loop.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/config.h>
  53. #include <linux/module.h>
  54. #include <linux/moduleparam.h>
  55. #include <linux/sched.h>
  56. #include <linux/fs.h>
  57. #include <linux/file.h>
  58. #include <linux/stat.h>
  59. #include <linux/errno.h>
  60. #include <linux/major.h>
  61. #include <linux/wait.h>
  62. #include <linux/blkdev.h>
  63. #include <linux/blkpg.h>
  64. #include <linux/init.h>
  65. #include <linux/smp_lock.h>
  66. #include <linux/swap.h>
  67. #include <linux/slab.h>
  68. #include <linux/loop.h>
  69. #include <linux/suspend.h>
  70. #include <linux/writeback.h>
  71. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  72. #include <linux/completion.h>
  73. #include <linux/highmem.h>
  74. #include <linux/gfp.h>
  75. #include <asm/uaccess.h>
  76. static int max_loop = 8;
  77. static struct loop_device *loop_dev;
  78. static struct gendisk **disks;
  79. /*
  80. * Transfer functions
  81. */
  82. static int transfer_none(struct loop_device *lo, int cmd,
  83. struct page *raw_page, unsigned raw_off,
  84. struct page *loop_page, unsigned loop_off,
  85. int size, sector_t real_block)
  86. {
  87. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  88. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  89. if (cmd == READ)
  90. memcpy(loop_buf, raw_buf, size);
  91. else
  92. memcpy(raw_buf, loop_buf, size);
  93. kunmap_atomic(raw_buf, KM_USER0);
  94. kunmap_atomic(loop_buf, KM_USER1);
  95. cond_resched();
  96. return 0;
  97. }
  98. static int transfer_xor(struct loop_device *lo, int cmd,
  99. struct page *raw_page, unsigned raw_off,
  100. struct page *loop_page, unsigned loop_off,
  101. int size, sector_t real_block)
  102. {
  103. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  104. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  105. char *in, *out, *key;
  106. int i, keysize;
  107. if (cmd == READ) {
  108. in = raw_buf;
  109. out = loop_buf;
  110. } else {
  111. in = loop_buf;
  112. out = raw_buf;
  113. }
  114. key = lo->lo_encrypt_key;
  115. keysize = lo->lo_encrypt_key_size;
  116. for (i = 0; i < size; i++)
  117. *out++ = *in++ ^ key[(i & 511) % keysize];
  118. kunmap_atomic(raw_buf, KM_USER0);
  119. kunmap_atomic(loop_buf, KM_USER1);
  120. cond_resched();
  121. return 0;
  122. }
  123. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  124. {
  125. if (unlikely(info->lo_encrypt_key_size <= 0))
  126. return -EINVAL;
  127. return 0;
  128. }
  129. static struct loop_func_table none_funcs = {
  130. .number = LO_CRYPT_NONE,
  131. .transfer = transfer_none,
  132. };
  133. static struct loop_func_table xor_funcs = {
  134. .number = LO_CRYPT_XOR,
  135. .transfer = transfer_xor,
  136. .init = xor_init
  137. };
  138. /* xfer_funcs[0] is special - its release function is never called */
  139. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  140. &none_funcs,
  141. &xor_funcs
  142. };
  143. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  144. {
  145. loff_t size, offset, loopsize;
  146. /* Compute loopsize in bytes */
  147. size = i_size_read(file->f_mapping->host);
  148. offset = lo->lo_offset;
  149. loopsize = size - offset;
  150. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  151. loopsize = lo->lo_sizelimit;
  152. /*
  153. * Unfortunately, if we want to do I/O on the device,
  154. * the number of 512-byte sectors has to fit into a sector_t.
  155. */
  156. return loopsize >> 9;
  157. }
  158. static int
  159. figure_loop_size(struct loop_device *lo)
  160. {
  161. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  162. sector_t x = (sector_t)size;
  163. if (unlikely((loff_t)x != size))
  164. return -EFBIG;
  165. set_capacity(disks[lo->lo_number], x);
  166. return 0;
  167. }
  168. static inline int
  169. lo_do_transfer(struct loop_device *lo, int cmd,
  170. struct page *rpage, unsigned roffs,
  171. struct page *lpage, unsigned loffs,
  172. int size, sector_t rblock)
  173. {
  174. if (unlikely(!lo->transfer))
  175. return 0;
  176. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  177. }
  178. /**
  179. * do_lo_send_aops - helper for writing data to a loop device
  180. *
  181. * This is the fast version for backing filesystems which implement the address
  182. * space operations prepare_write and commit_write.
