sh_eth.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006,2007 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/version.h>
  23. #include <linux/init.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/delay.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/mdio-bitbang.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/phy.h>
  31. #include <linux/cache.h>
  32. #include <linux/io.h>
  33. #include "sh_eth.h"
  34. /*
  35. * Program the hardware MAC address from dev->dev_addr.
  36. */
  37. static void update_mac_address(struct net_device *ndev)
  38. {
  39. u32 ioaddr = ndev->base_addr;
  40. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  41. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  42. ioaddr + MAHR);
  43. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  44. ioaddr + MALR);
  45. }
  46. /*
  47. * Get MAC address from SuperH MAC address register
  48. *
  49. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  50. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  51. * When you want use this device, you must set MAC address in bootloader.
  52. *
  53. */
  54. static void read_mac_address(struct net_device *ndev)
  55. {
  56. u32 ioaddr = ndev->base_addr;
  57. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  58. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  59. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  60. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  61. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  62. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  63. }
  64. struct bb_info {
  65. struct mdiobb_ctrl ctrl;
  66. u32 addr;
  67. u32 mmd_msk;/* MMD */
  68. u32 mdo_msk;
  69. u32 mdi_msk;
  70. u32 mdc_msk;
  71. };
  72. /* PHY bit set */
  73. static void bb_set(u32 addr, u32 msk)
  74. {
  75. ctrl_outl(ctrl_inl(addr) | msk, addr);
  76. }
  77. /* PHY bit clear */
  78. static void bb_clr(u32 addr, u32 msk)
  79. {
  80. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  81. }
  82. /* PHY bit read */
  83. static int bb_read(u32 addr, u32 msk)
  84. {
  85. return (ctrl_inl(addr) & msk) != 0;
  86. }
  87. /* Data I/O pin control */
  88. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  89. {
  90. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  91. if (bit)
  92. bb_set(bitbang->addr, bitbang->mmd_msk);
  93. else
  94. bb_clr(bitbang->addr, bitbang->mmd_msk);
  95. }
  96. /* Set bit data*/
  97. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  98. {
  99. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  100. if (bit)
  101. bb_set(bitbang->addr, bitbang->mdo_msk);
  102. else
  103. bb_clr(bitbang->addr, bitbang->mdo_msk);
  104. }
  105. /* Get bit data*/
  106. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  107. {
  108. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  109. return bb_read(bitbang->addr, bitbang->mdi_msk);
  110. }
  111. /* MDC pin control */
  112. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  113. {
  114. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  115. if (bit)
  116. bb_set(bitbang->addr, bitbang->mdc_msk);
  117. else
  118. bb_clr(bitbang->addr, bitbang->mdc_msk);
  119. }
  120. /* mdio bus control struct */
  121. static struct mdiobb_ops bb_ops = {
  122. .owner = THIS_MODULE,
  123. .set_mdc = sh_mdc_ctrl,
  124. .set_mdio_dir = sh_mmd_ctrl,
  125. .set_mdio_data = sh_set_mdio,
  126. .get_mdio_data = sh_get_mdio,
  127. };
  128. static void sh_eth_reset(struct net_device *ndev)
  129. {
  130. u32 ioaddr = ndev->base_addr;
  131. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  132. mdelay(3);
  133. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  134. }
  135. /* free skb and descriptor buffer */
  136. static void sh_eth_ring_free(struct net_device *ndev)
  137. {
  138. struct sh_eth_private *mdp = netdev_priv(ndev);
  139. int i;
  140. /* Free Rx skb ringbuffer */
  141. if (mdp->rx_skbuff) {
  142. for (i = 0; i < RX_RING_SIZE; i++) {
  143. if (mdp->rx_skbuff[i])
  144. dev_kfree_skb(mdp->rx_skbuff[i]);
  145. }
  146. }
  147. kfree(mdp->rx_skbuff);
  148. /* Free Tx skb ringbuffer */
  149. if (mdp->tx_skbuff) {
