skbuff.h 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/poll.h>
  25. #include <linux/net.h>
  26. #include <linux/textsearch.h>
  27. #include <net/checksum.h>
  28. #include <linux/dmaengine.h>
  29. #define HAVE_ALLOC_SKB /* For the drivers to know */
  30. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_PARTIAL 1
  33. #define CHECKSUM_UNNECESSARY 2
  34. #define CHECKSUM_COMPLETE 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
  38. sizeof(struct skb_shared_info)) & \
  39. ~(SMP_CACHE_BYTES - 1))
  40. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  41. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  42. /* A. Checksumming of received packets by device.
  43. *
  44. * NONE: device failed to checksum this packet.
  45. * skb->csum is undefined.
  46. *
  47. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  48. * skb->csum is undefined.
  49. * It is bad option, but, unfortunately, many of vendors do this.
  50. * Apparently with secret goal to sell you new device, when you
  51. * will add new protocol to your host. F.e. IPv6. 8)
  52. *
  53. * COMPLETE: the most generic way. Device supplied checksum of _all_
  54. * the packet as seen by netif_rx in skb->csum.
  55. * NOTE: Even if device supports only some protocols, but
  56. * is able to produce some skb->csum, it MUST use COMPLETE,
  57. * not UNNECESSARY.
  58. *
  59. * B. Checksumming on output.
  60. *
  61. * NONE: skb is checksummed by protocol or csum is not required.
  62. *
  63. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  64. * from skb->h.raw to the end and to record the checksum
  65. * at skb->h.raw+skb->csum.
  66. *
  67. * Device must show its capabilities in dev->features, set
  68. * at device setup time.
  69. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  70. * everything.
  71. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  72. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  73. * TCP/UDP over IPv4. Sigh. Vendors like this
  74. * way by an unknown reason. Though, see comment above
  75. * about CHECKSUM_UNNECESSARY. 8)
  76. *
  77. * Any questions? No questions, good. --ANK
  78. */
  79. struct net_device;
  80. #ifdef CONFIG_NETFILTER
  81. struct nf_conntrack {
  82. atomic_t use;
  83. void (*destroy)(struct nf_conntrack *);
  84. };
  85. #ifdef CONFIG_BRIDGE_NETFILTER
  86. struct nf_bridge_info {
  87. atomic_t use;
  88. struct net_device *physindev;
  89. struct net_device *physoutdev;
  90. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  91. struct net_device *netoutdev;
  92. #endif
  93. unsigned int mask;
  94. unsigned long data[32 / sizeof(unsigned long)];
  95. };
  96. #endif
  97. #endif
  98. struct sk_buff_head {
  99. /* These two members must be first. */
  100. struct sk_buff *next;
  101. struct sk_buff *prev;
  102. __u32 qlen;
  103. spinlock_t lock;
  104. };
  105. struct sk_buff;
  106. /* To allow 64K frame to be packed as single skb without frag_list */
  107. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  108. typedef struct skb_frag_struct skb_frag_t;
  109. struct skb_frag_struct {
  110. struct page *page;
  111. __u16 page_offset;
  112. __u16 size;
  113. };
  114. /* This data is invariant across clones and lives at
  115. * the end of the header data, ie. at skb->end.
  116. */
  117. struct skb_shared_info {
  118. atomic_t dataref;
  119. unsigned short nr_frags;
  120. unsigned short gso_size;
  121. /* Warning: this field is not always filled in (UFO)! */
  122. unsigned short gso_segs;
  123. unsigned short gso_type;
  124. __be32 ip6_frag_id;
  125. struct sk_buff *frag_list;
  126. skb_frag_t frags[MAX_SKB_FRAGS];
  127. };
  128. /* We divide dataref into two halves. The higher 16 bits hold references
  129. * to the payload part of skb->data. The lower 16 bits hold references to
  130. * the entire skb->data. It is up to the users of the skb to agree on
  131. * where the payload starts.
  132. *
  133. * All users must obey the rule that the skb->data reference count must be
  134. * greater than or equal to the payload reference count.
  135. *
  136. * Holding a reference to the payload part means that the user does not
  137. * care about modifications to the header part of skb->data.
