vmx.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  40. static struct vmcs_descriptor {
  41. int size;
  42. int order;
  43. u32 revision_id;
  44. } vmcs_descriptor;
  45. #define VMX_SEGMENT_FIELD(seg) \
  46. [VCPU_SREG_##seg] = { \
  47. .selector = GUEST_##seg##_SELECTOR, \
  48. .base = GUEST_##seg##_BASE, \
  49. .limit = GUEST_##seg##_LIMIT, \
  50. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  51. }
  52. static struct kvm_vmx_segment_field {
  53. unsigned selector;
  54. unsigned base;
  55. unsigned limit;
  56. unsigned ar_bytes;
  57. } kvm_vmx_segment_fields[] = {
  58. VMX_SEGMENT_FIELD(CS),
  59. VMX_SEGMENT_FIELD(DS),
  60. VMX_SEGMENT_FIELD(ES),
  61. VMX_SEGMENT_FIELD(FS),
  62. VMX_SEGMENT_FIELD(GS),
  63. VMX_SEGMENT_FIELD(SS),
  64. VMX_SEGMENT_FIELD(TR),
  65. VMX_SEGMENT_FIELD(LDTR),
  66. };
  67. /*
  68. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  69. * away by decrementing the array size.
  70. */
  71. static const u32 vmx_msr_index[] = {
  72. #ifdef CONFIG_X86_64
  73. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  74. #endif
  75. MSR_EFER, MSR_K6_STAR,
  76. };
  77. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  78. static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
  79. {
  80. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  81. }
  82. static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
  83. {
  84. int efer_offset = vcpu->msr_offset_efer;
  85. return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
  86. msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
  87. }
  88. static inline int is_page_fault(u32 intr_info)
  89. {
  90. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  91. INTR_INFO_VALID_MASK)) ==
  92. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  93. }
  94. static inline int is_no_device(u32 intr_info)
  95. {
  96. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  97. INTR_INFO_VALID_MASK)) ==
  98. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  99. }
  100. static inline int is_external_interrupt(u32 intr_info)
  101. {
  102. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  103. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  104. }
  105. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  106. {
  107. int i;
  108. for (i = 0; i < vcpu->nmsrs; ++i)
  109. if (vcpu->guest_msrs[i].index == msr)
  110. return i;
  111. return -1;
  112. }
  113. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  114. {
  115. int i;
  116. i = __find_msr_index(vcpu, msr);
  117. if (i >= 0)
  118. return &vcpu->guest_msrs[i];
  119. return NULL;
  120. }
  121. static void vmcs_clear(struct vmcs *vmcs)
  122. {
  123. u64 phys_addr = __pa(vmcs);
  124. u8 error;
  125. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  126. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  127. : "cc", "memory");
  128. if (error)
  129. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  130. vmcs, phys_addr);
  131. }
  132. static void __vcpu_clear(void *arg)
  133. {
  134. struct kvm_vcpu *vcpu = arg;
  135. int cpu = raw_smp_processor_id();
  136. if (vcpu->cpu == cpu)
  137. vmcs_clear(vcpu->vmcs);
  138. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  139. per_cpu(current_vmcs, cpu) = NULL;
  140. rdtscll(vcpu->host_tsc);
  141. }
  142. static void vcpu_clear(struct kvm_vcpu *vcpu)
  143. {
  144. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  145. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  146. else
  147. __vcpu_clear(vcpu);
  148. vcpu->launched = 0;
  149. }
  150. static unsigned long vmcs_readl(unsigned long field)
  151. {
  152. unsigned long value;
  153. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  154. : "=a"(value) : "d"(field) : "cc");
  155. return value;
  156. }
  157. static u16 vmcs_read16(unsigned long field)
  158. {
  159. return vmcs_readl(field);
  160. }
  161. static u32 vmcs_read32(unsigned long field)
  162. {
  163. return vmcs_readl(field);
  164. }
  165. static u64 vmcs_read64(unsigned long field)
  166. {
  167. #ifdef CONFIG_X86_64
  168. return vmcs_readl(field);
  169. #else
  170. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  171. #endif
  172. }
  173. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  174. {
  175. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  176. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  177. dump_stack();
  178. }
  179. static void vmcs_writel(unsigned long field, unsigned long value)
  180. {
  181. u8 error;
  182. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  183. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  184. if (unlikely(error))
  185. vmwrite_error(field, value);
  186. }
  187. static void vmcs_write16(unsigned long field, u16 value)
  188. {
  189. vmcs_writel(field, value);
  190. }
  191. static void vmcs_write32(unsigned long field, u32 value)
  192. {
  193. vmcs_writel(field, value);
  194. }
  195. static void vmcs_write64(unsigned long field, u64 value)
  196. {
  197. #ifdef CONFIG_X86_64
  198. vmcs_writel(field, value);
  199. #else
  200. vmcs_writel(field, value);
  201. asm volatile ("");
  202. vmcs_writel(field+1, value >> 32);
  203. #endif
  204. }
  205. static void vmcs_clear_bits(unsigned long field, u32 mask)
  206. {
  207. vmcs_writel(field, vmcs_readl(field) & ~mask);
  208. }
  209. static void vmcs_set_bits(unsigned long field, u32 mask)
  210. {
  211. vmcs_writel(field, vmcs_readl(field) | mask);
  212. }
  213. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  214. {
  215. u32 eb;
  216. eb = 1u << PF_VECTOR;
  217. if (!vcpu->fpu_active)
  218. eb |= 1u << NM_VECTOR;
  219. if (vcpu->guest_debug.enabled)
  220. eb |= 1u << 1;
  221. if (vcpu->rmode.active)
  222. eb = ~0;
  223. vmcs_write32(EXCEPTION_BITMAP, eb);
  224. }
  225. static void reload_tss(void)
  226. {
  227. #ifndef CONFIG_X86_64
  228. /*
  229. * VT restores TR but not its size. Useless.
  230. */
  231. struct descriptor_table gdt;
  232. struct segment_descriptor *descs;
  233. get_gdt(&gdt);
  234. descs = (void *)gdt.base;
  235. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  236. load_TR_desc();
  237. #endif
  238. }
  239. static void load_transition_efer(struct kvm_vcpu *vcpu)
  240. {
  241. u64 trans_efer;
  242. int efer_offset = vcpu->msr_offset_efer;
  243. trans_efer = vcpu->host_msrs[efer_offset].data;
  244. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  245. trans_efer |= msr_efer_save_restore_bits(
  246. vcpu->guest_msrs[efer_offset]);
  247. wrmsrl(MSR_EFER, trans_efer);
  248. vcpu->stat.efer_reload++;
  249. }
  250. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  251. {
  252. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  253. if (hs->loaded)
  254. return;
  255. hs->loaded = 1;
  256. /*
  257. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  258. * allow segment selectors with cpl > 0 or ti == 1.
  259. */
  260. hs->ldt_sel = read_ldt();
  261. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  262. hs->fs_sel = read_fs();
  263. if (!(hs->fs_sel & 7))
  264. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  265. else {
  266. vmcs_write16(HOST_FS_SELECTOR, 0);
  267. hs->fs_gs_ldt_reload_needed = 1;
  268. }
  269. hs->gs_sel = read_gs();
  270. if (!(hs->gs_sel & 7))
  271. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  272. else {
  273. vmcs_write16(HOST_GS_SELECTOR, 0);
  274. hs->fs_gs_ldt_reload_needed = 1;
  275. }
  276. #ifdef CONFIG_X86_64
  277. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  278. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  279. #else
  280. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  281. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  282. #endif
  283. #ifdef CONFIG_X86_64
  284. if (is_long_mode(vcpu)) {
  285. save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
  286. }
  287. #endif
  288. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  289. if (msr_efer_need_save_restore(vcpu))
  290. load_transition_efer(vcpu);
  291. }
  292. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  293. {
  294. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  295. if (!hs->loaded)
  296. return;
  297. hs->loaded = 0;
  298. if (hs->fs_gs_ldt_reload_needed) {
  299. load_ldt(hs->ldt_sel);
  300. load_fs(hs->fs_sel);
  301. /*
  302. * If we have to reload gs, we must take care to
  303. * preserve our gs base.