  150. for (i = 0; i < TX_RING_SIZE; i++) {
  151. if (mdp->tx_skbuff[i])
  152. dev_kfree_skb(mdp->tx_skbuff[i]);
  153. }
  154. }
  155. kfree(mdp->tx_skbuff);
  156. }
  157. /* format skb and descriptor buffer */
  158. static void sh_eth_ring_format(struct net_device *ndev)
  159. {
  160. struct sh_eth_private *mdp = netdev_priv(ndev);
  161. int i;
  162. struct sk_buff *skb;
  163. struct sh_eth_rxdesc *rxdesc = NULL;
  164. struct sh_eth_txdesc *txdesc = NULL;
  165. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  166. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  167. mdp->cur_rx = mdp->cur_tx = 0;
  168. mdp->dirty_rx = mdp->dirty_tx = 0;
  169. memset(mdp->rx_ring, 0, rx_ringsize);
  170. /* build Rx ring buffer */
  171. for (i = 0; i < RX_RING_SIZE; i++) {
  172. /* skb */
  173. mdp->rx_skbuff[i] = NULL;
  174. skb = dev_alloc_skb(mdp->rx_buf_sz);
  175. mdp->rx_skbuff[i] = skb;
  176. if (skb == NULL)
  177. break;
  178. skb->dev = ndev; /* Mark as being used by this device. */
  179. skb_reserve(skb, RX_OFFSET);
  180. /* RX descriptor */
  181. rxdesc = &mdp->rx_ring[i];
  182. rxdesc->addr = (u32)skb->data & ~0x3UL;
  183. rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
  184. /* The size of the buffer is 16 byte boundary. */
  185. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  186. }
  187. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  188. /* Mark the last entry as wrapping the ring. */
  189. rxdesc->status |= cpu_to_le32(RC_RDEL);
  190. memset(mdp->tx_ring, 0, tx_ringsize);
  191. /* build Tx ring buffer */
  192. for (i = 0; i < TX_RING_SIZE; i++) {
  193. mdp->tx_skbuff[i] = NULL;
  194. txdesc = &mdp->tx_ring[i];
  195. txdesc->status = cpu_to_le32(TD_TFP);
  196. txdesc->buffer_length = 0;
  197. }
  198. txdesc->status |= cpu_to_le32(TD_TDLE);
  199. }
  200. /* Get skb and descriptor buffer */
  201. static int sh_eth_ring_init(struct net_device *ndev)
  202. {
  203. struct sh_eth_private *mdp = netdev_priv(ndev);
  204. int rx_ringsize, tx_ringsize, ret = 0;
  205. /*
  206. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  207. * card needs room to do 8 byte alignment, +2 so we can reserve
  208. * the first 2 bytes, and +16 gets room for the status word from the
  209. * card.
  210. */
  211. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  212. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  213. /* Allocate RX and TX skb rings */
  214. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  215. GFP_KERNEL);
  216. if (!mdp->rx_skbuff) {
  217. printk(KERN_ERR "%s: Cannot allocate Rx skb\n", ndev->name);
  218. ret = -ENOMEM;
  219. return ret;
  220. }
  221. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  222. GFP_KERNEL);
  223. if (!mdp->tx_skbuff) {
  224. printk(KERN_ERR "%s: Cannot allocate Tx skb\n", ndev->name);
  225. ret = -ENOMEM;
  226. goto skb_ring_free;
  227. }
  228. /* Allocate all Rx descriptors. */
  229. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  230. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  231. GFP_KERNEL);
  232. if (!mdp->rx_ring) {
  233. printk(KERN_ERR "%s: Cannot allocate Rx Ring (size %d bytes)\n",
  234. ndev->name, rx_ringsize);
  235. ret = -ENOMEM;
  236. goto desc_ring_free;
  237. }
  238. mdp->dirty_rx = 0;
  239. /* Allocate all Tx descriptors. */
  240. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  241. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  242. GFP_KERNEL);
  243. if (!mdp->tx_ring) {
  244. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  245. ndev->name, tx_ringsize);
  246. ret = -ENOMEM;
  247. goto desc_ring_free;
  248. }
  249. return ret;
  250. desc_ring_free:
  251. /* free DMA buffer */
  252. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  253. skb_ring_free:
  254. /* Free Rx and Tx skb ring buffer */
  255. sh_eth_ring_free(ndev);
  256. return ret;
  257. }
  258. static int sh_eth_dev_init(struct net_device *ndev)
  259. {
  260. int ret = 0;
  261. struct sh_eth_private *mdp = netdev_priv(ndev);
  262. u32 ioaddr = ndev->base_addr;
  263. u_int32_t rx_int_var, tx_int_var;
  264. u32 val;
  265. /* Soft Reset */