  138. */
  139. #define SKB_DATAREF_SHIFT 16
  140. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  141. struct skb_timeval {
  142. u32 off_sec;
  143. u32 off_usec;
  144. };
  145. enum {
  146. SKB_FCLONE_UNAVAILABLE,
  147. SKB_FCLONE_ORIG,
  148. SKB_FCLONE_CLONE,
  149. };
  150. enum {
  151. SKB_GSO_TCPV4 = 1 << 0,
  152. SKB_GSO_UDP = 1 << 1,
  153. /* This indicates the skb is from an untrusted source. */
  154. SKB_GSO_DODGY = 1 << 2,
  155. /* This indicates the tcp segment has CWR set. */
  156. SKB_GSO_TCP_ECN = 1 << 3,
  157. SKB_GSO_TCPV6 = 1 << 4,
  158. };
  159. /**
  160. * struct sk_buff - socket buffer
  161. * @next: Next buffer in list
  162. * @prev: Previous buffer in list
  163. * @sk: Socket we are owned by
  164. * @tstamp: Time we arrived
  165. * @dev: Device we arrived on/are leaving by
  166. * @input_dev: Device we arrived on
  167. * @h: Transport layer header
  168. * @nh: Network layer header
  169. * @mac: Link layer header
  170. * @dst: destination entry
  171. * @sp: the security path, used for xfrm
  172. * @cb: Control buffer. Free for use by every layer. Put private vars here
  173. * @len: Length of actual data
  174. * @data_len: Data length
  175. * @mac_len: Length of link layer header
  176. * @csum: Checksum
  177. * @local_df: allow local fragmentation
  178. * @cloned: Head may be cloned (check refcnt to be sure)
  179. * @nohdr: Payload reference only, must not modify header
  180. * @pkt_type: Packet class
  181. * @fclone: skbuff clone status
  182. * @ip_summed: Driver fed us an IP checksum
  183. * @priority: Packet queueing priority
  184. * @users: User count - see {datagram,tcp}.c
  185. * @protocol: Packet protocol from driver
  186. * @truesize: Buffer size
  187. * @head: Head of buffer
  188. * @data: Data head pointer
  189. * @tail: Tail pointer
  190. * @end: End pointer
  191. * @destructor: Destruct function
  192. * @mark: Generic packet mark
  193. * @nfct: Associated connection, if any
  194. * @ipvs_property: skbuff is owned by ipvs
  195. * @nfctinfo: Relationship of this skb to the connection
  196. * @nfct_reasm: netfilter conntrack re-assembly pointer
  197. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  198. * @tc_index: Traffic control index
  199. * @tc_verd: traffic control verdict
  200. * @dma_cookie: a cookie to one of several possible DMA operations
  201. * done by skb DMA functions
  202. * @secmark: security marking
  203. */
  204. struct sk_buff {
  205. /* These two members must be first. */
  206. struct sk_buff *next;
  207. struct sk_buff *prev;
  208. struct sock *sk;
  209. struct skb_timeval tstamp;
  210. struct net_device *dev;
  211. struct net_device *input_dev;
  212. union {
  213. struct tcphdr *th;
  214. struct udphdr *uh;
  215. struct icmphdr *icmph;
  216. struct igmphdr *igmph;
  217. struct iphdr *ipiph;
  218. struct ipv6hdr *ipv6h;
  219. unsigned char *raw;
  220. } h;
  221. union {
  222. struct iphdr *iph;
  223. struct ipv6hdr *ipv6h;
  224. struct arphdr *arph;
  225. unsigned char *raw;
  226. } nh;
  227. union {
  228. unsigned char *raw;
  229. } mac;
  230. struct dst_entry *dst;
  231. struct sec_path *sp;
  232. /*
  233. * This is the control buffer. It is free to use for every
  234. * layer. Please put your private variables there. If you
  235. * want to keep them across layers you have to do a skb_clone()
  236. * first. This is owned by whoever has the skb queued ATM.
  237. */
  238. char cb[48];
  239. unsigned int len,
  240. data_len,
  241. mac_len;
  242. union {
  243. __wsum csum;
  244. __u32 csum_offset;
  245. };
  246. __u32 priority;
  247. __u8 local_df:1,
  248. cloned:1,
  249. ip_summed:2,
  250. nohdr:1,
  251. nfctinfo:3;
  252. __u8 pkt_type:3,
  253. fclone:2,
  254. ipvs_property:1;
  255. __be16 protocol;
  256. void (*destructor)(struct sk_buff *skb);
  257. #ifdef CONFIG_NETFILTER
  258. struct nf_conntrack *nfct;
  259. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  260. struct sk_buff *nfct_reasm;
  261. #endif
  262. #ifdef CONFIG_BRIDGE_NETFILTER
  263. struct nf_bridge_info *nf_bridge;
  264. #endif
  265. #endif /* CONFIG_NETFILTER */
  266. #ifdef CONFIG_NET_SCHED
  267. __u16 tc_index; /* traffic control index */
  268. #ifdef CONFIG_NET_CLS_ACT
  269. __u16 tc_verd; /* traffic control verdict */
  270. #endif
  271. #endif
  272. #ifdef CONFIG_NET_DMA
  273. dma_cookie_t dma_cookie;
  274. #endif
  275. #ifdef CONFIG_NETWORK_SECMARK
  276. __u32 secmark;
  277. #endif
  278. __u32 mark;
  279. /* These elements must be at the end, see alloc_skb() for details. */
  280. unsigned int truesize;
  281. atomic_t users;
  282. unsigned char *head,
  283. *data,
  284. *tail,
  285. *end;
  286. };
  287. #ifdef __KERNEL__
  288. /*
  289. * Handling routines are only of interest to the kernel
  290. */
  291. #include <linux/slab.h>
  292. #include <asm/system.h>
  293. extern void kfree_skb(struct sk_buff *skb);
  294. extern void __kfree_skb(struct sk_buff *skb);
  295. extern struct sk_buff *__alloc_skb(unsigned int size,
  296. gfp_t priority, int fclone);
  297. static inline struct sk_buff *alloc_skb(unsigned int size,
  298. gfp_t priority)
  299. {
  300. return __alloc_skb(size, priority, 0);
  301. }
  302. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  303. gfp_t priority)
  304. {
  305. return __alloc_skb(size, priority, 1);
  306. }
  307. extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
  308. unsigned int size,
  309. gfp_t priority);
  310. extern void kfree_skbmem(struct sk_buff *skb);
  311. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  312. gfp_t priority);
  313. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  314. gfp_t priority);
  315. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  316. gfp_t gfp_mask);
  317. extern int pskb_expand_head(struct sk_buff *skb,
  318. int nhead, int ntail,
  319. gfp_t gfp_mask);
  320. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  321. unsigned int headroom);
  322. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  323. int newheadroom, int newtailroom,
  324. gfp_t priority);
  325. extern int skb_pad(struct sk_buff *skb, int pad);
  326. #define dev_kfree_skb(a) kfree_skb(a)
  327. extern void skb_over_panic(struct sk_buff *skb, int len,
  328. void *here);
  329. extern void skb_under_panic(struct sk_buff *skb, int len,
  330. void *here);
  331. extern void skb_truesize_bug(struct sk_buff *skb);
  332. static inline void skb_truesize_check(struct sk_buff *skb)
  333. {
  334. if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
  335. skb_truesize_bug(skb);
  336. }
  337. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  338. int getfrag(void *from, char *to, int offset,
  339. int len,int odd, struct sk_buff *skb),
  340. void *from, int length);
  341. struct skb_seq_state
  342. {
  343. __u32 lower_offset;
  344. __u32 upper_offset;
  345. __u32 frag_idx;
  346. __u32 stepped_offset;
  347. struct sk_buff *root_skb;
  348. struct sk_buff *cur_skb;
  349. __u8 *frag_data;
  350. };
  351. extern void skb_prepare_seq_read(struct sk_buff *skb,
  352. unsigned int from, unsigned int to,
  353. struct skb_seq_state *st);
  354. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  355. struct skb_seq_state *st);
  356. extern void skb_abort_seq_read(struct skb_seq_state *st);
  357. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  358. unsigned int to, struct ts_config *config,
  359. struct ts_state *state);
  360. /* Internal */
  361. #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
  362. /**
  363. * skb_queue_empty - check if a queue is empty
  364. * @list: queue head
  365. *
  366. * Returns true if the queue is empty, false otherwise.
