md.c 214 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static void md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int cpu;
  293. unsigned int sectors;
  294. if (mddev == NULL || mddev->pers == NULL
  295. || !mddev->ready) {
  296. bio_io_error(bio);
  297. return;
  298. }
  299. smp_rmb(); /* Ensure implications of 'active' are visible */
  300. rcu_read_lock();
  301. if (mddev->suspended) {
  302. DEFINE_WAIT(__wait);
  303. for (;;) {
  304. prepare_to_wait(&mddev->sb_wait, &__wait,
  305. TASK_UNINTERRUPTIBLE);
  306. if (!mddev->suspended)
  307. break;
  308. rcu_read_unlock();
  309. schedule();
  310. rcu_read_lock();
  311. }
  312. finish_wait(&mddev->sb_wait, &__wait);
  313. }
  314. atomic_inc(&mddev->active_io);
  315. rcu_read_unlock();
  316. /*
  317. * save the sectors now since our bio can
  318. * go away inside make_request
  319. */
  320. sectors = bio_sectors(bio);
  321. mddev->pers->make_request(mddev, bio);
  322. cpu = part_stat_lock();
  323. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  324. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  325. part_stat_unlock();
  326. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  327. wake_up(&mddev->sb_wait);
  328. }
  329. /* mddev_suspend makes sure no new requests are submitted
  330. * to the device, and that any requests that have been submitted
  331. * are completely handled.
  332. * Once ->stop is called and completes, the module will be completely
  333. * unused.
  334. */
  335. void mddev_suspend(struct mddev *mddev)
  336. {
  337. BUG_ON(mddev->suspended);
  338. mddev->suspended = 1;
  339. synchronize_rcu();
  340. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  341. mddev->pers->quiesce(mddev, 1);
  342. }
  343. EXPORT_SYMBOL_GPL(mddev_suspend);
  344. void mddev_resume(struct mddev *mddev)
  345. {
  346. mddev->suspended = 0;
  347. wake_up(&mddev->sb_wait);
  348. mddev->pers->quiesce(mddev, 0);
  349. md_wakeup_thread(mddev->thread);
  350. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  351. }
  352. EXPORT_SYMBOL_GPL(mddev_resume);
  353. int mddev_congested(struct mddev *mddev, int bits)
  354. {
  355. return mddev->suspended;
  356. }
  357. EXPORT_SYMBOL(mddev_congested);
  358. /*
  359. * Generic flush handling for md
  360. */
  361. static void md_end_flush(struct bio *bio, int err)
  362. {
  363. struct md_rdev *rdev = bio->bi_private;
  364. struct mddev *mddev = rdev->mddev;
  365. rdev_dec_pending(rdev, mddev);
  366. if (atomic_dec_and_test(&mddev->flush_pending)) {
  367. /* The pre-request flush has finished */
  368. queue_work(md_wq, &mddev->flush_work);
  369. }
  370. bio_put(bio);
  371. }
  372. static void md_submit_flush_data(struct work_struct *ws);
  373. static void submit_flushes(struct work_struct *ws)
  374. {
  375. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  376. struct md_rdev *rdev;
  377. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  378. atomic_set(&mddev->flush_pending, 1);
  379. rcu_read_lock();
  380. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  381. if (rdev->raid_disk >= 0 &&
  382. !test_bit(Faulty, &rdev->flags)) {
  383. /* Take two references, one is dropped
  384. * when request finishes, one after
  385. * we reclaim rcu_read_lock
  386. */
  387. struct bio *bi;
  388. atomic_inc(&rdev->nr_pending);
  389. atomic_inc(&rdev->nr_pending);
  390. rcu_read_unlock();
  391. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  392. bi->bi_end_io = md_end_flush;
  393. bi->bi_private = rdev;
  394. bi->bi_bdev = rdev->bdev;
  395. atomic_inc(&mddev->flush_pending);
  396. submit_bio(WRITE_FLUSH, bi);
  397. rcu_read_lock();
  398. rdev_dec_pending(rdev, mddev);
  399. }
  400. rcu_read_unlock();
  401. if (atomic_dec_and_test(&mddev->flush_pending))
  402. queue_work(md_wq, &mddev->flush_work);
  403. }
  404. static void md_submit_flush_data(struct work_struct *ws)
  405. {
  406. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  407. struct bio *bio = mddev->flush_bio;
  408. if (bio->bi_size == 0)
  409. /* an empty barrier - all done */
  410. bio_endio(bio, 0);
  411. else {
  412. bio->bi_rw &= ~REQ_FLUSH;
  413. mddev->pers->make_request(mddev, bio);
  414. }
  415. mddev->flush_bio = NULL;
  416. wake_up(&mddev->sb_wait);
  417. }
  418. void md_flush_request(struct mddev *mddev, struct bio *bio)
  419. {
  420. spin_lock_irq(&mddev->write_lock);
  421. wait_event_lock_irq(mddev->sb_wait,
  422. !mddev->flush_bio,
  423. mddev->write_lock, /*nothing*/);
  424. mddev->flush_bio = bio;
  425. spin_unlock_irq(&mddev->write_lock);
  426. INIT_WORK(&mddev->flush_work, submit_flushes);
  427. queue_work(md_wq, &mddev->flush_work);
  428. }
  429. EXPORT_SYMBOL(md_flush_request);
  430. /* Support for plugging.
  431. * This mirrors the plugging support in request_queue, but does not
  432. * require having a whole queue or request structures.
  433. * We allocate an md_plug_cb for each md device and each thread it gets
  434. * plugged on. This links tot the private plug_handle structure in the
  435. * personality data where we keep a count of the number of outstanding
  436. * plugs so other code can see if a plug is active.
  437. */
  438. struct md_plug_cb {
  439. struct blk_plug_cb cb;
  440. struct mddev *mddev;
  441. };
  442. static void plugger_unplug(struct blk_plug_cb *cb)
  443. {
  444. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  445. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  446. md_wakeup_thread(mdcb->mddev->thread);
  447. kfree(mdcb);
  448. }
  449. /* Check that an unplug wakeup will come shortly.
  450. * If not, wakeup the md thread immediately
  451. */
  452. int mddev_check_plugged(struct mddev *mddev)
  453. {
  454. struct blk_plug *plug = current->plug;
  455. struct md_plug_cb *mdcb;
  456. if (!plug)
  457. return 0;
  458. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  459. if (mdcb->cb.callback == plugger_unplug &&
  460. mdcb->mddev == mddev) {
  461. /* Already on the list, move to top */
  462. if (mdcb != list_first_entry(&plug->cb_list,
  463. struct md_plug_cb,
  464. cb.list))
  465. list_move(&mdcb->cb.list, &plug->cb_list);
  466. return 1;
  467. }
  468. }
  469. /* Not currently on the callback list */
  470. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  471. if (!mdcb)
  472. return 0;
  473. mdcb->mddev = mddev;
  474. mdcb->cb.callback = plugger_unplug;
  475. atomic_inc(&mddev->plug_cnt);
  476. list_add(&mdcb->cb.list, &plug->cb_list);
  477. return 1;
  478. }
  479. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  480. static inline struct mddev *mddev_get(struct mddev *mddev)
  481. {
  482. atomic_inc(&mddev->active);
  483. return mddev;
  484. }
  485. static void mddev_delayed_delete(struct work_struct *ws);
  486. static void mddev_put(struct mddev *mddev)
  487. {
  488. struct bio_set *bs = NULL;
  489. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  490. return;
  491. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  492. mddev->ctime == 0 && !mddev->hold_active) {
  493. /* Array is not configured at all, and not held active,
  494. * so destroy it */
  495. list_del_init(&mddev->all_mddevs);
  496. bs = mddev->bio_set;
  497. mddev->bio_set = NULL;
  498. if (mddev->gendisk) {
  499. /* We did a probe so need to clean up. Call
  500. * queue_work inside the spinlock so that
  501. * flush_workqueue() after mddev_find will
  502. * succeed in waiting for the work to be done.
  503. */
  504. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  505. queue_work(md_misc_wq, &mddev->del_work);
  506. } else
  507. kfree(mddev);
  508. }
  509. spin_unlock(&all_mddevs_lock);
  510. if (bs)
  511. bioset_free(bs);
  512. }
  513. void mddev_init(struct mddev *mddev)
  514. {
  515. mutex_init(&mddev->open_mutex);
  516. mutex_init(&mddev->reconfig_mutex);
  517. mutex_init(&mddev->bitmap_info.mutex);
  518. INIT_LIST_HEAD(&mddev->disks);
  519. INIT_LIST_HEAD(&mddev->all_mddevs);
  520. init_timer(&mddev->safemode_timer);
  521. atomic_set(&mddev->active, 1);
  522. atomic_set(&mddev->openers, 0);
  523. atomic_set(&mddev->active_io, 0);
  524. atomic_set(&mddev->plug_cnt, 0);
  525. spin_lock_init(&mddev->write_lock);
  526. atomic_set(&mddev->flush_pending, 0);
  527. init_waitqueue_head(&mddev->sb_wait);
  528. init_waitqueue_head(&mddev->recovery_wait);
  529. mddev->reshape_position = MaxSector;
  530. mddev->resync_min = 0;
  531. mddev->resync_max = MaxSector;
  532. mddev->level = LEVEL_NONE;
  533. }
  534. EXPORT_SYMBOL_GPL(mddev_init);
  535. static struct mddev * mddev_find(dev_t unit)
  536. {
  537. struct mddev *mddev, *new = NULL;
  538. if (unit && MAJOR(unit) != MD_MAJOR)
  539. unit &= ~((1<<MdpMinorShift)-1);
  540. retry:
  541. spin_lock(&all_mddevs_lock);
  542. if (unit) {
  543. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  544. if (mddev->unit == unit) {
  545. mddev_get(mddev);
  546. spin_unlock(&all_mddevs_lock);
  547. kfree(new);
  548. return mddev;
  549. }
  550. if (new) {
  551. list_add(&new->all_mddevs, &all_mddevs);
  552. spin_unlock(&all_mddevs_lock);
  553. new->hold_active = UNTIL_IOCTL;
  554. return new;
  555. }
  556. } else if (new) {
  557. /* find an unused unit number */
  558. static int next_minor = 512;
  559. int start = next_minor;
  560. int is_free = 0;
  561. int dev = 0;
  562. while (!is_free) {
  563. dev = MKDEV(MD_MAJOR, next_minor);
  564. next_minor++;
  565. if (next_minor > MINORMASK)
  566. next_minor = 0;
  567. if (next_minor == start) {
  568. /* Oh dear, all in use. */
  569. spin_unlock(&all_mddevs_lock);
  570. kfree(new);
  571. return NULL;
  572. }
  573. is_free = 1;
  574. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  575. if (mddev->unit == dev) {
  576. is_free = 0;
  577. break;
  578. }
  579. }
  580. new->unit = dev;
  581. new->md_minor = MINOR(dev);
  582. new->hold_active = UNTIL_STOP;
  583. list_add(&new->all_mddevs, &all_mddevs);
  584. spin_unlock(&all_mddevs_lock);
  585. return new;
  586. }
  587. spin_unlock(&all_mddevs_lock);
  588. new = kzalloc(sizeof(*new), GFP_KERNEL);
  589. if (!new)
  590. return NULL;
  591. new->unit = unit;
  592. if (MAJOR(unit) == MD_MAJOR)
  593. new->md_minor = MINOR(unit);
  594. else
  595. new->md_minor = MINOR(unit) >> MdpMinorShift;
  596. mddev_init(new);
  597. goto retry;
  598. }
  599. static inline int mddev_lock(struct mddev * mddev)
  600. {
  601. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  602. }
  603. static inline int mddev_is_locked(struct mddev *mddev)
  604. {
  605. return mutex_is_locked(&mddev->reconfig_mutex);
  606. }
  607. static inline int mddev_trylock(struct mddev * mddev)
  608. {
  609. return mutex_trylock(&mddev->reconfig_mutex);
  610. }
  611. static struct attribute_group md_redundancy_group;
  612. static void mddev_unlock(struct mddev * mddev)
  613. {
  614. if (mddev->to_remove) {
  615. /* These cannot be removed under reconfig_mutex as
  616. * an access to the files will try to take reconfig_mutex
  617. * while holding the file unremovable, which leads to
  618. * a deadlock.
  619. * So hold set sysfs_active while the remove in happeing,
  620. * and anything else which might set ->to_remove or my
  621. * otherwise change the sysfs namespace will fail with
  622. * -EBUSY if sysfs_active is still set.
  623. * We set sysfs_active under reconfig_mutex and elsewhere
  624. * test it under the same mutex to ensure its correct value
  625. * is seen.