  266. sh_eth_reset(ndev);
  267. ctrl_outl(RPADIR_PADS1, ioaddr + RPADIR); /* SH7712-DMA-RX-PAD2 */
  268. /* all sh_eth int mask */
  269. ctrl_outl(0, ioaddr + EESIPR);
  270. /* FIFO size set */
  271. ctrl_outl(0, ioaddr + EDMR); /* Endian change */
  272. ctrl_outl((FIFO_SIZE_T | FIFO_SIZE_R), ioaddr + FDR);
  273. ctrl_outl(0, ioaddr + TFTR);
  274. ctrl_outl(RMCR_RST, ioaddr + RMCR);
  275. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  276. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  277. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  278. ctrl_outl((FIFO_F_D_RFF | FIFO_F_D_RFD), ioaddr + FCFTR);
  279. ctrl_outl(0, ioaddr + TRIMD);
  280. /* Descriptor format */
  281. sh_eth_ring_format(ndev);
  282. ctrl_outl((u32)mdp->rx_ring, ioaddr + RDLAR);
  283. ctrl_outl((u32)mdp->tx_ring, ioaddr + TDLAR);
  284. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  285. ctrl_outl((DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff), ioaddr + EESIPR);
  286. /* PAUSE Prohibition */
  287. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  288. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  289. ctrl_outl(val, ioaddr + ECMR);
  290. ctrl_outl(ECSR_BRCRX | ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD |
  291. ECSIPR_MPDIP, ioaddr + ECSR);
  292. ctrl_outl(ECSIPR_BRCRXIP | ECSIPR_PSRTOIP | ECSIPR_LCHNGIP |
  293. ECSIPR_ICDIP | ECSIPR_MPDIP, ioaddr + ECSIPR);
  294. /* Set MAC address */
  295. update_mac_address(ndev);
  296. /* mask reset */
  297. #if defined(CONFIG_CPU_SUBTYPE_SH7710)
  298. ctrl_outl(APR_AP, ioaddr + APR);
  299. ctrl_outl(MPR_MP, ioaddr + MPR);
  300. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  301. ctrl_outl(BCFR_UNLIMITED, ioaddr + BCFR);
  302. #endif
  303. /* Setting the Rx mode will start the Rx process. */
  304. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  305. netif_start_queue(ndev);
  306. return ret;
  307. }
  308. /* free Tx skb function */
  309. static int sh_eth_txfree(struct net_device *ndev)
  310. {
  311. struct sh_eth_private *mdp = netdev_priv(ndev);
  312. struct sh_eth_txdesc *txdesc;
  313. int freeNum = 0;
  314. int entry = 0;
  315. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  316. entry = mdp->dirty_tx % TX_RING_SIZE;
  317. txdesc = &mdp->tx_ring[entry];
  318. if (txdesc->status & cpu_to_le32(TD_TACT))
  319. break;
  320. /* Free the original skb. */
  321. if (mdp->tx_skbuff[entry]) {
  322. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  323. mdp->tx_skbuff[entry] = NULL;
  324. freeNum++;
  325. }
  326. txdesc->status = cpu_to_le32(TD_TFP);
  327. if (entry >= TX_RING_SIZE - 1)
  328. txdesc->status |= cpu_to_le32(TD_TDLE);
  329. mdp->stats.tx_packets++;
  330. mdp->stats.tx_bytes += txdesc->buffer_length;
  331. }
  332. return freeNum;
  333. }
  334. /* Packet receive function */
  335. static int sh_eth_rx(struct net_device *ndev)
  336. {
  337. struct sh_eth_private *mdp = netdev_priv(ndev);
  338. struct sh_eth_rxdesc *rxdesc;
  339. int entry = mdp->cur_rx % RX_RING_SIZE;
  340. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  341. struct sk_buff *skb;
  342. u16 pkt_len = 0;
  343. u32 desc_status;
  344. rxdesc = &mdp->rx_ring[entry];
  345. while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
  346. desc_status = le32_to_cpu(rxdesc->status);
  347. pkt_len = rxdesc->frame_length;
  348. if (--boguscnt < 0)
  349. break;
  350. if (!(desc_status & RDFEND))
  351. mdp->stats.rx_length_errors++;
  352. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  353. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  354. mdp->stats.rx_errors++;
  355. if (desc_status & RD_RFS1)
  356. mdp->stats.rx_crc_errors++;
  357. if (desc_status & RD_RFS2)
  358. mdp->stats.rx_frame_errors++;
  359. if (desc_status & RD_RFS3)
  360. mdp->stats.rx_length_errors++;
  361. if (desc_status & RD_RFS4)
  362. mdp->stats.rx_length_errors++;
  363. if (desc_status & RD_RFS6)
  364. mdp->stats.rx_missed_errors++;
  365. if (desc_status & RD_RFS10)
  366. mdp->stats.rx_over_errors++;
  367. } else {
  368. swaps((char *)(rxdesc->addr & ~0x3), pkt_len + 2);
  369. skb = mdp->rx_skbuff[entry];