  367. */
  368. static inline int skb_queue_empty(const struct sk_buff_head *list)
  369. {
  370. return list->next == (struct sk_buff *)list;
  371. }
  372. /**
  373. * skb_get - reference buffer
  374. * @skb: buffer to reference
  375. *
  376. * Makes another reference to a socket buffer and returns a pointer
  377. * to the buffer.
  378. */
  379. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  380. {
  381. atomic_inc(&skb->users);
  382. return skb;
  383. }
  384. /*
  385. * If users == 1, we are the only owner and are can avoid redundant
  386. * atomic change.
  387. */
  388. /**
  389. * skb_cloned - is the buffer a clone
  390. * @skb: buffer to check
  391. *
  392. * Returns true if the buffer was generated with skb_clone() and is
  393. * one of multiple shared copies of the buffer. Cloned buffers are
  394. * shared data so must not be written to under normal circumstances.
  395. */
  396. static inline int skb_cloned(const struct sk_buff *skb)
  397. {
  398. return skb->cloned &&
  399. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  400. }
  401. /**
  402. * skb_header_cloned - is the header a clone
  403. * @skb: buffer to check
  404. *
  405. * Returns true if modifying the header part of the buffer requires
  406. * the data to be copied.
  407. */
  408. static inline int skb_header_cloned(const struct sk_buff *skb)
  409. {
  410. int dataref;
  411. if (!skb->cloned)
  412. return 0;
  413. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  414. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  415. return dataref != 1;
  416. }
  417. /**
  418. * skb_header_release - release reference to header
  419. * @skb: buffer to operate on
  420. *
  421. * Drop a reference to the header part of the buffer. This is done
  422. * by acquiring a payload reference. You must not read from the header
  423. * part of skb->data after this.
  424. */
  425. static inline void skb_header_release(struct sk_buff *skb)
  426. {
  427. BUG_ON(skb->nohdr);
  428. skb->nohdr = 1;
  429. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  430. }
  431. /**
  432. * skb_shared - is the buffer shared
  433. * @skb: buffer to check
  434. *
  435. * Returns true if more than one person has a reference to this
  436. * buffer.
  437. */
  438. static inline int skb_shared(const struct sk_buff *skb)
  439. {
  440. return atomic_read(&skb->users) != 1;
  441. }
  442. /**
  443. * skb_share_check - check if buffer is shared and if so clone it
  444. * @skb: buffer to check
  445. * @pri: priority for memory allocation
  446. *
  447. * If the buffer is shared the buffer is cloned and the old copy
  448. * drops a reference. A new clone with a single reference is returned.
  449. * If the buffer is not shared the original buffer is returned. When
  450. * being called from interrupt status or with spinlocks held pri must
  451. * be GFP_ATOMIC.
  452. *
  453. * NULL is returned on a memory allocation failure.
  454. */
  455. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  456. gfp_t pri)
  457. {
  458. might_sleep_if(pri & __GFP_WAIT);
  459. if (skb_shared(skb)) {
  460. struct sk_buff *nskb = skb_clone(skb, pri);
  461. kfree_skb(skb);
  462. skb = nskb;
  463. }
  464. return skb;
  465. }
  466. /*
  467. * Copy shared buffers into a new sk_buff. We effectively do COW on
  468. * packets to handle cases where we have a local reader and forward
  469. * and a couple of other messy ones. The normal one is tcpdumping
  470. * a packet thats being forwarded.
  471. */
  472. /**
  473. * skb_unshare - make a copy of a shared buffer
  474. * @skb: buffer to check
  475. * @pri: priority for memory allocation
  476. *
  477. * If the socket buffer is a clone then this function creates a new
  478. * copy of the data, drops a reference count on the old copy and returns
  479. * the new copy with the reference count at 1. If the buffer is not a clone
  480. * the original buffer is returned. When called with a spinlock held or
  481. * from interrupt state @pri must be %GFP_ATOMIC
  482. *
  483. * %NULL is returned on a memory allocation failure.
