sched_setscheduler, only don't bother checking if the
  4022. * current context has permission. For example, this is needed in
  4023. * stop_machine(): we create temporary high priority worker threads,
  4024. * but our caller might not have that capability.
  4025. */
  4026. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4027. struct sched_param *param)
  4028. {
  4029. return __sched_setscheduler(p, policy, param, false);
  4030. }
  4031. static int
  4032. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4033. {
  4034. struct sched_param lparam;
  4035. struct task_struct *p;
  4036. int retval;
  4037. if (!param || pid < 0)
  4038. return -EINVAL;
  4039. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4040. return -EFAULT;
  4041. rcu_read_lock();
  4042. retval = -ESRCH;
  4043. p = find_process_by_pid(pid);
  4044. if (p != NULL)
  4045. retval = sched_setscheduler(p, policy, &lparam);
  4046. rcu_read_unlock();
  4047. return retval;
  4048. }
  4049. /**
  4050. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4051. * @pid: the pid in question.
  4052. * @policy: new policy.
  4053. * @param: structure containing the new RT priority.
  4054. */
  4055. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4056. struct sched_param __user *, param)
  4057. {
  4058. /* negative values for policy are not valid */
  4059. if (policy < 0)
  4060. return -EINVAL;
  4061. return do_sched_setscheduler(pid, policy, param);
  4062. }
  4063. /**
  4064. * sys_sched_setparam - set/change the RT priority of a thread
  4065. * @pid: the pid in question.
  4066. * @param: structure containing the new RT priority.
  4067. */
  4068. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4069. {
  4070. return do_sched_setscheduler(pid, -1, param);
  4071. }
  4072. /**
  4073. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4074. * @pid: the pid in question.
  4075. */
  4076. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4077. {
  4078. struct task_struct *p;
  4079. int retval;
  4080. if (pid < 0)
  4081. return -EINVAL;
  4082. retval = -ESRCH;
  4083. rcu_read_lock();
  4084. p = find_process_by_pid(pid);
  4085. if (p) {
  4086. retval = security_task_getscheduler(p);
  4087. if (!retval)
  4088. retval = p->policy
  4089. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4090. }
  4091. rcu_read_unlock();
  4092. return retval;
  4093. }
  4094. /**
  4095. * sys_sched_getparam - get the RT priority of a thread
  4096. * @pid: the pid in question.
  4097. * @param: structure containing the RT priority.
  4098. */
  4099. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4100. {
  4101. struct sched_param lp;
  4102. struct task_struct *p;
  4103. int retval;
  4104. if (!param || pid < 0)
  4105. return -EINVAL;
  4106. rcu_read_lock();
  4107. p = find_process_by_pid(pid);
  4108. retval = -ESRCH;
  4109. if (!p)
  4110. goto out_unlock;
  4111. retval = security_task_getscheduler(p);
  4112. if (retval)
  4113. goto out_unlock;
  4114. lp.sched_priority = p->rt_priority;
  4115. rcu_read_unlock();
  4116. /*
  4117. * This one might sleep, we cannot do it with a spinlock held ...
  4118. */
  4119. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4120. return retval;
  4121. out_unlock:
  4122. rcu_read_unlock();
  4123. return retval;
  4124. }
  4125. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4126. {
  4127. cpumask_var_t cpus_allowed, new_mask;
  4128. struct task_struct *p;
  4129. int retval;
  4130. get_online_cpus();
  4131. rcu_read_lock();
  4132. p = find_process_by_pid(pid);
  4133. if (!p) {
  4134. rcu_read_unlock();
  4135. put_online_cpus();
  4136. return -ESRCH;
  4137. }
  4138. /* Prevent p going away */
  4139. get_task_struct(p);
  4140. rcu_read_unlock();
  4141. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4142. retval = -ENOMEM;
  4143. goto out_put_task;
  4144. }
  4145. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4146. retval = -ENOMEM;
  4147. goto out_free_cpus_allowed;
  4148. }
  4149. retval = -EPERM;
  4150. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4151. goto out_unlock;
  4152. retval = security_task_setscheduler(p, 0, NULL);
  4153. if (retval)
  4154. goto out_unlock;
  4155. cpuset_cpus_allowed(p, cpus_allowed);
  4156. cpumask_and(new_mask, in_mask, cpus_allowed);
  4157. again:
  4158. retval = set_cpus_allowed_ptr(p, new_mask);
  4159. if (!retval) {
  4160. cpuset_cpus_allowed(p, cpus_allowed);
  4161. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4162. /*
  4163. * We must have raced with a concurrent cpuset
  4164. * update. Just reset the cpus_allowed to the
  4165. * cpuset's cpus_allowed
  4166. */
  4167. cpumask_copy(new_mask, cpus_allowed);
  4168. goto again;
  4169. }
  4170. }
  4171. out_unlock:
  4172. free_cpumask_var(new_mask);
  4173. out_free_cpus_allowed:
  4174. free_cpumask_var(cpus_allowed);
  4175. out_put_task:
  4176. put_task_struct(p);
  4177. put_online_cpus();
  4178. return retval;
  4179. }
  4180. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4181. struct cpumask *new_mask)
  4182. {
  4183. if (len < cpumask_size())
  4184. cpumask_clear(new_mask);
  4185. else if (len > cpumask_size())
  4186. len = cpumask_size();
  4187. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4188. }
  4189. /**
  4190. * sys_sched_setaffinity - set the cpu affinity of a process
  4191. * @pid: pid of the process
  4192. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4193. * @user_mask_ptr: user-space pointer to the new cpu mask
  4194. */
  4195. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4196. unsigned long __user *, user_mask_ptr)
  4197. {
  4198. cpumask_var_t new_mask;
  4199. int retval;
  4200. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4201. return -ENOMEM;
  4202. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4203. if (retval == 0)
  4204. retval = sched_setaffinity(pid, new_mask);
  4205. free_cpumask_var(new_mask);
  4206. return retval;
  4207. }
  4208. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4209. {
  4210. struct task_struct *p;
  4211. unsigned long flags;
  4212. struct rq *rq;
  4213. int retval;
  4214. get_online_cpus();
  4215. rcu_read_lock();
  4216. retval = -ESRCH;
  4217. p = find_process_by_pid(pid);
  4218. if (!p)
  4219. goto out_unlock;
  4220. retval = security_task_getscheduler(p);
  4221. if (retval)
  4222. goto out_unlock;
  4223. rq = task_rq_lock(p, &flags);
  4224. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4225. task_rq_unlock(rq, &flags);
  4226. out_unlock:
  4227. rcu_read_unlock();
  4228. put_online_cpus();
  4229. return retval;
  4230. }
  4231. /**
  4232. * sys_sched_getaffinity - get the cpu affinity of a process
  4233. * @pid: pid of the process
  4234. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4235. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4236. */
  4237. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4238. unsigned long __user *, user_mask_ptr)
  4239. {
  4240. int ret;
  4241. cpumask_var_t mask;
  4242. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4243. return -EINVAL;
  4244. if (len & (sizeof(unsigned long)-1))
  4245. return -EINVAL;
  4246. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4247. return -ENOMEM;
  4248. ret = sched_getaffinity(pid, mask);
  4249. if (ret == 0) {
  4250. size_t retlen = min_t(size_t, len, cpumask_size());
  4251. if (copy_to_user(user_mask_ptr, mask, retlen))
  4252. ret = -EFAULT;
  4253. else
  4254. ret = retlen;
  4255. }
  4256. free_cpumask_var(mask);
  4257. return ret;
  4258. }
  4259. /**
  4260. * sys_sched_yield - yield the current processor to other threads.
  4261. *
  4262. * This function yields the current CPU to other tasks. If there are no
  4263. * other threads running on this CPU then this function will return.
  4264. */
  4265. SYSCALL_DEFINE0(sched_yield)
  4266. {
  4267. struct rq *rq = this_rq_lock();
  4268. schedstat_inc(rq, yld_count);
  4269. current->sched_class->yield_task(rq);
  4270. /*
  4271. * Since we are going to call schedule() anyway, there's
  4272. * no need to preempt or enable interrupts:
  4273. */
  4274. __release(rq->lock);
  4275. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4276. do_raw_spin_unlock(&rq->lock);
  4277. preempt_enable_no_resched();
  4278. schedule();
  4279. return 0;
  4280. }
  4281. static inline int should_resched(void)
  4282. {
  4283. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4284. }
  4285. static void __cond_resched(void)
  4286. {
  4287. add_preempt_count(PREEMPT_ACTIVE);
  4288. schedule();
  4289. sub_preempt_count(PREEMPT_ACTIVE);
  4290. }
  4291. int __sched _cond_resched(void)
  4292. {
  4293. if (should_resched()) {
  4294. __cond_resched();
  4295. return 1;
  4296. }
  4297. return 0;
  4298. }
  4299. EXPORT_SYMBOL(_cond_resched);
  4300. /*
  4301. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4302. * call schedule, and on return reacquire the lock.
  4303. *
  4304. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4305. * operations here to prevent schedule() from being called twice (once via
  4306. * spin_unlock(), once by hand).
  4307. */
  4308. int __cond_resched_lock(spinlock_t *lock)
  4309. {
  4310. int resched = should_resched();
  4311. int ret = 0;
  4312. lockdep_assert_held(lock);
  4313. if (spin_needbreak(lock) || resched) {
  4314. spin_unlock(lock);
  4315. if (resched)
  4316. __cond_resched();
  4317. else
  4318. cpu_relax();
  4319. ret = 1;
  4320. spin_lock(lock);
  4321. }
  4322. return ret;
  4323. }
  4324. EXPORT_SYMBOL(__cond_resched_lock);
  4325. int __sched __cond_resched_softirq(void)
  4326. {
  4327. BUG_ON(!in_softirq());
  4328. if (should_resched()) {
  4329. local_bh_enable();
  4330. __cond_resched();
  4331. local_bh_disable();
  4332. return 1;
  4333. }
  4334. return 0;
  4335. }
  4336. EXPORT_SYMBOL(__cond_resched_softirq);
  4337. /**
  4338. * yield - yield the current processor to other threads.
  4339. *
  4340. * This is a shortcut for kernel-space yielding - it marks the
  4341. * thread runnable and calls sys_sched_yield().
  4342. */
  4343. void __sched yield(void)
  4344. {
  4345. set_current_state(TASK_RUNNING);
  4346. sys_sched_yield();
  4347. }
  4348. EXPORT_SYMBOL(yield);
  4349. /*
  4350. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4351. * that process accounting knows that this is a task in IO wait state.
  4352. */
  4353. void __sched io_schedule(void)
  4354. {
  4355. struct rq *rq = raw_rq();
  4356. delayacct_blkio_start();
  4357. atomic_inc(&rq->nr_iowait);
  4358. current->in_iowait = 1;
  4359. schedule();
  4360. current->in_iowait = 0;
  4361. atomic_dec(&rq->nr_iowait);
  4362. delayacct_blkio_end();
  4363. }
  4364. EXPORT_SYMBOL(io_schedule);
  4365. long __sched io_schedule_timeout(long timeout)
  4366. {
  4367. struct rq *rq = raw_rq();
  4368. long ret;
  4369. delayacct_blkio_start();
  4370. atomic_inc(&rq->nr_iowait);
  4371. current->in_iowait = 1;
  4372. ret = schedule_timeout(timeout);
  4373. current->in_iowait = 0;
  4374. atomic_dec(&rq->nr_iowait);
  4375. delayacct_blkio_end();
  4376. return ret;
  4377. }
  4378. /**
  4379. * sys_sched_get_priority_max - return maximum RT priority.
  4380. * @policy: scheduling class.
  4381. *
  4382. * this syscall returns the maximum rt_priority that can be used
  4383. * by a given scheduling class.
  4384. */
  4385. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4386. {
  4387. int ret = -EINVAL;
  4388. switch (policy) {
  4389. case SCHED_FIFO:
  4390. case SCHED_RR:
  4391. ret = MAX_USER_RT_PRIO-1;
  4392. break;
  4393. case SCHED_NORMAL:
  4394. case SCHED_BATCH:
  4395. case SCHED_IDLE:
  4396. ret = 0;
  4397. break;
  4398. }
  4399. return ret;
  4400. }
  4401. /**
  4402. * sys_sched_get_priority_min - return minimum RT priority.
  4403. * @policy: scheduling class.
  4404. *
  4405. * this syscall returns the minimum rt_priority that can be used
  4406. * by a given scheduling class.
  4407. */
  4408. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4409. {
  4410. int ret = -EINVAL;
  4411. switch (policy) {
  4412. case SCHED_FIFO:
  4413. case SCHED_RR:
  4414. ret = 1;
  4415. break;
  4416. case SCHED_NORMAL:
  4417. case SCHED_BATCH:
  4418. case SCHED_IDLE:
  4419. ret = 0;
  4420. }
  4421. return ret;
  4422. }
  4423. /**
  4424. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4425. * @pid: pid of the process.
  4426. * @interval: userspace pointer to the timeslice value.
  4427. *
  4428. * this syscall writes the default timeslice value of a given process
  4429. * into the user-space timespec buffer. A value of '0' means infinity.
  4430. */
  4431. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4432. struct timespec __user *, interval)
  4433. {
  4434. struct task_struct *p;
  4435. unsigned int time_slice;
  4436. unsigned long flags;
  4437. struct rq *rq;
  4438. int retval;
  4439. struct timespec t;
  4440. if (pid < 0)
  4441. return -EINVAL;
  4442. retval = -ESRCH;
  4443. rcu_read_lock();
  4444. p = find_process_by_pid(pid);
  4445. if (!p)
  4446. goto out_unlock;
  4447. retval = security_task_getscheduler(p);
  4448. if (retval)
  4449. goto out_unlock;
  4450. rq = task_rq_lock(p, &flags);
  4451. time_slice = p->sched_class->get_rr_interval(rq, p);
  4452. task_rq_unlock(rq, &flags);
  4453. rcu_read_unlock();
  4454. jiffies_to_timespec(time_slice, &t);
  4455. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4456. return retval;
  4457. out_unlock:
  4458. rcu_read_unlock();
  4459. return retval;
  4460. }
  4461. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4462. void sched_show_task(struct task_struct *p)
  4463. {
  4464. unsigned long free = 0;
  4465. unsigned state;
  4466. state = p->state ? __ffs(p->state) + 1 : 0;
  4467. printk(KERN_INFO "%-13.13s %c", p->comm,
  4468. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4469. #if BITS_PER_LONG == 32
  4470. if (state == TASK_RUNNING)
  4471. printk(KERN_CONT " running ");
  4472. else
  4473. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4474. #else
  4475. if (state == TASK_RUNNING)
  4476. printk(KERN_CONT " running task ");
  4477. else
  4478. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4479. #endif
  4480. #ifdef CONFIG_DEBUG_STACK_USAGE
  4481. free = stack_not_used(p);
  4482. #endif
  4483. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4484. task_pid_nr(p), task_pid_nr(p->real_parent),
  4485. (unsigned long)task_thread_info(p)->flags);
  4486. show_stack(p, NULL);
  4487. }
  4488. void show_state_filter(unsigned long state_filter)
  4489. {
  4490. struct task_struct *g, *p;
  4491. #if BITS_PER_LONG == 32
  4492. printk(KERN_INFO
  4493. " task PC stack pid father\n");
  4494. #else
  4495. printk(KERN_INFO
  4496. " task PC stack pid father\n");
  4497. #endif
  4498. read_lock(&tasklist_lock);
  4499. do_each_thread(g, p) {
  4500. /*
  4501. * reset the NMI-timeout, listing all files on a slow
  4502. * console might take alot of time:
  4503. */
  4504. touch_nmi_watchdog();
  4505. if (!state_filter || (p->state & state_filter))
  4506. sched_show_task(p);
  4507. } while_each_thread(g, p);
  4508. touch_all_softlockup_watchdogs();
  4509. #ifdef CONFIG_SCHED_DEBUG
  4510. sysrq_sched_debug_show();
  4511. #endif
  4512. read_unlock(&tasklist_lock);
  4513. /*
  4514. * Only show locks if all tasks are dumped:
  4515. */
  4516. if (!state_filter)
  4517. debug_show_all_locks();
  4518. }
  4519. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4520. {
  4521. idle->sched_class = &idle_sched_class;
  4522. }
  4523. /**
  4524. * init_idle - set up an idle thread for a given CPU
  4525. * @idle: task in question
  4526. * @cpu: cpu the idle task belongs to
  4527. *
  4528. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4529. * flag, to make booting more robust.