  370. mdp->rx_skbuff[entry] = NULL;
  371. skb_put(skb, pkt_len);
  372. skb->protocol = eth_type_trans(skb, ndev);
  373. netif_rx(skb);
  374. ndev->last_rx = jiffies;
  375. mdp->stats.rx_packets++;
  376. mdp->stats.rx_bytes += pkt_len;
  377. }
  378. rxdesc->status |= cpu_to_le32(RD_RACT);
  379. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  380. }
  381. /* Refill the Rx ring buffers. */
  382. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  383. entry = mdp->dirty_rx % RX_RING_SIZE;
  384. rxdesc = &mdp->rx_ring[entry];
  385. if (mdp->rx_skbuff[entry] == NULL) {
  386. skb = dev_alloc_skb(mdp->rx_buf_sz);
  387. mdp->rx_skbuff[entry] = skb;
  388. if (skb == NULL)
  389. break; /* Better luck next round. */
  390. skb->dev = ndev;
  391. skb_reserve(skb, RX_OFFSET);
  392. rxdesc->addr = (u32)skb->data & ~0x3UL;
  393. }
  394. /* The size of the buffer is 16 byte boundary. */
  395. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  396. if (entry >= RX_RING_SIZE - 1)
  397. rxdesc->status |=
  398. cpu_to_le32(RD_RACT | RD_RFP | RC_RDEL);
  399. else
  400. rxdesc->status |=
  401. cpu_to_le32(RD_RACT | RD_RFP);
  402. }
  403. /* Restart Rx engine if stopped. */
  404. /* If we don't need to check status, don't. -KDU */
  405. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  406. return 0;
  407. }
  408. /* error control function */
  409. static void sh_eth_error(struct net_device *ndev, int intr_status)
  410. {
  411. struct sh_eth_private *mdp = netdev_priv(ndev);
  412. u32 ioaddr = ndev->base_addr;
  413. u32 felic_stat;
  414. if (intr_status & EESR_ECI) {
  415. felic_stat = ctrl_inl(ioaddr + ECSR);
  416. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  417. if (felic_stat & ECSR_ICD)
  418. mdp->stats.tx_carrier_errors++;
  419. if (felic_stat & ECSR_LCHNG) {
  420. /* Link Changed */
  421. u32 link_stat = (ctrl_inl(ioaddr + PSR));
  422. if (!(link_stat & PHY_ST_LINK)) {
  423. /* Link Down : disable tx and rx */
  424. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  425. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  426. } else {
  427. /* Link Up */
  428. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  429. ~DMAC_M_ECI, ioaddr + EESIPR);
  430. /*clear int */
  431. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  432. ioaddr + ECSR);
  433. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  434. DMAC_M_ECI, ioaddr + EESIPR);
  435. /* enable tx and rx */
  436. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  437. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  438. }
  439. }
  440. }
  441. if (intr_status & EESR_TWB) {
  442. /* Write buck end. unused write back interrupt */
  443. if (intr_status & EESR_TABT) /* Transmit Abort int */
  444. mdp->stats.tx_aborted_errors++;
  445. }
  446. if (intr_status & EESR_RABT) {
  447. /* Receive Abort int */
  448. if (intr_status & EESR_RFRMER) {
  449. /* Receive Frame Overflow int */
  450. mdp->stats.rx_frame_errors++;
  451. printk(KERN_ERR "Receive Frame Overflow\n");
  452. }
  453. }
  454. if (intr_status & EESR_ADE) {
  455. if (intr_status & EESR_TDE) {
  456. if (intr_status & EESR_TFE)
  457. mdp->stats.tx_fifo_errors++;
  458. }
  459. }
  460. if (intr_status & EESR_RDE) {
  461. /* Receive Descriptor Empty int */
  462. mdp->stats.rx_over_errors++;
  463. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  464. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  465. printk(KERN_ERR "Receive Descriptor Empty\n");
  466. }
  467. if (intr_status & EESR_RFE) {
  468. /* Receive FIFO Overflow int */
  469. mdp->stats.rx_fifo_errors++;
  470. printk(KERN_ERR "Receive FIFO Overflow\n");
  471. }
  472. if (intr_status &
  473. (EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE)) {
  474. /* Tx error */
  475. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  476. /* dmesg */
  477. printk(KERN_ERR "%s:TX error. status=%8.8x cur_tx=%8.8x ",
  478. ndev->name, intr_status, mdp->cur_tx);
  479. printk(KERN_ERR "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  480. mdp->dirty_tx, (u32) ndev->state, edtrr);
  481. /* dirty buffer free */
  482. sh_eth_txfree(ndev);