  626. */
  627. struct attribute_group *to_remove = mddev->to_remove;
  628. mddev->to_remove = NULL;
  629. mddev->sysfs_active = 1;
  630. mutex_unlock(&mddev->reconfig_mutex);
  631. if (mddev->kobj.sd) {
  632. if (to_remove != &md_redundancy_group)
  633. sysfs_remove_group(&mddev->kobj, to_remove);
  634. if (mddev->pers == NULL ||
  635. mddev->pers->sync_request == NULL) {
  636. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  637. if (mddev->sysfs_action)
  638. sysfs_put(mddev->sysfs_action);
  639. mddev->sysfs_action = NULL;
  640. }
  641. }
  642. mddev->sysfs_active = 0;
  643. } else
  644. mutex_unlock(&mddev->reconfig_mutex);
  645. /* As we've dropped the mutex we need a spinlock to
  646. * make sure the thread doesn't disappear
  647. */
  648. spin_lock(&pers_lock);
  649. md_wakeup_thread(mddev->thread);
  650. spin_unlock(&pers_lock);
  651. }
  652. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  653. {
  654. struct md_rdev *rdev;
  655. list_for_each_entry(rdev, &mddev->disks, same_set)
  656. if (rdev->desc_nr == nr)
  657. return rdev;
  658. return NULL;
  659. }
  660. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  661. {
  662. struct md_rdev *rdev;
  663. list_for_each_entry(rdev, &mddev->disks, same_set)
  664. if (rdev->bdev->bd_dev == dev)
  665. return rdev;
  666. return NULL;
  667. }
  668. static struct md_personality *find_pers(int level, char *clevel)
  669. {
  670. struct md_personality *pers;
  671. list_for_each_entry(pers, &pers_list, list) {
  672. if (level != LEVEL_NONE && pers->level == level)
  673. return pers;
  674. if (strcmp(pers->name, clevel)==0)
  675. return pers;
  676. }
  677. return NULL;
  678. }
  679. /* return the offset of the super block in 512byte sectors */
  680. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  681. {
  682. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  683. return MD_NEW_SIZE_SECTORS(num_sectors);
  684. }
  685. static int alloc_disk_sb(struct md_rdev * rdev)
  686. {
  687. if (rdev->sb_page)
  688. MD_BUG();
  689. rdev->sb_page = alloc_page(GFP_KERNEL);
  690. if (!rdev->sb_page) {
  691. printk(KERN_ALERT "md: out of memory.\n");
  692. return -ENOMEM;
  693. }
  694. return 0;
  695. }
  696. static void free_disk_sb(struct md_rdev * rdev)
  697. {
  698. if (rdev->sb_page) {
  699. put_page(rdev->sb_page);
  700. rdev->sb_loaded = 0;
  701. rdev->sb_page = NULL;
  702. rdev->sb_start = 0;
  703. rdev->sectors = 0;
  704. }
  705. if (rdev->bb_page) {
  706. put_page(rdev->bb_page);
  707. rdev->bb_page = NULL;
  708. }
  709. }
  710. static void super_written(struct bio *bio, int error)
  711. {
  712. struct md_rdev *rdev = bio->bi_private;
  713. struct mddev *mddev = rdev->mddev;
  714. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  715. printk("md: super_written gets error=%d, uptodate=%d\n",
  716. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  717. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  718. md_error(mddev, rdev);
  719. }
  720. if (atomic_dec_and_test(&mddev->pending_writes))
  721. wake_up(&mddev->sb_wait);
  722. bio_put(bio);
  723. }
  724. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  725. sector_t sector, int size, struct page *page)
  726. {
  727. /* write first size bytes of page to sector of rdev
  728. * Increment mddev->pending_writes before returning
  729. * and decrement it on completion, waking up sb_wait
  730. * if zero is reached.
  731. * If an error occurred, call md_error
  732. */
  733. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  734. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  735. bio->bi_sector = sector;
  736. bio_add_page(bio, page, size, 0);
  737. bio->bi_private = rdev;
  738. bio->bi_end_io = super_written;
  739. atomic_inc(&mddev->pending_writes);
  740. submit_bio(WRITE_FLUSH_FUA, bio);
  741. }
  742. void md_super_wait(struct mddev *mddev)
  743. {
  744. /* wait for all superblock writes that were scheduled to complete */
  745. DEFINE_WAIT(wq);
  746. for(;;) {
  747. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  748. if (atomic_read(&mddev->pending_writes)==0)
  749. break;
  750. schedule();
  751. }
  752. finish_wait(&mddev->sb_wait, &wq);
  753. }
  754. static void bi_complete(struct bio *bio, int error)
  755. {
  756. complete((struct completion*)bio->bi_private);
  757. }
  758. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  759. struct page *page, int rw, bool metadata_op)
  760. {
  761. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  762. struct completion event;
  763. int ret;
  764. rw |= REQ_SYNC;
  765. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  766. rdev->meta_bdev : rdev->bdev;
  767. if (metadata_op)
  768. bio->bi_sector = sector + rdev->sb_start;
  769. else
  770. bio->bi_sector = sector + rdev->data_offset;
  771. bio_add_page(bio, page, size, 0);
  772. init_completion(&event);
  773. bio->bi_private = &event;
  774. bio->bi_end_io = bi_complete;
  775. submit_bio(rw, bio);
  776. wait_for_completion(&event);
  777. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  778. bio_put(bio);
  779. return ret;
  780. }
  781. EXPORT_SYMBOL_GPL(sync_page_io);
  782. static int read_disk_sb(struct md_rdev * rdev, int size)
  783. {
  784. char b[BDEVNAME_SIZE];
  785. if (!rdev->sb_page) {
  786. MD_BUG();
  787. return -EINVAL;
  788. }
  789. if (rdev->sb_loaded)
  790. return 0;
  791. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  792. goto fail;
  793. rdev->sb_loaded = 1;
  794. return 0;
  795. fail:
  796. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  797. bdevname(rdev->bdev,b));
  798. return -EINVAL;
  799. }
  800. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  801. {
  802. return sb1->set_uuid0 == sb2->set_uuid0 &&
  803. sb1->set_uuid1 == sb2->set_uuid1 &&
  804. sb1->set_uuid2 == sb2->set_uuid2 &&
  805. sb1->set_uuid3 == sb2->set_uuid3;
  806. }
  807. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  808. {
  809. int ret;
  810. mdp_super_t *tmp1, *tmp2;
  811. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  812. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  813. if (!tmp1 || !tmp2) {
  814. ret = 0;
  815. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  816. goto abort;
  817. }
  818. *tmp1 = *sb1;
  819. *tmp2 = *sb2;
  820. /*
  821. * nr_disks is not constant
  822. */
  823. tmp1->nr_disks = 0;
  824. tmp2->nr_disks = 0;
  825. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  826. abort:
  827. kfree(tmp1);
  828. kfree(tmp2);
  829. return ret;
  830. }
  831. static u32 md_csum_fold(u32 csum)
  832. {
  833. csum = (csum & 0xffff) + (csum >> 16);
  834. return (csum & 0xffff) + (csum >> 16);
  835. }
  836. static unsigned int calc_sb_csum(mdp_super_t * sb)
  837. {
  838. u64 newcsum = 0;
  839. u32 *sb32 = (u32*)sb;
  840. int i;
  841. unsigned int disk_csum, csum;
  842. disk_csum = sb->sb_csum;
  843. sb->sb_csum = 0;
  844. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  845. newcsum += sb32[i];
  846. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  847. #ifdef CONFIG_ALPHA
  848. /* This used to use csum_partial, which was wrong for several
  849. * reasons including that different results are returned on
  850. * different architectures. It isn't critical that we get exactly
  851. * the same return value as before (we always csum_fold before
  852. * testing, and that removes any differences). However as we
  853. * know that csum_partial always returned a 16bit value on
  854. * alphas, do a fold to maximise conformity to previous behaviour.
  855. */
  856. sb->sb_csum = md_csum_fold(disk_csum);
  857. #else
  858. sb->sb_csum = disk_csum;
  859. #endif
  860. return csum;
  861. }
  862. /*
  863. * Handle superblock details.
  864. * We want to be able to handle multiple superblock formats
  865. * so we have a common interface to them all, and an array of
  866. * different handlers.
  867. * We rely on user-space to write the initial superblock, and support
  868. * reading and updating of superblocks.
  869. * Interface methods are:
  870. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  871. * loads and validates a superblock on dev.
  872. * if refdev != NULL, compare superblocks on both devices
  873. * Return:
  874. * 0 - dev has a superblock that is compatible with refdev
  875. * 1 - dev has a superblock that is compatible and newer than refdev
  876. * so dev should be used as the refdev in future
  877. * -EINVAL superblock incompatible or invalid
  878. * -othererror e.g. -EIO
  879. *
  880. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  881. * Verify that dev is acceptable into mddev.
  882. * The first time, mddev->raid_disks will be 0, and data from
  883. * dev should be merged in. Subsequent calls check that dev
  884. * is new enough. Return 0 or -EINVAL
  885. *
  886. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  887. * Update the superblock for rdev with data in mddev
  888. * This does not write to disc.
  889. *
  890. */
  891. struct super_type {
  892. char *name;
  893. struct module *owner;
  894. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  895. int minor_version);
  896. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  897. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  898. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  899. sector_t num_sectors);
  900. };
  901. /*
  902. * Check that the given mddev has no bitmap.
  903. *
  904. * This function is called from the run method of all personalities that do not
  905. * support bitmaps. It prints an error message and returns non-zero if mddev
  906. * has a bitmap. Otherwise, it returns 0.
  907. *
  908. */
  909. int md_check_no_bitmap(struct mddev *mddev)
  910. {
  911. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  912. return 0;
  913. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  914. mdname(mddev), mddev->pers->name);
  915. return 1;
  916. }
  917. EXPORT_SYMBOL(md_check_no_bitmap);
  918. /*
  919. * load_super for 0.90.0
  920. */
  921. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  922. {
  923. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  924. mdp_super_t *sb;
  925. int ret;
  926. /*
  927. * Calculate the position of the superblock (512byte sectors),
  928. * it's at the end of the disk.
  929. *
  930. * It also happens to be a multiple of 4Kb.
  931. */
  932. rdev->sb_start = calc_dev_sboffset(rdev);
  933. ret = read_disk_sb(rdev, MD_SB_BYTES);
  934. if (ret) return ret;
  935. ret = -EINVAL;
  936. bdevname(rdev->bdev, b);
  937. sb = page_address(rdev->sb_page);
  938. if (sb->md_magic != MD_SB_MAGIC) {
  939. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  940. b);
  941. goto abort;
  942. }
  943. if (sb->major_version != 0 ||
  944. sb->minor_version < 90 ||
  945. sb->minor_version > 91) {
  946. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  947. sb->major_version, sb->minor_version,
  948. b);
  949. goto abort;
  950. }
  951. if (sb->raid_disks <= 0)
  952. goto abort;
  953. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  954. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  955. b);
  956. goto abort;
  957. }
  958. rdev->preferred_minor = sb->md_minor;
  959. rdev->data_offset = 0;
  960. rdev->sb_size = MD_SB_BYTES;
  961. rdev->badblocks.shift = -1;
  962. if (sb->level == LEVEL_MULTIPATH)
  963. rdev->desc_nr = -1;
  964. else
  965. rdev->desc_nr = sb->this_disk.number;
  966. if (!refdev) {
  967. ret = 1;
  968. } else {
  969. __u64 ev1, ev2;
  970. mdp_super_t *refsb = page_address(refdev->sb_page);
  971. if (!uuid_equal(refsb, sb)) {
  972. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  973. b, bdevname(refdev->bdev,b2));
  974. goto abort;
  975. }
  976. if (!sb_equal(refsb, sb)) {
  977. printk(KERN_WARNING "md: %s has same UUID"
  978. " but different superblock to %s\n",
  979. b, bdevname(refdev->bdev, b2));
  980. goto abort;
  981. }
  982. ev1 = md_event(sb);
  983. ev2 = md_event(refsb);
  984. if (ev1 > ev2)
  985. ret = 1;
  986. else
  987. ret = 0;
  988. }
  989. rdev->sectors = rdev->sb_start;
  990. /* Limit to 4TB as metadata cannot record more than that */
  991. if (rdev->sectors >= (2ULL << 32))
  992. rdev->sectors = (2ULL << 32) - 2;
  993. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  994. /* "this cannot possibly happen" ... */
  995. ret = -EINVAL;
  996. abort:
  997. return ret;
  998. }
  999. /*
  1000. * validate_super for 0.90.0
  1001. */
  1002. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1003. {
  1004. mdp_disk_t *desc;
  1005. mdp_super_t *sb = page_address(rdev->sb_page);
  1006. __u64 ev1 = md_event(sb);
  1007. rdev->raid_disk = -1;
  1008. clear_bit(Faulty, &rdev->flags);
  1009. clear_bit(In_sync, &rdev->flags);
  1010. clear_bit(WriteMostly, &rdev->flags);
  1011. if (mddev->raid_disks == 0) {
  1012. mddev->major_version = 0;
  1013. mddev->minor_version = sb->minor_version;
  1014. mddev->patch_version = sb->patch_version;
  1015. mddev->external = 0;
  1016. mddev->chunk_sectors = sb->chunk_size >> 9;
  1017. mddev->ctime = sb->ctime;
  1018. mddev->utime = sb->utime;
  1019. mddev->level = sb->level;
  1020. mddev->clevel[0] = 0;
  1021. mddev->layout = sb->layout;
  1022. mddev->raid_disks = sb->raid_disks;
  1023. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1024. mddev->events = ev1;
  1025. mddev->bitmap_info.offset = 0;
  1026. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1027. if (mddev->minor_version >= 91) {
  1028. mddev->reshape_position = sb->reshape_position;
  1029. mddev->delta_disks = sb->delta_disks;
  1030. mddev->new_level = sb->new_level;
  1031. mddev->new_layout = sb->new_layout;
  1032. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1033. } else {
  1034. mddev->reshape_position = MaxSector;
  1035. mddev->delta_disks = 0;
  1036. mddev->new_level = mddev->level;
  1037. mddev->new_layout = mddev->layout;
  1038. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1039. }
  1040. if (sb->state & (1<<MD_SB_CLEAN))
  1041. mddev->recovery_cp = MaxSector;
  1042. else {
  1043. if (sb->events_hi == sb->cp_events_hi &&
  1044. sb->events_lo == sb->cp_events_lo) {
  1045. mddev->recovery_cp = sb->recovery_cp;
  1046. } else
  1047. mddev->recovery_cp = 0;
  1048. }
  1049. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1050. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1051. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1052. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1053. mddev->max_disks = MD_SB_DISKS;
  1054. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1055. mddev->bitmap_info.file == NULL)
  1056. mddev->bitmap_info.offset =
  1057. mddev->bitmap_info.default_offset;
  1058. } else if (mddev->pers == NULL) {
  1059. /* Insist on good event counter while assembling, except
  1060. * for spares (which don't need an event count) */
  1061. ++ev1;
  1062. if (sb->disks[rdev->desc_nr].state & (
  1063. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1064. if (ev1 < mddev->events)
  1065. return -EINVAL;
  1066. } else if (mddev->bitmap) {
  1067. /* if adding to array with a bitmap, then we can accept an
  1068. * older device ... but not too old.