  183. */
  184. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  185. int bsize, loff_t pos, struct page *page)
  186. {
  187. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  188. struct address_space *mapping = file->f_mapping;
  189. struct address_space_operations *aops = mapping->a_ops;
  190. pgoff_t index;
  191. unsigned offset, bv_offs;
  192. int len, ret;
  193. mutex_lock(&mapping->host->i_mutex);
  194. index = pos >> PAGE_CACHE_SHIFT;
  195. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  196. bv_offs = bvec->bv_offset;
  197. len = bvec->bv_len;
  198. while (len > 0) {
  199. sector_t IV;
  200. unsigned size;
  201. int transfer_result;
  202. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  203. size = PAGE_CACHE_SIZE - offset;
  204. if (size > len)
  205. size = len;
  206. page = grab_cache_page(mapping, index);
  207. if (unlikely(!page))
  208. goto fail;
  209. ret = aops->prepare_write(file, page, offset,
  210. offset + size);
  211. if (unlikely(ret)) {
  212. if (ret == AOP_TRUNCATED_PAGE) {
  213. page_cache_release(page);
  214. continue;
  215. }
  216. goto unlock;
  217. }
  218. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  219. bvec->bv_page, bv_offs, size, IV);
  220. if (unlikely(transfer_result)) {
  221. char *kaddr;
  222. /*
  223. * The transfer failed, but we still write the data to
  224. * keep prepare/commit calls balanced.
  225. */
  226. printk(KERN_ERR "loop: transfer error block %llu\n",
  227. (unsigned long long)index);
  228. kaddr = kmap_atomic(page, KM_USER0);
  229. memset(kaddr + offset, 0, size);
  230. kunmap_atomic(kaddr, KM_USER0);
  231. }
  232. flush_dcache_page(page);
  233. ret = aops->commit_write(file, page, offset,
  234. offset + size);
  235. if (unlikely(ret)) {
  236. if (ret == AOP_TRUNCATED_PAGE) {
  237. page_cache_release(page);
  238. continue;
  239. }
  240. goto unlock;
  241. }
  242. if (unlikely(transfer_result))
  243. goto unlock;
  244. bv_offs += size;
  245. len -= size;
  246. offset = 0;
  247. index++;
  248. pos += size;
  249. unlock_page(page);
  250. page_cache_release(page);
  251. }
  252. ret = 0;
  253. out:
  254. mutex_unlock(&mapping->host->i_mutex);
  255. return ret;
  256. unlock:
  257. unlock_page(page);
  258. page_cache_release(page);
  259. fail:
  260. ret = -1;
  261. goto out;
  262. }
  263. /**
  264. * __do_lo_send_write - helper for writing data to a loop device
  265. *
  266. * This helper just factors out common code between do_lo_send_direct_write()
  267. * and do_lo_send_write().
  268. */
  269. static int __do_lo_send_write(struct file *file,
  270. u8 __user *buf, const int len, loff_t pos)
  271. {
  272. ssize_t bw;
  273. mm_segment_t old_fs = get_fs();
  274. set_fs(get_ds());
  275. bw = file->f_op->write(file, buf, len, &pos);
  276. set_fs(old_fs);
  277. if (likely(bw == len))
  278. return 0;
  279. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  280. (unsigned long long)pos, len);
  281. if (bw >= 0)
  282. bw = -EIO;
  283. return bw;
  284. }
  285. /**
  286. * do_lo_send_direct_write - helper for writing data to a loop device
  287. *
  288. * This is the fast, non-transforming version for backing filesystems which do
  289. * not implement the address space operations prepare_write and commit_write.
  290. * It uses the write file operation which should be present on all writeable
  291. * filesystems.
  292. */
  293. static int do_lo_send_direct_write(struct loop_device *lo,
  294. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  295. {
  296. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  297. (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
  298. bvec->bv_len, pos);
  299. kunmap(bvec->bv_page);
  300. cond_resched();
  301. return bw;
  302. }
  303. /**
  304. * do_lo_send_write - helper for writing data to a loop device
  305. *
  306. * This is the slow, transforming version for filesystems which do not
  307. * implement the address space operations prepare_write and commit_write. It
  308. * uses the write file operation which should be present on all writeable
  309. * filesystems.
  310. *
  311. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  312. * transforming case because we need to double buffer the data as we cannot do
  313. * the transformations in place as we do not have direct access to the
  314. * destination pages of the backing file.