  4530. */
  4531. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4532. {
  4533. struct rq *rq = cpu_rq(cpu);
  4534. unsigned long flags;
  4535. raw_spin_lock_irqsave(&rq->lock, flags);
  4536. __sched_fork(idle);
  4537. idle->state = TASK_RUNNING;
  4538. idle->se.exec_start = sched_clock();
  4539. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4540. __set_task_cpu(idle, cpu);
  4541. rq->curr = rq->idle = idle;
  4542. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4543. idle->oncpu = 1;
  4544. #endif
  4545. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4546. /* Set the preempt count _outside_ the spinlocks! */
  4547. #if defined(CONFIG_PREEMPT)
  4548. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4549. #else
  4550. task_thread_info(idle)->preempt_count = 0;
  4551. #endif
  4552. /*
  4553. * The idle tasks have their own, simple scheduling class:
  4554. */
  4555. idle->sched_class = &idle_sched_class;
  4556. ftrace_graph_init_task(idle);
  4557. }
  4558. /*
  4559. * In a system that switches off the HZ timer nohz_cpu_mask
  4560. * indicates which cpus entered this state. This is used
  4561. * in the rcu update to wait only for active cpus. For system
  4562. * which do not switch off the HZ timer nohz_cpu_mask should
  4563. * always be CPU_BITS_NONE.
  4564. */
  4565. cpumask_var_t nohz_cpu_mask;
  4566. /*
  4567. * Increase the granularity value when there are more CPUs,
  4568. * because with more CPUs the 'effective latency' as visible
  4569. * to users decreases. But the relationship is not linear,
  4570. * so pick a second-best guess by going with the log2 of the
  4571. * number of CPUs.
  4572. *
  4573. * This idea comes from the SD scheduler of Con Kolivas:
  4574. */
  4575. static int get_update_sysctl_factor(void)
  4576. {
  4577. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4578. unsigned int factor;
  4579. switch (sysctl_sched_tunable_scaling) {
  4580. case SCHED_TUNABLESCALING_NONE:
  4581. factor = 1;
  4582. break;
  4583. case SCHED_TUNABLESCALING_LINEAR:
  4584. factor = cpus;
  4585. break;
  4586. case SCHED_TUNABLESCALING_LOG:
  4587. default:
  4588. factor = 1 + ilog2(cpus);
  4589. break;
  4590. }
  4591. return factor;
  4592. }
  4593. static void update_sysctl(void)
  4594. {
  4595. unsigned int factor = get_update_sysctl_factor();
  4596. #define SET_SYSCTL(name) \
  4597. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4598. SET_SYSCTL(sched_min_granularity);
  4599. SET_SYSCTL(sched_latency);
  4600. SET_SYSCTL(sched_wakeup_granularity);
  4601. SET_SYSCTL(sched_shares_ratelimit);
  4602. #undef SET_SYSCTL
  4603. }
  4604. static inline void sched_init_granularity(void)
  4605. {
  4606. update_sysctl();
  4607. }
  4608. #ifdef CONFIG_SMP
  4609. /*
  4610. * This is how migration works:
  4611. *
  4612. * 1) we invoke migration_cpu_stop() on the target CPU using
  4613. * stop_one_cpu().
  4614. * 2) stopper starts to run (implicitly forcing the migrated thread
  4615. * off the CPU)
  4616. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4617. * 4) if it's in the wrong runqueue then the migration thread removes
  4618. * it and puts it into the right queue.
  4619. * 5) stopper completes and stop_one_cpu() returns and the migration
  4620. * is done.
  4621. */
  4622. /*
  4623. * Change a given task's CPU affinity. Migrate the thread to a
  4624. * proper CPU and schedule it away if the CPU it's executing on
  4625. * is removed from the allowed bitmask.
  4626. *
  4627. * NOTE: the caller must have a valid reference to the task, the
  4628. * task must not exit() & deallocate itself prematurely. The
  4629. * call is not atomic; no spinlocks may be held.
  4630. */
  4631. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4632. {
  4633. unsigned long flags;
  4634. struct rq *rq;
  4635. unsigned int dest_cpu;
  4636. int ret = 0;
  4637. /*
  4638. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4639. * drop the rq->lock and still rely on ->cpus_allowed.
  4640. */
  4641. again:
  4642. while (task_is_waking(p))
  4643. cpu_relax();
  4644. rq = task_rq_lock(p, &flags);
  4645. if (task_is_waking(p)) {
  4646. task_rq_unlock(rq, &flags);
  4647. goto again;
  4648. }
  4649. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4650. ret = -EINVAL;
  4651. goto out;
  4652. }
  4653. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4654. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4655. ret = -EINVAL;
  4656. goto out;
  4657. }
  4658. if (p->sched_class->set_cpus_allowed)
  4659. p->sched_class->set_cpus_allowed(p, new_mask);
  4660. else {
  4661. cpumask_copy(&p->cpus_allowed, new_mask);
  4662. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4663. }
  4664. /* Can the task run on the task's current CPU? If so, we're done */
  4665. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4666. goto out;
  4667. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4668. if (migrate_task(p, dest_cpu)) {
  4669. struct migration_arg arg = { p, dest_cpu };
  4670. /* Need help from migration thread: drop lock and wait. */
  4671. task_rq_unlock(rq, &flags);
  4672. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4673. tlb_migrate_finish(p->mm);
  4674. return 0;
  4675. }
  4676. out:
  4677. task_rq_unlock(rq, &flags);
  4678. return ret;
  4679. }
  4680. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4681. /*
  4682. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4683. * this because either it can't run here any more (set_cpus_allowed()
  4684. * away from this CPU, or CPU going down), or because we're
  4685. * attempting to rebalance this task on exec (sched_exec).
  4686. *
  4687. * So we race with normal scheduler movements, but that's OK, as long
  4688. * as the task is no longer on this CPU.
  4689. *
  4690. * Returns non-zero if task was successfully migrated.
  4691. */
  4692. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4693. {
  4694. struct rq *rq_dest, *rq_src;
  4695. int ret = 0;
  4696. if (unlikely(!cpu_active(dest_cpu)))
  4697. return ret;
  4698. rq_src = cpu_rq(src_cpu);
  4699. rq_dest = cpu_rq(dest_cpu);
  4700. double_rq_lock(rq_src, rq_dest);
  4701. /* Already moved. */
  4702. if (task_cpu(p) != src_cpu)
  4703. goto done;
  4704. /* Affinity changed (again). */
  4705. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4706. goto fail;
  4707. /*
  4708. * If we're not on a rq, the next wake-up will ensure we're
  4709. * placed properly.
  4710. */
  4711. if (p->se.on_rq) {
  4712. deactivate_task(rq_src, p, 0);
  4713. set_task_cpu(p, dest_cpu);
  4714. activate_task(rq_dest, p, 0);
  4715. check_preempt_curr(rq_dest, p, 0);
  4716. }
  4717. done:
  4718. ret = 1;
  4719. fail:
  4720. double_rq_unlock(rq_src, rq_dest);
  4721. return ret;
  4722. }
  4723. /*
  4724. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4725. * and performs thread migration by bumping thread off CPU then
  4726. * 'pushing' onto another runqueue.
  4727. */
  4728. static int migration_cpu_stop(void *data)
  4729. {
  4730. struct migration_arg *arg = data;
  4731. /*
  4732. * The original target cpu might have gone down and we might
  4733. * be on another cpu but it doesn't matter.
  4734. */
  4735. local_irq_disable();
  4736. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4737. local_irq_enable();
  4738. return 0;
  4739. }
  4740. #ifdef CONFIG_HOTPLUG_CPU
  4741. /*
  4742. * Figure out where task on dead CPU should go, use force if necessary.
  4743. */
  4744. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4745. {
  4746. struct rq *rq = cpu_rq(dead_cpu);
  4747. int needs_cpu, uninitialized_var(dest_cpu);
  4748. unsigned long flags;
  4749. local_irq_save(flags);
  4750. raw_spin_lock(&rq->lock);
  4751. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4752. if (needs_cpu)
  4753. dest_cpu = select_fallback_rq(dead_cpu, p);
  4754. raw_spin_unlock(&rq->lock);
  4755. /*
  4756. * It can only fail if we race with set_cpus_allowed(),
  4757. * in the racer should migrate the task anyway.
  4758. */
  4759. if (needs_cpu)
  4760. __migrate_task(p, dead_cpu, dest_cpu);
  4761. local_irq_restore(flags);
  4762. }
  4763. /*
  4764. * While a dead CPU has no uninterruptible tasks queued at this point,
  4765. * it might still have a nonzero ->nr_uninterruptible counter, because
  4766. * for performance reasons the counter is not stricly tracking tasks to
  4767. * their home CPUs. So we just add the counter to another CPU's counter,
  4768. * to keep the global sum constant after CPU-down:
  4769. */
  4770. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4771. {
  4772. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4773. unsigned long flags;
  4774. local_irq_save(flags);
  4775. double_rq_lock(rq_src, rq_dest);
  4776. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4777. rq_src->nr_uninterruptible = 0;
  4778. double_rq_unlock(rq_src, rq_dest);
  4779. local_irq_restore(flags);
  4780. }
  4781. /* Run through task list and migrate tasks from the dead cpu. */
  4782. static void migrate_live_tasks(int src_cpu)
  4783. {
  4784. struct task_struct *p, *t;
  4785. read_lock(&tasklist_lock);
  4786. do_each_thread(t, p) {
  4787. if (p == current)
  4788. continue;
  4789. if (task_cpu(p) == src_cpu)
  4790. move_task_off_dead_cpu(src_cpu, p);
  4791. } while_each_thread(t, p);
  4792. read_unlock(&tasklist_lock);
  4793. }
  4794. /*
  4795. * Schedules idle task to be the next runnable task on current CPU.
  4796. * It does so by boosting its priority to highest possible.
  4797. * Used by CPU offline code.
  4798. */
  4799. void sched_idle_next(void)
  4800. {
  4801. int this_cpu = smp_processor_id();
  4802. struct rq *rq = cpu_rq(this_cpu);
  4803. struct task_struct *p = rq->idle;
  4804. unsigned long flags;
  4805. /* cpu has to be offline */
  4806. BUG_ON(cpu_online(this_cpu));
  4807. /*
  4808. * Strictly not necessary since rest of the CPUs are stopped by now
  4809. * and interrupts disabled on the current cpu.
  4810. */
  4811. raw_spin_lock_irqsave(&rq->lock, flags);
  4812. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4813. activate_task(rq, p, 0);
  4814. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4815. }
  4816. /*
  4817. * Ensures that the idle task is using init_mm right before its cpu goes
  4818. * offline.
  4819. */
  4820. void idle_task_exit(void)
  4821. {
  4822. struct mm_struct *mm = current->active_mm;
  4823. BUG_ON(cpu_online(smp_processor_id()));
  4824. if (mm != &init_mm)
  4825. switch_mm(mm, &init_mm, current);
  4826. mmdrop(mm);
  4827. }
  4828. /* called under rq->lock with disabled interrupts */
  4829. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4830. {
  4831. struct rq *rq = cpu_rq(dead_cpu);
  4832. /* Must be exiting, otherwise would be on tasklist. */
  4833. BUG_ON(!p->exit_state);
  4834. /* Cannot have done final schedule yet: would have vanished. */
  4835. BUG_ON(p->state == TASK_DEAD);
  4836. get_task_struct(p);
  4837. /*
  4838. * Drop lock around migration; if someone else moves it,
  4839. * that's OK. No task can be added to this CPU, so iteration is
  4840. * fine.
  4841. */
  4842. raw_spin_unlock_irq(&rq->lock);
  4843. move_task_off_dead_cpu(dead_cpu, p);
  4844. raw_spin_lock_irq(&rq->lock);
  4845. put_task_struct(p);
  4846. }
  4847. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4848. static void migrate_dead_tasks(unsigned int dead_cpu)
  4849. {
  4850. struct rq *rq = cpu_rq(dead_cpu);
  4851. struct task_struct *next;
  4852. for ( ; ; ) {
  4853. if (!rq->nr_running)
  4854. break;
  4855. next = pick_next_task(rq);
  4856. if (!next)
  4857. break;
  4858. next->sched_class->put_prev_task(rq, next);
  4859. migrate_dead(dead_cpu, next);
  4860. }
  4861. }
  4862. /*
  4863. * remove the tasks which were accounted by rq from calc_load_tasks.
  4864. */
  4865. static void calc_global_load_remove(struct rq *rq)
  4866. {
  4867. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4868. rq->calc_load_active = 0;
  4869. }
  4870. #endif /* CONFIG_HOTPLUG_CPU */
  4871. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4872. static struct ctl_table sd_ctl_dir[] = {
  4873. {
  4874. .procname = "sched_domain",
  4875. .mode = 0555,
  4876. },
  4877. {}
  4878. };
  4879. static struct ctl_table sd_ctl_root[] = {
  4880. {
  4881. .procname = "kernel",
  4882. .mode = 0555,
  4883. .child = sd_ctl_dir,
  4884. },
  4885. {}
  4886. };
  4887. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4888. {
  4889. struct ctl_table *entry =
  4890. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4891. return entry;
  4892. }
  4893. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4894. {
  4895. struct ctl_table *entry;
  4896. /*
  4897. * In the intermediate directories, both the child directory and
  4898. * procname are dynamically allocated and could fail but the mode
  4899. * will always be set. In the lowest directory the names are
  4900. * static strings and all have proc handlers.