  1069. */
  1070. if (ev1 < mddev->bitmap->events_cleared)
  1071. return 0;
  1072. } else {
  1073. if (ev1 < mddev->events)
  1074. /* just a hot-add of a new device, leave raid_disk at -1 */
  1075. return 0;
  1076. }
  1077. if (mddev->level != LEVEL_MULTIPATH) {
  1078. desc = sb->disks + rdev->desc_nr;
  1079. if (desc->state & (1<<MD_DISK_FAULTY))
  1080. set_bit(Faulty, &rdev->flags);
  1081. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1082. desc->raid_disk < mddev->raid_disks */) {
  1083. set_bit(In_sync, &rdev->flags);
  1084. rdev->raid_disk = desc->raid_disk;
  1085. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1086. /* active but not in sync implies recovery up to
  1087. * reshape position. We don't know exactly where
  1088. * that is, so set to zero for now */
  1089. if (mddev->minor_version >= 91) {
  1090. rdev->recovery_offset = 0;
  1091. rdev->raid_disk = desc->raid_disk;
  1092. }
  1093. }
  1094. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1095. set_bit(WriteMostly, &rdev->flags);
  1096. } else /* MULTIPATH are always insync */
  1097. set_bit(In_sync, &rdev->flags);
  1098. return 0;
  1099. }
  1100. /*
  1101. * sync_super for 0.90.0
  1102. */
  1103. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1104. {
  1105. mdp_super_t *sb;
  1106. struct md_rdev *rdev2;
  1107. int next_spare = mddev->raid_disks;
  1108. /* make rdev->sb match mddev data..
  1109. *
  1110. * 1/ zero out disks
  1111. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1112. * 3/ any empty disks < next_spare become removed
  1113. *
  1114. * disks[0] gets initialised to REMOVED because
  1115. * we cannot be sure from other fields if it has
  1116. * been initialised or not.
  1117. */
  1118. int i;
  1119. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1120. rdev->sb_size = MD_SB_BYTES;
  1121. sb = page_address(rdev->sb_page);
  1122. memset(sb, 0, sizeof(*sb));
  1123. sb->md_magic = MD_SB_MAGIC;
  1124. sb->major_version = mddev->major_version;
  1125. sb->patch_version = mddev->patch_version;
  1126. sb->gvalid_words = 0; /* ignored */
  1127. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1128. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1129. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1130. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1131. sb->ctime = mddev->ctime;
  1132. sb->level = mddev->level;
  1133. sb->size = mddev->dev_sectors / 2;
  1134. sb->raid_disks = mddev->raid_disks;
  1135. sb->md_minor = mddev->md_minor;
  1136. sb->not_persistent = 0;
  1137. sb->utime = mddev->utime;
  1138. sb->state = 0;
  1139. sb->events_hi = (mddev->events>>32);
  1140. sb->events_lo = (u32)mddev->events;
  1141. if (mddev->reshape_position == MaxSector)
  1142. sb->minor_version = 90;
  1143. else {
  1144. sb->minor_version = 91;
  1145. sb->reshape_position = mddev->reshape_position;
  1146. sb->new_level = mddev->new_level;
  1147. sb->delta_disks = mddev->delta_disks;
  1148. sb->new_layout = mddev->new_layout;
  1149. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1150. }
  1151. mddev->minor_version = sb->minor_version;
  1152. if (mddev->in_sync)
  1153. {
  1154. sb->recovery_cp = mddev->recovery_cp;
  1155. sb->cp_events_hi = (mddev->events>>32);
  1156. sb->cp_events_lo = (u32)mddev->events;
  1157. if (mddev->recovery_cp == MaxSector)
  1158. sb->state = (1<< MD_SB_CLEAN);
  1159. } else
  1160. sb->recovery_cp = 0;
  1161. sb->layout = mddev->layout;
  1162. sb->chunk_size = mddev->chunk_sectors << 9;
  1163. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1164. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1165. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1166. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1167. mdp_disk_t *d;
  1168. int desc_nr;
  1169. int is_active = test_bit(In_sync, &rdev2->flags);
  1170. if (rdev2->raid_disk >= 0 &&
  1171. sb->minor_version >= 91)
  1172. /* we have nowhere to store the recovery_offset,
  1173. * but if it is not below the reshape_position,
  1174. * we can piggy-back on that.
  1175. */
  1176. is_active = 1;
  1177. if (rdev2->raid_disk < 0 ||
  1178. test_bit(Faulty, &rdev2->flags))
  1179. is_active = 0;
  1180. if (is_active)
  1181. desc_nr = rdev2->raid_disk;
  1182. else
  1183. desc_nr = next_spare++;
  1184. rdev2->desc_nr = desc_nr;
  1185. d = &sb->disks[rdev2->desc_nr];
  1186. nr_disks++;
  1187. d->number = rdev2->desc_nr;
  1188. d->major = MAJOR(rdev2->bdev->bd_dev);
  1189. d->minor = MINOR(rdev2->bdev->bd_dev);
  1190. if (is_active)
  1191. d->raid_disk = rdev2->raid_disk;
  1192. else
  1193. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1194. if (test_bit(Faulty, &rdev2->flags))
  1195. d->state = (1<<MD_DISK_FAULTY);
  1196. else if (is_active) {
  1197. d->state = (1<<MD_DISK_ACTIVE);
  1198. if (test_bit(In_sync, &rdev2->flags))
  1199. d->state |= (1<<MD_DISK_SYNC);
  1200. active++;
  1201. working++;
  1202. } else {
  1203. d->state = 0;
  1204. spare++;
  1205. working++;
  1206. }
  1207. if (test_bit(WriteMostly, &rdev2->flags))
  1208. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1209. }
  1210. /* now set the "removed" and "faulty" bits on any missing devices */
  1211. for (i=0 ; i < mddev->raid_disks ; i++) {
  1212. mdp_disk_t *d = &sb->disks[i];
  1213. if (d->state == 0 && d->number == 0) {
  1214. d->number = i;
  1215. d->raid_disk = i;
  1216. d->state = (1<<MD_DISK_REMOVED);
  1217. d->state |= (1<<MD_DISK_FAULTY);
  1218. failed++;
  1219. }
  1220. }
  1221. sb->nr_disks = nr_disks;
  1222. sb->active_disks = active;
  1223. sb->working_disks = working;
  1224. sb->failed_disks = failed;
  1225. sb->spare_disks = spare;
  1226. sb->this_disk = sb->disks[rdev->desc_nr];
  1227. sb->sb_csum = calc_sb_csum(sb);
  1228. }
  1229. /*
  1230. * rdev_size_change for 0.90.0
  1231. */
  1232. static unsigned long long
  1233. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1234. {
  1235. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1236. return 0; /* component must fit device */
  1237. if (rdev->mddev->bitmap_info.offset)
  1238. return 0; /* can't move bitmap */
  1239. rdev->sb_start = calc_dev_sboffset(rdev);
  1240. if (!num_sectors || num_sectors > rdev->sb_start)
  1241. num_sectors = rdev->sb_start;
  1242. /* Limit to 4TB as metadata cannot record more than that.
  1243. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1244. */
  1245. if (num_sectors >= (2ULL << 32))
  1246. num_sectors = (2ULL << 32) - 2;
  1247. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1248. rdev->sb_page);
  1249. md_super_wait(rdev->mddev);
  1250. return num_sectors;
  1251. }
  1252. /*
  1253. * version 1 superblock
  1254. */
  1255. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1256. {
  1257. __le32 disk_csum;
  1258. u32 csum;
  1259. unsigned long long newcsum;
  1260. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1261. __le32 *isuper = (__le32*)sb;
  1262. int i;
  1263. disk_csum = sb->sb_csum;
  1264. sb->sb_csum = 0;
  1265. newcsum = 0;
  1266. for (i=0; size>=4; size -= 4 )
  1267. newcsum += le32_to_cpu(*isuper++);
  1268. if (size == 2)
  1269. newcsum += le16_to_cpu(*(__le16*) isuper);
  1270. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1271. sb->sb_csum = disk_csum;
  1272. return cpu_to_le32(csum);
  1273. }
  1274. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1275. int acknowledged);
  1276. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1277. {
  1278. struct mdp_superblock_1 *sb;
  1279. int ret;
  1280. sector_t sb_start;
  1281. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1282. int bmask;
  1283. /*
  1284. * Calculate the position of the superblock in 512byte sectors.
  1285. * It is always aligned to a 4K boundary and
  1286. * depeding on minor_version, it can be:
  1287. * 0: At least 8K, but less than 12K, from end of device
  1288. * 1: At start of device
  1289. * 2: 4K from start of device.
  1290. */
  1291. switch(minor_version) {
  1292. case 0:
  1293. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1294. sb_start -= 8*2;
  1295. sb_start &= ~(sector_t)(4*2-1);
  1296. break;
  1297. case 1:
  1298. sb_start = 0;
  1299. break;
  1300. case 2:
  1301. sb_start = 8;
  1302. break;
  1303. default:
  1304. return -EINVAL;
  1305. }
  1306. rdev->sb_start = sb_start;
  1307. /* superblock is rarely larger than 1K, but it can be larger,
  1308. * and it is safe to read 4k, so we do that
  1309. */
  1310. ret = read_disk_sb(rdev, 4096);
  1311. if (ret) return ret;
  1312. sb = page_address(rdev->sb_page);
  1313. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1314. sb->major_version != cpu_to_le32(1) ||
  1315. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1316. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1317. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1318. return -EINVAL;
  1319. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1320. printk("md: invalid superblock checksum on %s\n",
  1321. bdevname(rdev->bdev,b));
  1322. return -EINVAL;
  1323. }
  1324. if (le64_to_cpu(sb->data_size) < 10) {
  1325. printk("md: data_size too small on %s\n",
  1326. bdevname(rdev->bdev,b));
  1327. return -EINVAL;
  1328. }
  1329. rdev->preferred_minor = 0xffff;
  1330. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1331. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1332. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1333. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1334. if (rdev->sb_size & bmask)
  1335. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1336. if (minor_version
  1337. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1338. return -EINVAL;
  1339. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1340. rdev->desc_nr = -1;
  1341. else
  1342. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1343. if (!rdev->bb_page) {
  1344. rdev->bb_page = alloc_page(GFP_KERNEL);
  1345. if (!rdev->bb_page)
  1346. return -ENOMEM;
  1347. }
  1348. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1349. rdev->badblocks.count == 0) {
  1350. /* need to load the bad block list.
  1351. * Currently we limit it to one page.