  315. */
  316. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  317. int bsize, loff_t pos, struct page *page)
  318. {
  319. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  320. bvec->bv_offset, bvec->bv_len, pos >> 9);
  321. if (likely(!ret))
  322. return __do_lo_send_write(lo->lo_backing_file,
  323. (u8 __user *)page_address(page), bvec->bv_len,
  324. pos);
  325. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  326. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  327. if (ret > 0)
  328. ret = -EIO;
  329. return ret;
  330. }
  331. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  332. loff_t pos)
  333. {
  334. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  335. struct page *page);
  336. struct bio_vec *bvec;
  337. struct page *page = NULL;
  338. int i, ret = 0;
  339. do_lo_send = do_lo_send_aops;
  340. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  341. do_lo_send = do_lo_send_direct_write;
  342. if (lo->transfer != transfer_none) {
  343. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  344. if (unlikely(!page))
  345. goto fail;
  346. kmap(page);
  347. do_lo_send = do_lo_send_write;
  348. }
  349. }
  350. bio_for_each_segment(bvec, bio, i) {
  351. ret = do_lo_send(lo, bvec, bsize, pos, page);
  352. if (ret < 0)
  353. break;
  354. pos += bvec->bv_len;
  355. }
  356. if (page) {
  357. kunmap(page);
  358. __free_page(page);
  359. }
  360. out:
  361. return ret;
  362. fail:
  363. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  364. ret = -ENOMEM;
  365. goto out;
  366. }
  367. struct lo_read_data {
  368. struct loop_device *lo;
  369. struct page *page;
  370. unsigned offset;
  371. int bsize;
  372. };
  373. static int
  374. lo_read_actor(read_descriptor_t *desc, struct page *page,
  375. unsigned long offset, unsigned long size)
  376. {
  377. unsigned long count = desc->count;
  378. struct lo_read_data *p = desc->arg.data;
  379. struct loop_device *lo = p->lo;
  380. sector_t IV;
  381. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  382. if (size > count)
  383. size = count;
  384. if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
  385. size = 0;
  386. printk(KERN_ERR "loop: transfer error block %ld\n",
  387. page->index);
  388. desc->error = -EINVAL;
  389. }
  390. flush_dcache_page(p->page);
  391. desc->count = count - size;
  392. desc->written += size;
  393. p->offset += size;
  394. return size;
  395. }
  396. static int
  397. do_lo_receive(struct loop_device *lo,
  398. struct bio_vec *bvec, int bsize, loff_t pos)
  399. {
  400. struct lo_read_data cookie;
  401. struct file *file;
  402. int retval;
  403. cookie.lo = lo;
  404. cookie.page = bvec->bv_page;
  405. cookie.offset = bvec->bv_offset;
  406. cookie.bsize = bsize;
  407. file = lo->lo_backing_file;
  408. retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
  409. lo_read_actor, &cookie);
  410. return (retval < 0)? retval: 0;
  411. }
  412. static int
  413. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  414. {
  415. struct bio_vec *bvec;
  416. int i, ret = 0;
  417. bio_for_each_segment(bvec, bio, i) {
  418. ret = do_lo_receive(lo, bvec, bsize, pos);
  419. if (ret < 0)
  420. break;
  421. pos += bvec->bv_len;
  422. }
  423. return ret;
  424. }
  425. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  426. {
  427. loff_t pos;
  428. int ret;
  429. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  430. if (bio_rw(bio) == WRITE)
  431. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  432. else
  433. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  434. return ret;
  435. }
  436. /*
  437. * Add bio to back of pending list
  438. */
  439. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  440. {
  441. if (lo->lo_biotail) {
  442. lo->lo_biotail->bi_next = bio;
  443. lo->lo_biotail = bio;
  444. } else
  445. lo->lo_bio = lo->lo_biotail = bio;
  446. }
  447. /*
  448. * Grab first pending buffer
  449. */
  450. static struct bio *loop_get_bio(struct loop_device *lo)
  451. {
  452. struct bio *bio;
  453. if ((bio = lo->lo_bio)) {
  454. if (bio == lo->lo_biotail)
  455. lo->lo_biotail = NULL;
  456. lo->lo_bio = bio->bi_next;
  457. bio->bi_next = NULL;
  458. }
  459. return bio;
  460. }
  461. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  462. {
  463. struct loop_device *lo = q->queuedata;
  464. int rw = bio_rw(old_bio);
  465. if (rw == READA)
  466. rw = READ;
  467. BUG_ON(!lo || (rw != READ && rw != WRITE));
  468. spin_lock_irq(&lo->lo_lock);
  469. if (lo->lo_state != Lo_bound)
  470. goto out;
  471. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  472. goto out;
  473. lo->lo_pending++;
  474. loop_add_bio(lo, old_bio);
  475. spin_unlock_irq(&lo->lo_lock);
  476. complete(&lo->lo_bh_done);
  477. return 0;
  478. out:
  479. if (lo->lo_pending == 0)
  480. complete(&lo->lo_bh_done);
  481. spin_unlock_irq(&lo->lo_lock);
  482. bio_io_error(old_bio, old_bio->bi_size);
  483. return 0;
  484. }
  485. /*
  486. * kick off io on the underlying address space
  487. */
  488. static void loop_unplug(request_queue_t *q)
  489. {
  490. struct loop_device *lo = q->queuedata;
  491. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  492. blk_run_address_space(lo->lo_backing_file->f_mapping);
  493. }
  494. struct switch_request {
  495. struct file *file;
  496. struct completion wait;
  497. };
  498. static void do_loop_switch(struct loop_device *, struct switch_request *);
  499. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  500. {
  501. if (unlikely(!bio->bi_bdev)) {
  502. do_loop_switch(lo, bio->bi_private);
  503. bio_put(bio);
  504. } else {
  505. int ret = do_bio_filebacked(lo, bio);
  506. bio_endio(bio, bio->bi_size, ret);
  507. }
  508. }
  509. /*
  510. * worker thread that handles reads/writes to file backed loop devices,
  511. * to avoid blocking in our make_request_fn. it also does loop decrypting
  512. * on reads for block backed loop, as that is too heavy to do from
  513. * b_end_io context where irqs may be disabled.