  304. */
  305. local_irq_disable();
  306. load_gs(hs->gs_sel);
  307. #ifdef CONFIG_X86_64
  308. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  309. #endif
  310. local_irq_enable();
  311. reload_tss();
  312. }
  313. save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  314. load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
  315. if (msr_efer_need_save_restore(vcpu))
  316. load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
  317. }
  318. /*
  319. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  320. * vcpu mutex is already taken.
  321. */
  322. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  323. {
  324. u64 phys_addr = __pa(vcpu->vmcs);
  325. int cpu;
  326. u64 tsc_this, delta;
  327. cpu = get_cpu();
  328. if (vcpu->cpu != cpu)
  329. vcpu_clear(vcpu);
  330. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  331. u8 error;
  332. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  333. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  334. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  335. : "cc");
  336. if (error)
  337. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  338. vcpu->vmcs, phys_addr);
  339. }
  340. if (vcpu->cpu != cpu) {
  341. struct descriptor_table dt;
  342. unsigned long sysenter_esp;
  343. vcpu->cpu = cpu;
  344. /*
  345. * Linux uses per-cpu TSS and GDT, so set these when switching
  346. * processors.
  347. */
  348. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  349. get_gdt(&dt);
  350. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  351. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  352. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  353. /*
  354. * Make sure the time stamp counter is monotonous.
  355. */
  356. rdtscll(tsc_this);
  357. delta = vcpu->host_tsc - tsc_this;
  358. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  359. }
  360. }
  361. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  362. {
  363. vmx_load_host_state(vcpu);
  364. kvm_put_guest_fpu(vcpu);
  365. put_cpu();
  366. }
  367. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  368. {
  369. if (vcpu->fpu_active)
  370. return;
  371. vcpu->fpu_active = 1;
  372. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  373. if (vcpu->cr0 & CR0_TS_MASK)
  374. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  375. update_exception_bitmap(vcpu);
  376. }
  377. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  378. {
  379. if (!vcpu->fpu_active)
  380. return;
  381. vcpu->fpu_active = 0;
  382. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  383. update_exception_bitmap(vcpu);
  384. }
  385. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  386. {
  387. vcpu_clear(vcpu);
  388. }
  389. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  390. {
  391. return vmcs_readl(GUEST_RFLAGS);
  392. }
  393. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  394. {
  395. vmcs_writel(GUEST_RFLAGS, rflags);
  396. }
  397. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  398. {
  399. unsigned long rip;
  400. u32 interruptibility;
  401. rip = vmcs_readl(GUEST_RIP);
  402. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  403. vmcs_writel(GUEST_RIP, rip);
  404. /*
  405. * We emulated an instruction, so temporary interrupt blocking
  406. * should be removed, if set.
  407. */
  408. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  409. if (interruptibility & 3)
  410. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  411. interruptibility & ~3);
  412. vcpu->interrupt_window_open = 1;
  413. }
  414. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  415. {
  416. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  417. vmcs_readl(GUEST_RIP));
  418. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  419. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  420. GP_VECTOR |
  421. INTR_TYPE_EXCEPTION |
  422. INTR_INFO_DELIEVER_CODE_MASK |
  423. INTR_INFO_VALID_MASK);
  424. }
  425. /*
  426. * Swap MSR entry in host/guest MSR entry array.
  427. */
  428. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  429. {
  430. struct vmx_msr_entry tmp;
  431. tmp = vcpu->guest_msrs[to];
  432. vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
  433. vcpu->guest_msrs[from] = tmp;
  434. tmp = vcpu->host_msrs[to];
  435. vcpu->host_msrs[to] = vcpu->host_msrs[from];
  436. vcpu->host_msrs[from] = tmp;
  437. }
  438. /*
  439. * Set up the vmcs to automatically save and restore system
  440. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  441. * mode, as fiddling with msrs is very expensive.
  442. */
  443. static void setup_msrs(struct kvm_vcpu *vcpu)
  444. {
  445. int save_nmsrs;
  446. save_nmsrs = 0;
  447. #ifdef CONFIG_X86_64
  448. if (is_long_mode(vcpu)) {
  449. int index;
  450. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  451. if (index >= 0)
  452. move_msr_up(vcpu, index, save_nmsrs++);
  453. index = __find_msr_index(vcpu, MSR_LSTAR);
  454. if (index >= 0)
  455. move_msr_up(vcpu, index, save_nmsrs++);
  456. index = __find_msr_index(vcpu, MSR_CSTAR);
  457. if (index >= 0)
  458. move_msr_up(vcpu, index, save_nmsrs++);
  459. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  460. if (index >= 0)
  461. move_msr_up(vcpu, index, save_nmsrs++);
  462. /*
  463. * MSR_K6_STAR is only needed on long mode guests, and only
  464. * if efer.sce is enabled.
  465. */
  466. index = __find_msr_index(vcpu, MSR_K6_STAR);
  467. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  468. move_msr_up(vcpu, index, save_nmsrs++);
  469. }
  470. #endif
  471. vcpu->save_nmsrs = save_nmsrs;
  472. #ifdef CONFIG_X86_64
  473. vcpu->msr_offset_kernel_gs_base =
  474. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  475. #endif
  476. vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
  477. }
  478. /*
  479. * reads and returns guest's timestamp counter "register"
  480. * guest_tsc = host_tsc + tsc_offset -- 21.3
  481. */
  482. static u64 guest_read_tsc(void)
  483. {
  484. u64 host_tsc, tsc_offset;
  485. rdtscll(host_tsc);
  486. tsc_offset = vmcs_read64(TSC_OFFSET);
  487. return host_tsc + tsc_offset;
  488. }
  489. /*
  490. * writes 'guest_tsc' into guest's timestamp counter "register"
  491. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  492. */
  493. static void guest_write_tsc(u64 guest_tsc)
  494. {
  495. u64 host_tsc;
  496. rdtscll(host_tsc);
  497. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  498. }
  499. /*
  500. * Reads an msr value (of 'msr_index') into 'pdata'.
  501. * Returns 0 on success, non-0 otherwise.
  502. * Assumes vcpu_load() was already called.
  503. */
  504. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  505. {
  506. u64 data;
  507. struct vmx_msr_entry *msr;
  508. if (!pdata) {
  509. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  510. return -EINVAL;
  511. }
  512. switch (msr_index) {
  513. #ifdef CONFIG_X86_64
  514. case MSR_FS_BASE:
  515. data = vmcs_readl(GUEST_FS_BASE);
  516. break;
  517. case MSR_GS_BASE:
  518. data = vmcs_readl(GUEST_GS_BASE);
  519. break;
  520. case MSR_EFER:
  521. return kvm_get_msr_common(vcpu, msr_index, pdata);
  522. #endif
  523. case MSR_IA32_TIME_STAMP_COUNTER:
  524. data = guest_read_tsc();
  525. break;
  526. case MSR_IA32_SYSENTER_CS:
  527. data = vmcs_read32(GUEST_SYSENTER_CS);
  528. break;
  529. case MSR_IA32_SYSENTER_EIP:
  530. data = vmcs_readl(GUEST_SYSENTER_EIP);
  531. break;
  532. case MSR_IA32_SYSENTER_ESP:
  533. data = vmcs_readl(GUEST_SYSENTER_ESP);
  534. break;
  535. default:
  536. msr = find_msr_entry(vcpu, msr_index);
  537. if (msr) {
  538. data = msr->data;
  539. break;
  540. }
  541. return kvm_get_msr_common(vcpu, msr_index, pdata);
  542. }
  543. *pdata = data;
  544. return 0;
  545. }
  546. /*
  547. * Writes msr value into into the appropriate "register".
  548. * Returns 0 on success, non-0 otherwise.