  1352. */
  1353. s32 offset;
  1354. sector_t bb_sector;
  1355. u64 *bbp;
  1356. int i;
  1357. int sectors = le16_to_cpu(sb->bblog_size);
  1358. if (sectors > (PAGE_SIZE / 512))
  1359. return -EINVAL;
  1360. offset = le32_to_cpu(sb->bblog_offset);
  1361. if (offset == 0)
  1362. return -EINVAL;
  1363. bb_sector = (long long)offset;
  1364. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1365. rdev->bb_page, READ, true))
  1366. return -EIO;
  1367. bbp = (u64 *)page_address(rdev->bb_page);
  1368. rdev->badblocks.shift = sb->bblog_shift;
  1369. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1370. u64 bb = le64_to_cpu(*bbp);
  1371. int count = bb & (0x3ff);
  1372. u64 sector = bb >> 10;
  1373. sector <<= sb->bblog_shift;
  1374. count <<= sb->bblog_shift;
  1375. if (bb + 1 == 0)
  1376. break;
  1377. if (md_set_badblocks(&rdev->badblocks,
  1378. sector, count, 1) == 0)
  1379. return -EINVAL;
  1380. }
  1381. } else if (sb->bblog_offset == 0)
  1382. rdev->badblocks.shift = -1;
  1383. if (!refdev) {
  1384. ret = 1;
  1385. } else {
  1386. __u64 ev1, ev2;
  1387. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1388. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1389. sb->level != refsb->level ||
  1390. sb->layout != refsb->layout ||
  1391. sb->chunksize != refsb->chunksize) {
  1392. printk(KERN_WARNING "md: %s has strangely different"
  1393. " superblock to %s\n",
  1394. bdevname(rdev->bdev,b),
  1395. bdevname(refdev->bdev,b2));
  1396. return -EINVAL;
  1397. }
  1398. ev1 = le64_to_cpu(sb->events);
  1399. ev2 = le64_to_cpu(refsb->events);
  1400. if (ev1 > ev2)
  1401. ret = 1;
  1402. else
  1403. ret = 0;
  1404. }
  1405. if (minor_version)
  1406. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1407. le64_to_cpu(sb->data_offset);
  1408. else
  1409. rdev->sectors = rdev->sb_start;
  1410. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1411. return -EINVAL;
  1412. rdev->sectors = le64_to_cpu(sb->data_size);
  1413. if (le64_to_cpu(sb->size) > rdev->sectors)
  1414. return -EINVAL;
  1415. return ret;
  1416. }
  1417. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1418. {
  1419. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1420. __u64 ev1 = le64_to_cpu(sb->events);
  1421. rdev->raid_disk = -1;
  1422. clear_bit(Faulty, &rdev->flags);
  1423. clear_bit(In_sync, &rdev->flags);
  1424. clear_bit(WriteMostly, &rdev->flags);
  1425. if (mddev->raid_disks == 0) {
  1426. mddev->major_version = 1;
  1427. mddev->patch_version = 0;
  1428. mddev->external = 0;
  1429. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1430. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1431. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1432. mddev->level = le32_to_cpu(sb->level);
  1433. mddev->clevel[0] = 0;
  1434. mddev->layout = le32_to_cpu(sb->layout);
  1435. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1436. mddev->dev_sectors = le64_to_cpu(sb->size);
  1437. mddev->events = ev1;
  1438. mddev->bitmap_info.offset = 0;
  1439. mddev->bitmap_info.default_offset = 1024 >> 9;
  1440. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1441. memcpy(mddev->uuid, sb->set_uuid, 16);
  1442. mddev->max_disks = (4096-256)/2;
  1443. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1444. mddev->bitmap_info.file == NULL )
  1445. mddev->bitmap_info.offset =
  1446. (__s32)le32_to_cpu(sb->bitmap_offset);
  1447. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1448. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1449. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1450. mddev->new_level = le32_to_cpu(sb->new_level);
  1451. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1452. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1453. } else {
  1454. mddev->reshape_position = MaxSector;
  1455. mddev->delta_disks = 0;
  1456. mddev->new_level = mddev->level;
  1457. mddev->new_layout = mddev->layout;
  1458. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1459. }
  1460. } else if (mddev->pers == NULL) {
  1461. /* Insist of good event counter while assembling, except for
  1462. * spares (which don't need an event count) */
  1463. ++ev1;
  1464. if (rdev->desc_nr >= 0 &&
  1465. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1466. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1467. if (ev1 < mddev->events)
  1468. return -EINVAL;
  1469. } else if (mddev->bitmap) {
  1470. /* If adding to array with a bitmap, then we can accept an
  1471. * older device, but not too old.
  1472. */
  1473. if (ev1 < mddev->bitmap->events_cleared)
  1474. return 0;
  1475. } else {
  1476. if (ev1 < mddev->events)
  1477. /* just a hot-add of a new device, leave raid_disk at -1 */
  1478. return 0;
  1479. }
  1480. if (mddev->level != LEVEL_MULTIPATH) {
  1481. int role;
  1482. if (rdev->desc_nr < 0 ||
  1483. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1484. role = 0xffff;
  1485. rdev->desc_nr = -1;
  1486. } else
  1487. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1488. switch(role) {
  1489. case 0xffff: /* spare */
  1490. break;
  1491. case 0xfffe: /* faulty */
  1492. set_bit(Faulty, &rdev->flags);
  1493. break;
  1494. default:
  1495. if ((le32_to_cpu(sb->feature_map) &
  1496. MD_FEATURE_RECOVERY_OFFSET))
  1497. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1498. else
  1499. set_bit(In_sync, &rdev->flags);
  1500. rdev->raid_disk = role;
  1501. break;
  1502. }
  1503. if (sb->devflags & WriteMostly1)
  1504. set_bit(WriteMostly, &rdev->flags);
  1505. } else /* MULTIPATH are always insync */
  1506. set_bit(In_sync, &rdev->flags);
  1507. return 0;
  1508. }
  1509. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1510. {
  1511. struct mdp_superblock_1 *sb;
  1512. struct md_rdev *rdev2;
  1513. int max_dev, i;
  1514. /* make rdev->sb match mddev and rdev data. */
  1515. sb = page_address(rdev->sb_page);
  1516. sb->feature_map = 0;
  1517. sb->pad0 = 0;
  1518. sb->recovery_offset = cpu_to_le64(0);
  1519. memset(sb->pad1, 0, sizeof(sb->pad1));
  1520. memset(sb->pad3, 0, sizeof(sb->pad3));
  1521. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1522. sb->events = cpu_to_le64(mddev->events);
  1523. if (mddev->in_sync)
  1524. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1525. else
  1526. sb->resync_offset = cpu_to_le64(0);
  1527. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1528. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1529. sb->size = cpu_to_le64(mddev->dev_sectors);
  1530. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1531. sb->level = cpu_to_le32(mddev->level);
  1532. sb->layout = cpu_to_le32(mddev->layout);
  1533. if (test_bit(WriteMostly, &rdev->flags))
  1534. sb->devflags |= WriteMostly1;
  1535. else
  1536. sb->devflags &= ~WriteMostly1;
  1537. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1538. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1539. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1540. }
  1541. if (rdev->raid_disk >= 0 &&
  1542. !test_bit(In_sync, &rdev->flags)) {
  1543. sb->feature_map |=
  1544. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1545. sb->recovery_offset =
  1546. cpu_to_le64(rdev->recovery_offset);
  1547. }
  1548. if (mddev->reshape_position != MaxSector) {
  1549. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1550. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1551. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1552. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1553. sb->new_level = cpu_to_le32(mddev->new_level);
  1554. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1555. }
  1556. if (rdev->badblocks.count == 0)
  1557. /* Nothing to do for bad blocks*/ ;
  1558. else if (sb->bblog_offset == 0)
  1559. /* Cannot record bad blocks on this device */
  1560. md_error(mddev, rdev);
  1561. else {
  1562. struct badblocks *bb = &rdev->badblocks;
  1563. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1564. u64 *p = bb->page;
  1565. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1566. if (bb->changed) {
  1567. unsigned seq;
  1568. retry:
  1569. seq = read_seqbegin(&bb->lock);
  1570. memset(bbp, 0xff, PAGE_SIZE);
  1571. for (i = 0 ; i < bb->count ; i++) {
  1572. u64 internal_bb = *p++;
  1573. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1574. | BB_LEN(internal_bb));
  1575. *bbp++ = cpu_to_le64(store_bb);
  1576. }
  1577. if (read_seqretry(&bb->lock, seq))
  1578. goto retry;
  1579. bb->sector = (rdev->sb_start +
  1580. (int)le32_to_cpu(sb->bblog_offset));
  1581. bb->size = le16_to_cpu(sb->bblog_size);
  1582. bb->changed = 0;
  1583. }
  1584. }
  1585. max_dev = 0;
  1586. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1587. if (rdev2->desc_nr+1 > max_dev)
  1588. max_dev = rdev2->desc_nr+1;
  1589. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1590. int bmask;
  1591. sb->max_dev = cpu_to_le32(max_dev);
  1592. rdev->sb_size = max_dev * 2 + 256;
  1593. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1594. if (rdev->sb_size & bmask)
  1595. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1596. } else
  1597. max_dev = le32_to_cpu(sb->max_dev);
  1598. for (i=0; i<max_dev;i++)
  1599. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1600. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1601. i = rdev2->desc_nr;
  1602. if (test_bit(Faulty, &rdev2->flags))
  1603. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1604. else if (test_bit(In_sync, &rdev2->flags))
  1605. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1606. else if (rdev2->raid_disk >= 0)
  1607. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1608. else
  1609. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1610. }
  1611. sb->sb_csum = calc_sb_1_csum(sb);
  1612. }
  1613. static unsigned long long
  1614. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1615. {
  1616. struct mdp_superblock_1 *sb;
  1617. sector_t max_sectors;
  1618. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1619. return 0; /* component must fit device */
  1620. if (rdev->sb_start < rdev->data_offset) {
  1621. /* minor versions 1 and 2; superblock before data */
  1622. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1623. max_sectors -= rdev->data_offset;
  1624. if (!num_sectors || num_sectors > max_sectors)
  1625. num_sectors = max_sectors;
  1626. } else if (rdev->mddev->bitmap_info.offset) {
  1627. /* minor version 0 with bitmap we can't move */
  1628. return 0;
  1629. } else {
  1630. /* minor version 0; superblock after data */
  1631. sector_t sb_start;
  1632. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1633. sb_start &= ~(sector_t)(4*2 - 1);
  1634. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1635. if (!num_sectors || num_sectors > max_sectors)
  1636. num_sectors = max_sectors;
  1637. rdev->sb_start = sb_start;
  1638. }
  1639. sb = page_address(rdev->sb_page);
  1640. sb->data_size = cpu_to_le64(num_sectors);
  1641. sb->super_offset = rdev->sb_start;
  1642. sb->sb_csum = calc_sb_1_csum(sb);
  1643. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1644. rdev->sb_page);
  1645. md_super_wait(rdev->mddev);
  1646. return num_sectors;
  1647. }
  1648. static struct super_type super_types[] = {
  1649. [0] = {
  1650. .name = "0.90.0",
  1651. .owner = THIS_MODULE,
  1652. .load_super = super_90_load,
  1653. .validate_super = super_90_validate,
  1654. .sync_super = super_90_sync,
  1655. .rdev_size_change = super_90_rdev_size_change,
  1656. },
  1657. [1] = {
  1658. .name = "md-1",
  1659. .owner = THIS_MODULE,
  1660. .load_super = super_1_load,
  1661. .validate_super = super_1_validate,
  1662. .sync_super = super_1_sync,
  1663. .rdev_size_change = super_1_rdev_size_change,
  1664. },
  1665. };
  1666. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1667. {
  1668. if (mddev->sync_super) {
  1669. mddev->sync_super(mddev, rdev);
  1670. return;
  1671. }
  1672. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1673. super_types[mddev->major_version].sync_super(mddev, rdev);
  1674. }
  1675. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1676. {
  1677. struct md_rdev *rdev, *rdev2;
  1678. rcu_read_lock();
  1679. rdev_for_each_rcu(rdev, mddev1)
  1680. rdev_for_each_rcu(rdev2, mddev2)
  1681. if (rdev->bdev->bd_contains ==
  1682. rdev2->bdev->bd_contains) {
  1683. rcu_read_unlock();
  1684. return 1;
  1685. }
  1686. rcu_read_unlock();
  1687. return 0;
  1688. }
  1689. static LIST_HEAD(pending_raid_disks);
  1690. /*
  1691. * Try to register data integrity profile for an mddev
  1692. *
  1693. * This is called when an array is started and after a disk has been kicked
  1694. * from the array. It only succeeds if all working and active component devices
  1695. * are integrity capable with matching profiles.
  1696. */
  1697. int md_integrity_register(struct mddev *mddev)
  1698. {
  1699. struct md_rdev *rdev, *reference = NULL;
  1700. if (list_empty(&mddev->disks))
  1701. return 0; /* nothing to do */
  1702. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1703. return 0; /* shouldn't register, or already is */
  1704. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1705. /* skip spares and non-functional disks */
  1706. if (test_bit(Faulty, &rdev->flags))
  1707. continue;
  1708. if (rdev->raid_disk < 0)
  1709. continue;
  1710. if (!reference) {
  1711. /* Use the first rdev as the reference */
  1712. reference = rdev;
  1713. continue;
  1714. }
  1715. /* does this rdev's profile match the reference profile? */
  1716. if (blk_integrity_compare(reference->bdev->bd_disk,
  1717. rdev->bdev->bd_disk) < 0)
  1718. return -EINVAL;
  1719. }
  1720. if (!reference || !bdev_get_integrity(reference->bdev))
  1721. return 0;
  1722. /*
  1723. * All component devices are integrity capable and have matching
  1724. * profiles, register the common profile for the md device.