  514. */
  515. static int loop_thread(void *data)
  516. {
  517. struct loop_device *lo = data;
  518. struct bio *bio;
  519. daemonize("loop%d", lo->lo_number);
  520. /*
  521. * loop can be used in an encrypted device,
  522. * hence, it mustn't be stopped at all
  523. * because it could be indirectly used during suspension
  524. */
  525. current->flags |= PF_NOFREEZE;
  526. set_user_nice(current, -20);
  527. lo->lo_state = Lo_bound;
  528. lo->lo_pending = 1;
  529. /*
  530. * complete it, we are running
  531. */
  532. complete(&lo->lo_done);
  533. for (;;) {
  534. int pending;
  535. if (wait_for_completion_interruptible(&lo->lo_bh_done))
  536. continue;
  537. spin_lock_irq(&lo->lo_lock);
  538. /*
  539. * could be completed because of tear-down, not pending work
  540. */
  541. if (unlikely(!lo->lo_pending)) {
  542. spin_unlock_irq(&lo->lo_lock);
  543. break;
  544. }
  545. bio = loop_get_bio(lo);
  546. lo->lo_pending--;
  547. pending = lo->lo_pending;
  548. spin_unlock_irq(&lo->lo_lock);
  549. BUG_ON(!bio);
  550. loop_handle_bio(lo, bio);
  551. /*
  552. * upped both for pending work and tear-down, lo_pending
  553. * will hit zero then
  554. */
  555. if (unlikely(!pending))
  556. break;
  557. }
  558. complete(&lo->lo_done);
  559. return 0;
  560. }
  561. /*
  562. * loop_switch performs the hard work of switching a backing store.
  563. * First it needs to flush existing IO, it does this by sending a magic
  564. * BIO down the pipe. The completion of this BIO does the actual switch.
  565. */
  566. static int loop_switch(struct loop_device *lo, struct file *file)
  567. {
  568. struct switch_request w;
  569. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  570. if (!bio)
  571. return -ENOMEM;
  572. init_completion(&w.wait);
  573. w.file = file;
  574. bio->bi_private = &w;
  575. bio->bi_bdev = NULL;
  576. loop_make_request(lo->lo_queue, bio);
  577. wait_for_completion(&w.wait);
  578. return 0;
  579. }
  580. /*
  581. * Do the actual switch; called from the BIO completion routine
  582. */
  583. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  584. {
  585. struct file *file = p->file;
  586. struct file *old_file = lo->lo_backing_file;
  587. struct address_space *mapping = file->f_mapping;
  588. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  589. lo->lo_backing_file = file;
  590. lo->lo_blocksize = mapping->host->i_blksize;
  591. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  592. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  593. complete(&p->wait);
  594. }
  595. /*
  596. * loop_change_fd switched the backing store of a loopback device to
  597. * a new file. This is useful for operating system installers to free up
  598. * the original file and in High Availability environments to switch to
  599. * an alternative location for the content in case of server meltdown.
  600. * This can only work if the loop device is used read-only, and if the
  601. * new backing store is the same size and type as the old backing store.