  549. * Assumes vcpu_load() was already called.
  550. */
  551. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  552. {
  553. struct vmx_msr_entry *msr;
  554. int ret = 0;
  555. switch (msr_index) {
  556. #ifdef CONFIG_X86_64
  557. case MSR_EFER:
  558. ret = kvm_set_msr_common(vcpu, msr_index, data);
  559. if (vcpu->vmx_host_state.loaded)
  560. load_transition_efer(vcpu);
  561. break;
  562. case MSR_FS_BASE:
  563. vmcs_writel(GUEST_FS_BASE, data);
  564. break;
  565. case MSR_GS_BASE:
  566. vmcs_writel(GUEST_GS_BASE, data);
  567. break;
  568. #endif
  569. case MSR_IA32_SYSENTER_CS:
  570. vmcs_write32(GUEST_SYSENTER_CS, data);
  571. break;
  572. case MSR_IA32_SYSENTER_EIP:
  573. vmcs_writel(GUEST_SYSENTER_EIP, data);
  574. break;
  575. case MSR_IA32_SYSENTER_ESP:
  576. vmcs_writel(GUEST_SYSENTER_ESP, data);
  577. break;
  578. case MSR_IA32_TIME_STAMP_COUNTER:
  579. guest_write_tsc(data);
  580. break;
  581. default:
  582. msr = find_msr_entry(vcpu, msr_index);
  583. if (msr) {
  584. msr->data = data;
  585. if (vcpu->vmx_host_state.loaded)
  586. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  587. break;
  588. }
  589. ret = kvm_set_msr_common(vcpu, msr_index, data);
  590. }
  591. return ret;
  592. }
  593. /*
  594. * Sync the rsp and rip registers into the vcpu structure. This allows
  595. * registers to be accessed by indexing vcpu->regs.
  596. */
  597. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  598. {
  599. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  600. vcpu->rip = vmcs_readl(GUEST_RIP);
  601. }
  602. /*
  603. * Syncs rsp and rip back into the vmcs. Should be called after possible
  604. * modification.
  605. */
  606. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  607. {
  608. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  609. vmcs_writel(GUEST_RIP, vcpu->rip);
  610. }
  611. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  612. {
  613. unsigned long dr7 = 0x400;
  614. int old_singlestep;
  615. old_singlestep = vcpu->guest_debug.singlestep;
  616. vcpu->guest_debug.enabled = dbg->enabled;
  617. if (vcpu->guest_debug.enabled) {
  618. int i;
  619. dr7 |= 0x200; /* exact */
  620. for (i = 0; i < 4; ++i) {
  621. if (!dbg->breakpoints[i].enabled)
  622. continue;
  623. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  624. dr7 |= 2 << (i*2); /* global enable */
  625. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  626. }
  627. vcpu->guest_debug.singlestep = dbg->singlestep;
  628. } else
  629. vcpu->guest_debug.singlestep = 0;
  630. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  631. unsigned long flags;
  632. flags = vmcs_readl(GUEST_RFLAGS);
  633. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  634. vmcs_writel(GUEST_RFLAGS, flags);
  635. }
  636. update_exception_bitmap(vcpu);
  637. vmcs_writel(GUEST_DR7, dr7);
  638. return 0;
  639. }
  640. static __init int cpu_has_kvm_support(void)
  641. {
  642. unsigned long ecx = cpuid_ecx(1);
  643. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  644. }
  645. static __init int vmx_disabled_by_bios(void)
  646. {
  647. u64 msr;
  648. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  649. return (msr & 5) == 1; /* locked but not enabled */
  650. }
  651. static void hardware_enable(void *garbage)
  652. {
  653. int cpu = raw_smp_processor_id();
  654. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  655. u64 old;
  656. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  657. if ((old & 5) != 5)
  658. /* enable and lock */
  659. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  660. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  661. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  662. : "memory", "cc");
  663. }
  664. static void hardware_disable(void *garbage)
  665. {
  666. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  667. }
  668. static __init void setup_vmcs_descriptor(void)
  669. {
  670. u32 vmx_msr_low, vmx_msr_high;
  671. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  672. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  673. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  674. vmcs_descriptor.revision_id = vmx_msr_low;
  675. }
  676. static struct vmcs *alloc_vmcs_cpu(int cpu)
  677. {
  678. int node = cpu_to_node(cpu);
  679. struct page *pages;
  680. struct vmcs *vmcs;
  681. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  682. if (!pages)
  683. return NULL;
  684. vmcs = page_address(pages);
  685. memset(vmcs, 0, vmcs_descriptor.size);
  686. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  687. return vmcs;
  688. }
  689. static struct vmcs *alloc_vmcs(void)
  690. {
  691. return alloc_vmcs_cpu(raw_smp_processor_id());
  692. }
  693. static void free_vmcs(struct vmcs *vmcs)
  694. {
  695. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  696. }
  697. static void free_kvm_area(void)
  698. {
  699. int cpu;
  700. for_each_online_cpu(cpu)
  701. free_vmcs(per_cpu(vmxarea, cpu));
  702. }
  703. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  704. static __init int alloc_kvm_area(void)
  705. {
  706. int cpu;
  707. for_each_online_cpu(cpu) {
  708. struct vmcs *vmcs;
  709. vmcs = alloc_vmcs_cpu(cpu);
  710. if (!vmcs) {
  711. free_kvm_area();
  712. return -ENOMEM;
  713. }
  714. per_cpu(vmxarea, cpu) = vmcs;
  715. }
  716. return 0;
  717. }
  718. static __init int hardware_setup(void)
  719. {
  720. setup_vmcs_descriptor();
  721. return alloc_kvm_area();
  722. }
  723. static __exit void hardware_unsetup(void)
  724. {
  725. free_kvm_area();
  726. }
  727. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  728. {
  729. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  730. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  731. vmcs_write16(sf->selector, save->selector);
  732. vmcs_writel(sf->base, save->base);
  733. vmcs_write32(sf->limit, save->limit);
  734. vmcs_write32(sf->ar_bytes, save->ar);
  735. } else {
  736. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  737. << AR_DPL_SHIFT;
  738. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  739. }
  740. }
  741. static void enter_pmode(struct kvm_vcpu *vcpu)
  742. {
  743. unsigned long flags;
  744. vcpu->rmode.active = 0;
  745. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  746. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  747. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  748. flags = vmcs_readl(GUEST_RFLAGS);
  749. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  750. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  751. vmcs_writel(GUEST_RFLAGS, flags);
  752. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  753. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  754. update_exception_bitmap(vcpu);
  755. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  756. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  757. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  758. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  759. vmcs_write16(GUEST_SS_SELECTOR, 0);
  760. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  761. vmcs_write16(GUEST_CS_SELECTOR,
  762. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  763. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  764. }
  765. static int rmode_tss_base(struct kvm* kvm)
  766. {
  767. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  768. return base_gfn << PAGE_SHIFT;
  769. }
  770. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  771. {
  772. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  773. save->selector = vmcs_read16(sf->selector);
  774. save->base = vmcs_readl(sf->base);
  775. save->limit = vmcs_read32(sf->limit);
  776. save->ar = vmcs_read32(sf->ar_bytes);
  777. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  778. vmcs_write32(sf->limit, 0xffff);
  779. vmcs_write32(sf->ar_bytes, 0xf3);
  780. }
  781. static void enter_rmode(struct kvm_vcpu *vcpu)
  782. {
  783. unsigned long flags;
  784. vcpu->rmode.active = 1;
  785. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  786. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  787. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  788. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  789. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  790. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  791. flags = vmcs_readl(GUEST_RFLAGS);
  792. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  793. flags |= IOPL_MASK | X86_EFLAGS_VM;