  4901. */
  4902. for (entry = *tablep; entry->mode; entry++) {
  4903. if (entry->child)
  4904. sd_free_ctl_entry(&entry->child);
  4905. if (entry->proc_handler == NULL)
  4906. kfree(entry->procname);
  4907. }
  4908. kfree(*tablep);
  4909. *tablep = NULL;
  4910. }
  4911. static void
  4912. set_table_entry(struct ctl_table *entry,
  4913. const char *procname, void *data, int maxlen,
  4914. mode_t mode, proc_handler *proc_handler)
  4915. {
  4916. entry->procname = procname;
  4917. entry->data = data;
  4918. entry->maxlen = maxlen;
  4919. entry->mode = mode;
  4920. entry->proc_handler = proc_handler;
  4921. }
  4922. static struct ctl_table *
  4923. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4924. {
  4925. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4926. if (table == NULL)
  4927. return NULL;
  4928. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4929. sizeof(long), 0644, proc_doulongvec_minmax);
  4930. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4931. sizeof(long), 0644, proc_doulongvec_minmax);
  4932. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4933. sizeof(int), 0644, proc_dointvec_minmax);
  4934. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4935. sizeof(int), 0644, proc_dointvec_minmax);
  4936. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4937. sizeof(int), 0644, proc_dointvec_minmax);
  4938. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4939. sizeof(int), 0644, proc_dointvec_minmax);
  4940. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4941. sizeof(int), 0644, proc_dointvec_minmax);
  4942. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4943. sizeof(int), 0644, proc_dointvec_minmax);
  4944. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4945. sizeof(int), 0644, proc_dointvec_minmax);
  4946. set_table_entry(&table[9], "cache_nice_tries",
  4947. &sd->cache_nice_tries,
  4948. sizeof(int), 0644, proc_dointvec_minmax);
  4949. set_table_entry(&table[10], "flags", &sd->flags,
  4950. sizeof(int), 0644, proc_dointvec_minmax);
  4951. set_table_entry(&table[11], "name", sd->name,
  4952. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4953. /* &table[12] is terminator */
  4954. return table;
  4955. }
  4956. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4957. {
  4958. struct ctl_table *entry, *table;
  4959. struct sched_domain *sd;
  4960. int domain_num = 0, i;
  4961. char buf[32];
  4962. for_each_domain(cpu, sd)
  4963. domain_num++;
  4964. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4965. if (table == NULL)
  4966. return NULL;
  4967. i = 0;
  4968. for_each_domain(cpu, sd) {
  4969. snprintf(buf, 32, "domain%d", i);
  4970. entry->procname = kstrdup(buf, GFP_KERNEL);
  4971. entry->mode = 0555;
  4972. entry->child = sd_alloc_ctl_domain_table(sd);
  4973. entry++;
  4974. i++;
  4975. }
  4976. return table;
  4977. }
  4978. static struct ctl_table_header *sd_sysctl_header;
  4979. static void register_sched_domain_sysctl(void)
  4980. {
  4981. int i, cpu_num = num_possible_cpus();
  4982. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4983. char buf[32];
  4984. WARN_ON(sd_ctl_dir[0].child);
  4985. sd_ctl_dir[0].child = entry;
  4986. if (entry == NULL)
  4987. return;
  4988. for_each_possible_cpu(i) {
  4989. snprintf(buf, 32, "cpu%d", i);
  4990. entry->procname = kstrdup(buf, GFP_KERNEL);
  4991. entry->mode = 0555;
  4992. entry->child = sd_alloc_ctl_cpu_table(i);
  4993. entry++;
  4994. }
  4995. WARN_ON(sd_sysctl_header);
  4996. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4997. }
  4998. /* may be called multiple times per register */
  4999. static void unregister_sched_domain_sysctl(void)
  5000. {
  5001. if (sd_sysctl_header)
  5002. unregister_sysctl_table(sd_sysctl_header);
  5003. sd_sysctl_header = NULL;
  5004. if (sd_ctl_dir[0].child)
  5005. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5006. }
  5007. #else
  5008. static void register_sched_domain_sysctl(void)
  5009. {
  5010. }
  5011. static void unregister_sched_domain_sysctl(void)
  5012. {
  5013. }
  5014. #endif
  5015. static void set_rq_online(struct rq *rq)
  5016. {
  5017. if (!rq->online) {
  5018. const struct sched_class *class;
  5019. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5020. rq->online = 1;
  5021. for_each_class(class) {
  5022. if (class->rq_online)
  5023. class->rq_online(rq);
  5024. }
  5025. }
  5026. }
  5027. static void set_rq_offline(struct rq *rq)
  5028. {
  5029. if (rq->online) {
  5030. const struct sched_class *class;
  5031. for_each_class(class) {
  5032. if (class->rq_offline)
  5033. class->rq_offline(rq);
  5034. }
  5035. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5036. rq->online = 0;
  5037. }
  5038. }
  5039. /*
  5040. * migration_call - callback that gets triggered when a CPU is added.
  5041. * Here we can start up the necessary migration thread for the new CPU.
  5042. */
  5043. static int __cpuinit
  5044. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5045. {
  5046. int cpu = (long)hcpu;
  5047. unsigned long flags;
  5048. struct rq *rq = cpu_rq(cpu);
  5049. switch (action) {
  5050. case CPU_UP_PREPARE:
  5051. case CPU_UP_PREPARE_FROZEN:
  5052. rq->calc_load_update = calc_load_update;
  5053. break;
  5054. case CPU_ONLINE:
  5055. case CPU_ONLINE_FROZEN:
  5056. /* Update our root-domain */
  5057. raw_spin_lock_irqsave(&rq->lock, flags);
  5058. if (rq->rd) {
  5059. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5060. set_rq_online(rq);
  5061. }
  5062. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5063. break;
  5064. #ifdef CONFIG_HOTPLUG_CPU
  5065. case CPU_DEAD:
  5066. case CPU_DEAD_FROZEN:
  5067. migrate_live_tasks(cpu);
  5068. /* Idle task back to normal (off runqueue, low prio) */
  5069. raw_spin_lock_irq(&rq->lock);
  5070. deactivate_task(rq, rq->idle, 0);
  5071. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5072. rq->idle->sched_class = &idle_sched_class;
  5073. migrate_dead_tasks(cpu);
  5074. raw_spin_unlock_irq(&rq->lock);
  5075. migrate_nr_uninterruptible(rq);
  5076. BUG_ON(rq->nr_running != 0);
  5077. calc_global_load_remove(rq);
  5078. break;
  5079. case CPU_DYING:
  5080. case CPU_DYING_FROZEN:
  5081. /* Update our root-domain */
  5082. raw_spin_lock_irqsave(&rq->lock, flags);
  5083. if (rq->rd) {
  5084. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5085. set_rq_offline(rq);
  5086. }
  5087. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5088. break;
  5089. #endif
  5090. }
  5091. return NOTIFY_OK;
  5092. }
  5093. /*
  5094. * Register at high priority so that task migration (migrate_all_tasks)
  5095. * happens before everything else. This has to be lower priority than
  5096. * the notifier in the perf_event subsystem, though.
  5097. */
  5098. static struct notifier_block __cpuinitdata migration_notifier = {
  5099. .notifier_call = migration_call,
  5100. .priority = CPU_PRI_MIGRATION,
  5101. };
  5102. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5103. unsigned long action, void *hcpu)
  5104. {
  5105. switch (action & ~CPU_TASKS_FROZEN) {
  5106. case CPU_ONLINE:
  5107. case CPU_DOWN_FAILED:
  5108. set_cpu_active((long)hcpu, true);
  5109. return NOTIFY_OK;
  5110. default:
  5111. return NOTIFY_DONE;
  5112. }
  5113. }
  5114. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5115. unsigned long action, void *hcpu)
  5116. {
  5117. switch (action & ~CPU_TASKS_FROZEN) {
  5118. case CPU_DOWN_PREPARE:
  5119. set_cpu_active((long)hcpu, false);
  5120. return NOTIFY_OK;
  5121. default:
  5122. return NOTIFY_DONE;
  5123. }
  5124. }
  5125. static int __init migration_init(void)
  5126. {
  5127. void *cpu = (void *)(long)smp_processor_id();
  5128. int err;
  5129. /* Initialize migration for the boot CPU */
  5130. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5131. BUG_ON(err == NOTIFY_BAD);
  5132. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5133. register_cpu_notifier(&migration_notifier);
  5134. /* Register cpu active notifiers */
  5135. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5136. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5137. return 0;
  5138. }
  5139. early_initcall(migration_init);
  5140. #endif
  5141. #ifdef CONFIG_SMP
  5142. #ifdef CONFIG_SCHED_DEBUG
  5143. static __read_mostly int sched_domain_debug_enabled;
  5144. static int __init sched_domain_debug_setup(char *str)
  5145. {
  5146. sched_domain_debug_enabled = 1;
  5147. return 0;
  5148. }
  5149. early_param("sched_debug", sched_domain_debug_setup);
  5150. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5151. struct cpumask *groupmask)
  5152. {
  5153. struct sched_group *group = sd->groups;
  5154. char str[256];
  5155. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5156. cpumask_clear(groupmask);
  5157. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5158. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5159. printk("does not load-balance\n");
  5160. if (sd->parent)
  5161. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5162. " has parent");
  5163. return -1;
  5164. }
  5165. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5166. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5167. printk(KERN_ERR "ERROR: domain->span does not contain "
  5168. "CPU%d\n", cpu);
  5169. }
  5170. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5171. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5172. " CPU%d\n", cpu);
  5173. }
  5174. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5175. do {
  5176. if (!group) {
  5177. printk("\n");
  5178. printk(KERN_ERR "ERROR: group is NULL\n");
  5179. break;
  5180. }
  5181. if (!group->cpu_power) {
  5182. printk(KERN_CONT "\n");
  5183. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5184. "set\n");
  5185. break;
  5186. }
  5187. if (!cpumask_weight(sched_group_cpus(group))) {
  5188. printk(KERN_CONT "\n");
  5189. printk(KERN_ERR "ERROR: empty group\n");
  5190. break;
  5191. }
  5192. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5193. printk(KERN_CONT "\n");
  5194. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5195. break;
  5196. }
  5197. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5198. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5199. printk(KERN_CONT " %s", str);
  5200. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5201. printk(KERN_CONT " (cpu_power = %d)",
  5202. group->cpu_power);
  5203. }
  5204. group = group->next;
  5205. } while (group != sd->groups);
  5206. printk(KERN_CONT "\n");
  5207. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5208. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5209. if (sd->parent &&
  5210. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5211. printk(KERN_ERR "ERROR: parent span is not a superset "
  5212. "of domain->span\n");
  5213. return 0;
  5214. }
  5215. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5216. {
  5217. cpumask_var_t groupmask;
  5218. int level = 0;
  5219. if (!sched_domain_debug_enabled)
  5220. return;
  5221. if (!sd) {
  5222. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5223. return;
  5224. }
  5225. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5226. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5227. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5228. return;
  5229. }
  5230. for (;;) {
  5231. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5232. break;
  5233. level++;
  5234. sd = sd->parent;
  5235. if (!sd)
  5236. break;
  5237. }
  5238. free_cpumask_var(groupmask);
  5239. }
  5240. #else /* !CONFIG_SCHED_DEBUG */
  5241. # define sched_domain_debug(sd, cpu) do { } while (0)
  5242. #endif /* CONFIG_SCHED_DEBUG */
  5243. static int sd_degenerate(struct sched_domain *sd)
  5244. {
  5245. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5246. return 1;
  5247. /* Following flags need at least 2 groups */
  5248. if (sd->flags & (SD_LOAD_BALANCE |
  5249. SD_BALANCE_NEWIDLE |
  5250. SD_BALANCE_FORK |
  5251. SD_BALANCE_EXEC |
  5252. SD_SHARE_CPUPOWER |
  5253. SD_SHARE_PKG_RESOURCES)) {
  5254. if (sd->groups != sd->groups->next)
  5255. return 0;
  5256. }
  5257. /* Following flags don't use groups */
  5258. if (sd->flags & (SD_WAKE_AFFINE))
  5259. return 0;
  5260. return 1;
  5261. }
  5262. static int
  5263. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5264. {
  5265. unsigned long cflags = sd->flags, pflags = parent->flags;
  5266. if (sd_degenerate(parent))
  5267. return 1;
  5268. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5269. return 0;
  5270. /* Flags needing groups don't count if only 1 group in parent */
  5271. if (parent->groups == parent->groups->next) {
  5272. pflags &= ~(SD_LOAD_BALANCE |
  5273. SD_BALANCE_NEWIDLE |
  5274. SD_BALANCE_FORK |
  5275. SD_BALANCE_EXEC |
  5276. SD_SHARE_CPUPOWER |
  5277. SD_SHARE_PKG_RESOURCES);
  5278. if (nr_node_ids == 1)
  5279. pflags &= ~SD_SERIALIZE;
  5280. }
  5281. if (~cflags & pflags)
  5282. return 0;
  5283. return 1;
  5284. }
  5285. static void free_rootdomain(struct root_domain *rd)
  5286. {
  5287. synchronize_sched();
  5288. cpupri_cleanup(&rd->cpupri);
  5289. free_cpumask_var(rd->rto_mask);
  5290. free_cpumask_var(rd->online);
  5291. free_cpumask_var(rd->span);
  5292. kfree(rd);
  5293. }
  5294. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5295. {
  5296. struct root_domain *old_rd = NULL;
  5297. unsigned long flags;
  5298. raw_spin_lock_irqsave(&rq->lock, flags);
  5299. if (rq->rd) {
  5300. old_rd = rq->rd;
  5301. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5302. set_rq_offline(rq);
  5303. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5304. /*
  5305. * If we dont want to free the old_rt yet then
  5306. * set old_rd to NULL to skip the freeing later
  5307. * in this function:
  5308. */
  5309. if (!atomic_dec_and_test(&old_rd->refcount))
  5310. old_rd = NULL;
  5311. }
  5312. atomic_inc(&rd->refcount);
  5313. rq->rd = rd;
  5314. cpumask_set_cpu(rq->cpu, rd->span);
  5315. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5316. set_rq_online(rq);
  5317. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5318. if (old_rd)
  5319. free_rootdomain(old_rd);
  5320. }
  5321. static int init_rootdomain(struct root_domain *rd)
  5322. {
  5323. memset(rd, 0, sizeof(*rd));
  5324. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5325. goto out;
  5326. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5327. goto free_span;
  5328. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5329. goto free_online;
  5330. if (cpupri_init(&rd->cpupri) != 0)
  5331. goto free_rto_mask;
  5332. return 0;
  5333. free_rto_mask:
  5334. free_cpumask_var(rd->rto_mask);
  5335. free_online:
  5336. free_cpumask_var(rd->online);
  5337. free_span:
  5338. free_cpumask_var(rd->span);
  5339. out:
  5340. return -ENOMEM;
  5341. }
  5342. static void init_defrootdomain(void)
  5343. {
  5344. init_rootdomain(&def_root_domain);
  5345. atomic_set(&def_root_domain.refcount, 1);
  5346. }
  5347. static struct root_domain *alloc_rootdomain(void)
  5348. {
  5349. struct root_domain *rd;
  5350. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5351. if (!rd)
  5352. return NULL;
  5353. if (init_rootdomain(rd) != 0) {
  5354. kfree(rd);
  5355. return NULL;
  5356. }
  5357. return rd;
  5358. }
  5359. /*
  5360. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5361. * hold the hotplug lock.
  5362. */
  5363. static void
  5364. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5365. {
  5366. struct rq *rq = cpu_rq(cpu);
  5367. struct sched_domain *tmp;
  5368. for (tmp = sd; tmp; tmp = tmp->parent)
  5369. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5370. /* Remove the sched domains which do not contribute to scheduling. */
  5371. for (tmp = sd; tmp; ) {
  5372. struct sched_domain *parent = tmp->parent;
  5373. if (!parent)
  5374. break;
  5375. if (sd_parent_degenerate(tmp, parent)) {
  5376. tmp->parent = parent->parent;
  5377. if (parent->parent)
  5378. parent->parent->child = tmp;
  5379. } else
  5380. tmp = tmp->parent;
  5381. }
  5382. if (sd && sd_degenerate(sd)) {
  5383. sd = sd->parent;
  5384. if (sd)
  5385. sd->child = NULL;
  5386. }
  5387. sched_domain_debug(sd, cpu);
  5388. rq_attach_root(rq, rd);
  5389. rcu_assign_pointer(rq->sd, sd);
  5390. }
  5391. /* cpus with isolated domains */
  5392. static cpumask_var_t cpu_isolated_map;
  5393. /* Setup the mask of cpus configured for isolated domains */
  5394. static int __init isolated_cpu_setup(char *str)
  5395. {
  5396. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5397. cpulist_parse(str, cpu_isolated_map);
  5398. return 1;
  5399. }
  5400. __setup("isolcpus=", isolated_cpu_setup);
  5401. /*
  5402. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5403. * to a function which identifies what group(along with sched group) a CPU
  5404. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5405. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5406. *
  5407. * init_sched_build_groups will build a circular linked list of the groups
  5408. * covered by the given span, and will set each group's ->cpumask correctly,
  5409. * and ->cpu_power to 0.
  5410. */
  5411. static void
  5412. init_sched_build_groups(const struct cpumask *span,
  5413. const struct cpumask *cpu_map,
  5414. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5415. struct sched_group **sg,
  5416. struct cpumask *tmpmask),
  5417. struct cpumask *covered, struct cpumask *tmpmask)
  5418. {
  5419. struct sched_group *first = NULL, *last = NULL;
  5420. int i;
  5421. cpumask_clear(covered);
  5422. for_each_cpu(i, span) {
  5423. struct sched_group *sg;
  5424. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5425. int j;
  5426. if (cpumask_test_cpu(i, covered))
  5427. continue;
  5428. cpumask_clear(sched_group_cpus(sg));
  5429. sg->cpu_power = 0;
  5430. for_each_cpu(j, span) {
  5431. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5432. continue;
  5433. cpumask_set_cpu(j, covered);
  5434. cpumask_set_cpu(j, sched_group_cpus(sg));
  5435. }
  5436. if (!first)
  5437. first = sg;
  5438. if (last)
  5439. last->next = sg;
  5440. last = sg;
  5441. }
  5442. last->next = first;
  5443. }
  5444. #define SD_NODES_PER_DOMAIN 16
  5445. #ifdef CONFIG_NUMA
  5446. /**
  5447. * find_next_best_node - find the next node to include in a sched_domain
  5448. * @node: node whose sched_domain we're building
  5449. * @used_nodes: nodes already in the sched_domain
  5450. *
  5451. * Find the next node to include in a given scheduling domain. Simply
  5452. * finds the closest node not already in the @used_nodes map.