  483. /* SH7712 BUG */
  484. if (edtrr ^ EDTRR_TRNS) {
  485. /* tx dma start */
  486. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  487. }
  488. /* wakeup */
  489. netif_wake_queue(ndev);
  490. }
  491. }
  492. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  493. {
  494. struct net_device *ndev = netdev;
  495. struct sh_eth_private *mdp = netdev_priv(ndev);
  496. u32 ioaddr, boguscnt = RX_RING_SIZE;
  497. u32 intr_status = 0;
  498. ioaddr = ndev->base_addr;
  499. spin_lock(&mdp->lock);
  500. intr_status = ctrl_inl(ioaddr + EESR);
  501. /* Clear interrupt */
  502. ctrl_outl(intr_status, ioaddr + EESR);
  503. if (intr_status & (EESR_FRC | EESR_RINT8 |
  504. EESR_RINT5 | EESR_RINT4 | EESR_RINT3 | EESR_RINT2 |
  505. EESR_RINT1))
  506. sh_eth_rx(ndev);
  507. if (intr_status & (EESR_FTC |
  508. EESR_TINT4 | EESR_TINT3 | EESR_TINT2 | EESR_TINT1)) {
  509. sh_eth_txfree(ndev);
  510. netif_wake_queue(ndev);
  511. }
  512. if (intr_status & EESR_ERR_CHECK)
  513. sh_eth_error(ndev, intr_status);
  514. if (--boguscnt < 0) {
  515. printk(KERN_WARNING
  516. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  517. ndev->name, intr_status);
  518. }
  519. spin_unlock(&mdp->lock);
  520. return IRQ_HANDLED;
  521. }
  522. static void sh_eth_timer(unsigned long data)
  523. {
  524. struct net_device *ndev = (struct net_device *)data;
  525. struct sh_eth_private *mdp = netdev_priv(ndev);
  526. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  527. }
  528. /* PHY state control function */
  529. static void sh_eth_adjust_link(struct net_device *ndev)
  530. {
  531. struct sh_eth_private *mdp = netdev_priv(ndev);
  532. struct phy_device *phydev = mdp->phydev;
  533. u32 ioaddr = ndev->base_addr;
  534. int new_state = 0;
  535. if (phydev->link != PHY_DOWN) {
  536. if (phydev->duplex != mdp->duplex) {
  537. new_state = 1;
  538. mdp->duplex = phydev->duplex;
  539. }
  540. if (phydev->speed != mdp->speed) {
  541. new_state = 1;
  542. mdp->speed = phydev->speed;
  543. }
  544. if (mdp->link == PHY_DOWN) {
  545. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  546. | ECMR_DM, ioaddr + ECMR);
  547. new_state = 1;
  548. mdp->link = phydev->link;
  549. netif_schedule(ndev);
  550. netif_carrier_on(ndev);
  551. netif_start_queue(ndev);
  552. }
  553. } else if (mdp->link) {
  554. new_state = 1;
  555. mdp->link = PHY_DOWN;
  556. mdp->speed = 0;
  557. mdp->duplex = -1;
  558. netif_stop_queue(ndev);
  559. netif_carrier_off(ndev);
  560. }
  561. if (new_state)
  562. phy_print_status(phydev);
  563. }
  564. /* PHY init function */
  565. static int sh_eth_phy_init(struct net_device *ndev)
  566. {
  567. struct sh_eth_private *mdp = netdev_priv(ndev);
  568. char phy_id[BUS_ID_SIZE];
  569. struct phy_device *phydev = NULL;
  570. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT,
  571. mdp->mii_bus->id , mdp->phy_id);
  572. mdp->link = PHY_DOWN;
  573. mdp->speed = 0;
  574. mdp->duplex = -1;
  575. /* Try connect to PHY */
  576. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  577. 0, PHY_INTERFACE_MODE_MII);
  578. if (IS_ERR(phydev)) {
  579. dev_err(&ndev->dev, "phy_connect failed\n");
  580. return PTR_ERR(phydev);
  581. }
  582. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  583. phydev->addr, phydev->drv->name);
  584. mdp->phydev = phydev;
  585. return 0;
  586. }
  587. /* PHY control start function */
  588. static int sh_eth_phy_start(struct net_device *ndev)
  589. {
  590. struct sh_eth_private *mdp = netdev_priv(ndev);
  591. int ret;
  592. ret = sh_eth_phy_init(ndev);
  593. if (ret)
  594. return ret;
  595. /* reset phy - this also wakes it from PDOWN */
  596. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  597. phy_start(mdp->phydev);
  598. return 0;
  599. }
  600. /* network device open function */
  601. static int sh_eth_open(struct net_device *ndev)
  602. {
  603. int ret = 0;
  604. struct sh_eth_private *mdp = netdev_priv(ndev);
  605. ret = request_irq(ndev->irq, &sh_eth_interrupt, 0, ndev->name, ndev);
  606. if (ret) {
  607. printk(KERN_ERR "Can not assign IRQ number to %s\n", CARDNAME);
  608. return ret;
  609. }