  484. */
  485. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  486. gfp_t pri)
  487. {
  488. might_sleep_if(pri & __GFP_WAIT);
  489. if (skb_cloned(skb)) {
  490. struct sk_buff *nskb = skb_copy(skb, pri);
  491. kfree_skb(skb); /* Free our shared copy */
  492. skb = nskb;
  493. }
  494. return skb;
  495. }
  496. /**
  497. * skb_peek
  498. * @list_: list to peek at
  499. *
  500. * Peek an &sk_buff. Unlike most other operations you _MUST_
  501. * be careful with this one. A peek leaves the buffer on the
  502. * list and someone else may run off with it. You must hold
  503. * the appropriate locks or have a private queue to do this.
  504. *
  505. * Returns %NULL for an empty list or a pointer to the head element.
  506. * The reference count is not incremented and the reference is therefore
  507. * volatile. Use with caution.
  508. */
  509. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  510. {
  511. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  512. if (list == (struct sk_buff *)list_)
  513. list = NULL;
  514. return list;
  515. }
  516. /**
  517. * skb_peek_tail
  518. * @list_: list to peek at
  519. *
  520. * Peek an &sk_buff. Unlike most other operations you _MUST_
  521. * be careful with this one. A peek leaves the buffer on the
  522. * list and someone else may run off with it. You must hold
  523. * the appropriate locks or have a private queue to do this.
  524. *
  525. * Returns %NULL for an empty list or a pointer to the tail element.
  526. * The reference count is not incremented and the reference is therefore
  527. * volatile. Use with caution.
  528. */
  529. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  530. {
  531. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  532. if (list == (struct sk_buff *)list_)
  533. list = NULL;
  534. return list;
  535. }
  536. /**
  537. * skb_queue_len - get queue length
  538. * @list_: list to measure
  539. *
  540. * Return the length of an &sk_buff queue.
  541. */
  542. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  543. {
  544. return list_->qlen;
  545. }
  546. /*
  547. * This function creates a split out lock class for each invocation;
  548. * this is needed for now since a whole lot of users of the skb-queue
  549. * infrastructure in drivers have different locking usage (in hardirq)
  550. * than the networking core (in softirq only). In the long run either the
  551. * network layer or drivers should need annotation to consolidate the
  552. * main types of usage into 3 classes.
  553. */
  554. static inline void skb_queue_head_init(struct sk_buff_head *list)
  555. {
  556. spin_lock_init(&list->lock);
  557. list->prev = list->next = (struct sk_buff *)list;
  558. list->qlen = 0;
  559. }
  560. /*
  561. * Insert an sk_buff at the start of a list.
  562. *
  563. * The "__skb_xxxx()" functions are the non-atomic ones that
  564. * can only be called with interrupts disabled.
  565. */
  566. /**
  567. * __skb_queue_after - queue a buffer at the list head
  568. * @list: list to use
  569. * @prev: place after this buffer
  570. * @newsk: buffer to queue
  571. *
  572. * Queue a buffer int the middle of a list. This function takes no locks
  573. * and you must therefore hold required locks before calling it.
  574. *
  575. * A buffer cannot be placed on two lists at the same time.
  576. */
  577. static inline void __skb_queue_after(struct sk_buff_head *list,
  578. struct sk_buff *prev,
  579. struct sk_buff *newsk)
  580. {
  581. struct sk_buff *next;
  582. list->qlen++;
  583. next = prev->next;
  584. newsk->next = next;
  585. newsk->prev = prev;
  586. next->prev = prev->next = newsk;
  587. }
  588. /**
  589. * __skb_queue_head - queue a buffer at the list head
  590. * @list: list to use
  591. * @newsk: buffer to queue
  592. *
  593. * Queue a buffer at the start of a list. This function takes no locks
  594. * and you must therefore hold required locks before calling it.
  595. *
  596. * A buffer cannot be placed on two lists at the same time.
  597. */
  598. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  599. static inline void __skb_queue_head(struct sk_buff_head *list,
  600. struct sk_buff *newsk)
  601. {
  602. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  603. }
  604. /**
  605. * __skb_queue_tail - queue a buffer at the list tail
  606. * @list: list to use
  607. * @newsk: buffer to queue
  608. *
  609. * Queue a buffer at the end of a list. This function takes no locks
  610. * and you must therefore hold required locks before calling it.
  611. *
  612. * A buffer cannot be placed on two lists at the same time.
  613. */
  614. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  615. static inline void __skb_queue_tail(struct sk_buff_head *list,
  616. struct sk_buff *newsk)
  617. {
  618. struct sk_buff *prev, *next;
  619. list->qlen++;
  620. next = (struct sk_buff *)list;
  621. prev = next->prev;
  622. newsk->next = next;
  623. newsk->prev = prev;
  624. next->prev = prev->next = newsk;
  625. }
  626. /**
  627. * __skb_dequeue - remove from the head of the queue
  628. * @list: list to dequeue from
  629. *
  630. * Remove the head of the list. This function does not take any locks
  631. * so must be used with appropriate locks held only. The head item is
  632. * returned or %NULL if the list is empty.
  633. */
  634. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  635. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  636. {
  637. struct sk_buff *next, *prev, *result;
  638. prev = (struct sk_buff *) list;
  639. next = prev->next;
  640. result = NULL;
  641. if (next != prev) {
  642. result = next;
  643. next = next->next;
  644. list->qlen--;
  645. next->prev = prev;
  646. prev->next = next;
  647. result->next = result->prev = NULL;
  648. }
  649. return result;
  650. }
  651. /*
  652. * Insert a packet on a list.