  5453. *
  5454. * Should use nodemask_t.
  5455. */
  5456. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5457. {
  5458. int i, n, val, min_val, best_node = 0;
  5459. min_val = INT_MAX;
  5460. for (i = 0; i < nr_node_ids; i++) {
  5461. /* Start at @node */
  5462. n = (node + i) % nr_node_ids;
  5463. if (!nr_cpus_node(n))
  5464. continue;
  5465. /* Skip already used nodes */
  5466. if (node_isset(n, *used_nodes))
  5467. continue;
  5468. /* Simple min distance search */
  5469. val = node_distance(node, n);
  5470. if (val < min_val) {
  5471. min_val = val;
  5472. best_node = n;
  5473. }
  5474. }
  5475. node_set(best_node, *used_nodes);
  5476. return best_node;
  5477. }
  5478. /**
  5479. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5480. * @node: node whose cpumask we're constructing
  5481. * @span: resulting cpumask
  5482. *
  5483. * Given a node, construct a good cpumask for its sched_domain to span. It
  5484. * should be one that prevents unnecessary balancing, but also spreads tasks
  5485. * out optimally.
  5486. */
  5487. static void sched_domain_node_span(int node, struct cpumask *span)
  5488. {
  5489. nodemask_t used_nodes;
  5490. int i;
  5491. cpumask_clear(span);
  5492. nodes_clear(used_nodes);
  5493. cpumask_or(span, span, cpumask_of_node(node));
  5494. node_set(node, used_nodes);
  5495. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5496. int next_node = find_next_best_node(node, &used_nodes);
  5497. cpumask_or(span, span, cpumask_of_node(next_node));
  5498. }
  5499. }
  5500. #endif /* CONFIG_NUMA */
  5501. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5502. /*
  5503. * The cpus mask in sched_group and sched_domain hangs off the end.
  5504. *
  5505. * ( See the the comments in include/linux/sched.h:struct sched_group
  5506. * and struct sched_domain. )
  5507. */
  5508. struct static_sched_group {
  5509. struct sched_group sg;
  5510. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5511. };
  5512. struct static_sched_domain {
  5513. struct sched_domain sd;
  5514. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5515. };
  5516. struct s_data {
  5517. #ifdef CONFIG_NUMA
  5518. int sd_allnodes;
  5519. cpumask_var_t domainspan;
  5520. cpumask_var_t covered;
  5521. cpumask_var_t notcovered;
  5522. #endif
  5523. cpumask_var_t nodemask;
  5524. cpumask_var_t this_sibling_map;
  5525. cpumask_var_t this_core_map;
  5526. cpumask_var_t send_covered;
  5527. cpumask_var_t tmpmask;
  5528. struct sched_group **sched_group_nodes;
  5529. struct root_domain *rd;
  5530. };
  5531. enum s_alloc {
  5532. sa_sched_groups = 0,
  5533. sa_rootdomain,
  5534. sa_tmpmask,
  5535. sa_send_covered,
  5536. sa_this_core_map,
  5537. sa_this_sibling_map,
  5538. sa_nodemask,
  5539. sa_sched_group_nodes,
  5540. #ifdef CONFIG_NUMA
  5541. sa_notcovered,
  5542. sa_covered,
  5543. sa_domainspan,
  5544. #endif
  5545. sa_none,
  5546. };
  5547. /*
  5548. * SMT sched-domains:
  5549. */
  5550. #ifdef CONFIG_SCHED_SMT
  5551. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5552. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5553. static int
  5554. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5555. struct sched_group **sg, struct cpumask *unused)
  5556. {
  5557. if (sg)
  5558. *sg = &per_cpu(sched_groups, cpu).sg;
  5559. return cpu;
  5560. }
  5561. #endif /* CONFIG_SCHED_SMT */
  5562. /*
  5563. * multi-core sched-domains:
  5564. */
  5565. #ifdef CONFIG_SCHED_MC
  5566. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5567. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5568. #endif /* CONFIG_SCHED_MC */
  5569. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5570. static int
  5571. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5572. struct sched_group **sg, struct cpumask *mask)
  5573. {
  5574. int group;
  5575. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5576. group = cpumask_first(mask);
  5577. if (sg)
  5578. *sg = &per_cpu(sched_group_core, group).sg;
  5579. return group;
  5580. }
  5581. #elif defined(CONFIG_SCHED_MC)
  5582. static int
  5583. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5584. struct sched_group **sg, struct cpumask *unused)
  5585. {
  5586. if (sg)
  5587. *sg = &per_cpu(sched_group_core, cpu).sg;
  5588. return cpu;
  5589. }
  5590. #endif
  5591. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5592. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5593. static int
  5594. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5595. struct sched_group **sg, struct cpumask *mask)
  5596. {
  5597. int group;
  5598. #ifdef CONFIG_SCHED_MC
  5599. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5600. group = cpumask_first(mask);
  5601. #elif defined(CONFIG_SCHED_SMT)
  5602. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5603. group = cpumask_first(mask);
  5604. #else
  5605. group = cpu;
  5606. #endif
  5607. if (sg)
  5608. *sg = &per_cpu(sched_group_phys, group).sg;
  5609. return group;
  5610. }
  5611. #ifdef CONFIG_NUMA
  5612. /*
  5613. * The init_sched_build_groups can't handle what we want to do with node
  5614. * groups, so roll our own. Now each node has its own list of groups which
  5615. * gets dynamically allocated.
  5616. */
  5617. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5618. static struct sched_group ***sched_group_nodes_bycpu;
  5619. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5620. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5621. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5622. struct sched_group **sg,
  5623. struct cpumask *nodemask)
  5624. {
  5625. int group;
  5626. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5627. group = cpumask_first(nodemask);
  5628. if (sg)
  5629. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5630. return group;
  5631. }
  5632. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5633. {
  5634. struct sched_group *sg = group_head;
  5635. int j;
  5636. if (!sg)
  5637. return;
  5638. do {
  5639. for_each_cpu(j, sched_group_cpus(sg)) {
  5640. struct sched_domain *sd;
  5641. sd = &per_cpu(phys_domains, j).sd;
  5642. if (j != group_first_cpu(sd->groups)) {
  5643. /*
  5644. * Only add "power" once for each
  5645. * physical package.
  5646. */
  5647. continue;
  5648. }
  5649. sg->cpu_power += sd->groups->cpu_power;
  5650. }
  5651. sg = sg->next;
  5652. } while (sg != group_head);
  5653. }
  5654. static int build_numa_sched_groups(struct s_data *d,
  5655. const struct cpumask *cpu_map, int num)
  5656. {
  5657. struct sched_domain *sd;
  5658. struct sched_group *sg, *prev;
  5659. int n, j;
  5660. cpumask_clear(d->covered);
  5661. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5662. if (cpumask_empty(d->nodemask)) {
  5663. d->sched_group_nodes[num] = NULL;
  5664. goto out;
  5665. }
  5666. sched_domain_node_span(num, d->domainspan);
  5667. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5668. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5669. GFP_KERNEL, num);
  5670. if (!sg) {
  5671. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5672. num);
  5673. return -ENOMEM;
  5674. }
  5675. d->sched_group_nodes[num] = sg;
  5676. for_each_cpu(j, d->nodemask) {
  5677. sd = &per_cpu(node_domains, j).sd;
  5678. sd->groups = sg;
  5679. }
  5680. sg->cpu_power = 0;
  5681. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5682. sg->next = sg;
  5683. cpumask_or(d->covered, d->covered, d->nodemask);
  5684. prev = sg;
  5685. for (j = 0; j < nr_node_ids; j++) {
  5686. n = (num + j) % nr_node_ids;
  5687. cpumask_complement(d->notcovered, d->covered);
  5688. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5689. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5690. if (cpumask_empty(d->tmpmask))
  5691. break;
  5692. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5693. if (cpumask_empty(d->tmpmask))
  5694. continue;
  5695. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5696. GFP_KERNEL, num);
  5697. if (!sg) {
  5698. printk(KERN_WARNING
  5699. "Can not alloc domain group for node %d\n", j);
  5700. return -ENOMEM;
  5701. }
  5702. sg->cpu_power = 0;
  5703. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5704. sg->next = prev->next;
  5705. cpumask_or(d->covered, d->covered, d->tmpmask);
  5706. prev->next = sg;
  5707. prev = sg;
  5708. }
  5709. out:
  5710. return 0;
  5711. }
  5712. #endif /* CONFIG_NUMA */
  5713. #ifdef CONFIG_NUMA
  5714. /* Free memory allocated for various sched_group structures */
  5715. static void free_sched_groups(const struct cpumask *cpu_map,
  5716. struct cpumask *nodemask)
  5717. {
  5718. int cpu, i;
  5719. for_each_cpu(cpu, cpu_map) {
  5720. struct sched_group **sched_group_nodes
  5721. = sched_group_nodes_bycpu[cpu];
  5722. if (!sched_group_nodes)
  5723. continue;
  5724. for (i = 0; i < nr_node_ids; i++) {
  5725. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5726. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5727. if (cpumask_empty(nodemask))
  5728. continue;
  5729. if (sg == NULL)
  5730. continue;
  5731. sg = sg->next;
  5732. next_sg:
  5733. oldsg = sg;
  5734. sg = sg->next;
  5735. kfree(oldsg);
  5736. if (oldsg != sched_group_nodes[i])
  5737. goto next_sg;
  5738. }
  5739. kfree(sched_group_nodes);
  5740. sched_group_nodes_bycpu[cpu] = NULL;
  5741. }
  5742. }
  5743. #else /* !CONFIG_NUMA */
  5744. static void free_sched_groups(const struct cpumask *cpu_map,
  5745. struct cpumask *nodemask)
  5746. {
  5747. }
  5748. #endif /* CONFIG_NUMA */
  5749. /*
  5750. * Initialize sched groups cpu_power.
  5751. *
  5752. * cpu_power indicates the capacity of sched group, which is used while
  5753. * distributing the load between different sched groups in a sched domain.
  5754. * Typically cpu_power for all the groups in a sched domain will be same unless
  5755. * there are asymmetries in the topology. If there are asymmetries, group
  5756. * having more cpu_power will pickup more load compared to the group having
  5757. * less cpu_power.
  5758. */
  5759. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5760. {
  5761. struct sched_domain *child;
  5762. struct sched_group *group;
  5763. long power;
  5764. int weight;
  5765. WARN_ON(!sd || !sd->groups);
  5766. if (cpu != group_first_cpu(sd->groups))
  5767. return;
  5768. child = sd->child;
  5769. sd->groups->cpu_power = 0;
  5770. if (!child) {
  5771. power = SCHED_LOAD_SCALE;
  5772. weight = cpumask_weight(sched_domain_span(sd));
  5773. /*
  5774. * SMT siblings share the power of a single core.
  5775. * Usually multiple threads get a better yield out of
  5776. * that one core than a single thread would have,
  5777. * reflect that in sd->smt_gain.
  5778. */
  5779. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5780. power *= sd->smt_gain;
  5781. power /= weight;
  5782. power >>= SCHED_LOAD_SHIFT;
  5783. }
  5784. sd->groups->cpu_power += power;
  5785. return;
  5786. }
  5787. /*
  5788. * Add cpu_power of each child group to this groups cpu_power.