  1725. */
  1726. if (blk_integrity_register(mddev->gendisk,
  1727. bdev_get_integrity(reference->bdev)) != 0) {
  1728. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1729. mdname(mddev));
  1730. return -EINVAL;
  1731. }
  1732. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1733. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1734. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1735. mdname(mddev));
  1736. return -EINVAL;
  1737. }
  1738. return 0;
  1739. }
  1740. EXPORT_SYMBOL(md_integrity_register);
  1741. /* Disable data integrity if non-capable/non-matching disk is being added */
  1742. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1743. {
  1744. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1745. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1746. if (!bi_mddev) /* nothing to do */
  1747. return;
  1748. if (rdev->raid_disk < 0) /* skip spares */
  1749. return;
  1750. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1751. rdev->bdev->bd_disk) >= 0)
  1752. return;
  1753. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1754. blk_integrity_unregister(mddev->gendisk);
  1755. }
  1756. EXPORT_SYMBOL(md_integrity_add_rdev);
  1757. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1758. {
  1759. char b[BDEVNAME_SIZE];
  1760. struct kobject *ko;
  1761. char *s;
  1762. int err;
  1763. if (rdev->mddev) {
  1764. MD_BUG();
  1765. return -EINVAL;
  1766. }
  1767. /* prevent duplicates */
  1768. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1769. return -EEXIST;
  1770. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1771. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1772. rdev->sectors < mddev->dev_sectors)) {
  1773. if (mddev->pers) {
  1774. /* Cannot change size, so fail
  1775. * If mddev->level <= 0, then we don't care
  1776. * about aligning sizes (e.g. linear)
  1777. */
  1778. if (mddev->level > 0)
  1779. return -ENOSPC;
  1780. } else
  1781. mddev->dev_sectors = rdev->sectors;
  1782. }
  1783. /* Verify rdev->desc_nr is unique.
  1784. * If it is -1, assign a free number, else
  1785. * check number is not in use
  1786. */
  1787. if (rdev->desc_nr < 0) {
  1788. int choice = 0;
  1789. if (mddev->pers) choice = mddev->raid_disks;
  1790. while (find_rdev_nr(mddev, choice))
  1791. choice++;
  1792. rdev->desc_nr = choice;
  1793. } else {
  1794. if (find_rdev_nr(mddev, rdev->desc_nr))
  1795. return -EBUSY;
  1796. }
  1797. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1798. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1799. mdname(mddev), mddev->max_disks);
  1800. return -EBUSY;
  1801. }
  1802. bdevname(rdev->bdev,b);
  1803. while ( (s=strchr(b, '/')) != NULL)
  1804. *s = '!';
  1805. rdev->mddev = mddev;
  1806. printk(KERN_INFO "md: bind<%s>\n", b);
  1807. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1808. goto fail;
  1809. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1810. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1811. /* failure here is OK */;
  1812. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1813. list_add_rcu(&rdev->same_set, &mddev->disks);
  1814. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1815. /* May as well allow recovery to be retried once */
  1816. mddev->recovery_disabled++;
  1817. return 0;
  1818. fail:
  1819. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1820. b, mdname(mddev));
  1821. return err;
  1822. }
  1823. static void md_delayed_delete(struct work_struct *ws)
  1824. {
  1825. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1826. kobject_del(&rdev->kobj);
  1827. kobject_put(&rdev->kobj);
  1828. }
  1829. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1830. {
  1831. char b[BDEVNAME_SIZE];
  1832. if (!rdev->mddev) {
  1833. MD_BUG();
  1834. return;
  1835. }
  1836. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1837. list_del_rcu(&rdev->same_set);
  1838. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1839. rdev->mddev = NULL;
  1840. sysfs_remove_link(&rdev->kobj, "block");
  1841. sysfs_put(rdev->sysfs_state);
  1842. rdev->sysfs_state = NULL;
  1843. kfree(rdev->badblocks.page);
  1844. rdev->badblocks.count = 0;
  1845. rdev->badblocks.page = NULL;
  1846. /* We need to delay this, otherwise we can deadlock when
  1847. * writing to 'remove' to "dev/state". We also need
  1848. * to delay it due to rcu usage.
  1849. */
  1850. synchronize_rcu();
  1851. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1852. kobject_get(&rdev->kobj);
  1853. queue_work(md_misc_wq, &rdev->del_work);
  1854. }
  1855. /*
  1856. * prevent the device from being mounted, repartitioned or
  1857. * otherwise reused by a RAID array (or any other kernel
  1858. * subsystem), by bd_claiming the device.
  1859. */
  1860. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1861. {
  1862. int err = 0;
  1863. struct block_device *bdev;
  1864. char b[BDEVNAME_SIZE];
  1865. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1866. shared ? (struct md_rdev *)lock_rdev : rdev);
  1867. if (IS_ERR(bdev)) {
  1868. printk(KERN_ERR "md: could not open %s.\n",
  1869. __bdevname(dev, b));
  1870. return PTR_ERR(bdev);
  1871. }
  1872. rdev->bdev = bdev;
  1873. return err;
  1874. }
  1875. static void unlock_rdev(struct md_rdev *rdev)
  1876. {
  1877. struct block_device *bdev = rdev->bdev;
  1878. rdev->bdev = NULL;
  1879. if (!bdev)
  1880. MD_BUG();
  1881. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1882. }
  1883. void md_autodetect_dev(dev_t dev);
  1884. static void export_rdev(struct md_rdev * rdev)
  1885. {
  1886. char b[BDEVNAME_SIZE];
  1887. printk(KERN_INFO "md: export_rdev(%s)\n",
  1888. bdevname(rdev->bdev,b));
  1889. if (rdev->mddev)
  1890. MD_BUG();
  1891. free_disk_sb(rdev);
  1892. #ifndef MODULE
  1893. if (test_bit(AutoDetected, &rdev->flags))
  1894. md_autodetect_dev(rdev->bdev->bd_dev);
  1895. #endif
  1896. unlock_rdev(rdev);
  1897. kobject_put(&rdev->kobj);
  1898. }
  1899. static void kick_rdev_from_array(struct md_rdev * rdev)
  1900. {
  1901. unbind_rdev_from_array(rdev);
  1902. export_rdev(rdev);
  1903. }
  1904. static void export_array(struct mddev *mddev)
  1905. {
  1906. struct md_rdev *rdev, *tmp;
  1907. rdev_for_each(rdev, tmp, mddev) {
  1908. if (!rdev->mddev) {
  1909. MD_BUG();
  1910. continue;
  1911. }
  1912. kick_rdev_from_array(rdev);
  1913. }
  1914. if (!list_empty(&mddev->disks))
  1915. MD_BUG();
  1916. mddev->raid_disks = 0;
  1917. mddev->major_version = 0;
  1918. }
  1919. static void print_desc(mdp_disk_t *desc)
  1920. {
  1921. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1922. desc->major,desc->minor,desc->raid_disk,desc->state);
  1923. }
  1924. static void print_sb_90(mdp_super_t *sb)
  1925. {
  1926. int i;
  1927. printk(KERN_INFO
  1928. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1929. sb->major_version, sb->minor_version, sb->patch_version,
  1930. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1931. sb->ctime);
  1932. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1933. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1934. sb->md_minor, sb->layout, sb->chunk_size);
  1935. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1936. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1937. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1938. sb->failed_disks, sb->spare_disks,
  1939. sb->sb_csum, (unsigned long)sb->events_lo);
  1940. printk(KERN_INFO);
  1941. for (i = 0; i < MD_SB_DISKS; i++) {
  1942. mdp_disk_t *desc;
  1943. desc = sb->disks + i;
  1944. if (desc->number || desc->major || desc->minor ||
  1945. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1946. printk(" D %2d: ", i);
  1947. print_desc(desc);
  1948. }
  1949. }
  1950. printk(KERN_INFO "md: THIS: ");
  1951. print_desc(&sb->this_disk);
  1952. }
  1953. static void print_sb_1(struct mdp_superblock_1 *sb)
  1954. {
  1955. __u8 *uuid;
  1956. uuid = sb->set_uuid;
  1957. printk(KERN_INFO
  1958. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1959. "md: Name: \"%s\" CT:%llu\n",
  1960. le32_to_cpu(sb->major_version),
  1961. le32_to_cpu(sb->feature_map),
  1962. uuid,
  1963. sb->set_name,
  1964. (unsigned long long)le64_to_cpu(sb->ctime)
  1965. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1966. uuid = sb->device_uuid;
  1967. printk(KERN_INFO
  1968. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1969. " RO:%llu\n"
  1970. "md: Dev:%08x UUID: %pU\n"
  1971. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1972. "md: (MaxDev:%u) \n",
  1973. le32_to_cpu(sb->level),
  1974. (unsigned long long)le64_to_cpu(sb->size),
  1975. le32_to_cpu(sb->raid_disks),
  1976. le32_to_cpu(sb->layout),
  1977. le32_to_cpu(sb->chunksize),
  1978. (unsigned long long)le64_to_cpu(sb->data_offset),
  1979. (unsigned long long)le64_to_cpu(sb->data_size),
  1980. (unsigned long long)le64_to_cpu(sb->super_offset),
  1981. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1982. le32_to_cpu(sb->dev_number),
  1983. uuid,
  1984. sb->devflags,
  1985. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1986. (unsigned long long)le64_to_cpu(sb->events),
  1987. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1988. le32_to_cpu(sb->sb_csum),
  1989. le32_to_cpu(sb->max_dev)
  1990. );
  1991. }
  1992. static void print_rdev(struct md_rdev *rdev, int major_version)
  1993. {
  1994. char b[BDEVNAME_SIZE];
  1995. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1996. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1997. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1998. rdev->desc_nr);
  1999. if (rdev->sb_loaded) {
  2000. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2001. switch (major_version) {
  2002. case 0:
  2003. print_sb_90(page_address(rdev->sb_page));
  2004. break;
  2005. case 1:
  2006. print_sb_1(page_address(rdev->sb_page));
  2007. break;
  2008. }
  2009. } else
  2010. printk(KERN_INFO "md: no rdev superblock!\n");
  2011. }
  2012. static void md_print_devices(void)
  2013. {
  2014. struct list_head *tmp;
  2015. struct md_rdev *rdev;
  2016. struct mddev *mddev;
  2017. char b[BDEVNAME_SIZE];
  2018. printk("\n");
  2019. printk("md: **********************************\n");
  2020. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2021. printk("md: **********************************\n");
  2022. for_each_mddev(mddev, tmp) {
  2023. if (mddev->bitmap)
  2024. bitmap_print_sb(mddev->bitmap);
  2025. else
  2026. printk("%s: ", mdname(mddev));
  2027. list_for_each_entry(rdev, &mddev->disks, same_set)
  2028. printk("<%s>", bdevname(rdev->bdev,b));
  2029. printk("\n");
  2030. list_for_each_entry(rdev, &mddev->disks, same_set)
  2031. print_rdev(rdev, mddev->major_version);
  2032. }
  2033. printk("md: **********************************\n");
  2034. printk("\n");
  2035. }
  2036. static void sync_sbs(struct mddev * mddev, int nospares)
  2037. {
  2038. /* Update each superblock (in-memory image), but
  2039. * if we are allowed to, skip spares which already
  2040. * have the right event counter, or have one earlier
  2041. * (which would mean they aren't being marked as dirty
  2042. * with the rest of the array)
  2043. */
  2044. struct md_rdev *rdev;
  2045. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2046. if (rdev->sb_events == mddev->events ||
  2047. (nospares &&
  2048. rdev->raid_disk < 0 &&
  2049. rdev->sb_events+1 == mddev->events)) {
  2050. /* Don't update this superblock */
  2051. rdev->sb_loaded = 2;
  2052. } else {
  2053. sync_super(mddev, rdev);
  2054. rdev->sb_loaded = 1;
  2055. }
  2056. }
  2057. }
  2058. static void md_update_sb(struct mddev * mddev, int force_change)
  2059. {
  2060. struct md_rdev *rdev;
  2061. int sync_req;
  2062. int nospares = 0;
  2063. int any_badblocks_changed = 0;
  2064. repeat:
  2065. /* First make sure individual recovery_offsets are correct */
  2066. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2067. if (rdev->raid_disk >= 0 &&
  2068. mddev->delta_disks >= 0 &&
  2069. !test_bit(In_sync, &rdev->flags) &&
  2070. mddev->curr_resync_completed > rdev->recovery_offset)
  2071. rdev->recovery_offset = mddev->curr_resync_completed;
  2072. }
  2073. if (!mddev->persistent) {
  2074. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2075. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2076. if (!mddev->external) {
  2077. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2078. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2079. if (rdev->badblocks.changed) {
  2080. md_ack_all_badblocks(&rdev->badblocks);
  2081. md_error(mddev, rdev);
  2082. }
  2083. clear_bit(Blocked, &rdev->flags);
  2084. clear_bit(BlockedBadBlocks, &rdev->flags);
  2085. wake_up(&rdev->blocked_wait);
  2086. }
  2087. }
  2088. wake_up(&mddev->sb_wait);
  2089. return;
  2090. }
  2091. spin_lock_irq(&mddev->write_lock);
  2092. mddev->utime = get_seconds();
  2093. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2094. force_change = 1;
  2095. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2096. /* just a clean<-> dirty transition, possibly leave spares alone,
  2097. * though if events isn't the right even/odd, we will have to do
  2098. * spares after all
  2099. */
  2100. nospares = 1;
  2101. if (force_change)
  2102. nospares = 0;
  2103. if (mddev->degraded)
  2104. /* If the array is degraded, then skipping spares is both
  2105. * dangerous and fairly pointless.
  2106. * Dangerous because a device that was removed from the array
  2107. * might have a event_count that still looks up-to-date,
  2108. * so it can be re-added without a resync.