  794. vmcs_writel(GUEST_RFLAGS, flags);
  795. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  796. update_exception_bitmap(vcpu);
  797. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  798. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  799. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  800. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  801. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  802. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  803. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  804. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  805. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  806. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  807. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  808. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  809. }
  810. #ifdef CONFIG_X86_64
  811. static void enter_lmode(struct kvm_vcpu *vcpu)
  812. {
  813. u32 guest_tr_ar;
  814. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  815. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  816. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  817. __FUNCTION__);
  818. vmcs_write32(GUEST_TR_AR_BYTES,
  819. (guest_tr_ar & ~AR_TYPE_MASK)
  820. | AR_TYPE_BUSY_64_TSS);
  821. }
  822. vcpu->shadow_efer |= EFER_LMA;
  823. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  824. vmcs_write32(VM_ENTRY_CONTROLS,
  825. vmcs_read32(VM_ENTRY_CONTROLS)
  826. | VM_ENTRY_CONTROLS_IA32E_MASK);
  827. }
  828. static void exit_lmode(struct kvm_vcpu *vcpu)
  829. {
  830. vcpu->shadow_efer &= ~EFER_LMA;
  831. vmcs_write32(VM_ENTRY_CONTROLS,
  832. vmcs_read32(VM_ENTRY_CONTROLS)
  833. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  834. }
  835. #endif
  836. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  837. {
  838. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  839. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  840. }
  841. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  842. {
  843. vmx_fpu_deactivate(vcpu);
  844. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  845. enter_pmode(vcpu);
  846. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  847. enter_rmode(vcpu);
  848. #ifdef CONFIG_X86_64
  849. if (vcpu->shadow_efer & EFER_LME) {
  850. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  851. enter_lmode(vcpu);
  852. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  853. exit_lmode(vcpu);
  854. }
  855. #endif
  856. vmcs_writel(CR0_READ_SHADOW, cr0);
  857. vmcs_writel(GUEST_CR0,
  858. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  859. vcpu->cr0 = cr0;
  860. if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
  861. vmx_fpu_activate(vcpu);
  862. }
  863. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  864. {
  865. vmcs_writel(GUEST_CR3, cr3);
  866. if (vcpu->cr0 & CR0_PE_MASK)
  867. vmx_fpu_deactivate(vcpu);
  868. }
  869. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  870. {
  871. vmcs_writel(CR4_READ_SHADOW, cr4);
  872. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  873. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  874. vcpu->cr4 = cr4;
  875. }
  876. #ifdef CONFIG_X86_64
  877. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  878. {
  879. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  880. vcpu->shadow_efer = efer;
  881. if (efer & EFER_LMA) {
  882. vmcs_write32(VM_ENTRY_CONTROLS,
  883. vmcs_read32(VM_ENTRY_CONTROLS) |
  884. VM_ENTRY_CONTROLS_IA32E_MASK);
  885. msr->data = efer;
  886. } else {
  887. vmcs_write32(VM_ENTRY_CONTROLS,
  888. vmcs_read32(VM_ENTRY_CONTROLS) &
  889. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  890. msr->data = efer & ~EFER_LME;
  891. }
  892. setup_msrs(vcpu);
  893. }
  894. #endif
  895. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  896. {
  897. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  898. return vmcs_readl(sf->base);
  899. }
  900. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  901. struct kvm_segment *var, int seg)
  902. {
  903. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  904. u32 ar;
  905. var->base = vmcs_readl(sf->base);
  906. var->limit = vmcs_read32(sf->limit);
  907. var->selector = vmcs_read16(sf->selector);
  908. ar = vmcs_read32(sf->ar_bytes);
  909. if (ar & AR_UNUSABLE_MASK)
  910. ar = 0;
  911. var->type = ar & 15;
  912. var->s = (ar >> 4) & 1;
  913. var->dpl = (ar >> 5) & 3;
  914. var->present = (ar >> 7) & 1;
  915. var->avl = (ar >> 12) & 1;
  916. var->l = (ar >> 13) & 1;
  917. var->db = (ar >> 14) & 1;
  918. var->g = (ar >> 15) & 1;
  919. var->unusable = (ar >> 16) & 1;
  920. }
  921. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  922. {
  923. u32 ar;
  924. if (var->unusable)
  925. ar = 1 << 16;
  926. else {
  927. ar = var->type & 15;
  928. ar |= (var->s & 1) << 4;
  929. ar |= (var->dpl & 3) << 5;
  930. ar |= (var->present & 1) << 7;
  931. ar |= (var->avl & 1) << 12;
  932. ar |= (var->l & 1) << 13;
  933. ar |= (var->db & 1) << 14;
  934. ar |= (var->g & 1) << 15;
  935. }
  936. if (ar == 0) /* a 0 value means unusable */
  937. ar = AR_UNUSABLE_MASK;
  938. return ar;
  939. }
  940. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  941. struct kvm_segment *var, int seg)
  942. {
  943. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  944. u32 ar;
  945. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  946. vcpu->rmode.tr.selector = var->selector;
  947. vcpu->rmode.tr.base = var->base;
  948. vcpu->rmode.tr.limit = var->limit;
  949. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  950. return;
  951. }
  952. vmcs_writel(sf->base, var->base);
  953. vmcs_write32(sf->limit, var->limit);
  954. vmcs_write16(sf->selector, var->selector);
  955. if (vcpu->rmode.active && var->s) {
  956. /*
  957. * Hack real-mode segments into vm86 compatibility.
  958. */
  959. if (var->base == 0xffff0000 && var->selector == 0xf000)
  960. vmcs_writel(sf->base, 0xf0000);
  961. ar = 0xf3;
  962. } else
  963. ar = vmx_segment_access_rights(var);
  964. vmcs_write32(sf->ar_bytes, ar);
  965. }
  966. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  967. {
  968. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  969. *db = (ar >> 14) & 1;
  970. *l = (ar >> 13) & 1;
  971. }
  972. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  973. {
  974. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  975. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  976. }
  977. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  978. {
  979. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  980. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  981. }
  982. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  983. {
  984. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  985. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  986. }
  987. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  988. {
  989. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  990. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  991. }
  992. static int init_rmode_tss(struct kvm* kvm)
  993. {
  994. struct page *p1, *p2, *p3;
  995. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  996. char *page;
  997. p1 = gfn_to_page(kvm, fn++);
  998. p2 = gfn_to_page(kvm, fn++);
  999. p3 = gfn_to_page(kvm, fn);
  1000. if (!p1 || !p2 || !p3) {
  1001. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1002. return 0;
  1003. }
  1004. page = kmap_atomic(p1, KM_USER0);
  1005. clear_page(page);
  1006. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1007. kunmap_atomic(page, KM_USER0);
  1008. page = kmap_atomic(p2, KM_USER0);
  1009. clear_page(page);
  1010. kunmap_atomic(page, KM_USER0);
  1011. page = kmap_atomic(p3, KM_USER0);
  1012. clear_page(page);
  1013. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1014. kunmap_atomic(page, KM_USER0);
  1015. return 1;
  1016. }
  1017. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  1018. {
  1019. u32 msr_high, msr_low;
  1020. rdmsr(msr, msr_low, msr_high);
  1021. val &= msr_high;
  1022. val |= msr_low;
  1023. vmcs_write32(vmcs_field, val);
  1024. }
  1025. static void seg_setup(int seg)
  1026. {
  1027. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1028. vmcs_write16(sf->selector, 0);
  1029. vmcs_writel(sf->base, 0);
  1030. vmcs_write32(sf->limit, 0xffff);
  1031. vmcs_write32(sf->ar_bytes, 0x93);
  1032. }
  1033. /*
  1034. * Sets up the vmcs for emulated real mode.