  5789. */
  5790. group = child->groups;
  5791. do {
  5792. sd->groups->cpu_power += group->cpu_power;
  5793. group = group->next;
  5794. } while (group != child->groups);
  5795. }
  5796. /*
  5797. * Initializers for schedule domains
  5798. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5799. */
  5800. #ifdef CONFIG_SCHED_DEBUG
  5801. # define SD_INIT_NAME(sd, type) sd->name = #type
  5802. #else
  5803. # define SD_INIT_NAME(sd, type) do { } while (0)
  5804. #endif
  5805. #define SD_INIT(sd, type) sd_init_##type(sd)
  5806. #define SD_INIT_FUNC(type) \
  5807. static noinline void sd_init_##type(struct sched_domain *sd) \
  5808. { \
  5809. memset(sd, 0, sizeof(*sd)); \
  5810. *sd = SD_##type##_INIT; \
  5811. sd->level = SD_LV_##type; \
  5812. SD_INIT_NAME(sd, type); \
  5813. }
  5814. SD_INIT_FUNC(CPU)
  5815. #ifdef CONFIG_NUMA
  5816. SD_INIT_FUNC(ALLNODES)
  5817. SD_INIT_FUNC(NODE)
  5818. #endif
  5819. #ifdef CONFIG_SCHED_SMT
  5820. SD_INIT_FUNC(SIBLING)
  5821. #endif
  5822. #ifdef CONFIG_SCHED_MC
  5823. SD_INIT_FUNC(MC)
  5824. #endif
  5825. static int default_relax_domain_level = -1;
  5826. static int __init setup_relax_domain_level(char *str)
  5827. {
  5828. unsigned long val;
  5829. val = simple_strtoul(str, NULL, 0);
  5830. if (val < SD_LV_MAX)
  5831. default_relax_domain_level = val;
  5832. return 1;
  5833. }
  5834. __setup("relax_domain_level=", setup_relax_domain_level);
  5835. static void set_domain_attribute(struct sched_domain *sd,
  5836. struct sched_domain_attr *attr)
  5837. {
  5838. int request;
  5839. if (!attr || attr->relax_domain_level < 0) {
  5840. if (default_relax_domain_level < 0)
  5841. return;
  5842. else
  5843. request = default_relax_domain_level;
  5844. } else
  5845. request = attr->relax_domain_level;
  5846. if (request < sd->level) {
  5847. /* turn off idle balance on this domain */
  5848. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5849. } else {
  5850. /* turn on idle balance on this domain */
  5851. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5852. }
  5853. }
  5854. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5855. const struct cpumask *cpu_map)
  5856. {
  5857. switch (what) {
  5858. case sa_sched_groups:
  5859. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5860. d->sched_group_nodes = NULL;
  5861. case sa_rootdomain:
  5862. free_rootdomain(d->rd); /* fall through */
  5863. case sa_tmpmask:
  5864. free_cpumask_var(d->tmpmask); /* fall through */
  5865. case sa_send_covered:
  5866. free_cpumask_var(d->send_covered); /* fall through */
  5867. case sa_this_core_map:
  5868. free_cpumask_var(d->this_core_map); /* fall through */
  5869. case sa_this_sibling_map:
  5870. free_cpumask_var(d->this_sibling_map); /* fall through */
  5871. case sa_nodemask:
  5872. free_cpumask_var(d->nodemask); /* fall through */
  5873. case sa_sched_group_nodes:
  5874. #ifdef CONFIG_NUMA
  5875. kfree(d->sched_group_nodes); /* fall through */
  5876. case sa_notcovered:
  5877. free_cpumask_var(d->notcovered); /* fall through */
  5878. case sa_covered:
  5879. free_cpumask_var(d->covered); /* fall through */
  5880. case sa_domainspan:
  5881. free_cpumask_var(d->domainspan); /* fall through */
  5882. #endif
  5883. case sa_none:
  5884. break;
  5885. }
  5886. }
  5887. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5888. const struct cpumask *cpu_map)
  5889. {
  5890. #ifdef CONFIG_NUMA
  5891. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5892. return sa_none;
  5893. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5894. return sa_domainspan;
  5895. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5896. return sa_covered;
  5897. /* Allocate the per-node list of sched groups */
  5898. d->sched_group_nodes = kcalloc(nr_node_ids,
  5899. sizeof(struct sched_group *), GFP_KERNEL);
  5900. if (!d->sched_group_nodes) {
  5901. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5902. return sa_notcovered;
  5903. }
  5904. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5905. #endif
  5906. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5907. return sa_sched_group_nodes;
  5908. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5909. return sa_nodemask;
  5910. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5911. return sa_this_sibling_map;
  5912. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5913. return sa_this_core_map;
  5914. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5915. return sa_send_covered;
  5916. d->rd = alloc_rootdomain();
  5917. if (!d->rd) {
  5918. printk(KERN_WARNING "Cannot alloc root domain\n");
  5919. return sa_tmpmask;
  5920. }
  5921. return sa_rootdomain;
  5922. }
  5923. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5924. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5925. {
  5926. struct sched_domain *sd = NULL;
  5927. #ifdef CONFIG_NUMA
  5928. struct sched_domain *parent;
  5929. d->sd_allnodes = 0;
  5930. if (cpumask_weight(cpu_map) >
  5931. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5932. sd = &per_cpu(allnodes_domains, i).sd;
  5933. SD_INIT(sd, ALLNODES);
  5934. set_domain_attribute(sd, attr);
  5935. cpumask_copy(sched_domain_span(sd), cpu_map);
  5936. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5937. d->sd_allnodes = 1;
  5938. }
  5939. parent = sd;
  5940. sd = &per_cpu(node_domains, i).sd;
  5941. SD_INIT(sd, NODE);
  5942. set_domain_attribute(sd, attr);
  5943. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5944. sd->parent = parent;
  5945. if (parent)
  5946. parent->child = sd;
  5947. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5948. #endif
  5949. return sd;
  5950. }
  5951. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5952. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5953. struct sched_domain *parent, int i)
  5954. {
  5955. struct sched_domain *sd;
  5956. sd = &per_cpu(phys_domains, i).sd;
  5957. SD_INIT(sd, CPU);
  5958. set_domain_attribute(sd, attr);
  5959. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5960. sd->parent = parent;
  5961. if (parent)
  5962. parent->child = sd;
  5963. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5964. return sd;
  5965. }
  5966. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5967. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5968. struct sched_domain *parent, int i)
  5969. {
  5970. struct sched_domain *sd = parent;
  5971. #ifdef CONFIG_SCHED_MC
  5972. sd = &per_cpu(core_domains, i).sd;
  5973. SD_INIT(sd, MC);
  5974. set_domain_attribute(sd, attr);
  5975. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5976. sd->parent = parent;
  5977. parent->child = sd;
  5978. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5979. #endif
  5980. return sd;
  5981. }
  5982. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5983. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5984. struct sched_domain *parent, int i)
  5985. {
  5986. struct sched_domain *sd = parent;
  5987. #ifdef CONFIG_SCHED_SMT
  5988. sd = &per_cpu(cpu_domains, i).sd;
  5989. SD_INIT(sd, SIBLING);
  5990. set_domain_attribute(sd, attr);
  5991. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5992. sd->parent = parent;
  5993. parent->child = sd;
  5994. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5995. #endif
  5996. return sd;
  5997. }
  5998. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5999. const struct cpumask *cpu_map, int cpu)
  6000. {
  6001. switch (l) {
  6002. #ifdef CONFIG_SCHED_SMT
  6003. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6004. cpumask_and(d->this_sibling_map, cpu_map,
  6005. topology_thread_cpumask(cpu));
  6006. if (cpu == cpumask_first(d->this_sibling_map))
  6007. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6008. &cpu_to_cpu_group,
  6009. d->send_covered, d->tmpmask);
  6010. break;
  6011. #endif
  6012. #ifdef CONFIG_SCHED_MC
  6013. case SD_LV_MC: /* set up multi-core groups */
  6014. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6015. if (cpu == cpumask_first(d->this_core_map))
  6016. init_sched_build_groups(d->this_core_map, cpu_map,
  6017. &cpu_to_core_group,
  6018. d->send_covered, d->tmpmask);
  6019. break;
  6020. #endif
  6021. case SD_LV_CPU: /* set up physical groups */
  6022. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6023. if (!cpumask_empty(d->nodemask))
  6024. init_sched_build_groups(d->nodemask, cpu_map,
  6025. &cpu_to_phys_group,
  6026. d->send_covered, d->tmpmask);
  6027. break;
  6028. #ifdef CONFIG_NUMA
  6029. case SD_LV_ALLNODES:
  6030. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6031. d->send_covered, d->tmpmask);
  6032. break;
  6033. #endif
  6034. default:
  6035. break;
  6036. }
  6037. }
  6038. /*
  6039. * Build sched domains for a given set of cpus and attach the sched domains
  6040. * to the individual cpus
  6041. */
  6042. static int __build_sched_domains(const struct cpumask *cpu_map,
  6043. struct sched_domain_attr *attr)
  6044. {
  6045. enum s_alloc alloc_state = sa_none;
  6046. struct s_data d;
  6047. struct sched_domain *sd;
  6048. int i;
  6049. #ifdef CONFIG_NUMA
  6050. d.sd_allnodes = 0;
  6051. #endif
  6052. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6053. if (alloc_state != sa_rootdomain)
  6054. goto error;
  6055. alloc_state = sa_sched_groups;
  6056. /*
  6057. * Set up domains for cpus specified by the cpu_map.
  6058. */
  6059. for_each_cpu(i, cpu_map) {
  6060. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6061. cpu_map);
  6062. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6063. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6064. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6065. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6066. }
  6067. for_each_cpu(i, cpu_map) {
  6068. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6069. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6070. }
  6071. /* Set up physical groups */
  6072. for (i = 0; i < nr_node_ids; i++)
  6073. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6074. #ifdef CONFIG_NUMA
  6075. /* Set up node groups */
  6076. if (d.sd_allnodes)
  6077. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6078. for (i = 0; i < nr_node_ids; i++)
  6079. if (build_numa_sched_groups(&d, cpu_map, i))
  6080. goto error;
  6081. #endif
  6082. /* Calculate CPU power for physical packages and nodes */
  6083. #ifdef CONFIG_SCHED_SMT
  6084. for_each_cpu(i, cpu_map) {
  6085. sd = &per_cpu(cpu_domains, i).sd;
  6086. init_sched_groups_power(i, sd);
  6087. }
  6088. #endif
  6089. #ifdef CONFIG_SCHED_MC
  6090. for_each_cpu(i, cpu_map) {
  6091. sd = &per_cpu(core_domains, i).sd;
  6092. init_sched_groups_power(i, sd);
  6093. }
  6094. #endif
  6095. for_each_cpu(i, cpu_map) {
  6096. sd = &per_cpu(phys_domains, i).sd;
  6097. init_sched_groups_power(i, sd);
  6098. }
  6099. #ifdef CONFIG_NUMA
  6100. for (i = 0; i < nr_node_ids; i++)
  6101. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6102. if (d.sd_allnodes) {
  6103. struct sched_group *sg;
  6104. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6105. d.tmpmask);
  6106. init_numa_sched_groups_power(sg);
  6107. }
  6108. #endif
  6109. /* Attach the domains */
  6110. for_each_cpu(i, cpu_map) {
  6111. #ifdef CONFIG_SCHED_SMT
  6112. sd = &per_cpu(cpu_domains, i).sd;
  6113. #elif defined(CONFIG_SCHED_MC)
  6114. sd = &per_cpu(core_domains, i).sd;
  6115. #else
  6116. sd = &per_cpu(phys_domains, i).sd;
  6117. #endif
  6118. cpu_attach_domain(sd, d.rd, i);
  6119. }
  6120. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6121. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6122. return 0;
  6123. error:
  6124. __free_domain_allocs(&d, alloc_state, cpu_map);
  6125. return -ENOMEM;
  6126. }
  6127. static int build_sched_domains(const struct cpumask *cpu_map)
  6128. {
  6129. return __build_sched_domains(cpu_map, NULL);
  6130. }
  6131. static cpumask_var_t *doms_cur; /* current sched domains */
  6132. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6133. static struct sched_domain_attr *dattr_cur;
  6134. /* attribues of custom domains in 'doms_cur' */
  6135. /*
  6136. * Special case: If a kmalloc of a doms_cur partition (array of
  6137. * cpumask) fails, then fallback to a single sched domain,
  6138. * as determined by the single cpumask fallback_doms.
  6139. */
  6140. static cpumask_var_t fallback_doms;
  6141. /*
  6142. * arch_update_cpu_topology lets virtualized architectures update the
  6143. * cpu core maps. It is supposed to return 1 if the topology changed
  6144. * or 0 if it stayed the same.
  6145. */
  6146. int __attribute__((weak)) arch_update_cpu_topology(void)
  6147. {
  6148. return 0;
  6149. }
  6150. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6151. {
  6152. int i;
  6153. cpumask_var_t *doms;
  6154. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6155. if (!doms)
  6156. return NULL;
  6157. for (i = 0; i < ndoms; i++) {
  6158. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6159. free_sched_domains(doms, i);
  6160. return NULL;
  6161. }
  6162. }
  6163. return doms;
  6164. }
  6165. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6166. {
  6167. unsigned int i;
  6168. for (i = 0; i < ndoms; i++)
  6169. free_cpumask_var(doms[i]);
  6170. kfree(doms);
  6171. }
  6172. /*
  6173. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6174. * For now this just excludes isolated cpus, but could be used to
  6175. * exclude other special cases in the future.
  6176. */
  6177. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6178. {
  6179. int err;
  6180. arch_update_cpu_topology();
  6181. ndoms_cur = 1;
  6182. doms_cur = alloc_sched_domains(ndoms_cur);
  6183. if (!doms_cur)
  6184. doms_cur = &fallback_doms;
  6185. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6186. dattr_cur = NULL;
  6187. err = build_sched_domains(doms_cur[0]);
  6188. register_sched_domain_sysctl();
  6189. return err;
  6190. }
  6191. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6192. struct cpumask *tmpmask)
  6193. {
  6194. free_sched_groups(cpu_map, tmpmask);
  6195. }
  6196. /*
  6197. * Detach sched domains from a group of cpus specified in cpu_map
  6198. * These cpus will now be attached to the NULL domain
  6199. */
  6200. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6201. {
  6202. /* Save because hotplug lock held. */
  6203. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6204. int i;
  6205. for_each_cpu(i, cpu_map)
  6206. cpu_attach_domain(NULL, &def_root_domain, i);
  6207. synchronize_sched();
  6208. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6209. }
  6210. /* handle null as "default" */
  6211. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6212. struct sched_domain_attr *new, int idx_new)
  6213. {
  6214. struct sched_domain_attr tmp;
  6215. /* fast path */
  6216. if (!new && !cur)
  6217. return 1;
  6218. tmp = SD_ATTR_INIT;
  6219. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6220. new ? (new + idx_new) : &tmp,
  6221. sizeof(struct sched_domain_attr));
  6222. }
  6223. /*
  6224. * Partition sched domains as specified by the 'ndoms_new'
  6225. * cpumasks in the array doms_new[] of cpumasks. This compares
  6226. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6227. * It destroys each deleted domain and builds each new domain.
  6228. *
  6229. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6230. * The masks don't intersect (don't overlap.) We should setup one
  6231. * sched domain for each mask. CPUs not in any of the cpumasks will
  6232. * not be load balanced. If the same cpumask appears both in the
  6233. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6234. * it as it is.
  6235. *
  6236. * The passed in 'doms_new' should be allocated using
  6237. * alloc_sched_domains. This routine takes ownership of it and will
  6238. * free_sched_domains it when done with it. If the caller failed the
  6239. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6240. * and partition_sched_domains() will fallback to the single partition
  6241. * 'fallback_doms', it also forces the domains to be rebuilt.
  6242. *
  6243. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6244. * ndoms_new == 0 is a special case for destroying existing domains,
  6245. * and it will not create the default domain.
  6246. *
  6247. * Call with hotplug lock held
  6248. */
  6249. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6250. struct sched_domain_attr *dattr_new)
  6251. {
  6252. int i, j, n;
  6253. int new_topology;
  6254. mutex_lock(&sched_domains_mutex);
  6255. /* always unregister in case we don't destroy any domains */
  6256. unregister_sched_domain_sysctl();
  6257. /* Let architecture update cpu core mappings. */
  6258. new_topology = arch_update_cpu_topology();
  6259. n = doms_new ? ndoms_new : 0;
  6260. /* Destroy deleted domains */
  6261. for (i = 0; i < ndoms_cur; i++) {
  6262. for (j = 0; j < n && !new_topology; j++) {
  6263. if (cpumask_equal(doms_cur[i], doms_new[j])
  6264. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6265. goto match1;
  6266. }
  6267. /* no match - a current sched domain not in new doms_new[] */
  6268. detach_destroy_domains(doms_cur[i]);
  6269. match1:
  6270. ;
  6271. }
  6272. if (doms_new == NULL) {
  6273. ndoms_cur = 0;
  6274. doms_new = &fallback_doms;
  6275. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6276. WARN_ON_ONCE(dattr_new);
  6277. }
  6278. /* Build new domains */
  6279. for (i = 0; i < ndoms_new; i++) {
  6280. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6281. if (cpumask_equal(doms_new[i], doms_cur[j])
  6282. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6283. goto match2;
  6284. }
  6285. /* no match - add a new doms_new */
  6286. __build_sched_domains(doms_new[i],
  6287. dattr_new ? dattr_new + i : NULL);
  6288. match2:
  6289. ;
  6290. }
  6291. /* Remember the new sched domains */
  6292. if (doms_cur != &fallback_doms)
  6293. free_sched_domains(doms_cur, ndoms_cur);
  6294. kfree(dattr_cur); /* kfree(NULL) is safe */
  6295. doms_cur = doms_new;
  6296. dattr_cur = dattr_new;
  6297. ndoms_cur = ndoms_new;
  6298. register_sched_domain_sysctl();
  6299. mutex_unlock(&sched_domains_mutex);
  6300. }
  6301. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6302. static void arch_reinit_sched_domains(void)
  6303. {
  6304. get_online_cpus();
  6305. /* Destroy domains first to force the rebuild */
  6306. partition_sched_domains(0, NULL, NULL);
  6307. rebuild_sched_domains();
  6308. put_online_cpus();
  6309. }
  6310. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6311. {
  6312. unsigned int level = 0;
  6313. if (sscanf(buf, "%u", &level) != 1)
  6314. return -EINVAL;
  6315. /*
  6316. * level is always be positive so don't check for
  6317. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6318. * What happens on 0 or 1 byte write,
  6319. * need to check for count as well?
  6320. */
  6321. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6322. return -EINVAL;
  6323. if (smt)
  6324. sched_smt_power_savings = level;
  6325. else
  6326. sched_mc_power_savings = level;
  6327. arch_reinit_sched_domains();
  6328. return count;
  6329. }
  6330. #ifdef CONFIG_SCHED_MC
  6331. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6332. struct sysdev_class_attribute *attr,
  6333. char *page)
  6334. {
  6335. return sprintf(page, "%u\n", sched_mc_power_savings);
  6336. }
  6337. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6338. struct sysdev_class_attribute *attr,
  6339. const char *buf, size_t count)
  6340. {
  6341. return sched_power_savings_store(buf, count, 0);
  6342. }
  6343. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6344. sched_mc_power_savings_show,
  6345. sched_mc_power_savings_store);
  6346. #endif
  6347. #ifdef CONFIG_SCHED_SMT
  6348. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6349. struct sysdev_class_attribute *attr,
  6350. char *page)
  6351. {
  6352. return sprintf(page, "%u\n", sched_smt_power_savings);
  6353. }
  6354. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6355. struct sysdev_class_attribute *attr,
  6356. const char *buf, size_t count)
  6357. {
  6358. return sched_power_savings_store(buf, count, 1);
  6359. }
  6360. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6361. sched_smt_power_savings_show,
  6362. sched_smt_power_savings_store);
  6363. #endif
  6364. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6365. {
  6366. int err = 0;
  6367. #ifdef CONFIG_SCHED_SMT
  6368. if (smt_capable())
  6369. err = sysfs_create_file(&cls->kset.kobj,
  6370. &attr_sched_smt_power_savings.attr);
  6371. #endif
  6372. #ifdef CONFIG_SCHED_MC
  6373. if (!err && mc_capable())
  6374. err = sysfs_create_file(&cls->kset.kobj,
  6375. &attr_sched_mc_power_savings.attr);
  6376. #endif
  6377. return err;
  6378. }
  6379. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6380. /*
  6381. * Update cpusets according to cpu_active mask. If cpusets are
  6382. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6383. * around partition_sched_domains().