  602. */
  603. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  604. struct block_device *bdev, unsigned int arg)
  605. {
  606. struct file *file, *old_file;
  607. struct inode *inode;
  608. int error;
  609. error = -ENXIO;
  610. if (lo->lo_state != Lo_bound)
  611. goto out;
  612. /* the loop device has to be read-only */
  613. error = -EINVAL;
  614. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  615. goto out;
  616. error = -EBADF;
  617. file = fget(arg);
  618. if (!file)
  619. goto out;
  620. inode = file->f_mapping->host;
  621. old_file = lo->lo_backing_file;
  622. error = -EINVAL;
  623. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  624. goto out_putf;
  625. /* new backing store needs to support loop (eg sendfile) */
  626. if (!inode->i_fop->sendfile)
  627. goto out_putf;
  628. /* size of the new backing store needs to be the same */
  629. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  630. goto out_putf;
  631. /* and ... switch */
  632. error = loop_switch(lo, file);
  633. if (error)
  634. goto out_putf;
  635. fput(old_file);
  636. return 0;
  637. out_putf:
  638. fput(file);
  639. out:
  640. return error;
  641. }
  642. static inline int is_loop_device(struct file *file)
  643. {
  644. struct inode *i = file->f_mapping->host;
  645. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  646. }
  647. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  648. struct block_device *bdev, unsigned int arg)
  649. {
  650. struct file *file, *f;
  651. struct inode *inode;
  652. struct address_space *mapping;
  653. unsigned lo_blocksize;
  654. int lo_flags = 0;
  655. int error;
  656. loff_t size;
  657. /* This is safe, since we have a reference from open(). */
  658. __module_get(THIS_MODULE);
  659. error = -EBADF;
  660. file = fget(arg);
  661. if (!file)
  662. goto out;
  663. error = -EBUSY;
  664. if (lo->lo_state != Lo_unbound)
  665. goto out_putf;
  666. /* Avoid recursion */
  667. f = file;
  668. while (is_loop_device(f)) {
  669. struct loop_device *l;
  670. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  671. goto out_putf;
  672. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  673. if (l->lo_state == Lo_unbound) {
  674. error = -EINVAL;
  675. goto out_putf;
  676. }
  677. f = l->lo_backing_file;
  678. }
  679. mapping = file->f_mapping;
  680. inode = mapping->host;
  681. if (!(file->f_mode & FMODE_WRITE))
  682. lo_flags |= LO_FLAGS_READ_ONLY;
  683. error = -EINVAL;
  684. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  685. struct address_space_operations *aops = mapping->a_ops;
  686. /*
  687. * If we can't read - sorry. If we only can't write - well,
  688. * it's going to be read-only.
  689. */
  690. if (!file->f_op->sendfile)
  691. goto out_putf;
  692. if (aops->prepare_write && aops->commit_write)
  693. lo_flags |= LO_FLAGS_USE_AOPS;
  694. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  695. lo_flags |= LO_FLAGS_READ_ONLY;
  696. lo_blocksize = inode->i_blksize;
  697. error = 0;
  698. } else {
  699. goto out_putf;
  700. }
  701. size = get_loop_size(lo, file);
  702. if ((loff_t)(sector_t)size != size) {
  703. error = -EFBIG;
  704. goto out_putf;
  705. }
  706. if (!(lo_file->f_mode & FMODE_WRITE))
  707. lo_flags |= LO_FLAGS_READ_ONLY;
  708. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  709. lo->lo_blocksize = lo_blocksize;
  710. lo->lo_device = bdev;
  711. lo->lo_flags = lo_flags;
  712. lo->lo_backing_file = file;
  713. lo->transfer = transfer_none;
  714. lo->ioctl = NULL;
  715. lo->lo_sizelimit = 0;
  716. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  717. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  718. lo->lo_bio = lo->lo_biotail = NULL;
  719. /*
  720. * set queue make_request_fn, and add limits based on lower level
  721. * device
  722. */
  723. blk_queue_make_request(lo->lo_queue, loop_make_request);
  724. lo->lo_queue->queuedata = lo;
  725. lo->lo_queue->unplug_fn = loop_unplug;
  726. set_capacity(disks[lo->lo_number], size);
  727. bd_set_size(bdev, size << 9);
  728. set_blocksize(bdev, lo_blocksize);
  729. error = kernel_thread(loop_thread, lo, CLONE_KERNEL);
  730. if (error < 0)
  731. goto out_putf;
  732. wait_for_completion(&lo->lo_done);
  733. return 0;
  734. out_putf:
  735. fput(file);
  736. out:
  737. /* This is safe: open() is still holding a reference. */
  738. module_put(THIS_MODULE);
  739. return error;
  740. }
  741. static int
  742. loop_release_xfer(struct loop_device *lo)
  743. {
  744. int err = 0;
  745. struct loop_func_table *xfer = lo->lo_encryption;
  746. if (xfer) {
  747. if (xfer->release)
  748. err = xfer->release(lo);
  749. lo->transfer = NULL;
  750. lo->lo_encryption = NULL;
  751. module_put(xfer->owner);
  752. }
  753. return err;
  754. }
  755. static int
  756. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  757. const struct loop_info64 *i)