  653. */
  654. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  655. static inline void __skb_insert(struct sk_buff *newsk,
  656. struct sk_buff *prev, struct sk_buff *next,
  657. struct sk_buff_head *list)
  658. {
  659. newsk->next = next;
  660. newsk->prev = prev;
  661. next->prev = prev->next = newsk;
  662. list->qlen++;
  663. }
  664. /*
  665. * Place a packet after a given packet in a list.
  666. */
  667. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  668. static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  669. {
  670. __skb_insert(newsk, old, old->next, list);
  671. }
  672. /*
  673. * remove sk_buff from list. _Must_ be called atomically, and with
  674. * the list known..
  675. */
  676. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  677. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  678. {
  679. struct sk_buff *next, *prev;
  680. list->qlen--;
  681. next = skb->next;
  682. prev = skb->prev;
  683. skb->next = skb->prev = NULL;
  684. next->prev = prev;
  685. prev->next = next;
  686. }
  687. /* XXX: more streamlined implementation */
  688. /**
  689. * __skb_dequeue_tail - remove from the tail of the queue
  690. * @list: list to dequeue from
  691. *
  692. * Remove the tail of the list. This function does not take any locks
  693. * so must be used with appropriate locks held only. The tail item is
  694. * returned or %NULL if the list is empty.
  695. */
  696. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  697. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  698. {
  699. struct sk_buff *skb = skb_peek_tail(list);
  700. if (skb)
  701. __skb_unlink(skb, list);
  702. return skb;
  703. }
  704. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  705. {
  706. return skb->data_len;
  707. }
  708. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  709. {
  710. return skb->len - skb->data_len;
  711. }
  712. static inline int skb_pagelen(const struct sk_buff *skb)
  713. {
  714. int i, len = 0;
  715. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  716. len += skb_shinfo(skb)->frags[i].size;
  717. return len + skb_headlen(skb);
  718. }
  719. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  720. struct page *page, int off, int size)
  721. {
  722. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  723. frag->page = page;
  724. frag->page_offset = off;
  725. frag->size = size;
  726. skb_shinfo(skb)->nr_frags = i + 1;
  727. }
  728. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  729. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  730. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  731. /*
  732. * Add data to an sk_buff
  733. */
  734. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  735. {
  736. unsigned char *tmp = skb->tail;
  737. SKB_LINEAR_ASSERT(skb);
  738. skb->tail += len;
  739. skb->len += len;
  740. return tmp;
  741. }
  742. /**
  743. * skb_put - add data to a buffer
  744. * @skb: buffer to use
  745. * @len: amount of data to add
  746. *
  747. * This function extends the used data area of the buffer. If this would
  748. * exceed the total buffer size the kernel will panic. A pointer to the
  749. * first byte of the extra data is returned.
  750. */
  751. static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  752. {
  753. unsigned char *tmp = skb->tail;
  754. SKB_LINEAR_ASSERT(skb);
  755. skb->tail += len;
  756. skb->len += len;
  757. if (unlikely(skb->tail>skb->end))
  758. skb_over_panic(skb, len, current_text_addr());
  759. return tmp;
  760. }
  761. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  762. {
  763. skb->data -= len;
  764. skb->len += len;
  765. return skb->data;
  766. }
  767. /**
  768. * skb_push - add data to the start of a buffer
  769. * @skb: buffer to use
  770. * @len: amount of data to add
  771. *
  772. * This function extends the used data area of the buffer at the buffer
  773. * start. If this would exceed the total buffer headroom the kernel will
  774. * panic. A pointer to the first byte of the extra data is returned.
  775. */
  776. static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  777. {
  778. skb->data -= len;
  779. skb->len += len;
  780. if (unlikely(skb->data<skb->head))
  781. skb_under_panic(skb, len, current_text_addr());
  782. return skb->data;
  783. }
  784. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  785. {
  786. skb->len -= len;
  787. BUG_ON(skb->len < skb->data_len);
  788. return skb->data += len;
  789. }
  790. /**
  791. * skb_pull - remove data from the start of a buffer
  792. * @skb: buffer to use
  793. * @len: amount of data to remove
  794. *
  795. * This function removes data from the start of a buffer, returning
  796. * the memory to the headroom. A pointer to the next data in the buffer
  797. * is returned. Once the data has been pulled future pushes will overwrite
  798. * the old data.
  799. */
  800. static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  801. {
  802. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  803. }
  804. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  805. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  806. {
  807. if (len > skb_headlen(skb) &&
  808. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  809. return NULL;
  810. skb->len -= len;
  811. return skb->data += len;
  812. }
  813. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  814. {
  815. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  816. }
  817. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  818. {
  819. if (likely(len <= skb_headlen(skb)))
  820. return 1;
  821. if (unlikely(len > skb->len))
  822. return 0;
  823. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  824. }
  825. /**
  826. * skb_headroom - bytes at buffer head
  827. * @skb: buffer to check
  828. *
  829. * Return the number of bytes of free space at the head of an &sk_buff.
  830. */
  831. static inline int skb_headroom(const struct sk_buff *skb)
  832. {
  833. return skb->data - skb->head;
  834. }
  835. /**
  836. * skb_tailroom - bytes at buffer end
  837. * @skb: buffer to check
  838. *
  839. * Return the number of bytes of free space at the tail of an sk_buff
  840. */
  841. static inline int skb_tailroom(const struct sk_buff *skb)
  842. {
  843. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  844. }
  845. /**
  846. * skb_reserve - adjust headroom
  847. * @skb: buffer to alter
  848. * @len: bytes to move
  849. *
  850. * Increase the headroom of an empty &sk_buff by reducing the tail
  851. * room. This is only allowed for an empty buffer.