  1035. */
  1036. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1037. {
  1038. u32 host_sysenter_cs;
  1039. u32 junk;
  1040. unsigned long a;
  1041. struct descriptor_table dt;
  1042. int i;
  1043. int ret = 0;
  1044. unsigned long kvm_vmx_return;
  1045. if (!init_rmode_tss(vcpu->kvm)) {
  1046. ret = -ENOMEM;
  1047. goto out;
  1048. }
  1049. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1050. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1051. vcpu->cr8 = 0;
  1052. vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1053. if (vcpu == &vcpu->kvm->vcpus[0])
  1054. vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
  1055. fx_init(vcpu);
  1056. /*
  1057. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1058. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1059. */
  1060. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1061. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1062. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1063. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1064. seg_setup(VCPU_SREG_DS);
  1065. seg_setup(VCPU_SREG_ES);
  1066. seg_setup(VCPU_SREG_FS);
  1067. seg_setup(VCPU_SREG_GS);
  1068. seg_setup(VCPU_SREG_SS);
  1069. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1070. vmcs_writel(GUEST_TR_BASE, 0);
  1071. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1072. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1073. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1074. vmcs_writel(GUEST_LDTR_BASE, 0);
  1075. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1076. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1077. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1078. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1079. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1080. vmcs_writel(GUEST_RFLAGS, 0x02);
  1081. vmcs_writel(GUEST_RIP, 0xfff0);
  1082. vmcs_writel(GUEST_RSP, 0);
  1083. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1084. vmcs_writel(GUEST_DR7, 0x400);
  1085. vmcs_writel(GUEST_GDTR_BASE, 0);
  1086. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1087. vmcs_writel(GUEST_IDTR_BASE, 0);
  1088. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1089. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1090. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1091. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1092. /* I/O */
  1093. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1094. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1095. guest_write_tsc(0);
  1096. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1097. /* Special registers */
  1098. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1099. /* Control */
  1100. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1101. PIN_BASED_VM_EXEC_CONTROL,
  1102. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1103. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1104. );
  1105. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1106. CPU_BASED_VM_EXEC_CONTROL,
  1107. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1108. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1109. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1110. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1111. | CPU_BASED_MOV_DR_EXITING
  1112. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1113. );
  1114. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1115. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1116. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1117. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1118. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1119. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1120. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1121. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1122. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1123. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1124. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1125. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1126. #ifdef CONFIG_X86_64
  1127. rdmsrl(MSR_FS_BASE, a);
  1128. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1129. rdmsrl(MSR_GS_BASE, a);
  1130. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1131. #else
  1132. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1133. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1134. #endif
  1135. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1136. get_idt(&dt);
  1137. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1138. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1139. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1140. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1141. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1142. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1143. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1144. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1145. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1146. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1147. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1148. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1149. for (i = 0; i < NR_VMX_MSR; ++i) {
  1150. u32 index = vmx_msr_index[i];
  1151. u32 data_low, data_high;
  1152. u64 data;
  1153. int j = vcpu->nmsrs;
  1154. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1155. continue;
  1156. if (wrmsr_safe(index, data_low, data_high) < 0)
  1157. continue;
  1158. data = data_low | ((u64)data_high << 32);
  1159. vcpu->host_msrs[j].index = index;
  1160. vcpu->host_msrs[j].reserved = 0;
  1161. vcpu->host_msrs[j].data = data;
  1162. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1163. ++vcpu->nmsrs;
  1164. }
  1165. setup_msrs(vcpu);
  1166. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1167. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1168. /* 22.2.1, 20.8.1 */
  1169. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1170. VM_ENTRY_CONTROLS, 0);
  1171. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1172. #ifdef CONFIG_X86_64
  1173. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1174. vmcs_writel(TPR_THRESHOLD, 0);
  1175. #endif
  1176. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1177. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1178. vcpu->cr0 = 0x60000010;
  1179. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1180. vmx_set_cr4(vcpu, 0);
  1181. #ifdef CONFIG_X86_64
  1182. vmx_set_efer(vcpu, 0);
  1183. #endif
  1184. vmx_fpu_activate(vcpu);
  1185. update_exception_bitmap(vcpu);
  1186. return 0;
  1187. out:
  1188. return ret;
  1189. }
  1190. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1191. {
  1192. u16 ent[2];
  1193. u16 cs;
  1194. u16 ip;
  1195. unsigned long flags;
  1196. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1197. u16 sp = vmcs_readl(GUEST_RSP);
  1198. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1199. if (sp > ss_limit || sp < 6 ) {
  1200. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1201. __FUNCTION__,
  1202. vmcs_readl(GUEST_RSP),
  1203. vmcs_readl(GUEST_SS_BASE),
  1204. vmcs_read32(GUEST_SS_LIMIT));
  1205. return;
  1206. }
  1207. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1208. sizeof(ent)) {
  1209. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1210. return;
  1211. }
  1212. flags = vmcs_readl(GUEST_RFLAGS);
  1213. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1214. ip = vmcs_readl(GUEST_RIP);
  1215. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1216. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1217. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1218. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1219. return;
  1220. }
  1221. vmcs_writel(GUEST_RFLAGS, flags &
  1222. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1223. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1224. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1225. vmcs_writel(GUEST_RIP, ent[0]);
  1226. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1227. }
  1228. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1229. {
  1230. int word_index = __ffs(vcpu->irq_summary);
  1231. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1232. int irq = word_index * BITS_PER_LONG + bit_index;
  1233. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1234. if (!vcpu->irq_pending[word_index])
  1235. clear_bit(word_index, &vcpu->irq_summary);
  1236. if (vcpu->rmode.active) {
  1237. inject_rmode_irq(vcpu, irq);
  1238. return;
  1239. }
  1240. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1241. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1242. }
  1243. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1244. struct kvm_run *kvm_run)
  1245. {
  1246. u32 cpu_based_vm_exec_control;
  1247. vcpu->interrupt_window_open =
  1248. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1249. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1250. if (vcpu->interrupt_window_open &&
  1251. vcpu->irq_summary &&
  1252. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1253. /*
  1254. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1255. */
  1256. kvm_do_inject_irq(vcpu);
  1257. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1258. if (!vcpu->interrupt_window_open &&
  1259. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1260. /*
  1261. * Interrupts blocked. Wait for unblock.
  1262. */
  1263. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1264. else
  1265. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1266. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1267. }
  1268. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1269. {
  1270. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1271. set_debugreg(dbg->bp[0], 0);
  1272. set_debugreg(dbg->bp[1], 1);
  1273. set_debugreg(dbg->bp[2], 2);
  1274. set_debugreg(dbg->bp[3], 3);
  1275. if (dbg->singlestep) {
  1276. unsigned long flags;
  1277. flags = vmcs_readl(GUEST_RFLAGS);
  1278. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1279. vmcs_writel(GUEST_RFLAGS, flags);
  1280. }
  1281. }
  1282. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1283. int vec, u32 err_code)
  1284. {
  1285. if (!vcpu->rmode.active)
  1286. return 0;
  1287. /*
  1288. * Instruction with address size override prefix opcode 0x67
  1289. * Cause the #SS fault with 0 error code in VM86 mode.