  6384. */
  6385. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6386. void *hcpu)
  6387. {
  6388. switch (action & ~CPU_TASKS_FROZEN) {
  6389. case CPU_ONLINE:
  6390. case CPU_DOWN_FAILED:
  6391. cpuset_update_active_cpus();
  6392. return NOTIFY_OK;
  6393. default:
  6394. return NOTIFY_DONE;
  6395. }
  6396. }
  6397. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6398. void *hcpu)
  6399. {
  6400. switch (action & ~CPU_TASKS_FROZEN) {
  6401. case CPU_DOWN_PREPARE:
  6402. cpuset_update_active_cpus();
  6403. return NOTIFY_OK;
  6404. default:
  6405. return NOTIFY_DONE;
  6406. }
  6407. }
  6408. static int update_runtime(struct notifier_block *nfb,
  6409. unsigned long action, void *hcpu)
  6410. {
  6411. int cpu = (int)(long)hcpu;
  6412. switch (action) {
  6413. case CPU_DOWN_PREPARE:
  6414. case CPU_DOWN_PREPARE_FROZEN:
  6415. disable_runtime(cpu_rq(cpu));
  6416. return NOTIFY_OK;
  6417. case CPU_DOWN_FAILED:
  6418. case CPU_DOWN_FAILED_FROZEN:
  6419. case CPU_ONLINE:
  6420. case CPU_ONLINE_FROZEN:
  6421. enable_runtime(cpu_rq(cpu));
  6422. return NOTIFY_OK;
  6423. default:
  6424. return NOTIFY_DONE;
  6425. }
  6426. }
  6427. void __init sched_init_smp(void)
  6428. {
  6429. cpumask_var_t non_isolated_cpus;
  6430. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6431. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6432. #if defined(CONFIG_NUMA)
  6433. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6434. GFP_KERNEL);
  6435. BUG_ON(sched_group_nodes_bycpu == NULL);
  6436. #endif
  6437. get_online_cpus();
  6438. mutex_lock(&sched_domains_mutex);
  6439. arch_init_sched_domains(cpu_active_mask);
  6440. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6441. if (cpumask_empty(non_isolated_cpus))
  6442. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6443. mutex_unlock(&sched_domains_mutex);
  6444. put_online_cpus();
  6445. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6446. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6447. /* RT runtime code needs to handle some hotplug events */
  6448. hotcpu_notifier(update_runtime, 0);
  6449. init_hrtick();
  6450. /* Move init over to a non-isolated CPU */
  6451. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6452. BUG();
  6453. sched_init_granularity();
  6454. free_cpumask_var(non_isolated_cpus);
  6455. init_sched_rt_class();
  6456. }
  6457. #else
  6458. void __init sched_init_smp(void)
  6459. {
  6460. sched_init_granularity();
  6461. }
  6462. #endif /* CONFIG_SMP */
  6463. const_debug unsigned int sysctl_timer_migration = 1;
  6464. int in_sched_functions(unsigned long addr)
  6465. {
  6466. return in_lock_functions(addr) ||
  6467. (addr >= (unsigned long)__sched_text_start
  6468. && addr < (unsigned long)__sched_text_end);
  6469. }
  6470. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6471. {
  6472. cfs_rq->tasks_timeline = RB_ROOT;
  6473. INIT_LIST_HEAD(&cfs_rq->tasks);
  6474. #ifdef CONFIG_FAIR_GROUP_SCHED
  6475. cfs_rq->rq = rq;
  6476. #endif
  6477. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6478. }
  6479. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6480. {
  6481. struct rt_prio_array *array;
  6482. int i;
  6483. array = &rt_rq->active;
  6484. for (i = 0; i < MAX_RT_PRIO; i++) {
  6485. INIT_LIST_HEAD(array->queue + i);
  6486. __clear_bit(i, array->bitmap);
  6487. }
  6488. /* delimiter for bitsearch: */
  6489. __set_bit(MAX_RT_PRIO, array->bitmap);
  6490. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6491. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6492. #ifdef CONFIG_SMP
  6493. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6494. #endif
  6495. #endif
  6496. #ifdef CONFIG_SMP
  6497. rt_rq->rt_nr_migratory = 0;
  6498. rt_rq->overloaded = 0;
  6499. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6500. #endif
  6501. rt_rq->rt_time = 0;
  6502. rt_rq->rt_throttled = 0;
  6503. rt_rq->rt_runtime = 0;
  6504. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6505. #ifdef CONFIG_RT_GROUP_SCHED
  6506. rt_rq->rt_nr_boosted = 0;
  6507. rt_rq->rq = rq;
  6508. #endif
  6509. }
  6510. #ifdef CONFIG_FAIR_GROUP_SCHED
  6511. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6512. struct sched_entity *se, int cpu, int add,
  6513. struct sched_entity *parent)
  6514. {
  6515. struct rq *rq = cpu_rq(cpu);
  6516. tg->cfs_rq[cpu] = cfs_rq;
  6517. init_cfs_rq(cfs_rq, rq);
  6518. cfs_rq->tg = tg;
  6519. if (add)
  6520. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6521. tg->se[cpu] = se;
  6522. /* se could be NULL for init_task_group */
  6523. if (!se)
  6524. return;
  6525. if (!parent)
  6526. se->cfs_rq = &rq->cfs;
  6527. else
  6528. se->cfs_rq = parent->my_q;
  6529. se->my_q = cfs_rq;
  6530. se->load.weight = tg->shares;
  6531. se->load.inv_weight = 0;
  6532. se->parent = parent;
  6533. }
  6534. #endif
  6535. #ifdef CONFIG_RT_GROUP_SCHED
  6536. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6537. struct sched_rt_entity *rt_se, int cpu, int add,
  6538. struct sched_rt_entity *parent)
  6539. {
  6540. struct rq *rq = cpu_rq(cpu);
  6541. tg->rt_rq[cpu] = rt_rq;
  6542. init_rt_rq(rt_rq, rq);
  6543. rt_rq->tg = tg;
  6544. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6545. if (add)
  6546. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6547. tg->rt_se[cpu] = rt_se;
  6548. if (!rt_se)
  6549. return;
  6550. if (!parent)
  6551. rt_se->rt_rq = &rq->rt;
  6552. else
  6553. rt_se->rt_rq = parent->my_q;
  6554. rt_se->my_q = rt_rq;
  6555. rt_se->parent = parent;
  6556. INIT_LIST_HEAD(&rt_se->run_list);
  6557. }
  6558. #endif
  6559. void __init sched_init(void)
  6560. {
  6561. int i, j;
  6562. unsigned long alloc_size = 0, ptr;
  6563. #ifdef CONFIG_FAIR_GROUP_SCHED
  6564. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6565. #endif
  6566. #ifdef CONFIG_RT_GROUP_SCHED
  6567. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6568. #endif
  6569. #ifdef CONFIG_CPUMASK_OFFSTACK
  6570. alloc_size += num_possible_cpus() * cpumask_size();
  6571. #endif
  6572. if (alloc_size) {
  6573. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6574. #ifdef CONFIG_FAIR_GROUP_SCHED
  6575. init_task_group.se = (struct sched_entity **)ptr;
  6576. ptr += nr_cpu_ids * sizeof(void **);
  6577. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6578. ptr += nr_cpu_ids * sizeof(void **);
  6579. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6580. #ifdef CONFIG_RT_GROUP_SCHED
  6581. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6582. ptr += nr_cpu_ids * sizeof(void **);
  6583. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6584. ptr += nr_cpu_ids * sizeof(void **);
  6585. #endif /* CONFIG_RT_GROUP_SCHED */
  6586. #ifdef CONFIG_CPUMASK_OFFSTACK
  6587. for_each_possible_cpu(i) {
  6588. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6589. ptr += cpumask_size();
  6590. }
  6591. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6592. }
  6593. #ifdef CONFIG_SMP
  6594. init_defrootdomain();
  6595. #endif
  6596. init_rt_bandwidth(&def_rt_bandwidth,
  6597. global_rt_period(), global_rt_runtime());
  6598. #ifdef CONFIG_RT_GROUP_SCHED
  6599. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6600. global_rt_period(), global_rt_runtime());
  6601. #endif /* CONFIG_RT_GROUP_SCHED */
  6602. #ifdef CONFIG_CGROUP_SCHED
  6603. list_add(&init_task_group.list, &task_groups);
  6604. INIT_LIST_HEAD(&init_task_group.children);
  6605. #endif /* CONFIG_CGROUP_SCHED */
  6606. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6607. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6608. __alignof__(unsigned long));
  6609. #endif
  6610. for_each_possible_cpu(i) {
  6611. struct rq *rq;
  6612. rq = cpu_rq(i);
  6613. raw_spin_lock_init(&rq->lock);
  6614. rq->nr_running = 0;
  6615. rq->calc_load_active = 0;
  6616. rq->calc_load_update = jiffies + LOAD_FREQ;
  6617. init_cfs_rq(&rq->cfs, rq);
  6618. init_rt_rq(&rq->rt, rq);
  6619. #ifdef CONFIG_FAIR_GROUP_SCHED
  6620. init_task_group.shares = init_task_group_load;
  6621. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6622. #ifdef CONFIG_CGROUP_SCHED
  6623. /*
  6624. * How much cpu bandwidth does init_task_group get?
  6625. *
  6626. * In case of task-groups formed thr' the cgroup filesystem, it
  6627. * gets 100% of the cpu resources in the system. This overall
  6628. * system cpu resource is divided among the tasks of
  6629. * init_task_group and its child task-groups in a fair manner,
  6630. * based on each entity's (task or task-group's) weight
  6631. * (se->load.weight).
  6632. *
  6633. * In other words, if init_task_group has 10 tasks of weight
  6634. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6635. * then A0's share of the cpu resource is:
  6636. *
  6637. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6638. *
  6639. * We achieve this by letting init_task_group's tasks sit
  6640. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6641. */
  6642. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6643. #endif
  6644. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6645. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6646. #ifdef CONFIG_RT_GROUP_SCHED
  6647. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6648. #ifdef CONFIG_CGROUP_SCHED
  6649. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6650. #endif
  6651. #endif
  6652. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6653. rq->cpu_load[j] = 0;
  6654. rq->last_load_update_tick = jiffies;
  6655. #ifdef CONFIG_SMP
  6656. rq->sd = NULL;
  6657. rq->rd = NULL;
  6658. rq->cpu_power = SCHED_LOAD_SCALE;
  6659. rq->post_schedule = 0;
  6660. rq->active_balance = 0;
  6661. rq->next_balance = jiffies;
  6662. rq->push_cpu = 0;
  6663. rq->cpu = i;
  6664. rq->online = 0;
  6665. rq->idle_stamp = 0;
  6666. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6667. rq_attach_root(rq, &def_root_domain);
  6668. #ifdef CONFIG_NO_HZ
  6669. rq->nohz_balance_kick = 0;
  6670. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6671. #endif
  6672. #endif
  6673. init_rq_hrtick(rq);
  6674. atomic_set(&rq->nr_iowait, 0);
  6675. }
  6676. set_load_weight(&init_task);
  6677. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6678. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6679. #endif
  6680. #ifdef CONFIG_SMP
  6681. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6682. #endif
  6683. #ifdef CONFIG_RT_MUTEXES
  6684. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6685. #endif
  6686. /*
  6687. * The boot idle thread does lazy MMU switching as well:
  6688. */
  6689. atomic_inc(&init_mm.mm_count);
  6690. enter_lazy_tlb(&init_mm, current);
  6691. /*
  6692. * Make us the idle thread. Technically, schedule() should not be
  6693. * called from this thread, however somewhere below it might be,
  6694. * but because we are the idle thread, we just pick up running again
  6695. * when this runqueue becomes "idle".
  6696. */
  6697. init_idle(current, smp_processor_id());
  6698. calc_load_update = jiffies + LOAD_FREQ;
  6699. /*
  6700. * During early bootup we pretend to be a normal task:
  6701. */
  6702. current->sched_class = &fair_sched_class;
  6703. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6704. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6705. #ifdef CONFIG_SMP
  6706. #ifdef CONFIG_NO_HZ
  6707. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6708. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6709. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6710. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6711. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6712. #endif
  6713. /* May be allocated at isolcpus cmdline parse time */
  6714. if (cpu_isolated_map == NULL)
  6715. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6716. #endif /* SMP */
  6717. perf_event_init();
  6718. scheduler_running = 1;
  6719. }
  6720. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6721. static inline int preempt_count_equals(int preempt_offset)
  6722. {
  6723. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6724. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6725. }
  6726. void __might_sleep(const char *file, int line, int preempt_offset)
  6727. {
  6728. #ifdef in_atomic
  6729. static unsigned long prev_jiffy; /* ratelimiting */
  6730. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6731. system_state != SYSTEM_RUNNING || oops_in_progress)
  6732. return;
  6733. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6734. return;
  6735. prev_jiffy = jiffies;
  6736. printk(KERN_ERR
  6737. "BUG: sleeping function called from invalid context at %s:%d\n",
  6738. file, line);
  6739. printk(KERN_ERR
  6740. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6741. in_atomic(), irqs_disabled(),
  6742. current->pid, current->comm);
  6743. debug_show_held_locks(current);
  6744. if (irqs_disabled())
  6745. print_irqtrace_events(current);
  6746. dump_stack();
  6747. #endif
  6748. }
  6749. EXPORT_SYMBOL(__might_sleep);
  6750. #endif
  6751. #ifdef CONFIG_MAGIC_SYSRQ
  6752. static void normalize_task(struct rq *rq, struct task_struct *p)
  6753. {
  6754. int on_rq;
  6755. on_rq = p->se.on_rq;
  6756. if (on_rq)
  6757. deactivate_task(rq, p, 0);
  6758. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6759. if (on_rq) {
  6760. activate_task(rq, p, 0);
  6761. resched_task(rq->curr);
  6762. }
  6763. }
  6764. void normalize_rt_tasks(void)
  6765. {
  6766. struct task_struct *g, *p;
  6767. unsigned long flags;
  6768. struct rq *rq;
  6769. read_lock_irqsave(&tasklist_lock, flags);
  6770. do_each_thread(g, p) {
  6771. /*
  6772. * Only normalize user tasks:
  6773. */
  6774. if (!p->mm)
  6775. continue;
  6776. p->se.exec_start = 0;
  6777. #ifdef CONFIG_SCHEDSTATS
  6778. p->se.statistics.wait_start = 0;
  6779. p->se.statistics.sleep_start = 0;
  6780. p->se.statistics.block_start = 0;
  6781. #endif
  6782. if (!rt_task(p)) {
  6783. /*
  6784. * Renice negative nice level userspace
  6785. * tasks back to 0:
  6786. */
  6787. if (TASK_NICE(p) < 0 && p->mm)
  6788. set_user_nice(p, 0);
  6789. continue;
  6790. }
  6791. raw_spin_lock(&p->pi_lock);
  6792. rq = __task_rq_lock(p);
  6793. normalize_task(rq, p);
  6794. __task_rq_unlock(rq);
  6795. raw_spin_unlock(&p->pi_lock);
  6796. } while_each_thread(g, p);
  6797. read_unlock_irqrestore(&tasklist_lock, flags);
  6798. }
  6799. #endif /* CONFIG_MAGIC_SYSRQ */
  6800. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6801. /*
  6802. * These functions are only useful for the IA64 MCA handling, or kdb.
  6803. *
  6804. * They can only be called when the whole system has been
  6805. * stopped - every CPU needs to be quiescent, and no scheduling
  6806. * activity can take place. Using them for anything else would
  6807. * be a serious bug, and as a result, they aren't even visible
  6808. * under any other configuration.