  2109. * Pointless because if there are any spares to skip,
  2110. * then a recovery will happen and soon that array won't
  2111. * be degraded any more and the spare can go back to sleep then.
  2112. */
  2113. nospares = 0;
  2114. sync_req = mddev->in_sync;
  2115. /* If this is just a dirty<->clean transition, and the array is clean
  2116. * and 'events' is odd, we can roll back to the previous clean state */
  2117. if (nospares
  2118. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2119. && mddev->can_decrease_events
  2120. && mddev->events != 1) {
  2121. mddev->events--;
  2122. mddev->can_decrease_events = 0;
  2123. } else {
  2124. /* otherwise we have to go forward and ... */
  2125. mddev->events ++;
  2126. mddev->can_decrease_events = nospares;
  2127. }
  2128. if (!mddev->events) {
  2129. /*
  2130. * oops, this 64-bit counter should never wrap.
  2131. * Either we are in around ~1 trillion A.C., assuming
  2132. * 1 reboot per second, or we have a bug:
  2133. */
  2134. MD_BUG();
  2135. mddev->events --;
  2136. }
  2137. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2138. if (rdev->badblocks.changed)
  2139. any_badblocks_changed++;
  2140. if (test_bit(Faulty, &rdev->flags))
  2141. set_bit(FaultRecorded, &rdev->flags);
  2142. }
  2143. sync_sbs(mddev, nospares);
  2144. spin_unlock_irq(&mddev->write_lock);
  2145. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2146. mdname(mddev), mddev->in_sync);
  2147. bitmap_update_sb(mddev->bitmap);
  2148. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2149. char b[BDEVNAME_SIZE];
  2150. if (rdev->sb_loaded != 1)
  2151. continue; /* no noise on spare devices */
  2152. if (!test_bit(Faulty, &rdev->flags) &&
  2153. rdev->saved_raid_disk == -1) {
  2154. md_super_write(mddev,rdev,
  2155. rdev->sb_start, rdev->sb_size,
  2156. rdev->sb_page);
  2157. pr_debug("md: (write) %s's sb offset: %llu\n",
  2158. bdevname(rdev->bdev, b),
  2159. (unsigned long long)rdev->sb_start);
  2160. rdev->sb_events = mddev->events;
  2161. if (rdev->badblocks.size) {
  2162. md_super_write(mddev, rdev,
  2163. rdev->badblocks.sector,
  2164. rdev->badblocks.size << 9,
  2165. rdev->bb_page);
  2166. rdev->badblocks.size = 0;
  2167. }
  2168. } else if (test_bit(Faulty, &rdev->flags))
  2169. pr_debug("md: %s (skipping faulty)\n",
  2170. bdevname(rdev->bdev, b));
  2171. else
  2172. pr_debug("(skipping incremental s/r ");
  2173. if (mddev->level == LEVEL_MULTIPATH)
  2174. /* only need to write one superblock... */
  2175. break;
  2176. }
  2177. md_super_wait(mddev);
  2178. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2179. spin_lock_irq(&mddev->write_lock);
  2180. if (mddev->in_sync != sync_req ||
  2181. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2182. /* have to write it out again */
  2183. spin_unlock_irq(&mddev->write_lock);
  2184. goto repeat;
  2185. }
  2186. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2187. spin_unlock_irq(&mddev->write_lock);
  2188. wake_up(&mddev->sb_wait);
  2189. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2190. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2191. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2192. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2193. clear_bit(Blocked, &rdev->flags);
  2194. if (any_badblocks_changed)
  2195. md_ack_all_badblocks(&rdev->badblocks);
  2196. clear_bit(BlockedBadBlocks, &rdev->flags);
  2197. wake_up(&rdev->blocked_wait);
  2198. }
  2199. }
  2200. /* words written to sysfs files may, or may not, be \n terminated.
  2201. * We want to accept with case. For this we use cmd_match.
  2202. */
  2203. static int cmd_match(const char *cmd, const char *str)
  2204. {
  2205. /* See if cmd, written into a sysfs file, matches
  2206. * str. They must either be the same, or cmd can
  2207. * have a trailing newline
  2208. */
  2209. while (*cmd && *str && *cmd == *str) {
  2210. cmd++;
  2211. str++;
  2212. }
  2213. if (*cmd == '\n')
  2214. cmd++;
  2215. if (*str || *cmd)
  2216. return 0;
  2217. return 1;
  2218. }
  2219. struct rdev_sysfs_entry {
  2220. struct attribute attr;
  2221. ssize_t (*show)(struct md_rdev *, char *);
  2222. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2223. };
  2224. static ssize_t
  2225. state_show(struct md_rdev *rdev, char *page)
  2226. {
  2227. char *sep = "";
  2228. size_t len = 0;
  2229. if (test_bit(Faulty, &rdev->flags) ||
  2230. rdev->badblocks.unacked_exist) {
  2231. len+= sprintf(page+len, "%sfaulty",sep);
  2232. sep = ",";
  2233. }
  2234. if (test_bit(In_sync, &rdev->flags)) {
  2235. len += sprintf(page+len, "%sin_sync",sep);
  2236. sep = ",";
  2237. }
  2238. if (test_bit(WriteMostly, &rdev->flags)) {
  2239. len += sprintf(page+len, "%swrite_mostly",sep);
  2240. sep = ",";
  2241. }
  2242. if (test_bit(Blocked, &rdev->flags) ||
  2243. (rdev->badblocks.unacked_exist
  2244. && !test_bit(Faulty, &rdev->flags))) {
  2245. len += sprintf(page+len, "%sblocked", sep);
  2246. sep = ",";
  2247. }
  2248. if (!test_bit(Faulty, &rdev->flags) &&
  2249. !test_bit(In_sync, &rdev->flags)) {
  2250. len += sprintf(page+len, "%sspare", sep);
  2251. sep = ",";
  2252. }
  2253. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2254. len += sprintf(page+len, "%swrite_error", sep);
  2255. sep = ",";
  2256. }
  2257. return len+sprintf(page+len, "\n");
  2258. }
  2259. static ssize_t
  2260. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2261. {
  2262. /* can write
  2263. * faulty - simulates an error
  2264. * remove - disconnects the device
  2265. * writemostly - sets write_mostly
  2266. * -writemostly - clears write_mostly
  2267. * blocked - sets the Blocked flags
  2268. * -blocked - clears the Blocked and possibly simulates an error
  2269. * insync - sets Insync providing device isn't active
  2270. * write_error - sets WriteErrorSeen
  2271. * -write_error - clears WriteErrorSeen
  2272. */
  2273. int err = -EINVAL;
  2274. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2275. md_error(rdev->mddev, rdev);
  2276. if (test_bit(Faulty, &rdev->flags))
  2277. err = 0;
  2278. else
  2279. err = -EBUSY;
  2280. } else if (cmd_match(buf, "remove")) {
  2281. if (rdev->raid_disk >= 0)
  2282. err = -EBUSY;
  2283. else {
  2284. struct mddev *mddev = rdev->mddev;
  2285. kick_rdev_from_array(rdev);
  2286. if (mddev->pers)
  2287. md_update_sb(mddev, 1);
  2288. md_new_event(mddev);
  2289. err = 0;
  2290. }
  2291. } else if (cmd_match(buf, "writemostly")) {
  2292. set_bit(WriteMostly, &rdev->flags);
  2293. err = 0;
  2294. } else if (cmd_match(buf, "-writemostly")) {
  2295. clear_bit(WriteMostly, &rdev->flags);
  2296. err = 0;
  2297. } else if (cmd_match(buf, "blocked")) {
  2298. set_bit(Blocked, &rdev->flags);
  2299. err = 0;
  2300. } else if (cmd_match(buf, "-blocked")) {
  2301. if (!test_bit(Faulty, &rdev->flags) &&
  2302. rdev->badblocks.unacked_exist) {
  2303. /* metadata handler doesn't understand badblocks,
  2304. * so we need to fail the device
  2305. */
  2306. md_error(rdev->mddev, rdev);
  2307. }
  2308. clear_bit(Blocked, &rdev->flags);
  2309. clear_bit(BlockedBadBlocks, &rdev->flags);
  2310. wake_up(&rdev->blocked_wait);
  2311. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2312. md_wakeup_thread(rdev->mddev->thread);
  2313. err = 0;
  2314. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2315. set_bit(In_sync, &rdev->flags);
  2316. err = 0;
  2317. } else if (cmd_match(buf, "write_error")) {
  2318. set_bit(WriteErrorSeen, &rdev->flags);
  2319. err = 0;
  2320. } else if (cmd_match(buf, "-write_error")) {
  2321. clear_bit(WriteErrorSeen, &rdev->flags);
  2322. err = 0;
  2323. }
  2324. if (!err)
  2325. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2326. return err ? err : len;
  2327. }
  2328. static struct rdev_sysfs_entry rdev_state =
  2329. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2330. static ssize_t
  2331. errors_show(struct md_rdev *rdev, char *page)
  2332. {
  2333. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2334. }
  2335. static ssize_t
  2336. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2337. {
  2338. char *e;
  2339. unsigned long n = simple_strtoul(buf, &e, 10);
  2340. if (*buf && (*e == 0 || *e == '\n')) {
  2341. atomic_set(&rdev->corrected_errors, n);
  2342. return len;
  2343. }
  2344. return -EINVAL;
  2345. }
  2346. static struct rdev_sysfs_entry rdev_errors =
  2347. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2348. static ssize_t
  2349. slot_show(struct md_rdev *rdev, char *page)
  2350. {
  2351. if (rdev->raid_disk < 0)
  2352. return sprintf(page, "none\n");
  2353. else
  2354. return sprintf(page, "%d\n", rdev->raid_disk);
  2355. }
  2356. static ssize_t
  2357. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2358. {
  2359. char *e;
  2360. int err;
  2361. int slot = simple_strtoul(buf, &e, 10);
  2362. if (strncmp(buf, "none", 4)==0)
  2363. slot = -1;
  2364. else if (e==buf || (*e && *e!= '\n'))
  2365. return -EINVAL;
  2366. if (rdev->mddev->pers && slot == -1) {
  2367. /* Setting 'slot' on an active array requires also
  2368. * updating the 'rd%d' link, and communicating
  2369. * with the personality with ->hot_*_disk.
  2370. * For now we only support removing
  2371. * failed/spare devices. This normally happens automatically,
  2372. * but not when the metadata is externally managed.
  2373. */
  2374. if (rdev->raid_disk == -1)
  2375. return -EEXIST;
  2376. /* personality does all needed checks */
  2377. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2378. return -EINVAL;
  2379. err = rdev->mddev->pers->
  2380. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2381. if (err)
  2382. return err;
  2383. sysfs_unlink_rdev(rdev->mddev, rdev);
  2384. rdev->raid_disk = -1;
  2385. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2386. md_wakeup_thread(rdev->mddev->thread);
  2387. } else if (rdev->mddev->pers) {
  2388. struct md_rdev *rdev2;
  2389. /* Activating a spare .. or possibly reactivating
  2390. * if we ever get bitmaps working here.
  2391. */
  2392. if (rdev->raid_disk != -1)
  2393. return -EBUSY;
  2394. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2395. return -EBUSY;
  2396. if (rdev->mddev->pers->hot_add_disk == NULL)
  2397. return -EINVAL;
  2398. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2399. if (rdev2->raid_disk == slot)
  2400. return -EEXIST;
  2401. if (slot >= rdev->mddev->raid_disks &&
  2402. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2403. return -ENOSPC;
  2404. rdev->raid_disk = slot;
  2405. if (test_bit(In_sync, &rdev->flags))
  2406. rdev->saved_raid_disk = slot;
  2407. else
  2408. rdev->saved_raid_disk = -1;
  2409. clear_bit(In_sync, &rdev->flags);
  2410. err = rdev->mddev->pers->
  2411. hot_add_disk(rdev->mddev, rdev);
  2412. if (err) {
  2413. rdev->raid_disk = -1;
  2414. return err;
  2415. } else
  2416. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2417. if (sysfs_link_rdev(rdev->mddev, rdev))
  2418. /* failure here is OK */;
  2419. /* don't wakeup anyone, leave that to userspace. */
  2420. } else {
  2421. if (slot >= rdev->mddev->raid_disks &&
  2422. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2423. return -ENOSPC;
  2424. rdev->raid_disk = slot;
  2425. /* assume it is working */
  2426. clear_bit(Faulty, &rdev->flags);
  2427. clear_bit(WriteMostly, &rdev->flags);
  2428. set_bit(In_sync, &rdev->flags);
  2429. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2430. }
  2431. return len;
  2432. }
  2433. static struct rdev_sysfs_entry rdev_slot =
  2434. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2435. static ssize_t
  2436. offset_show(struct md_rdev *rdev, char *page)
  2437. {
  2438. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2439. }
  2440. static ssize_t
  2441. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2442. {
  2443. char *e;
  2444. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2445. if (e==buf || (*e && *e != '\n'))
  2446. return -EINVAL;
  2447. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2448. return -EBUSY;
  2449. if (rdev->sectors && rdev->mddev->external)
  2450. /* Must set offset before size, so overlap checks
  2451. * can be sane */
  2452. return -EBUSY;
  2453. rdev->data_offset = offset;
  2454. return len;
  2455. }
  2456. static struct rdev_sysfs_entry rdev_offset =
  2457. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2458. static ssize_t
  2459. rdev_size_show(struct md_rdev *rdev, char *page)
  2460. {
  2461. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2462. }
  2463. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2464. {
  2465. /* check if two start/length pairs overlap */
  2466. if (s1+l1 <= s2)
  2467. return 0;
  2468. if (s2+l2 <= s1)
  2469. return 0;
  2470. return 1;
  2471. }
  2472. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2473. {
  2474. unsigned long long blocks;
  2475. sector_t new;
  2476. if (strict_strtoull(buf, 10, &blocks) < 0)
  2477. return -EINVAL;
  2478. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2479. return -EINVAL; /* sector conversion overflow */
  2480. new = blocks * 2;
  2481. if (new != blocks * 2)
  2482. return -EINVAL; /* unsigned long long to sector_t overflow */
  2483. *sectors = new;
  2484. return 0;
  2485. }
  2486. static ssize_t
  2487. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2488. {
  2489. struct mddev *my_mddev = rdev->mddev;
  2490. sector_t oldsectors = rdev->sectors;
  2491. sector_t sectors;
  2492. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2493. return -EINVAL;
  2494. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2495. if (my_mddev->persistent) {
  2496. sectors = super_types[my_mddev->major_version].