  758. {
  759. int err = 0;
  760. if (xfer) {
  761. struct module *owner = xfer->owner;
  762. if (!try_module_get(owner))
  763. return -EINVAL;
  764. if (xfer->init)
  765. err = xfer->init(lo, i);
  766. if (err)
  767. module_put(owner);
  768. else
  769. lo->lo_encryption = xfer;
  770. }
  771. return err;
  772. }
  773. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  774. {
  775. struct file *filp = lo->lo_backing_file;
  776. gfp_t gfp = lo->old_gfp_mask;
  777. if (lo->lo_state != Lo_bound)
  778. return -ENXIO;
  779. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  780. return -EBUSY;
  781. if (filp == NULL)
  782. return -EINVAL;
  783. spin_lock_irq(&lo->lo_lock);
  784. lo->lo_state = Lo_rundown;
  785. lo->lo_pending--;
  786. if (!lo->lo_pending)
  787. complete(&lo->lo_bh_done);
  788. spin_unlock_irq(&lo->lo_lock);
  789. wait_for_completion(&lo->lo_done);
  790. lo->lo_backing_file = NULL;
  791. loop_release_xfer(lo);
  792. lo->transfer = NULL;
  793. lo->ioctl = NULL;
  794. lo->lo_device = NULL;
  795. lo->lo_encryption = NULL;
  796. lo->lo_offset = 0;
  797. lo->lo_sizelimit = 0;
  798. lo->lo_encrypt_key_size = 0;
  799. lo->lo_flags = 0;
  800. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  801. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  802. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  803. invalidate_bdev(bdev, 0);
  804. set_capacity(disks[lo->lo_number], 0);
  805. bd_set_size(bdev, 0);
  806. mapping_set_gfp_mask(filp->f_mapping, gfp);
  807. lo->lo_state = Lo_unbound;
  808. fput(filp);
  809. /* This is safe: open() is still holding a reference. */
  810. module_put(THIS_MODULE);
  811. return 0;
  812. }
  813. static int
  814. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  815. {
  816. int err;
  817. struct loop_func_table *xfer;
  818. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  819. !capable(CAP_SYS_ADMIN))
  820. return -EPERM;
  821. if (lo->lo_state != Lo_bound)
  822. return -ENXIO;
  823. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  824. return -EINVAL;
  825. err = loop_release_xfer(lo);
  826. if (err)
  827. return err;
  828. if (info->lo_encrypt_type) {
  829. unsigned int type = info->lo_encrypt_type;
  830. if (type >= MAX_LO_CRYPT)
  831. return -EINVAL;
  832. xfer = xfer_funcs[type];
  833. if (xfer == NULL)
  834. return -EINVAL;
  835. } else
  836. xfer = NULL;
  837. err = loop_init_xfer(lo, xfer, info);
  838. if (err)
  839. return err;
  840. if (lo->lo_offset != info->lo_offset ||
  841. lo->lo_sizelimit != info->lo_sizelimit) {
  842. lo->lo_offset = info->lo_offset;
  843. lo->lo_sizelimit = info->lo_sizelimit;
  844. if (figure_loop_size(lo))
  845. return -EFBIG;
  846. }
  847. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  848. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  849. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  850. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  851. if (!xfer)
  852. xfer = &none_funcs;
  853. lo->transfer = xfer->transfer;
  854. lo->ioctl = xfer->ioctl;
  855. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  856. lo->lo_init[0] = info->lo_init[0];
  857. lo->lo_init[1] = info->lo_init[1];
  858. if (info->lo_encrypt_key_size) {
  859. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  860. info->lo_encrypt_key_size);
  861. lo->lo_key_owner = current->uid;
  862. }
  863. return 0;
  864. }
  865. static int
  866. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  867. {
  868. struct file *file = lo->lo_backing_file;
  869. struct kstat stat;
  870. int error;
  871. if (lo->lo_state != Lo_bound)
  872. return -ENXIO;
  873. error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
  874. if (error)
  875. return error;
  876. memset(info, 0, sizeof(*info));
  877. info->lo_number = lo->lo_number;
  878. info->lo_device = huge_encode_dev(stat.dev);
  879. info->lo_inode = stat.ino;
  880. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  881. info->lo_offset = lo->lo_offset;
  882. info->lo_sizelimit = lo->lo_sizelimit;
  883. info->lo_flags = lo->lo_flags;
  884. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  885. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  886. info->lo_encrypt_type =
  887. lo->lo_encryption ? lo->lo_encryption->number : 0;
  888. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  889. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  890. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  891. lo->lo_encrypt_key_size);
  892. }
  893. return 0;
  894. }
  895. static void
  896. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  897. {
  898. memset(info64, 0, sizeof(*info64));
  899. info64->lo_number = info->lo_number;
  900. info64->lo_device = info->lo_device;
  901. info64->lo_inode = info->lo_inode;
  902. info64->lo_rdevice = info->lo_rdevice;
  903. info64->lo_offset = info->lo_offset;