  1290. */
  1291. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1292. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1293. return 1;
  1294. return 0;
  1295. }
  1296. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1297. {
  1298. u32 intr_info, error_code;
  1299. unsigned long cr2, rip;
  1300. u32 vect_info;
  1301. enum emulation_result er;
  1302. int r;
  1303. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1304. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1305. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1306. !is_page_fault(intr_info)) {
  1307. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1308. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1309. }
  1310. if (is_external_interrupt(vect_info)) {
  1311. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1312. set_bit(irq, vcpu->irq_pending);
  1313. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1314. }
  1315. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1316. asm ("int $2");
  1317. return 1;
  1318. }
  1319. if (is_no_device(intr_info)) {
  1320. vmx_fpu_activate(vcpu);
  1321. return 1;
  1322. }
  1323. error_code = 0;
  1324. rip = vmcs_readl(GUEST_RIP);
  1325. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1326. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1327. if (is_page_fault(intr_info)) {
  1328. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1329. spin_lock(&vcpu->kvm->lock);
  1330. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1331. if (r < 0) {
  1332. spin_unlock(&vcpu->kvm->lock);
  1333. return r;
  1334. }
  1335. if (!r) {
  1336. spin_unlock(&vcpu->kvm->lock);
  1337. return 1;
  1338. }
  1339. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1340. spin_unlock(&vcpu->kvm->lock);
  1341. switch (er) {
  1342. case EMULATE_DONE:
  1343. return 1;
  1344. case EMULATE_DO_MMIO:
  1345. ++vcpu->stat.mmio_exits;
  1346. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1347. return 0;
  1348. case EMULATE_FAIL:
  1349. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1350. break;
  1351. default:
  1352. BUG();
  1353. }
  1354. }
  1355. if (vcpu->rmode.active &&
  1356. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1357. error_code)) {
  1358. if (vcpu->halt_request) {
  1359. vcpu->halt_request = 0;
  1360. return kvm_emulate_halt(vcpu);
  1361. }
  1362. return 1;
  1363. }
  1364. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1365. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1366. return 0;
  1367. }
  1368. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1369. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1370. kvm_run->ex.error_code = error_code;
  1371. return 0;
  1372. }
  1373. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1374. struct kvm_run *kvm_run)
  1375. {
  1376. ++vcpu->stat.irq_exits;
  1377. return 1;
  1378. }
  1379. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1380. {
  1381. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1382. return 0;
  1383. }
  1384. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1385. {
  1386. u64 inst;
  1387. gva_t rip;
  1388. int countr_size;
  1389. int i, n;
  1390. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1391. countr_size = 2;
  1392. } else {
  1393. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1394. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1395. (cs_ar & AR_DB_MASK) ? 4: 2;
  1396. }
  1397. rip = vmcs_readl(GUEST_RIP);
  1398. if (countr_size != 8)
  1399. rip += vmcs_readl(GUEST_CS_BASE);
  1400. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1401. for (i = 0; i < n; i++) {
  1402. switch (((u8*)&inst)[i]) {
  1403. case 0xf0:
  1404. case 0xf2:
  1405. case 0xf3:
  1406. case 0x2e:
  1407. case 0x36:
  1408. case 0x3e:
  1409. case 0x26:
  1410. case 0x64:
  1411. case 0x65:
  1412. case 0x66:
  1413. break;
  1414. case 0x67:
  1415. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1416. default:
  1417. goto done;
  1418. }
  1419. }
  1420. return 0;
  1421. done:
  1422. countr_size *= 8;
  1423. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1424. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1425. return 1;
  1426. }
  1427. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1428. {
  1429. u64 exit_qualification;
  1430. int size, down, in, string, rep;
  1431. unsigned port;
  1432. unsigned long count;
  1433. gva_t address;
  1434. ++vcpu->stat.io_exits;
  1435. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1436. in = (exit_qualification & 8) != 0;
  1437. size = (exit_qualification & 7) + 1;
  1438. string = (exit_qualification & 16) != 0;
  1439. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1440. count = 1;
  1441. rep = (exit_qualification & 32) != 0;
  1442. port = exit_qualification >> 16;
  1443. address = 0;
  1444. if (string) {
  1445. if (rep && !get_io_count(vcpu, &count))
  1446. return 1;
  1447. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1448. }
  1449. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1450. address, rep, port);
  1451. }
  1452. static void
  1453. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1454. {
  1455. /*
  1456. * Patch in the VMCALL instruction:
  1457. */
  1458. hypercall[0] = 0x0f;
  1459. hypercall[1] = 0x01;
  1460. hypercall[2] = 0xc1;
  1461. hypercall[3] = 0xc3;
  1462. }
  1463. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1464. {
  1465. u64 exit_qualification;
  1466. int cr;
  1467. int reg;
  1468. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1469. cr = exit_qualification & 15;
  1470. reg = (exit_qualification >> 8) & 15;
  1471. switch ((exit_qualification >> 4) & 3) {
  1472. case 0: /* mov to cr */
  1473. switch (cr) {
  1474. case 0:
  1475. vcpu_load_rsp_rip(vcpu);
  1476. set_cr0(vcpu, vcpu->regs[reg]);
  1477. skip_emulated_instruction(vcpu);
  1478. return 1;
  1479. case 3:
  1480. vcpu_load_rsp_rip(vcpu);
  1481. set_cr3(vcpu, vcpu->regs[reg]);
  1482. skip_emulated_instruction(vcpu);
  1483. return 1;
  1484. case 4:
  1485. vcpu_load_rsp_rip(vcpu);
  1486. set_cr4(vcpu, vcpu->regs[reg]);
  1487. skip_emulated_instruction(vcpu);
  1488. return 1;
  1489. case 8:
  1490. vcpu_load_rsp_rip(vcpu);
  1491. set_cr8(vcpu, vcpu->regs[reg]);
  1492. skip_emulated_instruction(vcpu);
  1493. return 1;
  1494. };
  1495. break;
  1496. case 2: /* clts */
  1497. vcpu_load_rsp_rip(vcpu);
  1498. vmx_fpu_deactivate(vcpu);
  1499. vcpu->cr0 &= ~CR0_TS_MASK;
  1500. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1501. vmx_fpu_activate(vcpu);
  1502. skip_emulated_instruction(vcpu);
  1503. return 1;
  1504. case 1: /*mov from cr*/
  1505. switch (cr) {
  1506. case 3:
  1507. vcpu_load_rsp_rip(vcpu);
  1508. vcpu->regs[reg] = vcpu->cr3;
  1509. vcpu_put_rsp_rip(vcpu);
  1510. skip_emulated_instruction(vcpu);
  1511. return 1;
  1512. case 8:
  1513. vcpu_load_rsp_rip(vcpu);
  1514. vcpu->regs[reg] = vcpu->cr8;
  1515. vcpu_put_rsp_rip(vcpu);
  1516. skip_emulated_instruction(vcpu);
  1517. return 1;
  1518. }
  1519. break;
  1520. case 3: /* lmsw */
  1521. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1522. skip_emulated_instruction(vcpu);
  1523. return 1;
  1524. default:
  1525. break;
  1526. }
  1527. kvm_run->exit_reason = 0;
  1528. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1529. (int)(exit_qualification >> 4) & 3, cr);
  1530. return 0;
  1531. }
  1532. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1533. {
  1534. u64 exit_qualification;
  1535. unsigned long val;
  1536. int dr, reg;
  1537. /*
  1538. * FIXME: this code assumes the host is debugging the guest.
  1539. * need to deal with guest debugging itself too.
  1540. */
  1541. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1542. dr = exit_qualification & 7;
  1543. reg = (exit_qualification >> 8) & 15;
  1544. vcpu_load_rsp_rip(vcpu);
  1545. if (exit_qualification & 16) {
  1546. /* mov from dr */
  1547. switch (dr) {
  1548. case 6:
  1549. val = 0xffff0ff0;
  1550. break;
  1551. case 7:
  1552. val = 0x400;
  1553. break;
  1554. default:
  1555. val = 0;
  1556. }
  1557. vcpu->regs[reg] = val;
  1558. } else {
  1559. /* mov to dr */
  1560. }
  1561. vcpu_put_rsp_rip(vcpu);
  1562. skip_emulated_instruction(vcpu);
  1563. return 1;
  1564. }
  1565. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1566. {
  1567. kvm_emulate_cpuid(vcpu);
  1568. return 1;
  1569. }
  1570. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1571. {
  1572. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1573. u64 data;
  1574. if (vmx_get_msr(vcpu, ecx, &data)) {
  1575. vmx_inject_gp(vcpu, 0);
  1576. return 1;
  1577. }
  1578. /* FIXME: handling of bits 32:63 of rax, rdx */
  1579. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1580. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1581. skip_emulated_instruction(vcpu);
  1582. return 1;
  1583. }
  1584. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1585. {
  1586. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1587. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1588. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1589. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1590. vmx_inject_gp(vcpu, 0);
  1591. return 1;
  1592. }
  1593. skip_emulated_instruction(vcpu);
  1594. return 1;
  1595. }
  1596. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1597. struct kvm_run *kvm_run)
  1598. {
  1599. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1600. kvm_run->cr8 = vcpu->cr8;
  1601. kvm_run->apic_base = vcpu->apic_base;
  1602. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1603. vcpu->irq_summary == 0);
  1604. }
  1605. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1606. struct kvm_run *kvm_run)
  1607. {
  1608. /*
  1609. * If the user space waits to inject interrupts, exit as soon as
  1610. * possible
  1611. */
  1612. if (kvm_run->request_interrupt_window &&
  1613. !vcpu->irq_summary) {
  1614. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1615. ++vcpu->stat.irq_window_exits;
  1616. return 0;
  1617. }
  1618. return 1;
  1619. }
  1620. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1621. {
  1622. skip_emulated_instruction(vcpu);
  1623. return kvm_emulate_halt(vcpu);
  1624. }
  1625. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1626. {
  1627. skip_emulated_instruction(vcpu);
  1628. return kvm_hypercall(vcpu, kvm_run);
  1629. }
  1630. /*
  1631. * The exit handlers return 1 if the exit was handled fully and guest execution
  1632. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1633. * to be done to userspace and return 0.