  852. */
  853. static inline void skb_reserve(struct sk_buff *skb, int len)
  854. {
  855. skb->data += len;
  856. skb->tail += len;
  857. }
  858. /*
  859. * CPUs often take a performance hit when accessing unaligned memory
  860. * locations. The actual performance hit varies, it can be small if the
  861. * hardware handles it or large if we have to take an exception and fix it
  862. * in software.
  863. *
  864. * Since an ethernet header is 14 bytes network drivers often end up with
  865. * the IP header at an unaligned offset. The IP header can be aligned by
  866. * shifting the start of the packet by 2 bytes. Drivers should do this
  867. * with:
  868. *
  869. * skb_reserve(NET_IP_ALIGN);
  870. *
  871. * The downside to this alignment of the IP header is that the DMA is now
  872. * unaligned. On some architectures the cost of an unaligned DMA is high
  873. * and this cost outweighs the gains made by aligning the IP header.
  874. *
  875. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  876. * to be overridden.
  877. */
  878. #ifndef NET_IP_ALIGN
  879. #define NET_IP_ALIGN 2
  880. #endif
  881. /*
  882. * The networking layer reserves some headroom in skb data (via
  883. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  884. * the header has to grow. In the default case, if the header has to grow
  885. * 16 bytes or less we avoid the reallocation.
  886. *
  887. * Unfortunately this headroom changes the DMA alignment of the resulting
  888. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  889. * on some architectures. An architecture can override this value,
  890. * perhaps setting it to a cacheline in size (since that will maintain
  891. * cacheline alignment of the DMA). It must be a power of 2.
  892. *
  893. * Various parts of the networking layer expect at least 16 bytes of
  894. * headroom, you should not reduce this.
  895. */
  896. #ifndef NET_SKB_PAD
  897. #define NET_SKB_PAD 16
  898. #endif
  899. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  900. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  901. {
  902. if (unlikely(skb->data_len)) {
  903. WARN_ON(1);
  904. return;
  905. }
  906. skb->len = len;
  907. skb->tail = skb->data + len;
  908. }
  909. /**
  910. * skb_trim - remove end from a buffer
  911. * @skb: buffer to alter
  912. * @len: new length
  913. *
  914. * Cut the length of a buffer down by removing data from the tail. If
  915. * the buffer is already under the length specified it is not modified.
  916. * The skb must be linear.
  917. */
  918. static inline void skb_trim(struct sk_buff *skb, unsigned int len)
  919. {
  920. if (skb->len > len)
  921. __skb_trim(skb, len);
  922. }
  923. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  924. {
  925. if (skb->data_len)
  926. return ___pskb_trim(skb, len);
  927. __skb_trim(skb, len);
  928. return 0;
  929. }
  930. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  931. {
  932. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  933. }
  934. /**
  935. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  936. * @skb: buffer to alter
  937. * @len: new length
  938. *
  939. * This is identical to pskb_trim except that the caller knows that
  940. * the skb is not cloned so we should never get an error due to out-
  941. * of-memory.
  942. */
  943. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  944. {
  945. int err = pskb_trim(skb, len);
  946. BUG_ON(err);
  947. }
  948. /**
  949. * skb_orphan - orphan a buffer
  950. * @skb: buffer to orphan
  951. *
  952. * If a buffer currently has an owner then we call the owner's
  953. * destructor function and make the @skb unowned. The buffer continues
  954. * to exist but is no longer charged to its former owner.
  955. */
  956. static inline void skb_orphan(struct sk_buff *skb)
  957. {
  958. if (skb->destructor)
  959. skb->destructor(skb);
  960. skb->destructor = NULL;
  961. skb->sk = NULL;
  962. }
  963. /**
  964. * __skb_queue_purge - empty a list
  965. * @list: list to empty
  966. *
  967. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  968. * the list and one reference dropped. This function does not take the
  969. * list lock and the caller must hold the relevant locks to use it.
  970. */
  971. extern void skb_queue_purge(struct sk_buff_head *list);
  972. static inline void __skb_queue_purge(struct sk_buff_head *list)
  973. {
  974. struct sk_buff *skb;
  975. while ((skb = __skb_dequeue(list)) != NULL)
  976. kfree_skb(skb);
  977. }
  978. /**
  979. * __dev_alloc_skb - allocate an skbuff for receiving
  980. * @length: length to allocate
  981. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  982. *
  983. * Allocate a new &sk_buff and assign it a usage count of one. The
  984. * buffer has unspecified headroom built in. Users should allocate
  985. * the headroom they think they need without accounting for the
  986. * built in space. The built in space is used for optimisations.
  987. *
  988. * %NULL is returned if there is no free memory.
  989. */
  990. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  991. gfp_t gfp_mask)
  992. {
  993. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  994. if (likely(skb))
  995. skb_reserve(skb, NET_SKB_PAD);
  996. return skb;
  997. }
  998. /**
  999. * dev_alloc_skb - allocate an skbuff for receiving
  1000. * @length: length to allocate
  1001. *
  1002. * Allocate a new &sk_buff and assign it a usage count of one. The
  1003. * buffer has unspecified headroom built in. Users should allocate
  1004. * the headroom they think they need without accounting for the
  1005. * built in space. The built in space is used for optimisations.
  1006. *
  1007. * %NULL is returned if there is no free memory. Although this function
  1008. * allocates memory it can be called from an interrupt.