  904. info64->lo_sizelimit = 0;
  905. info64->lo_encrypt_type = info->lo_encrypt_type;
  906. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  907. info64->lo_flags = info->lo_flags;
  908. info64->lo_init[0] = info->lo_init[0];
  909. info64->lo_init[1] = info->lo_init[1];
  910. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  911. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  912. else
  913. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  914. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  915. }
  916. static int
  917. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  918. {
  919. memset(info, 0, sizeof(*info));
  920. info->lo_number = info64->lo_number;
  921. info->lo_device = info64->lo_device;
  922. info->lo_inode = info64->lo_inode;
  923. info->lo_rdevice = info64->lo_rdevice;
  924. info->lo_offset = info64->lo_offset;
  925. info->lo_encrypt_type = info64->lo_encrypt_type;
  926. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  927. info->lo_flags = info64->lo_flags;
  928. info->lo_init[0] = info64->lo_init[0];
  929. info->lo_init[1] = info64->lo_init[1];
  930. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  931. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  932. else
  933. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  934. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  935. /* error in case values were truncated */
  936. if (info->lo_device != info64->lo_device ||
  937. info->lo_rdevice != info64->lo_rdevice ||
  938. info->lo_inode != info64->lo_inode ||
  939. info->lo_offset != info64->lo_offset)
  940. return -EOVERFLOW;
  941. return 0;
  942. }
  943. static int
  944. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  945. {
  946. struct loop_info info;
  947. struct loop_info64 info64;
  948. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  949. return -EFAULT;
  950. loop_info64_from_old(&info, &info64);
  951. return loop_set_status(lo, &info64);
  952. }
  953. static int
  954. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  955. {
  956. struct loop_info64 info64;
  957. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  958. return -EFAULT;
  959. return loop_set_status(lo, &info64);
  960. }
  961. static int
  962. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  963. struct loop_info info;
  964. struct loop_info64 info64;
  965. int err = 0;
  966. if (!arg)
  967. err = -EINVAL;
  968. if (!err)
  969. err = loop_get_status(lo, &info64);
  970. if (!err)
  971. err = loop_info64_to_old(&info64, &info);
  972. if (!err && copy_to_user(arg, &info, sizeof(info)))
  973. err = -EFAULT;
  974. return err;
  975. }
  976. static int
  977. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  978. struct loop_info64 info64;
  979. int err = 0;
  980. if (!arg)
  981. err = -EINVAL;
  982. if (!err)
  983. err = loop_get_status(lo, &info64);
  984. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  985. err = -EFAULT;
  986. return err;
  987. }
  988. static int lo_ioctl(struct inode * inode, struct file * file,
  989. unsigned int cmd, unsigned long arg)
  990. {
  991. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  992. int err;
  993. mutex_lock(&lo->lo_ctl_mutex);
  994. switch (cmd) {
  995. case LOOP_SET_FD:
  996. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  997. break;
  998. case LOOP_CHANGE_FD:
  999. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  1000. break;
  1001. case LOOP_CLR_FD:
  1002. err = loop_clr_fd(lo, inode->i_bdev);
  1003. break;
  1004. case LOOP_SET_STATUS:
  1005. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  1006. break;
  1007. case LOOP_GET_STATUS:
  1008. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  1009. break;
  1010. case LOOP_SET_STATUS64:
  1011. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1012. break;
  1013. case LOOP_GET_STATUS64:
  1014. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1015. break;
  1016. default:
  1017. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1018. }
  1019. mutex_unlock(&lo->lo_ctl_mutex);
  1020. return err;
  1021. }
  1022. static int lo_open(struct inode *inode, struct file *file)
  1023. {
  1024. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1025. mutex_lock(&lo->lo_ctl_mutex);
  1026. lo->lo_refcnt++;
  1027. mutex_unlock(&lo->lo_ctl_mutex);
  1028. return 0;
  1029. }
  1030. static int lo_release(struct inode *inode, struct file *file)
  1031. {
  1032. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1033. mutex_lock(&lo->lo_ctl_mutex);
  1034. --lo->lo_refcnt;
  1035. mutex_unlock(&lo->lo_ctl_mutex);
  1036. return 0;
  1037. }
  1038. static struct block_device_operations lo_fops = {
  1039. .owner = THIS_MODULE,
  1040. .open = lo_open,
  1041. .release = lo_release,
  1042. .ioctl = lo_ioctl,
  1043. };
  1044. /*
  1045. * And now the modules code and kernel interface.