  610. /* Descriptor set */
  611. ret = sh_eth_ring_init(ndev);
  612. if (ret)
  613. goto out_free_irq;
  614. /* device init */
  615. ret = sh_eth_dev_init(ndev);
  616. if (ret)
  617. goto out_free_irq;
  618. /* PHY control start*/
  619. ret = sh_eth_phy_start(ndev);
  620. if (ret)
  621. goto out_free_irq;
  622. /* Set the timer to check for link beat. */
  623. init_timer(&mdp->timer);
  624. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  625. setup_timer(&mdp->timer, sh_eth_timer, ndev);
  626. return ret;
  627. out_free_irq:
  628. free_irq(ndev->irq, ndev);
  629. return ret;
  630. }
  631. /* Timeout function */
  632. static void sh_eth_tx_timeout(struct net_device *ndev)
  633. {
  634. struct sh_eth_private *mdp = netdev_priv(ndev);
  635. u32 ioaddr = ndev->base_addr;
  636. struct sh_eth_rxdesc *rxdesc;
  637. int i;
  638. netif_stop_queue(ndev);
  639. /* worning message out. */
  640. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  641. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  642. /* tx_errors count up */
  643. mdp->stats.tx_errors++;
  644. /* timer off */
  645. del_timer_sync(&mdp->timer);
  646. /* Free all the skbuffs in the Rx queue. */
  647. for (i = 0; i < RX_RING_SIZE; i++) {
  648. rxdesc = &mdp->rx_ring[i];
  649. rxdesc->status = 0;
  650. rxdesc->addr = 0xBADF00D0;
  651. if (mdp->rx_skbuff[i])
  652. dev_kfree_skb(mdp->rx_skbuff[i]);
  653. mdp->rx_skbuff[i] = NULL;
  654. }
  655. for (i = 0; i < TX_RING_SIZE; i++) {
  656. if (mdp->tx_skbuff[i])
  657. dev_kfree_skb(mdp->tx_skbuff[i]);
  658. mdp->tx_skbuff[i] = NULL;
  659. }
  660. /* device init */
  661. sh_eth_dev_init(ndev);
  662. /* timer on */
  663. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  664. add_timer(&mdp->timer);
  665. }
  666. /* Packet transmit function */
  667. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  668. {
  669. struct sh_eth_private *mdp = netdev_priv(ndev);
  670. struct sh_eth_txdesc *txdesc;
  671. u32 entry;
  672. int flags;
  673. spin_lock_irqsave(&mdp->lock, flags);
  674. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  675. if (!sh_eth_txfree(ndev)) {
  676. netif_stop_queue(ndev);
  677. spin_unlock_irqrestore(&mdp->lock, flags);
  678. return 1;
  679. }
  680. }
  681. spin_unlock_irqrestore(&mdp->lock, flags);
  682. entry = mdp->cur_tx % TX_RING_SIZE;
  683. mdp->tx_skbuff[entry] = skb;
  684. txdesc = &mdp->tx_ring[entry];
  685. txdesc->addr = (u32)(skb->data);
  686. /* soft swap. */
  687. swaps((char *)(txdesc->addr & ~0x3), skb->len + 2);
  688. /* write back */
  689. __flush_purge_region(skb->data, skb->len);
  690. if (skb->len < ETHERSMALL)
  691. txdesc->buffer_length = ETHERSMALL;
  692. else
  693. txdesc->buffer_length = skb->len;
  694. if (entry >= TX_RING_SIZE - 1)
  695. txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
  696. else
  697. txdesc->status |= cpu_to_le32(TD_TACT);
  698. mdp->cur_tx++;
  699. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  700. ndev->trans_start = jiffies;
  701. return 0;
  702. }
  703. /* device close function */
  704. static int sh_eth_close(struct net_device *ndev)
  705. {
  706. struct sh_eth_private *mdp = netdev_priv(ndev);
  707. u32 ioaddr = ndev->base_addr;
  708. int ringsize;
  709. netif_stop_queue(ndev);
  710. /* Disable interrupts by clearing the interrupt mask. */
  711. ctrl_outl(0x0000, ioaddr + EESIPR);
  712. /* Stop the chip's Tx and Rx processes. */
  713. ctrl_outl(0, ioaddr + EDTRR);
  714. ctrl_outl(0, ioaddr + EDRRR);
  715. /* PHY Disconnect */
  716. if (mdp->phydev) {
  717. phy_stop(mdp->phydev);
  718. phy_disconnect(mdp->phydev);
  719. }
  720. free_irq(ndev->irq, ndev);
  721. del_timer_sync(&mdp->timer);
  722. /* Free all the skbuffs in the Rx queue. */
  723. sh_eth_ring_free(ndev);
  724. /* free DMA buffer */
  725. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  726. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  727. /* free DMA buffer */
  728. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  729. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  730. return 0;
  731. }
  732. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  733. {