  2497. rdev_size_change(rdev, sectors);
  2498. if (!sectors)
  2499. return -EBUSY;
  2500. } else if (!sectors)
  2501. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2502. rdev->data_offset;
  2503. }
  2504. if (sectors < my_mddev->dev_sectors)
  2505. return -EINVAL; /* component must fit device */
  2506. rdev->sectors = sectors;
  2507. if (sectors > oldsectors && my_mddev->external) {
  2508. /* need to check that all other rdevs with the same ->bdev
  2509. * do not overlap. We need to unlock the mddev to avoid
  2510. * a deadlock. We have already changed rdev->sectors, and if
  2511. * we have to change it back, we will have the lock again.
  2512. */
  2513. struct mddev *mddev;
  2514. int overlap = 0;
  2515. struct list_head *tmp;
  2516. mddev_unlock(my_mddev);
  2517. for_each_mddev(mddev, tmp) {
  2518. struct md_rdev *rdev2;
  2519. mddev_lock(mddev);
  2520. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2521. if (rdev->bdev == rdev2->bdev &&
  2522. rdev != rdev2 &&
  2523. overlaps(rdev->data_offset, rdev->sectors,
  2524. rdev2->data_offset,
  2525. rdev2->sectors)) {
  2526. overlap = 1;
  2527. break;
  2528. }
  2529. mddev_unlock(mddev);
  2530. if (overlap) {
  2531. mddev_put(mddev);
  2532. break;
  2533. }
  2534. }
  2535. mddev_lock(my_mddev);
  2536. if (overlap) {
  2537. /* Someone else could have slipped in a size
  2538. * change here, but doing so is just silly.
  2539. * We put oldsectors back because we *know* it is
  2540. * safe, and trust userspace not to race with
  2541. * itself
  2542. */
  2543. rdev->sectors = oldsectors;
  2544. return -EBUSY;
  2545. }
  2546. }
  2547. return len;
  2548. }
  2549. static struct rdev_sysfs_entry rdev_size =
  2550. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2551. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2552. {
  2553. unsigned long long recovery_start = rdev->recovery_offset;
  2554. if (test_bit(In_sync, &rdev->flags) ||
  2555. recovery_start == MaxSector)
  2556. return sprintf(page, "none\n");
  2557. return sprintf(page, "%llu\n", recovery_start);
  2558. }
  2559. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2560. {
  2561. unsigned long long recovery_start;
  2562. if (cmd_match(buf, "none"))
  2563. recovery_start = MaxSector;
  2564. else if (strict_strtoull(buf, 10, &recovery_start))
  2565. return -EINVAL;
  2566. if (rdev->mddev->pers &&
  2567. rdev->raid_disk >= 0)
  2568. return -EBUSY;
  2569. rdev->recovery_offset = recovery_start;
  2570. if (recovery_start == MaxSector)
  2571. set_bit(In_sync, &rdev->flags);
  2572. else
  2573. clear_bit(In_sync, &rdev->flags);
  2574. return len;
  2575. }
  2576. static struct rdev_sysfs_entry rdev_recovery_start =
  2577. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2578. static ssize_t
  2579. badblocks_show(struct badblocks *bb, char *page, int unack);
  2580. static ssize_t
  2581. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2582. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2583. {
  2584. return badblocks_show(&rdev->badblocks, page, 0);
  2585. }
  2586. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2587. {
  2588. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2589. /* Maybe that ack was all we needed */
  2590. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2591. wake_up(&rdev->blocked_wait);
  2592. return rv;
  2593. }
  2594. static struct rdev_sysfs_entry rdev_bad_blocks =
  2595. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2596. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2597. {
  2598. return badblocks_show(&rdev->badblocks, page, 1);
  2599. }
  2600. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2601. {
  2602. return badblocks_store(&rdev->badblocks, page, len, 1);
  2603. }
  2604. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2605. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2606. static struct attribute *rdev_default_attrs[] = {
  2607. &rdev_state.attr,
  2608. &rdev_errors.attr,
  2609. &rdev_slot.attr,
  2610. &rdev_offset.attr,
  2611. &rdev_size.attr,
  2612. &rdev_recovery_start.attr,
  2613. &rdev_bad_blocks.attr,
  2614. &rdev_unack_bad_blocks.attr,
  2615. NULL,
  2616. };
  2617. static ssize_t
  2618. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2619. {
  2620. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2621. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2622. struct mddev *mddev = rdev->mddev;
  2623. ssize_t rv;
  2624. if (!entry->show)
  2625. return -EIO;
  2626. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2627. if (!rv) {
  2628. if (rdev->mddev == NULL)
  2629. rv = -EBUSY;
  2630. else
  2631. rv = entry->show(rdev, page);
  2632. mddev_unlock(mddev);
  2633. }
  2634. return rv;
  2635. }
  2636. static ssize_t
  2637. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2638. const char *page, size_t length)
  2639. {
  2640. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2641. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2642. ssize_t rv;
  2643. struct mddev *mddev = rdev->mddev;
  2644. if (!entry->store)
  2645. return -EIO;
  2646. if (!capable(CAP_SYS_ADMIN))
  2647. return -EACCES;
  2648. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2649. if (!rv) {
  2650. if (rdev->mddev == NULL)
  2651. rv = -EBUSY;
  2652. else
  2653. rv = entry->store(rdev, page, length);
  2654. mddev_unlock(mddev);
  2655. }
  2656. return rv;
  2657. }
  2658. static void rdev_free(struct kobject *ko)
  2659. {
  2660. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2661. kfree(rdev);
  2662. }
  2663. static const struct sysfs_ops rdev_sysfs_ops = {
  2664. .show = rdev_attr_show,
  2665. .store = rdev_attr_store,
  2666. };
  2667. static struct kobj_type rdev_ktype = {
  2668. .release = rdev_free,
  2669. .sysfs_ops = &rdev_sysfs_ops,
  2670. .default_attrs = rdev_default_attrs,
  2671. };
  2672. int md_rdev_init(struct md_rdev *rdev)
  2673. {
  2674. rdev->desc_nr = -1;
  2675. rdev->saved_raid_disk = -1;
  2676. rdev->raid_disk = -1;
  2677. rdev->flags = 0;
  2678. rdev->data_offset = 0;
  2679. rdev->sb_events = 0;
  2680. rdev->last_read_error.tv_sec = 0;
  2681. rdev->last_read_error.tv_nsec = 0;
  2682. rdev->sb_loaded = 0;
  2683. rdev->bb_page = NULL;
  2684. atomic_set(&rdev->nr_pending, 0);
  2685. atomic_set(&rdev->read_errors, 0);
  2686. atomic_set(&rdev->corrected_errors, 0);
  2687. INIT_LIST_HEAD(&rdev->same_set);
  2688. init_waitqueue_head(&rdev->blocked_wait);
  2689. /* Add space to store bad block list.
  2690. * This reserves the space even on arrays where it cannot
  2691. * be used - I wonder if that matters
  2692. */
  2693. rdev->badblocks.count = 0;
  2694. rdev->badblocks.shift = 0;
  2695. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2696. seqlock_init(&rdev->badblocks.lock);
  2697. if (rdev->badblocks.page == NULL)
  2698. return -ENOMEM;
  2699. return 0;
  2700. }
  2701. EXPORT_SYMBOL_GPL(md_rdev_init);
  2702. /*
  2703. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2704. *
  2705. * mark the device faulty if:
  2706. *
  2707. * - the device is nonexistent (zero size)
  2708. * - the device has no valid superblock
  2709. *
  2710. * a faulty rdev _never_ has rdev->sb set.
  2711. */
  2712. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2713. {
  2714. char b[BDEVNAME_SIZE];
  2715. int err;
  2716. struct md_rdev *rdev;
  2717. sector_t size;
  2718. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2719. if (!rdev) {
  2720. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2721. return ERR_PTR(-ENOMEM);
  2722. }
  2723. err = md_rdev_init(rdev);
  2724. if (err)
  2725. goto abort_free;
  2726. err = alloc_disk_sb(rdev);
  2727. if (err)
  2728. goto abort_free;
  2729. err = lock_rdev(rdev, newdev, super_format == -2);
  2730. if (err)
  2731. goto abort_free;
  2732. kobject_init(&rdev->kobj, &rdev_ktype);
  2733. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2734. if (!size) {
  2735. printk(KERN_WARNING
  2736. "md: %s has zero or unknown size, marking faulty!\n",
  2737. bdevname(rdev->bdev,b));
  2738. err = -EINVAL;
  2739. goto abort_free;
  2740. }
  2741. if (super_format >= 0) {
  2742. err = super_types[super_format].
  2743. load_super(rdev, NULL, super_minor);
  2744. if (err == -EINVAL) {
  2745. printk(KERN_WARNING
  2746. "md: %s does not have a valid v%d.%d "
  2747. "superblock, not importing!\n",
  2748. bdevname(rdev->bdev,b),
  2749. super_format, super_minor);
  2750. goto abort_free;
  2751. }
  2752. if (err < 0) {
  2753. printk(KERN_WARNING
  2754. "md: could not read %s's sb, not importing!\n",
  2755. bdevname(rdev->bdev,b));
  2756. goto abort_free;
  2757. }
  2758. }
  2759. if (super_format == -1)
  2760. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2761. rdev->badblocks.shift = -1;
  2762. return rdev;
  2763. abort_free:
  2764. if (rdev->bdev)
  2765. unlock_rdev(rdev);
  2766. free_disk_sb(rdev);
  2767. kfree(rdev->badblocks.page);
  2768. kfree(rdev);
  2769. return ERR_PTR(err);
  2770. }
  2771. /*
  2772. * Check a full RAID array for plausibility
  2773. */
  2774. static void analyze_sbs(struct mddev * mddev)
  2775. {
  2776. int i;
  2777. struct md_rdev *rdev, *freshest, *tmp;
  2778. char b[BDEVNAME_SIZE];
  2779. freshest = NULL;
  2780. rdev_for_each(rdev, tmp, mddev)
  2781. switch (super_types[mddev->major_version].
  2782. load_super(rdev, freshest, mddev->minor_version)) {
  2783. case 1:
  2784. freshest = rdev;
  2785. break;
  2786. case 0:
  2787. break;
  2788. default:
  2789. printk( KERN_ERR \
  2790. "md: fatal superblock inconsistency in %s"
  2791. " -- removing from array\n",
  2792. bdevname(rdev->bdev,b));
  2793. kick_rdev_from_array(rdev);
  2794. }
  2795. super_types[mddev->major_version].
  2796. validate_super(mddev, freshest);
  2797. i = 0;
  2798. rdev_for_each(rdev, tmp, mddev) {
  2799. if (mddev->max_disks &&
  2800. (rdev->desc_nr >= mddev->max_disks ||
  2801. i > mddev->max_disks)) {
  2802. printk(KERN_WARNING
  2803. "md: %s: %s: only %d devices permitted\n",
  2804. mdname(mddev), bdevname(rdev->bdev, b),
  2805. mddev->max_disks);
  2806. kick_rdev_from_array(rdev);
  2807. continue;
  2808. }
  2809. if (rdev != freshest)
  2810. if (super_types[mddev->major_version].
  2811. validate_super(mddev, rdev)) {
  2812. printk(KERN_WARNING "md: kicking non-fresh %s"
  2813. " from array!\n",
  2814. bdevname(rdev->bdev,b));
  2815. kick_rdev_from_array(rdev);
  2816. continue;
  2817. }
  2818. if (mddev->level == LEVEL_MULTIPATH) {
  2819. rdev->desc_nr = i++;
  2820. rdev->raid_disk = rdev->desc_nr;
  2821. set_bit(In_sync, &rdev->flags);
  2822. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2823. rdev->raid_disk = -1;
  2824. clear_bit(In_sync, &rdev->flags);
  2825. }
  2826. }
  2827. }
  2828. /* Read a fixed-point number.
  2829. * Numbers in sysfs attributes should be in "standard" units where
  2830. * possible, so time should be in seconds.
  2831. * However we internally use a a much smaller unit such as
  2832. * milliseconds or jiffies.