  1046. */
  1047. module_param(max_loop, int, 0);
  1048. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
  1049. MODULE_LICENSE("GPL");
  1050. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1051. int loop_register_transfer(struct loop_func_table *funcs)
  1052. {
  1053. unsigned int n = funcs->number;
  1054. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1055. return -EINVAL;
  1056. xfer_funcs[n] = funcs;
  1057. return 0;
  1058. }
  1059. int loop_unregister_transfer(int number)
  1060. {
  1061. unsigned int n = number;
  1062. struct loop_device *lo;
  1063. struct loop_func_table *xfer;
  1064. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1065. return -EINVAL;
  1066. xfer_funcs[n] = NULL;
  1067. for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
  1068. mutex_lock(&lo->lo_ctl_mutex);
  1069. if (lo->lo_encryption == xfer)
  1070. loop_release_xfer(lo);
  1071. mutex_unlock(&lo->lo_ctl_mutex);
  1072. }
  1073. return 0;
  1074. }
  1075. EXPORT_SYMBOL(loop_register_transfer);
  1076. EXPORT_SYMBOL(loop_unregister_transfer);
  1077. static int __init loop_init(void)
  1078. {
  1079. int i;
  1080. if (max_loop < 1 || max_loop > 256) {
  1081. printk(KERN_WARNING "loop: invalid max_loop (must be between"
  1082. " 1 and 256), using default (8)\n");
  1083. max_loop = 8;
  1084. }
  1085. if (register_blkdev(LOOP_MAJOR, "loop"))
  1086. return -EIO;
  1087. loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
  1088. if (!loop_dev)
  1089. goto out_mem1;
  1090. memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
  1091. disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
  1092. if (!disks)
  1093. goto out_mem2;
  1094. for (i = 0; i < max_loop; i++) {
  1095. disks[i] = alloc_disk(1);
  1096. if (!disks[i])
  1097. goto out_mem3;
  1098. }
  1099. for (i = 0; i < max_loop; i++) {
  1100. struct loop_device *lo = &loop_dev[i];
  1101. struct gendisk *disk = disks[i];
  1102. memset(lo, 0, sizeof(*lo));
  1103. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1104. if (!lo->lo_queue)
  1105. goto out_mem4;
  1106. mutex_init(&lo->lo_ctl_mutex);
  1107. init_completion(&lo->lo_done);
  1108. init_completion(&lo->lo_bh_done);
  1109. lo->lo_number = i;
  1110. spin_lock_init(&lo->lo_lock);
  1111. disk->major = LOOP_MAJOR;
  1112. disk->first_minor = i;
  1113. disk->fops = &lo_fops;
  1114. sprintf(disk->disk_name, "loop%d", i);
  1115. sprintf(disk->devfs_name, "loop/%d", i);
  1116. disk->private_data = lo;
  1117. disk->queue = lo->lo_queue;
  1118. }
  1119. /* We cannot fail after we call this, so another loop!*/
  1120. for (i = 0; i < max_loop; i++)
  1121. add_disk(disks[i]);
  1122. printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
  1123. return 0;
  1124. out_mem4:
  1125. while (i--)
  1126. blk_cleanup_queue(loop_dev[i].lo_queue);
  1127. i = max_loop;
  1128. out_mem3:
  1129. while (i--)
  1130. put_disk(disks[i]);
  1131. kfree(disks);
  1132. out_mem2:
  1133. kfree(loop_dev);
  1134. out_mem1:
  1135. unregister_blkdev(LOOP_MAJOR, "loop");
  1136. printk(KERN_ERR "loop: ran out of memory\n");
  1137. return -ENOMEM;
  1138. }
  1139. static void loop_exit(void)
  1140. {
  1141. int i;
  1142. for (i = 0; i < max_loop; i++) {
  1143. del_gendisk(disks[i]);
  1144. blk_cleanup_queue(loop_dev[i].lo_queue);
  1145. put_disk(disks[i]);
  1146. }
  1147. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1148. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1149. kfree(disks);
  1150. kfree(loop_dev);
  1151. }
  1152. module_init(loop_init);
  1153. module_exit(loop_exit);
  1154. #ifndef MODULE
  1155. static int __init max_loop_setup(char *str)
  1156. {
  1157. max_loop = simple_strtol(str, NULL, 0);
  1158. return 1;
  1159. }
  1160. __setup("max_loop=", max_loop_setup);
  1161. #endif