  1009. */
  1010. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1011. {
  1012. return __dev_alloc_skb(length, GFP_ATOMIC);
  1013. }
  1014. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1015. unsigned int length, gfp_t gfp_mask);
  1016. /**
  1017. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1018. * @dev: network device to receive on
  1019. * @length: length to allocate
  1020. *
  1021. * Allocate a new &sk_buff and assign it a usage count of one. The
  1022. * buffer has unspecified headroom built in. Users should allocate
  1023. * the headroom they think they need without accounting for the
  1024. * built in space. The built in space is used for optimisations.
  1025. *
  1026. * %NULL is returned if there is no free memory. Although this function
  1027. * allocates memory it can be called from an interrupt.
  1028. */
  1029. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1030. unsigned int length)
  1031. {
  1032. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1033. }
  1034. /**
  1035. * skb_cow - copy header of skb when it is required
  1036. * @skb: buffer to cow
  1037. * @headroom: needed headroom
  1038. *
  1039. * If the skb passed lacks sufficient headroom or its data part
  1040. * is shared, data is reallocated. If reallocation fails, an error
  1041. * is returned and original skb is not changed.
  1042. *
  1043. * The result is skb with writable area skb->head...skb->tail
  1044. * and at least @headroom of space at head.
  1045. */
  1046. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1047. {
  1048. int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
  1049. skb_headroom(skb);
  1050. if (delta < 0)
  1051. delta = 0;
  1052. if (delta || skb_cloned(skb))
  1053. return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
  1054. ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
  1055. return 0;
  1056. }
  1057. /**
  1058. * skb_padto - pad an skbuff up to a minimal size
  1059. * @skb: buffer to pad
  1060. * @len: minimal length
  1061. *
  1062. * Pads up a buffer to ensure the trailing bytes exist and are
  1063. * blanked. If the buffer already contains sufficient data it
  1064. * is untouched. Otherwise it is extended. Returns zero on
  1065. * success. The skb is freed on error.
  1066. */
  1067. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1068. {
  1069. unsigned int size = skb->len;
  1070. if (likely(size >= len))
  1071. return 0;
  1072. return skb_pad(skb, len-size);
  1073. }
  1074. static inline int skb_add_data(struct sk_buff *skb,
  1075. char __user *from, int copy)
  1076. {
  1077. const int off = skb->len;
  1078. if (skb->ip_summed == CHECKSUM_NONE) {
  1079. int err = 0;
  1080. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1081. copy, 0, &err);
  1082. if (!err) {
  1083. skb->csum = csum_block_add(skb->csum, csum, off);
  1084. return 0;
  1085. }
  1086. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1087. return 0;
  1088. __skb_trim(skb, off);
  1089. return -EFAULT;
  1090. }
  1091. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1092. struct page *page, int off)
  1093. {
  1094. if (i) {
  1095. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1096. return page == frag->page &&
  1097. off == frag->page_offset + frag->size;
  1098. }
  1099. return 0;
  1100. }
  1101. static inline int __skb_linearize(struct sk_buff *skb)
  1102. {
  1103. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1104. }
  1105. /**
  1106. * skb_linearize - convert paged skb to linear one
  1107. * @skb: buffer to linarize
  1108. *
  1109. * If there is no free memory -ENOMEM is returned, otherwise zero
  1110. * is returned and the old skb data released.
  1111. */
  1112. static inline int skb_linearize(struct sk_buff *skb)
  1113. {
  1114. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1115. }
  1116. /**
  1117. * skb_linearize_cow - make sure skb is linear and writable
  1118. * @skb: buffer to process
  1119. *
  1120. * If there is no free memory -ENOMEM is returned, otherwise zero
  1121. * is returned and the old skb data released.
  1122. */
  1123. static inline int skb_linearize_cow(struct sk_buff *skb)
  1124. {
  1125. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1126. __skb_linearize(skb) : 0;
  1127. }
  1128. /**
  1129. * skb_postpull_rcsum - update checksum for received skb after pull
  1130. * @skb: buffer to update
  1131. * @start: start of data before pull
  1132. * @len: length of data pulled
  1133. *
  1134. * After doing a pull on a received packet, you need to call this to
  1135. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1136. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1137. */
  1138. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1139. const void *start, unsigned int len)
  1140. {
  1141. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1142. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1143. }
  1144. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1145. /**
  1146. * pskb_trim_rcsum - trim received skb and update checksum
  1147. * @skb: buffer to trim
  1148. * @len: new length
  1149. *
  1150. * This is exactly the same as pskb_trim except that it ensures the
  1151. * checksum of received packets are still valid after the operation.