  1634. */
  1635. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1636. struct kvm_run *kvm_run) = {
  1637. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1638. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1639. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1640. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1641. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1642. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1643. [EXIT_REASON_CPUID] = handle_cpuid,
  1644. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1645. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1646. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1647. [EXIT_REASON_HLT] = handle_halt,
  1648. [EXIT_REASON_VMCALL] = handle_vmcall,
  1649. };
  1650. static const int kvm_vmx_max_exit_handlers =
  1651. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1652. /*
  1653. * The guest has exited. See if we can fix it or if we need userspace
  1654. * assistance.
  1655. */
  1656. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1657. {
  1658. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1659. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1660. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1661. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1662. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1663. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1664. if (exit_reason < kvm_vmx_max_exit_handlers
  1665. && kvm_vmx_exit_handlers[exit_reason])
  1666. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1667. else {
  1668. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1669. kvm_run->hw.hardware_exit_reason = exit_reason;
  1670. }
  1671. return 0;
  1672. }
  1673. /*
  1674. * Check if userspace requested an interrupt window, and that the
  1675. * interrupt window is open.
  1676. *
  1677. * No need to exit to userspace if we already have an interrupt queued.
  1678. */
  1679. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1680. struct kvm_run *kvm_run)
  1681. {
  1682. return (!vcpu->irq_summary &&
  1683. kvm_run->request_interrupt_window &&
  1684. vcpu->interrupt_window_open &&
  1685. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1686. }
  1687. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1688. {
  1689. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1690. }
  1691. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1692. {
  1693. u8 fail;
  1694. int r;
  1695. preempted:
  1696. if (vcpu->guest_debug.enabled)
  1697. kvm_guest_debug_pre(vcpu);
  1698. again:
  1699. if (!vcpu->mmio_read_completed)
  1700. do_interrupt_requests(vcpu, kvm_run);
  1701. vmx_save_host_state(vcpu);
  1702. kvm_load_guest_fpu(vcpu);
  1703. r = kvm_mmu_reload(vcpu);
  1704. if (unlikely(r))
  1705. goto out;
  1706. /*
  1707. * Loading guest fpu may have cleared host cr0.ts
  1708. */
  1709. vmcs_writel(HOST_CR0, read_cr0());
  1710. local_irq_disable();
  1711. vcpu->guest_mode = 1;
  1712. if (vcpu->requests)
  1713. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1714. vmx_flush_tlb(vcpu);
  1715. asm (
  1716. /* Store host registers */
  1717. #ifdef CONFIG_X86_64
  1718. "push %%rax; push %%rbx; push %%rdx;"
  1719. "push %%rsi; push %%rdi; push %%rbp;"
  1720. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1721. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1722. "push %%rcx \n\t"
  1723. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1724. #else
  1725. "pusha; push %%ecx \n\t"
  1726. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1727. #endif
  1728. /* Check if vmlaunch of vmresume is needed */
  1729. "cmp $0, %1 \n\t"
  1730. /* Load guest registers. Don't clobber flags. */
  1731. #ifdef CONFIG_X86_64
  1732. "mov %c[cr2](%3), %%rax \n\t"
  1733. "mov %%rax, %%cr2 \n\t"
  1734. "mov %c[rax](%3), %%rax \n\t"
  1735. "mov %c[rbx](%3), %%rbx \n\t"
  1736. "mov %c[rdx](%3), %%rdx \n\t"
  1737. "mov %c[rsi](%3), %%rsi \n\t"
  1738. "mov %c[rdi](%3), %%rdi \n\t"
  1739. "mov %c[rbp](%3), %%rbp \n\t"
  1740. "mov %c[r8](%3), %%r8 \n\t"
  1741. "mov %c[r9](%3), %%r9 \n\t"
  1742. "mov %c[r10](%3), %%r10 \n\t"
  1743. "mov %c[r11](%3), %%r11 \n\t"
  1744. "mov %c[r12](%3), %%r12 \n\t"
  1745. "mov %c[r13](%3), %%r13 \n\t"
  1746. "mov %c[r14](%3), %%r14 \n\t"
  1747. "mov %c[r15](%3), %%r15 \n\t"
  1748. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1749. #else
  1750. "mov %c[cr2](%3), %%eax \n\t"
  1751. "mov %%eax, %%cr2 \n\t"
  1752. "mov %c[rax](%3), %%eax \n\t"
  1753. "mov %c[rbx](%3), %%ebx \n\t"
  1754. "mov %c[rdx](%3), %%edx \n\t"
  1755. "mov %c[rsi](%3), %%esi \n\t"
  1756. "mov %c[rdi](%3), %%edi \n\t"
  1757. "mov %c[rbp](%3), %%ebp \n\t"
  1758. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1759. #endif
  1760. /* Enter guest mode */
  1761. "jne .Llaunched \n\t"
  1762. ASM_VMX_VMLAUNCH "\n\t"
  1763. "jmp .Lkvm_vmx_return \n\t"
  1764. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1765. ".Lkvm_vmx_return: "
  1766. /* Save guest registers, load host registers, keep flags */
  1767. #ifdef CONFIG_X86_64
  1768. "xchg %3, (%%rsp) \n\t"
  1769. "mov %%rax, %c[rax](%3) \n\t"
  1770. "mov %%rbx, %c[rbx](%3) \n\t"
  1771. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1772. "mov %%rdx, %c[rdx](%3) \n\t"
  1773. "mov %%rsi, %c[rsi](%3) \n\t"
  1774. "mov %%rdi, %c[rdi](%3) \n\t"
  1775. "mov %%rbp, %c[rbp](%3) \n\t"
  1776. "mov %%r8, %c[r8](%3) \n\t"
  1777. "mov %%r9, %c[r9](%3) \n\t"
  1778. "mov %%r10, %c[r10](%3) \n\t"
  1779. "mov %%r11, %c[r11](%3) \n\t"
  1780. "mov %%r12, %c[r12](%3) \n\t"
  1781. "mov %%r13, %c[r13](%3) \n\t"
  1782. "mov %%r14, %c[r14](%3) \n\t"
  1783. "mov %%r15, %c[r15](%3) \n\t"
  1784. "mov %%cr2, %%rax \n\t"
  1785. "mov %%rax, %c[cr2](%3) \n\t"
  1786. "mov (%%rsp), %3 \n\t"
  1787. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1788. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1789. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1790. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1791. #else
  1792. "xchg %3, (%%esp) \n\t"
  1793. "mov %%eax, %c[rax](%3) \n\t"
  1794. "mov %%ebx, %c[rbx](%3) \n\t"
  1795. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1796. "mov %%edx, %c[rdx](%3) \n\t"
  1797. "mov %%esi, %c[rsi](%3) \n\t"
  1798. "mov %%edi, %c[rdi](%3) \n\t"
  1799. "mov %%ebp, %c[rbp](%3) \n\t"
  1800. "mov %%cr2, %%eax \n\t"
  1801. "mov %%eax, %c[cr2](%3) \n\t"
  1802. "mov (%%esp), %3 \n\t"
  1803. "pop %%ecx; popa \n\t"
  1804. #endif
  1805. "setbe %0 \n\t"
  1806. : "=q" (fail)
  1807. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1808. "c"(vcpu),
  1809. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1810. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1811. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1812. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1813. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1814. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1815. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1816. #ifdef CONFIG_X86_64