  6809. */
  6810. /**
  6811. * curr_task - return the current task for a given cpu.
  6812. * @cpu: the processor in question.
  6813. *
  6814. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6815. */
  6816. struct task_struct *curr_task(int cpu)
  6817. {
  6818. return cpu_curr(cpu);
  6819. }
  6820. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6821. #ifdef CONFIG_IA64
  6822. /**
  6823. * set_curr_task - set the current task for a given cpu.
  6824. * @cpu: the processor in question.
  6825. * @p: the task pointer to set.
  6826. *
  6827. * Description: This function must only be used when non-maskable interrupts
  6828. * are serviced on a separate stack. It allows the architecture to switch the
  6829. * notion of the current task on a cpu in a non-blocking manner. This function
  6830. * must be called with all CPU's synchronized, and interrupts disabled, the
  6831. * and caller must save the original value of the current task (see
  6832. * curr_task() above) and restore that value before reenabling interrupts and
  6833. * re-starting the system.
  6834. *
  6835. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6836. */
  6837. void set_curr_task(int cpu, struct task_struct *p)
  6838. {
  6839. cpu_curr(cpu) = p;
  6840. }
  6841. #endif
  6842. #ifdef CONFIG_FAIR_GROUP_SCHED
  6843. static void free_fair_sched_group(struct task_group *tg)
  6844. {
  6845. int i;
  6846. for_each_possible_cpu(i) {
  6847. if (tg->cfs_rq)
  6848. kfree(tg->cfs_rq[i]);
  6849. if (tg->se)
  6850. kfree(tg->se[i]);
  6851. }
  6852. kfree(tg->cfs_rq);
  6853. kfree(tg->se);
  6854. }
  6855. static
  6856. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6857. {
  6858. struct cfs_rq *cfs_rq;
  6859. struct sched_entity *se;
  6860. struct rq *rq;
  6861. int i;
  6862. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6863. if (!tg->cfs_rq)
  6864. goto err;
  6865. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6866. if (!tg->se)
  6867. goto err;
  6868. tg->shares = NICE_0_LOAD;
  6869. for_each_possible_cpu(i) {
  6870. rq = cpu_rq(i);
  6871. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6872. GFP_KERNEL, cpu_to_node(i));
  6873. if (!cfs_rq)
  6874. goto err;
  6875. se = kzalloc_node(sizeof(struct sched_entity),
  6876. GFP_KERNEL, cpu_to_node(i));
  6877. if (!se)
  6878. goto err_free_rq;
  6879. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6880. }
  6881. return 1;
  6882. err_free_rq:
  6883. kfree(cfs_rq);
  6884. err:
  6885. return 0;
  6886. }
  6887. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6888. {
  6889. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6890. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6891. }
  6892. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6893. {
  6894. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6895. }
  6896. #else /* !CONFG_FAIR_GROUP_SCHED */
  6897. static inline void free_fair_sched_group(struct task_group *tg)
  6898. {
  6899. }
  6900. static inline
  6901. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6902. {
  6903. return 1;
  6904. }
  6905. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6906. {
  6907. }
  6908. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6909. {
  6910. }
  6911. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6912. #ifdef CONFIG_RT_GROUP_SCHED
  6913. static void free_rt_sched_group(struct task_group *tg)
  6914. {
  6915. int i;
  6916. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6917. for_each_possible_cpu(i) {
  6918. if (tg->rt_rq)
  6919. kfree(tg->rt_rq[i]);
  6920. if (tg->rt_se)
  6921. kfree(tg->rt_se[i]);
  6922. }
  6923. kfree(tg->rt_rq);
  6924. kfree(tg->rt_se);
  6925. }
  6926. static
  6927. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6928. {
  6929. struct rt_rq *rt_rq;
  6930. struct sched_rt_entity *rt_se;
  6931. struct rq *rq;
  6932. int i;
  6933. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6934. if (!tg->rt_rq)
  6935. goto err;
  6936. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6937. if (!tg->rt_se)
  6938. goto err;
  6939. init_rt_bandwidth(&tg->rt_bandwidth,
  6940. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6941. for_each_possible_cpu(i) {
  6942. rq = cpu_rq(i);
  6943. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6944. GFP_KERNEL, cpu_to_node(i));
  6945. if (!rt_rq)
  6946. goto err;
  6947. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6948. GFP_KERNEL, cpu_to_node(i));
  6949. if (!rt_se)
  6950. goto err_free_rq;
  6951. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6952. }
  6953. return 1;
  6954. err_free_rq:
  6955. kfree(rt_rq);
  6956. err:
  6957. return 0;
  6958. }
  6959. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6960. {
  6961. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6962. &cpu_rq(cpu)->leaf_rt_rq_list);
  6963. }
  6964. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6965. {
  6966. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6967. }
  6968. #else /* !CONFIG_RT_GROUP_SCHED */
  6969. static inline void free_rt_sched_group(struct task_group *tg)
  6970. {
  6971. }
  6972. static inline
  6973. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6974. {
  6975. return 1;
  6976. }
  6977. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6978. {
  6979. }
  6980. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6981. {
  6982. }
  6983. #endif /* CONFIG_RT_GROUP_SCHED */
  6984. #ifdef CONFIG_CGROUP_SCHED
  6985. static void free_sched_group(struct task_group *tg)
  6986. {
  6987. free_fair_sched_group(tg);
  6988. free_rt_sched_group(tg);
  6989. kfree(tg);
  6990. }
  6991. /* allocate runqueue etc for a new task group */
  6992. struct task_group *sched_create_group(struct task_group *parent)
  6993. {
  6994. struct task_group *tg;
  6995. unsigned long flags;
  6996. int i;
  6997. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6998. if (!tg)
  6999. return ERR_PTR(-ENOMEM);
  7000. if (!alloc_fair_sched_group(tg, parent))
  7001. goto err;
  7002. if (!alloc_rt_sched_group(tg, parent))
  7003. goto err;
  7004. spin_lock_irqsave(&task_group_lock, flags);
  7005. for_each_possible_cpu(i) {
  7006. register_fair_sched_group(tg, i);
  7007. register_rt_sched_group(tg, i);
  7008. }
  7009. list_add_rcu(&tg->list, &task_groups);
  7010. WARN_ON(!parent); /* root should already exist */
  7011. tg->parent = parent;
  7012. INIT_LIST_HEAD(&tg->children);
  7013. list_add_rcu(&tg->siblings, &parent->children);
  7014. spin_unlock_irqrestore(&task_group_lock, flags);
  7015. return tg;
  7016. err:
  7017. free_sched_group(tg);
  7018. return ERR_PTR(-ENOMEM);
  7019. }
  7020. /* rcu callback to free various structures associated with a task group */
  7021. static void free_sched_group_rcu(struct rcu_head *rhp)
  7022. {
  7023. /* now it should be safe to free those cfs_rqs */
  7024. free_sched_group(container_of(rhp, struct task_group, rcu));
  7025. }
  7026. /* Destroy runqueue etc associated with a task group */
  7027. void sched_destroy_group(struct task_group *tg)
  7028. {
  7029. unsigned long flags;
  7030. int i;
  7031. spin_lock_irqsave(&task_group_lock, flags);
  7032. for_each_possible_cpu(i) {
  7033. unregister_fair_sched_group(tg, i);
  7034. unregister_rt_sched_group(tg, i);
  7035. }
  7036. list_del_rcu(&tg->list);
  7037. list_del_rcu(&tg->siblings);
  7038. spin_unlock_irqrestore(&task_group_lock, flags);
  7039. /* wait for possible concurrent references to cfs_rqs complete */
  7040. call_rcu(&tg->rcu, free_sched_group_rcu);
  7041. }
  7042. /* change task's runqueue when it moves between groups.
  7043. * The caller of this function should have put the task in its new group
  7044. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7045. * reflect its new group.
  7046. */
  7047. void sched_move_task(struct task_struct *tsk)
  7048. {
  7049. int on_rq, running;
  7050. unsigned long flags;
  7051. struct rq *rq;
  7052. rq = task_rq_lock(tsk, &flags);
  7053. running = task_current(rq, tsk);
  7054. on_rq = tsk->se.on_rq;
  7055. if (on_rq)
  7056. dequeue_task(rq, tsk, 0);
  7057. if (unlikely(running))
  7058. tsk->sched_class->put_prev_task(rq, tsk);
  7059. set_task_rq(tsk, task_cpu(tsk));
  7060. #ifdef CONFIG_FAIR_GROUP_SCHED
  7061. if (tsk->sched_class->moved_group)
  7062. tsk->sched_class->moved_group(tsk, on_rq);
  7063. #endif
  7064. if (unlikely(running))
  7065. tsk->sched_class->set_curr_task(rq);
  7066. if (on_rq)
  7067. enqueue_task(rq, tsk, 0);
  7068. task_rq_unlock(rq, &flags);
  7069. }
  7070. #endif /* CONFIG_CGROUP_SCHED */
  7071. #ifdef CONFIG_FAIR_GROUP_SCHED
  7072. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7073. {
  7074. struct cfs_rq *cfs_rq = se->cfs_rq;
  7075. int on_rq;
  7076. on_rq = se->on_rq;
  7077. if (on_rq)
  7078. dequeue_entity(cfs_rq, se, 0);
  7079. se->load.weight = shares;
  7080. se->load.inv_weight = 0;
  7081. if (on_rq)
  7082. enqueue_entity(cfs_rq, se, 0);
  7083. }
  7084. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7085. {
  7086. struct cfs_rq *cfs_rq = se->cfs_rq;
  7087. struct rq *rq = cfs_rq->rq;
  7088. unsigned long flags;
  7089. raw_spin_lock_irqsave(&rq->lock, flags);
  7090. __set_se_shares(se, shares);
  7091. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7092. }
  7093. static DEFINE_MUTEX(shares_mutex);
  7094. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7095. {
  7096. int i;
  7097. unsigned long flags;
  7098. /*
  7099. * We can't change the weight of the root cgroup.
  7100. */
  7101. if (!tg->se[0])
  7102. return -EINVAL;
  7103. if (shares < MIN_SHARES)
  7104. shares = MIN_SHARES;
  7105. else if (shares > MAX_SHARES)
  7106. shares = MAX_SHARES;
  7107. mutex_lock(&shares_mutex);
  7108. if (tg->shares == shares)
  7109. goto done;
  7110. spin_lock_irqsave(&task_group_lock, flags);
  7111. for_each_possible_cpu(i)
  7112. unregister_fair_sched_group(tg, i);
  7113. list_del_rcu(&tg->siblings);
  7114. spin_unlock_irqrestore(&task_group_lock, flags);
  7115. /* wait for any ongoing reference to this group to finish */
  7116. synchronize_sched();
  7117. /*
  7118. * Now we are free to modify the group's share on each cpu
  7119. * w/o tripping rebalance_share or load_balance_fair.
  7120. */
  7121. tg->shares = shares;
  7122. for_each_possible_cpu(i) {
  7123. /*
  7124. * force a rebalance
  7125. */
  7126. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7127. set_se_shares(tg->se[i], shares);
  7128. }
  7129. /*
  7130. * Enable load balance activity on this group, by inserting it back on
  7131. * each cpu's rq->leaf_cfs_rq_list.
  7132. */
  7133. spin_lock_irqsave(&task_group_lock, flags);
  7134. for_each_possible_cpu(i)
  7135. register_fair_sched_group(tg, i);
  7136. list_add_rcu(&tg->siblings, &tg->parent->children);
  7137. spin_unlock_irqrestore(&task_group_lock, flags);
  7138. done:
  7139. mutex_unlock(&shares_mutex);
  7140. return 0;
  7141. }
  7142. unsigned long sched_group_shares(struct task_group *tg)
  7143. {
  7144. return tg->shares;
  7145. }
  7146. #endif
  7147. #ifdef CONFIG_RT_GROUP_SCHED
  7148. /*
  7149. * Ensure that the real time constraints are schedulable.
  7150. */
  7151. static DEFINE_MUTEX(rt_constraints_mutex);
  7152. static unsigned long to_ratio(u64 period, u64 runtime)
  7153. {
  7154. if (runtime == RUNTIME_INF)
  7155. return 1ULL << 20;
  7156. return div64_u64(runtime << 20, period);
  7157. }
  7158. /* Must be called with tasklist_lock held */
  7159. static inline int tg_has_rt_tasks(struct task_group *tg)
  7160. {
  7161. struct task_struct *g, *p;
  7162. do_each_thread(g, p) {
  7163. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7164. return 1;
  7165. } while_each_thread(g, p);
  7166. return 0;
  7167. }
  7168. struct rt_schedulable_data {
  7169. struct task_group *tg;
  7170. u64 rt_period;
  7171. u64 rt_runtime;
  7172. };
  7173. static int tg_schedulable(struct task_group *tg, void *data)
  7174. {
  7175. struct rt_schedulable_data *d = data;
  7176. struct task_group *child;
  7177. unsigned long total, sum = 0;
  7178. u64 period, runtime;
  7179. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7180. runtime = tg->rt_bandwidth.rt_runtime;
  7181. if (tg == d->tg) {
  7182. period = d->rt_period;
  7183. runtime = d->rt_runtime;
  7184. }
  7185. /*
  7186. * Cannot have more runtime than the period.
  7187. */
  7188. if (runtime > period && runtime != RUNTIME_INF)
  7189. return -EINVAL;
  7190. /*
  7191. * Ensure we don't starve existing RT tasks.
  7192. */
  7193. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7194. return -EBUSY;
  7195. total = to_ratio(period, runtime);
  7196. /*
  7197. * Nobody can have more than the global setting allows.
  7198. */
  7199. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7200. return -EINVAL;
  7201. /*
  7202. * The sum of our children's runtime should not exceed our own.
  7203. */
  7204. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7205. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7206. runtime = child->rt_bandwidth.rt_runtime;
  7207. if (child == d->tg) {
  7208. period = d->rt_period;
  7209. runtime = d->rt_runtime;
  7210. }
  7211. sum += to_ratio(period, runtime);
  7212. }
  7213. if (sum > total)
  7214. return -EINVAL;
  7215. return 0;
  7216. }
  7217. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7218. {
  7219. struct rt_schedulable_data data = {
  7220. .tg = tg,
  7221. .rt_period = period,
  7222. .rt_runtime = runtime,
  7223. };
  7224. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7225. }
  7226. static int tg_set_bandwidth(struct task_group *tg,
  7227. u64 rt_period, u64 rt_runtime)
  7228. {
  7229. int i, err = 0;
  7230. mutex_lock(&rt_constraints_mutex);
  7231. read_lock(&tasklist_lock);
  7232. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7233. if (err)
  7234. goto unlock;
  7235. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7236. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7237. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7238. for_each_possible_cpu(i) {
  7239. struct rt_rq *rt_rq = tg->rt_rq[i];
  7240. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7241. rt_rq->rt_runtime = rt_runtime;
  7242. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7243. }
  7244. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7245. unlock:
  7246. read_unlock(&tasklist_lock);
  7247. mutex_unlock(&rt_constraints_mutex);
  7248. return err;
  7249. }
  7250. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7251. {
  7252. u64 rt_runtime, rt_period;
  7253. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7254. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7255. if (rt_runtime_us < 0)
  7256. rt_runtime = RUNTIME_INF;
  7257. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7258. }
  7259. long sched_group_rt_runtime(struct task_group *tg)
  7260. {
  7261. u64 rt_runtime_us;
  7262. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7263. return -1;
  7264. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7265. do_div(rt_runtime_us, NSEC_PER_USEC);
  7266. return rt_runtime_us;
  7267. }
  7268. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7269. {
  7270. u64 rt_runtime, rt_period;
  7271. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7272. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7273. if (rt_period == 0)
  7274. return -EINVAL;
  7275. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7276. }
  7277. long sched_group_rt_period(struct task_group *tg)
  7278. {
  7279. u64 rt_period_us;
  7280. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7281. do_div(rt_period_us, NSEC_PER_USEC);
  7282. return rt_period_us;
  7283. }
  7284. static int sched_rt_global_constraints(void)
  7285. {
  7286. u64 runtime, period;
  7287. int ret = 0;
  7288. if (sysctl_sched_rt_period <= 0)
  7289. return -EINVAL;
  7290. runtime = global_rt_runtime();
  7291. period = global_rt_period();
  7292. /*
  7293. * Sanity check on the sysctl variables.