  734. struct sh_eth_private *mdp = netdev_priv(ndev);
  735. u32 ioaddr = ndev->base_addr;
  736. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  737. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  738. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  739. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  740. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  741. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  742. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  743. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  744. return &mdp->stats;
  745. }
  746. /* ioctl to device funciotn*/
  747. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  748. int cmd)
  749. {
  750. struct sh_eth_private *mdp = netdev_priv(ndev);
  751. struct phy_device *phydev = mdp->phydev;
  752. if (!netif_running(ndev))
  753. return -EINVAL;
  754. if (!phydev)
  755. return -ENODEV;
  756. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  757. }
  758. /* Multicast reception directions set */
  759. static void sh_eth_set_multicast_list(struct net_device *ndev)
  760. {
  761. u32 ioaddr = ndev->base_addr;
  762. if (ndev->flags & IFF_PROMISC) {
  763. /* Set promiscuous. */
  764. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  765. ioaddr + ECMR);
  766. } else {
  767. /* Normal, unicast/broadcast-only mode. */
  768. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  769. ioaddr + ECMR);
  770. }
  771. }
  772. /* SuperH's TSU register init function */
  773. static void sh_eth_tsu_init(u32 ioaddr)
  774. {
  775. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  776. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  777. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  778. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  779. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  780. ctrl_outl(0, ioaddr + TSU_PRISL0);
  781. ctrl_outl(0, ioaddr + TSU_PRISL1);
  782. ctrl_outl(0, ioaddr + TSU_FWSL0);
  783. ctrl_outl(0, ioaddr + TSU_FWSL1);
  784. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  785. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  786. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  787. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  788. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  789. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  790. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  791. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  792. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  793. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  794. }
  795. /* MDIO bus release function */
  796. static int sh_mdio_release(struct net_device *ndev)
  797. {
  798. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  799. /* unregister mdio bus */
  800. mdiobus_unregister(bus);
  801. /* remove mdio bus info from net_device */
  802. dev_set_drvdata(&ndev->dev, NULL);
  803. /* free bitbang info */
  804. free_mdio_bitbang(bus);
  805. return 0;
  806. }
  807. /* MDIO bus init function */
  808. static int sh_mdio_init(struct net_device *ndev, int id)
  809. {
  810. int ret, i;
  811. struct bb_info *bitbang;
  812. struct sh_eth_private *mdp = netdev_priv(ndev);
  813. /* create bit control struct for PHY */
  814. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  815. if (!bitbang) {
  816. ret = -ENOMEM;
  817. goto out;
  818. }
  819. /* bitbang init */
  820. bitbang->addr = ndev->base_addr + PIR;
  821. bitbang->mdi_msk = 0x08;
  822. bitbang->mdo_msk = 0x04;
  823. bitbang->mmd_msk = 0x02;/* MMD */
  824. bitbang->mdc_msk = 0x01;
  825. bitbang->ctrl.ops = &bb_ops;
  826. /* MII contorller setting */
  827. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  828. if (!mdp->mii_bus) {
  829. ret = -ENOMEM;
  830. goto out_free_bitbang;
  831. }
  832. /* Hook up MII support for ethtool */
  833. mdp->mii_bus->name = "sh_mii";
  834. mdp->mii_bus->dev = &ndev->dev;
  835. mdp->mii_bus->id = id;
  836. /* PHY IRQ */
  837. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  838. if (!mdp->mii_bus->irq) {
  839. ret = -ENOMEM;
  840. goto out_free_bus;
  841. }