  1817. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1818. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1819. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1820. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1821. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1822. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1823. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1824. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1825. #endif
  1826. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1827. : "cc", "memory" );
  1828. vcpu->guest_mode = 0;
  1829. local_irq_enable();
  1830. ++vcpu->stat.exits;
  1831. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1832. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1833. if (unlikely(fail)) {
  1834. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1835. kvm_run->fail_entry.hardware_entry_failure_reason
  1836. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1837. r = 0;
  1838. goto out;
  1839. }
  1840. /*
  1841. * Profile KVM exit RIPs:
  1842. */
  1843. if (unlikely(prof_on == KVM_PROFILING))
  1844. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1845. vcpu->launched = 1;
  1846. r = kvm_handle_exit(kvm_run, vcpu);
  1847. if (r > 0) {
  1848. /* Give scheduler a change to reschedule. */
  1849. if (signal_pending(current)) {
  1850. r = -EINTR;
  1851. kvm_run->exit_reason = KVM_EXIT_INTR;
  1852. ++vcpu->stat.signal_exits;
  1853. goto out;
  1854. }
  1855. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1856. r = -EINTR;
  1857. kvm_run->exit_reason = KVM_EXIT_INTR;
  1858. ++vcpu->stat.request_irq_exits;
  1859. goto out;
  1860. }
  1861. if (!need_resched()) {
  1862. ++vcpu->stat.light_exits;
  1863. goto again;
  1864. }
  1865. }
  1866. out:
  1867. if (r > 0) {
  1868. kvm_resched(vcpu);
  1869. goto preempted;
  1870. }
  1871. post_kvm_run_save(vcpu, kvm_run);
  1872. return r;
  1873. }
  1874. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1875. unsigned long addr,
  1876. u32 err_code)
  1877. {
  1878. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1879. ++vcpu->stat.pf_guest;
  1880. if (is_page_fault(vect_info)) {
  1881. printk(KERN_DEBUG "inject_page_fault: "
  1882. "double fault 0x%lx @ 0x%lx\n",
  1883. addr, vmcs_readl(GUEST_RIP));
  1884. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1885. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1886. DF_VECTOR |
  1887. INTR_TYPE_EXCEPTION |
  1888. INTR_INFO_DELIEVER_CODE_MASK |
  1889. INTR_INFO_VALID_MASK);
  1890. return;
  1891. }
  1892. vcpu->cr2 = addr;
  1893. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1894. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1895. PF_VECTOR |
  1896. INTR_TYPE_EXCEPTION |
  1897. INTR_INFO_DELIEVER_CODE_MASK |
  1898. INTR_INFO_VALID_MASK);
  1899. }
  1900. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1901. {
  1902. if (vcpu->vmcs) {
  1903. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1904. free_vmcs(vcpu->vmcs);
  1905. vcpu->vmcs = NULL;
  1906. }
  1907. }
  1908. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1909. {
  1910. vmx_free_vmcs(vcpu);
  1911. }
  1912. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1913. {
  1914. struct vmcs *vmcs;
  1915. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1916. if (!vcpu->guest_msrs)
  1917. return -ENOMEM;
  1918. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1919. if (!vcpu->host_msrs)
  1920. goto out_free_guest_msrs;
  1921. vmcs = alloc_vmcs();
  1922. if (!vmcs)
  1923. goto out_free_msrs;
  1924. vmcs_clear(vmcs);
  1925. vcpu->vmcs = vmcs;
  1926. vcpu->launched = 0;
  1927. return 0;
  1928. out_free_msrs:
  1929. kfree(vcpu->host_msrs);
  1930. vcpu->host_msrs = NULL;
  1931. out_free_guest_msrs:
  1932. kfree(vcpu->guest_msrs);
  1933. vcpu->guest_msrs = NULL;
  1934. return -ENOMEM;
  1935. }
  1936. static struct kvm_arch_ops vmx_arch_ops = {
  1937. .cpu_has_kvm_support = cpu_has_kvm_support,
  1938. .disabled_by_bios = vmx_disabled_by_bios,
  1939. .hardware_setup = hardware_setup,
  1940. .hardware_unsetup = hardware_unsetup,
  1941. .hardware_enable = hardware_enable,
  1942. .hardware_disable = hardware_disable,
  1943. .vcpu_create = vmx_create_vcpu,
  1944. .vcpu_free = vmx_free_vcpu,
  1945. .vcpu_load = vmx_vcpu_load,
  1946. .vcpu_put = vmx_vcpu_put,
  1947. .vcpu_decache = vmx_vcpu_decache,
  1948. .set_guest_debug = set_guest_debug,
  1949. .get_msr = vmx_get_msr,
  1950. .set_msr = vmx_set_msr,
  1951. .get_segment_base = vmx_get_segment_base,
  1952. .get_segment = vmx_get_segment,
  1953. .set_segment = vmx_set_segment,
  1954. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1955. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1956. .set_cr0 = vmx_set_cr0,
  1957. .set_cr3 = vmx_set_cr3,
  1958. .set_cr4 = vmx_set_cr4,
  1959. #ifdef CONFIG_X86_64
  1960. .set_efer = vmx_set_efer,
  1961. #endif
  1962. .get_idt = vmx_get_idt,
  1963. .set_idt = vmx_set_idt,
  1964. .get_gdt = vmx_get_gdt,
  1965. .set_gdt = vmx_set_gdt,
  1966. .cache_regs = vcpu_load_rsp_rip,
  1967. .decache_regs = vcpu_put_rsp_rip,
  1968. .get_rflags = vmx_get_rflags,
  1969. .set_rflags = vmx_set_rflags,
  1970. .tlb_flush = vmx_flush_tlb,
  1971. .inject_page_fault = vmx_inject_page_fault,
  1972. .inject_gp = vmx_inject_gp,
  1973. .run = vmx_vcpu_run,
  1974. .skip_emulated_instruction = skip_emulated_instruction,
  1975. .vcpu_setup = vmx_vcpu_setup,
  1976. .patch_hypercall = vmx_patch_hypercall,
  1977. };
  1978. static int __init vmx_init(void)
  1979. {
  1980. void *iova;
  1981. int r;
  1982. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1983. if (!vmx_io_bitmap_a)
  1984. return -ENOMEM;
  1985. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1986. if (!vmx_io_bitmap_b) {
  1987. r = -ENOMEM;
  1988. goto out;
  1989. }
  1990. /*
  1991. * Allow direct access to the PC debug port (it is often used for I/O
  1992. * delays, but the vmexits simply slow things down).
  1993. */
  1994. iova = kmap(vmx_io_bitmap_a);
  1995. memset(iova, 0xff, PAGE_SIZE);
  1996. clear_bit(0x80, iova);
  1997. kunmap(vmx_io_bitmap_a);
  1998. iova = kmap(vmx_io_bitmap_b);
  1999. memset(iova, 0xff, PAGE_SIZE);
  2000. kunmap(vmx_io_bitmap_b);
  2001. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  2002. if (r)
  2003. goto out1;
  2004. return 0;
  2005. out1:
  2006. __free_page(vmx_io_bitmap_b);
  2007. out:
  2008. __free_page(vmx_io_bitmap_a);
  2009. return r;
  2010. }
  2011. static void __exit vmx_exit(void)
  2012. {
  2013. __free_page(vmx_io_bitmap_b);
  2014. __free_page(vmx_io_bitmap_a);
  2015. kvm_exit_arch();
  2016. }
  2017. module_init(vmx_init)
  2018. module_exit(vmx_exit)