  7294. */
  7295. if (runtime > period && runtime != RUNTIME_INF)
  7296. return -EINVAL;
  7297. mutex_lock(&rt_constraints_mutex);
  7298. read_lock(&tasklist_lock);
  7299. ret = __rt_schedulable(NULL, 0, 0);
  7300. read_unlock(&tasklist_lock);
  7301. mutex_unlock(&rt_constraints_mutex);
  7302. return ret;
  7303. }
  7304. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7305. {
  7306. /* Don't accept realtime tasks when there is no way for them to run */
  7307. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7308. return 0;
  7309. return 1;
  7310. }
  7311. #else /* !CONFIG_RT_GROUP_SCHED */
  7312. static int sched_rt_global_constraints(void)
  7313. {
  7314. unsigned long flags;
  7315. int i;
  7316. if (sysctl_sched_rt_period <= 0)
  7317. return -EINVAL;
  7318. /*
  7319. * There's always some RT tasks in the root group
  7320. * -- migration, kstopmachine etc..
  7321. */
  7322. if (sysctl_sched_rt_runtime == 0)
  7323. return -EBUSY;
  7324. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7325. for_each_possible_cpu(i) {
  7326. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7327. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7328. rt_rq->rt_runtime = global_rt_runtime();
  7329. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7330. }
  7331. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7332. return 0;
  7333. }
  7334. #endif /* CONFIG_RT_GROUP_SCHED */
  7335. int sched_rt_handler(struct ctl_table *table, int write,
  7336. void __user *buffer, size_t *lenp,
  7337. loff_t *ppos)
  7338. {
  7339. int ret;
  7340. int old_period, old_runtime;
  7341. static DEFINE_MUTEX(mutex);
  7342. mutex_lock(&mutex);
  7343. old_period = sysctl_sched_rt_period;
  7344. old_runtime = sysctl_sched_rt_runtime;
  7345. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7346. if (!ret && write) {
  7347. ret = sched_rt_global_constraints();
  7348. if (ret) {
  7349. sysctl_sched_rt_period = old_period;
  7350. sysctl_sched_rt_runtime = old_runtime;
  7351. } else {
  7352. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7353. def_rt_bandwidth.rt_period =
  7354. ns_to_ktime(global_rt_period());
  7355. }
  7356. }
  7357. mutex_unlock(&mutex);
  7358. return ret;
  7359. }
  7360. #ifdef CONFIG_CGROUP_SCHED
  7361. /* return corresponding task_group object of a cgroup */
  7362. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7363. {
  7364. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7365. struct task_group, css);
  7366. }
  7367. static struct cgroup_subsys_state *
  7368. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7369. {
  7370. struct task_group *tg, *parent;
  7371. if (!cgrp->parent) {
  7372. /* This is early initialization for the top cgroup */
  7373. return &init_task_group.css;
  7374. }
  7375. parent = cgroup_tg(cgrp->parent);
  7376. tg = sched_create_group(parent);
  7377. if (IS_ERR(tg))
  7378. return ERR_PTR(-ENOMEM);
  7379. return &tg->css;
  7380. }
  7381. static void
  7382. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7383. {
  7384. struct task_group *tg = cgroup_tg(cgrp);
  7385. sched_destroy_group(tg);
  7386. }
  7387. static int
  7388. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7389. {
  7390. #ifdef CONFIG_RT_GROUP_SCHED
  7391. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7392. return -EINVAL;
  7393. #else
  7394. /* We don't support RT-tasks being in separate groups */
  7395. if (tsk->sched_class != &fair_sched_class)
  7396. return -EINVAL;
  7397. #endif
  7398. return 0;
  7399. }
  7400. static int
  7401. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7402. struct task_struct *tsk, bool threadgroup)
  7403. {
  7404. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7405. if (retval)
  7406. return retval;
  7407. if (threadgroup) {
  7408. struct task_struct *c;
  7409. rcu_read_lock();
  7410. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7411. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7412. if (retval) {
  7413. rcu_read_unlock();
  7414. return retval;
  7415. }
  7416. }
  7417. rcu_read_unlock();
  7418. }
  7419. return 0;
  7420. }
  7421. static void
  7422. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7423. struct cgroup *old_cont, struct task_struct *tsk,
  7424. bool threadgroup)
  7425. {
  7426. sched_move_task(tsk);
  7427. if (threadgroup) {
  7428. struct task_struct *c;
  7429. rcu_read_lock();
  7430. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7431. sched_move_task(c);
  7432. }
  7433. rcu_read_unlock();
  7434. }
  7435. }
  7436. #ifdef CONFIG_FAIR_GROUP_SCHED
  7437. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7438. u64 shareval)
  7439. {
  7440. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7441. }
  7442. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7443. {
  7444. struct task_group *tg = cgroup_tg(cgrp);
  7445. return (u64) tg->shares;
  7446. }
  7447. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7448. #ifdef CONFIG_RT_GROUP_SCHED
  7449. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7450. s64 val)
  7451. {
  7452. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7453. }
  7454. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7455. {
  7456. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7457. }
  7458. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7459. u64 rt_period_us)
  7460. {
  7461. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7462. }
  7463. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7464. {
  7465. return sched_group_rt_period(cgroup_tg(cgrp));
  7466. }
  7467. #endif /* CONFIG_RT_GROUP_SCHED */
  7468. static struct cftype cpu_files[] = {
  7469. #ifdef CONFIG_FAIR_GROUP_SCHED
  7470. {
  7471. .name = "shares",
  7472. .read_u64 = cpu_shares_read_u64,
  7473. .write_u64 = cpu_shares_write_u64,
  7474. },
  7475. #endif
  7476. #ifdef CONFIG_RT_GROUP_SCHED
  7477. {
  7478. .name = "rt_runtime_us",
  7479. .read_s64 = cpu_rt_runtime_read,
  7480. .write_s64 = cpu_rt_runtime_write,
  7481. },
  7482. {
  7483. .name = "rt_period_us",
  7484. .read_u64 = cpu_rt_period_read_uint,
  7485. .write_u64 = cpu_rt_period_write_uint,
  7486. },
  7487. #endif
  7488. };
  7489. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7490. {
  7491. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7492. }
  7493. struct cgroup_subsys cpu_cgroup_subsys = {
  7494. .name = "cpu",
  7495. .create = cpu_cgroup_create,
  7496. .destroy = cpu_cgroup_destroy,
  7497. .can_attach = cpu_cgroup_can_attach,
  7498. .attach = cpu_cgroup_attach,
  7499. .populate = cpu_cgroup_populate,
  7500. .subsys_id = cpu_cgroup_subsys_id,
  7501. .early_init = 1,
  7502. };
  7503. #endif /* CONFIG_CGROUP_SCHED */
  7504. #ifdef CONFIG_CGROUP_CPUACCT
  7505. /*
  7506. * CPU accounting code for task groups.
  7507. *
  7508. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7509. * (balbir@in.ibm.com).
  7510. */
  7511. /* track cpu usage of a group of tasks and its child groups */
  7512. struct cpuacct {
  7513. struct cgroup_subsys_state css;
  7514. /* cpuusage holds pointer to a u64-type object on every cpu */
  7515. u64 __percpu *cpuusage;
  7516. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7517. struct cpuacct *parent;
  7518. };
  7519. struct cgroup_subsys cpuacct_subsys;
  7520. /* return cpu accounting group corresponding to this container */
  7521. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7522. {
  7523. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7524. struct cpuacct, css);
  7525. }
  7526. /* return cpu accounting group to which this task belongs */
  7527. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7528. {
  7529. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7530. struct cpuacct, css);
  7531. }
  7532. /* create a new cpu accounting group */
  7533. static struct cgroup_subsys_state *cpuacct_create(
  7534. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7535. {
  7536. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7537. int i;
  7538. if (!ca)
  7539. goto out;
  7540. ca->cpuusage = alloc_percpu(u64);
  7541. if (!ca->cpuusage)
  7542. goto out_free_ca;
  7543. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7544. if (percpu_counter_init(&ca->cpustat[i], 0))
  7545. goto out_free_counters;
  7546. if (cgrp->parent)
  7547. ca->parent = cgroup_ca(cgrp->parent);
  7548. return &ca->css;
  7549. out_free_counters:
  7550. while (--i >= 0)
  7551. percpu_counter_destroy(&ca->cpustat[i]);
  7552. free_percpu(ca->cpuusage);
  7553. out_free_ca:
  7554. kfree(ca);
  7555. out:
  7556. return ERR_PTR(-ENOMEM);
  7557. }
  7558. /* destroy an existing cpu accounting group */
  7559. static void
  7560. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7561. {
  7562. struct cpuacct *ca = cgroup_ca(cgrp);
  7563. int i;
  7564. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7565. percpu_counter_destroy(&ca->cpustat[i]);
  7566. free_percpu(ca->cpuusage);
  7567. kfree(ca);
  7568. }
  7569. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7570. {
  7571. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7572. u64 data;
  7573. #ifndef CONFIG_64BIT
  7574. /*
  7575. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7576. */
  7577. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7578. data = *cpuusage;
  7579. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7580. #else
  7581. data = *cpuusage;
  7582. #endif
  7583. return data;
  7584. }
  7585. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7586. {
  7587. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7588. #ifndef CONFIG_64BIT
  7589. /*
  7590. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7591. */
  7592. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7593. *cpuusage = val;
  7594. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7595. #else
  7596. *cpuusage = val;
  7597. #endif
  7598. }
  7599. /* return total cpu usage (in nanoseconds) of a group */
  7600. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7601. {
  7602. struct cpuacct *ca = cgroup_ca(cgrp);
  7603. u64 totalcpuusage = 0;
  7604. int i;
  7605. for_each_present_cpu(i)
  7606. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7607. return totalcpuusage;
  7608. }
  7609. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7610. u64 reset)
  7611. {
  7612. struct cpuacct *ca = cgroup_ca(cgrp);
  7613. int err = 0;
  7614. int i;
  7615. if (reset) {
  7616. err = -EINVAL;
  7617. goto out;
  7618. }
  7619. for_each_present_cpu(i)
  7620. cpuacct_cpuusage_write(ca, i, 0);
  7621. out:
  7622. return err;
  7623. }
  7624. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7625. struct seq_file *m)
  7626. {
  7627. struct cpuacct *ca = cgroup_ca(cgroup);
  7628. u64 percpu;
  7629. int i;
  7630. for_each_present_cpu(i) {
  7631. percpu = cpuacct_cpuusage_read(ca, i);
  7632. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7633. }
  7634. seq_printf(m, "\n");
  7635. return 0;
  7636. }
  7637. static const char *cpuacct_stat_desc[] = {
  7638. [CPUACCT_STAT_USER] = "user",
  7639. [CPUACCT_STAT_SYSTEM] = "system",
  7640. };
  7641. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7642. struct cgroup_map_cb *cb)
  7643. {
  7644. struct cpuacct *ca = cgroup_ca(cgrp);
  7645. int i;
  7646. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7647. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7648. val = cputime64_to_clock_t(val);
  7649. cb->fill(cb, cpuacct_stat_desc[i], val);
  7650. }
  7651. return 0;
  7652. }
  7653. static struct cftype files[] = {
  7654. {
  7655. .name = "usage",
  7656. .read_u64 = cpuusage_read,
  7657. .write_u64 = cpuusage_write,
  7658. },
  7659. {
  7660. .name = "usage_percpu",
  7661. .read_seq_string = cpuacct_percpu_seq_read,
  7662. },
  7663. {
  7664. .name = "stat",
  7665. .read_map = cpuacct_stats_show,
  7666. },
  7667. };
  7668. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7669. {
  7670. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7671. }
  7672. /*
  7673. * charge this task's execution time to its accounting group.
  7674. *
  7675. * called with rq->lock held.
  7676. */
  7677. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7678. {
  7679. struct cpuacct *ca;
  7680. int cpu;
  7681. if (unlikely(!cpuacct_subsys.active))
  7682. return;
  7683. cpu = task_cpu(tsk);
  7684. rcu_read_lock();
  7685. ca = task_ca(tsk);
  7686. for (; ca; ca = ca->parent) {
  7687. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7688. *cpuusage += cputime;
  7689. }
  7690. rcu_read_unlock();
  7691. }
  7692. /*
  7693. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7694. * in cputime_t units. As a result, cpuacct_update_stats calls
  7695. * percpu_counter_add with values large enough to always overflow the
  7696. * per cpu batch limit causing bad SMP scalability.
  7697. *
  7698. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7699. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7700. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7701. */
  7702. #ifdef CONFIG_SMP
  7703. #define CPUACCT_BATCH \
  7704. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7705. #else
  7706. #define CPUACCT_BATCH 0
  7707. #endif
  7708. /*
  7709. * Charge the system/user time to the task's accounting group.
  7710. */
  7711. static void cpuacct_update_stats(struct task_struct *tsk,
  7712. enum cpuacct_stat_index idx, cputime_t val)
  7713. {
  7714. struct cpuacct *ca;
  7715. int batch = CPUACCT_BATCH;
  7716. if (unlikely(!cpuacct_subsys.active))
  7717. return;
  7718. rcu_read_lock();
  7719. ca = task_ca(tsk);
  7720. do {
  7721. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7722. ca = ca->parent;
  7723. } while (ca);
  7724. rcu_read_unlock();
  7725. }
  7726. struct cgroup_subsys cpuacct_subsys = {
  7727. .name = "cpuacct",
  7728. .create = cpuacct_create,
  7729. .destroy = cpuacct_destroy,
  7730. .populate = cpuacct_populate,
  7731. .subsys_id = cpuacct_subsys_id,
  7732. };
  7733. #endif /* CONFIG_CGROUP_CPUACCT */
  7734. #ifndef CONFIG_SMP
  7735. void synchronize_sched_expedited(void)
  7736. {
  7737. barrier();
  7738. }
  7739. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7740. #else /* #ifndef CONFIG_SMP */
  7741. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7742. static int synchronize_sched_expedited_cpu_stop(void *data)
  7743. {
  7744. /*
  7745. * There must be a full memory barrier on each affected CPU
  7746. * between the time that try_stop_cpus() is called and the
  7747. * time that it returns.
  7748. *
  7749. * In the current initial implementation of cpu_stop, the
  7750. * above condition is already met when the control reaches
  7751. * this point and the following smp_mb() is not strictly
  7752. * necessary. Do smp_mb() anyway for documentation and
  7753. * robustness against future implementation changes.
  7754. */
  7755. smp_mb(); /* See above comment block. */
  7756. return 0;
  7757. }
  7758. /*
  7759. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7760. * approach to force grace period to end quickly. This consumes
  7761. * significant time on all CPUs, and is thus not recommended for
  7762. * any sort of common-case code.
  7763. *
  7764. * Note that it is illegal to call this function while holding any
  7765. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7766. * observe this restriction will result in deadlock.
  7767. */
  7768. void synchronize_sched_expedited(void)
  7769. {
  7770. int snap, trycount = 0;
  7771. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7772. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7773. get_online_cpus();
  7774. while (try_stop_cpus(cpu_online_mask,
  7775. synchronize_sched_expedited_cpu_stop,
  7776. NULL) == -EAGAIN) {
  7777. put_online_cpus();
  7778. if (trycount++ < 10)
  7779. udelay(trycount * num_online_cpus());
  7780. else {
  7781. synchronize_sched();
  7782. return;
  7783. }
  7784. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7785. smp_mb(); /* ensure test happens before caller kfree */
  7786. return;
  7787. }
  7788. get_online_cpus();
  7789. }
  7790. atomic_inc(&synchronize_sched_expedited_count);
  7791. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7792. put_online_cpus();
  7793. }
  7794. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7795. #endif /* #else #ifndef CONFIG_SMP */