  842. for (i = 0; i < PHY_MAX_ADDR; i++)
  843. mdp->mii_bus->irq[i] = PHY_POLL;
  844. /* regist mdio bus */
  845. ret = mdiobus_register(mdp->mii_bus);
  846. if (ret)
  847. goto out_free_irq;
  848. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  849. return 0;
  850. out_free_irq:
  851. kfree(mdp->mii_bus->irq);
  852. out_free_bus:
  853. kfree(mdp->mii_bus);
  854. out_free_bitbang:
  855. kfree(bitbang);
  856. out:
  857. return ret;
  858. }
  859. static int sh_eth_drv_probe(struct platform_device *pdev)
  860. {
  861. int ret, i, devno = 0;
  862. struct resource *res;
  863. struct net_device *ndev = NULL;
  864. struct sh_eth_private *mdp;
  865. /* get base addr */
  866. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  867. if (unlikely(res == NULL)) {
  868. dev_err(&pdev->dev, "invalid resource\n");
  869. ret = -EINVAL;
  870. goto out;
  871. }
  872. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  873. if (!ndev) {
  874. printk(KERN_ERR "%s: could not allocate device.\n", CARDNAME);
  875. ret = -ENOMEM;
  876. goto out;
  877. }
  878. /* The sh Ether-specific entries in the device structure. */
  879. ndev->base_addr = res->start;
  880. devno = pdev->id;
  881. if (devno < 0)
  882. devno = 0;
  883. ndev->dma = -1;
  884. ndev->irq = platform_get_irq(pdev, 0);
  885. if (ndev->irq < 0) {
  886. ret = -ENODEV;
  887. goto out_release;
  888. }
  889. SET_NETDEV_DEV(ndev, &pdev->dev);
  890. /* Fill in the fields of the device structure with ethernet values. */
  891. ether_setup(ndev);
  892. mdp = netdev_priv(ndev);
  893. spin_lock_init(&mdp->lock);
  894. /* get PHY ID */
  895. mdp->phy_id = (int)pdev->dev.platform_data;
  896. /* set function */
  897. ndev->open = sh_eth_open;
  898. ndev->hard_start_xmit = sh_eth_start_xmit;
  899. ndev->stop = sh_eth_close;
  900. ndev->get_stats = sh_eth_get_stats;
  901. ndev->set_multicast_list = sh_eth_set_multicast_list;
  902. ndev->do_ioctl = sh_eth_do_ioctl;
  903. ndev->tx_timeout = sh_eth_tx_timeout;
  904. ndev->watchdog_timeo = TX_TIMEOUT;
  905. mdp->post_rx = POST_RX >> (devno << 1);
  906. mdp->post_fw = POST_FW >> (devno << 1);
  907. /* read and set MAC address */
  908. read_mac_address(ndev);
  909. /* First device only init */
  910. if (!devno) {
  911. /* reset device */
  912. ctrl_outl(ARSTR_ARSTR, ndev->base_addr + ARSTR);
  913. mdelay(1);
  914. /* TSU init (Init only)*/
  915. sh_eth_tsu_init(SH_TSU_ADDR);
  916. }
  917. /* network device register */
  918. ret = register_netdev(ndev);
  919. if (ret)
  920. goto out_release;
  921. /* mdio bus init */
  922. ret = sh_mdio_init(ndev, pdev->id);
  923. if (ret)
  924. goto out_unregister;
  925. /* pritnt device infomation */
  926. printk(KERN_INFO "%s: %s at 0x%x, ",
  927. ndev->name, CARDNAME, (u32) ndev->base_addr);
  928. for (i = 0; i < 5; i++)
  929. printk(KERN_INFO "%2.2x:", ndev->dev_addr[i]);
  930. printk(KERN_INFO "%2.2x, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  931. platform_set_drvdata(pdev, ndev);
  932. return ret;
  933. out_unregister:
  934. unregister_netdev(ndev);
  935. out_release:
  936. /* net_dev free */
  937. if (ndev)
  938. free_netdev(ndev);
  939. out:
  940. return ret;
  941. }
  942. static int sh_eth_drv_remove(struct platform_device *pdev)
  943. {
  944. struct net_device *ndev = platform_get_drvdata(pdev);
  945. sh_mdio_release(ndev);
  946. unregister_netdev(ndev);
  947. flush_scheduled_work();
  948. free_netdev(ndev);
  949. platform_set_drvdata(pdev, NULL);
  950. return 0;
  951. }
  952. static struct platform_driver sh_eth_driver = {
  953. .probe = sh_eth_drv_probe,
  954. .remove = sh_eth_drv_remove,
  955. .driver = {
  956. .name = CARDNAME,
  957. },
  958. };
  959. static int __init sh_eth_init(void)
  960. {
  961. return platform_driver_register(&sh_eth_driver);
  962. }
  963. static void __exit sh_eth_cleanup(void)
  964. {
  965. platform_driver_unregister(&sh_eth_driver);
  966. }
  967. module_init(sh_eth_init);
  968. module_exit(sh_eth_cleanup);
  969. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  970. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  971. MODULE_LICENSE("GPL v2");