  1152. */
  1153. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1154. {
  1155. if (likely(len >= skb->len))
  1156. return 0;
  1157. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1158. skb->ip_summed = CHECKSUM_NONE;
  1159. return __pskb_trim(skb, len);
  1160. }
  1161. static inline void *kmap_skb_frag(const skb_frag_t *frag)
  1162. {
  1163. #ifdef CONFIG_HIGHMEM
  1164. BUG_ON(in_irq());
  1165. local_bh_disable();
  1166. #endif
  1167. return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
  1168. }
  1169. static inline void kunmap_skb_frag(void *vaddr)
  1170. {
  1171. kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
  1172. #ifdef CONFIG_HIGHMEM
  1173. local_bh_enable();
  1174. #endif
  1175. }
  1176. #define skb_queue_walk(queue, skb) \
  1177. for (skb = (queue)->next; \
  1178. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1179. skb = skb->next)
  1180. #define skb_queue_reverse_walk(queue, skb) \
  1181. for (skb = (queue)->prev; \
  1182. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1183. skb = skb->prev)
  1184. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1185. int noblock, int *err);
  1186. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1187. struct poll_table_struct *wait);
  1188. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1189. int offset, struct iovec *to,
  1190. int size);
  1191. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1192. int hlen,
  1193. struct iovec *iov);
  1194. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1195. extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1196. unsigned int flags);
  1197. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1198. int len, __wsum csum);
  1199. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1200. void *to, int len);
  1201. extern int skb_store_bits(const struct sk_buff *skb, int offset,
  1202. void *from, int len);
  1203. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1204. int offset, u8 *to, int len,
  1205. __wsum csum);
  1206. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1207. extern void skb_split(struct sk_buff *skb,
  1208. struct sk_buff *skb1, const u32 len);
  1209. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1210. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1211. int len, void *buffer)
  1212. {
  1213. int hlen = skb_headlen(skb);
  1214. if (hlen - offset >= len)
  1215. return skb->data + offset;
  1216. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1217. return NULL;
  1218. return buffer;
  1219. }
  1220. extern void skb_init(void);
  1221. extern void skb_add_mtu(int mtu);
  1222. /**
  1223. * skb_get_timestamp - get timestamp from a skb
  1224. * @skb: skb to get stamp from
  1225. * @stamp: pointer to struct timeval to store stamp in
  1226. *
  1227. * Timestamps are stored in the skb as offsets to a base timestamp.
  1228. * This function converts the offset back to a struct timeval and stores
  1229. * it in stamp.
  1230. */
  1231. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1232. {
  1233. stamp->tv_sec = skb->tstamp.off_sec;
  1234. stamp->tv_usec = skb->tstamp.off_usec;
  1235. }
  1236. /**
  1237. * skb_set_timestamp - set timestamp of a skb
  1238. * @skb: skb to set stamp of
  1239. * @stamp: pointer to struct timeval to get stamp from
  1240. *
  1241. * Timestamps are stored in the skb as offsets to a base timestamp.
  1242. * This function converts a struct timeval to an offset and stores
  1243. * it in the skb.
  1244. */
  1245. static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
  1246. {
  1247. skb->tstamp.off_sec = stamp->tv_sec;
  1248. skb->tstamp.off_usec = stamp->tv_usec;
  1249. }
  1250. extern void __net_timestamp(struct sk_buff *skb);
  1251. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1252. /**
  1253. * skb_checksum_complete - Calculate checksum of an entire packet
  1254. * @skb: packet to process
  1255. *
  1256. * This function calculates the checksum over the entire packet plus
  1257. * the value of skb->csum. The latter can be used to supply the
  1258. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1259. * checksum.
  1260. *
  1261. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1262. * this function can be used to verify that checksum on received
  1263. * packets. In that case the function should return zero if the
  1264. * checksum is correct. In particular, this function will return zero
  1265. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1266. * hardware has already verified the correctness of the checksum.
  1267. */
  1268. static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
  1269. {
  1270. return skb->ip_summed != CHECKSUM_UNNECESSARY &&
  1271. __skb_checksum_complete(skb);
  1272. }
  1273. #ifdef CONFIG_NETFILTER
  1274. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1275. {
  1276. if (nfct && atomic_dec_and_test(&nfct->use))
  1277. nfct->destroy(nfct);
  1278. }
  1279. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1280. {
  1281. if (nfct)
  1282. atomic_inc(&nfct->use);
  1283. }
  1284. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1285. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1286. {
  1287. if (skb)
  1288. atomic_inc(&skb->users);
  1289. }
  1290. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1291. {
  1292. if (skb)
  1293. kfree_skb(skb);
  1294. }
  1295. #endif
  1296. #ifdef CONFIG_BRIDGE_NETFILTER
  1297. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1298. {
  1299. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1300. kfree(nf_bridge);
  1301. }
  1302. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1303. {
  1304. if (nf_bridge)
  1305. atomic_inc(&nf_bridge->use);
  1306. }
  1307. #endif /* CONFIG_BRIDGE_NETFILTER */
  1308. static inline void nf_reset(struct sk_buff *skb)
  1309. {
  1310. nf_conntrack_put(skb->nfct);
  1311. skb->nfct = NULL;
  1312. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1313. nf_conntrack_put_reasm(skb->nfct_reasm);
  1314. skb->nfct_reasm = NULL;
  1315. #endif
  1316. #ifdef CONFIG_BRIDGE_NETFILTER
  1317. nf_bridge_put(skb->nf_bridge);
  1318. skb->nf_bridge = NULL;
  1319. #endif
  1320. }
  1321. #else /* CONFIG_NETFILTER */
  1322. static inline void nf_reset(struct sk_buff *skb) {}
  1323. #endif /* CONFIG_NETFILTER */
  1324. #ifdef CONFIG_NETWORK_SECMARK
  1325. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1326. {
  1327. to->secmark = from->secmark;
  1328. }
  1329. static inline void skb_init_secmark(struct sk_buff *skb)
  1330. {
  1331. skb->secmark = 0;
  1332. }
  1333. #else
  1334. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1335. { }
  1336. static inline void skb_init_secmark(struct sk_buff *skb)
  1337. { }
  1338. #endif
  1339. static inline int skb_is_gso(const struct sk_buff *skb)
  1340. {
  1341. return skb_shinfo(skb)->gso_size;
  1342. }
  1343. #endif /* __KERNEL__ */
  1344. #endif /* _LINUX_SKBUFF_H */