  2833. * This function takes a decimal number with a possible fractional
  2834. * component, and produces an integer which is the result of
  2835. * multiplying that number by 10^'scale'.
  2836. * all without any floating-point arithmetic.
  2837. */
  2838. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2839. {
  2840. unsigned long result = 0;
  2841. long decimals = -1;
  2842. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2843. if (*cp == '.')
  2844. decimals = 0;
  2845. else if (decimals < scale) {
  2846. unsigned int value;
  2847. value = *cp - '0';
  2848. result = result * 10 + value;
  2849. if (decimals >= 0)
  2850. decimals++;
  2851. }
  2852. cp++;
  2853. }
  2854. if (*cp == '\n')
  2855. cp++;
  2856. if (*cp)
  2857. return -EINVAL;
  2858. if (decimals < 0)
  2859. decimals = 0;
  2860. while (decimals < scale) {
  2861. result *= 10;
  2862. decimals ++;
  2863. }
  2864. *res = result;
  2865. return 0;
  2866. }
  2867. static void md_safemode_timeout(unsigned long data);
  2868. static ssize_t
  2869. safe_delay_show(struct mddev *mddev, char *page)
  2870. {
  2871. int msec = (mddev->safemode_delay*1000)/HZ;
  2872. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2873. }
  2874. static ssize_t
  2875. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2876. {
  2877. unsigned long msec;
  2878. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2879. return -EINVAL;
  2880. if (msec == 0)
  2881. mddev->safemode_delay = 0;
  2882. else {
  2883. unsigned long old_delay = mddev->safemode_delay;
  2884. mddev->safemode_delay = (msec*HZ)/1000;
  2885. if (mddev->safemode_delay == 0)
  2886. mddev->safemode_delay = 1;
  2887. if (mddev->safemode_delay < old_delay)
  2888. md_safemode_timeout((unsigned long)mddev);
  2889. }
  2890. return len;
  2891. }
  2892. static struct md_sysfs_entry md_safe_delay =
  2893. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2894. static ssize_t
  2895. level_show(struct mddev *mddev, char *page)
  2896. {
  2897. struct md_personality *p = mddev->pers;
  2898. if (p)
  2899. return sprintf(page, "%s\n", p->name);
  2900. else if (mddev->clevel[0])
  2901. return sprintf(page, "%s\n", mddev->clevel);
  2902. else if (mddev->level != LEVEL_NONE)
  2903. return sprintf(page, "%d\n", mddev->level);
  2904. else
  2905. return 0;
  2906. }
  2907. static ssize_t
  2908. level_store(struct mddev *mddev, const char *buf, size_t len)
  2909. {
  2910. char clevel[16];
  2911. ssize_t rv = len;
  2912. struct md_personality *pers;
  2913. long level;
  2914. void *priv;
  2915. struct md_rdev *rdev;
  2916. if (mddev->pers == NULL) {
  2917. if (len == 0)
  2918. return 0;
  2919. if (len >= sizeof(mddev->clevel))
  2920. return -ENOSPC;
  2921. strncpy(mddev->clevel, buf, len);
  2922. if (mddev->clevel[len-1] == '\n')
  2923. len--;
  2924. mddev->clevel[len] = 0;
  2925. mddev->level = LEVEL_NONE;
  2926. return rv;
  2927. }
  2928. /* request to change the personality. Need to ensure:
  2929. * - array is not engaged in resync/recovery/reshape
  2930. * - old personality can be suspended
  2931. * - new personality will access other array.
  2932. */
  2933. if (mddev->sync_thread ||
  2934. mddev->reshape_position != MaxSector ||
  2935. mddev->sysfs_active)
  2936. return -EBUSY;
  2937. if (!mddev->pers->quiesce) {
  2938. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2939. mdname(mddev), mddev->pers->name);
  2940. return -EINVAL;
  2941. }
  2942. /* Now find the new personality */
  2943. if (len == 0 || len >= sizeof(clevel))
  2944. return -EINVAL;
  2945. strncpy(clevel, buf, len);
  2946. if (clevel[len-1] == '\n')
  2947. len--;
  2948. clevel[len] = 0;
  2949. if (strict_strtol(clevel, 10, &level))
  2950. level = LEVEL_NONE;
  2951. if (request_module("md-%s", clevel) != 0)
  2952. request_module("md-level-%s", clevel);
  2953. spin_lock(&pers_lock);
  2954. pers = find_pers(level, clevel);
  2955. if (!pers || !try_module_get(pers->owner)) {
  2956. spin_unlock(&pers_lock);
  2957. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2958. return -EINVAL;
  2959. }
  2960. spin_unlock(&pers_lock);
  2961. if (pers == mddev->pers) {
  2962. /* Nothing to do! */
  2963. module_put(pers->owner);
  2964. return rv;
  2965. }
  2966. if (!pers->takeover) {
  2967. module_put(pers->owner);
  2968. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2969. mdname(mddev), clevel);
  2970. return -EINVAL;
  2971. }
  2972. list_for_each_entry(rdev, &mddev->disks, same_set)
  2973. rdev->new_raid_disk = rdev->raid_disk;
  2974. /* ->takeover must set new_* and/or delta_disks
  2975. * if it succeeds, and may set them when it fails.
  2976. */
  2977. priv = pers->takeover(mddev);
  2978. if (IS_ERR(priv)) {
  2979. mddev->new_level = mddev->level;
  2980. mddev->new_layout = mddev->layout;
  2981. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2982. mddev->raid_disks -= mddev->delta_disks;
  2983. mddev->delta_disks = 0;
  2984. module_put(pers->owner);
  2985. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2986. mdname(mddev), clevel);
  2987. return PTR_ERR(priv);
  2988. }
  2989. /* Looks like we have a winner */
  2990. mddev_suspend(mddev);
  2991. mddev->pers->stop(mddev);
  2992. if (mddev->pers->sync_request == NULL &&
  2993. pers->sync_request != NULL) {
  2994. /* need to add the md_redundancy_group */
  2995. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2996. printk(KERN_WARNING
  2997. "md: cannot register extra attributes for %s\n",
  2998. mdname(mddev));
  2999. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3000. }
  3001. if (mddev->pers->sync_request != NULL &&
  3002. pers->sync_request == NULL) {
  3003. /* need to remove the md_redundancy_group */
  3004. if (mddev->to_remove == NULL)
  3005. mddev->to_remove = &md_redundancy_group;
  3006. }
  3007. if (mddev->pers->sync_request == NULL &&
  3008. mddev->external) {
  3009. /* We are converting from a no-redundancy array
  3010. * to a redundancy array and metadata is managed
  3011. * externally so we need to be sure that writes
  3012. * won't block due to a need to transition
  3013. * clean->dirty
  3014. * until external management is started.
  3015. */
  3016. mddev->in_sync = 0;
  3017. mddev->safemode_delay = 0;
  3018. mddev->safemode = 0;
  3019. }
  3020. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3021. if (rdev->raid_disk < 0)
  3022. continue;
  3023. if (rdev->new_raid_disk >= mddev->raid_disks)
  3024. rdev->new_raid_disk = -1;
  3025. if (rdev->new_raid_disk == rdev->raid_disk)
  3026. continue;
  3027. sysfs_unlink_rdev(mddev, rdev);
  3028. }
  3029. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3030. if (rdev->raid_disk < 0)
  3031. continue;
  3032. if (rdev->new_raid_disk == rdev->raid_disk)
  3033. continue;
  3034. rdev->raid_disk = rdev->new_raid_disk;
  3035. if (rdev->raid_disk < 0)
  3036. clear_bit(In_sync, &rdev->flags);
  3037. else {
  3038. if (sysfs_link_rdev(mddev, rdev))
  3039. printk(KERN_WARNING "md: cannot register rd%d"
  3040. " for %s after level change\n",
  3041. rdev->raid_disk, mdname(mddev));
  3042. }
  3043. }
  3044. module_put(mddev->pers->owner);
  3045. mddev->pers = pers;
  3046. mddev->private = priv;
  3047. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3048. mddev->level = mddev->new_level;
  3049. mddev->layout = mddev->new_layout;
  3050. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3051. mddev->delta_disks = 0;
  3052. mddev->degraded = 0;
  3053. if (mddev->pers->sync_request == NULL) {
  3054. /* this is now an array without redundancy, so
  3055. * it must always be in_sync
  3056. */
  3057. mddev->in_sync = 1;
  3058. del_timer_sync(&mddev->safemode_timer);
  3059. }
  3060. pers->run(mddev);
  3061. mddev_resume(mddev);
  3062. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3063. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3064. md_wakeup_thread(mddev->thread);
  3065. sysfs_notify(&mddev->kobj, NULL, "level");
  3066. md_new_event(mddev);
  3067. return rv;
  3068. }
  3069. static struct md_sysfs_entry md_level =
  3070. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3071. static ssize_t
  3072. layout_show(struct mddev *mddev, char *page)
  3073. {
  3074. /* just a number, not meaningful for all levels */
  3075. if (mddev->reshape_position != MaxSector &&
  3076. mddev->layout != mddev->new_layout)
  3077. return sprintf(page, "%d (%d)\n",
  3078. mddev->new_layout, mddev->layout);
  3079. return sprintf(page, "%d\n", mddev->layout);
  3080. }
  3081. static ssize_t
  3082. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3083. {
  3084. char *e;
  3085. unsigned long n = simple_strtoul(buf, &e, 10);
  3086. if (!*buf || (*e && *e != '\n'))
  3087. return -EINVAL;
  3088. if (mddev->pers) {
  3089. int err;
  3090. if (mddev->pers->check_reshape == NULL)
  3091. return -EBUSY;
  3092. mddev->new_layout = n;
  3093. err = mddev->pers->check_reshape(mddev);
  3094. if (err) {
  3095. mddev->new_layout = mddev->layout;
  3096. return err;
  3097. }
  3098. } else {
  3099. mddev->new_layout = n;
  3100. if (mddev->reshape_position == MaxSector)
  3101. mddev->layout = n;
  3102. }
  3103. return len;
  3104. }
  3105. static struct md_sysfs_entry md_layout =
  3106. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3107. static ssize_t
  3108. raid_disks_show(struct mddev *mddev, char *page)
  3109. {
  3110. if (mddev->raid_disks == 0)
  3111. return 0;
  3112. if (mddev->reshape_position != MaxSector &&
  3113. mddev->delta_disks != 0)
  3114. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3115. mddev->raid_disks - mddev->delta_disks);
  3116. return sprintf(page, "%d\n", mddev->raid_disks);
  3117. }
  3118. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3119. static ssize_t
  3120. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3121. {
  3122. char *e;
  3123. int rv = 0;
  3124. unsigned long n = simple_strtoul(buf, &e, 10);
  3125. if (!*buf || (*e && *e != '\n'))
  3126. return -EINVAL;
  3127. if (mddev->pers)
  3128. rv = update_raid_disks(mddev, n);
  3129. else if (mddev->reshape_position != MaxSector) {
  3130. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3131. mddev->delta_disks = n - olddisks;
  3132. mddev->raid_disks = n;
  3133. } else
  3134. mddev->raid_disks = n;
  3135. return rv ? rv : len;
  3136. }
  3137. static struct md_sysfs_entry md_raid_disks =
  3138. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3139. static ssize_t
  3140. chunk_size_show(struct mddev *mddev, char *page)
  3141. {
  3142. if (mddev->reshape_position != MaxSector &&
  3143. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3144. return sprintf(page, "%d (%d)\n",
  3145. mddev->new_chunk_sectors << 9,
  3146. mddev->chunk_sectors << 9);
  3147. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3148. }
  3149. static ssize_t
  3150. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3151. {
  3152. char *e;
  3153. unsigned long n = simple_strtoul(buf, &e, 10);
  3154. if (!*buf || (*e && *e != '\n'))
  3155. return -EINVAL;
  3156. if (mddev->pers) {
  3157. int err;
  3158. if (mddev->pers->check_reshape == NULL)
  3159. return -EBUSY;
  3160. mddev->new_chunk_sectors = n >> 9;
  3161. err = mddev->pers->check_reshape(mddev);
  3162. if (err) {
  3163. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3164. return err;
  3165. }
  3166. } else {
  3167. mddev->new_chunk_sectors = n >> 9;
  3168. if (mddev->reshape_position == MaxSector)
  3169. mddev->chunk_sectors = n >> 9;
  3170. }
  3171. return len;
  3172. }
  3173. static struct md_sysfs_entry md_chunk_size =
  3174. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3175. static ssize_t
  3176. resync_start_show(struct mddev *mddev, char *page)
  3177. {
  3178. if (mddev->recovery_cp == MaxSector)
  3179. return sprintf(page, "none\n");
  3180. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3181. }
  3182. static ssize_t
  3183. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3184. {
  3185. char *e;
  3186. unsigned long long n = simple_strtoull(buf, &e, 10);
  3187. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3188. return -EBUSY;
  3189. if (cmd_match(buf, "none"))
  3190. n = MaxSector;
  3191. else if (!*buf || (*e && *e != '\n'))
  3192. return -EINVAL;
  3193. mddev->recovery_cp = n;
  3194. return len;
  3195. }
  3196. static struct md_sysfs_entry md_resync_start =
  3197. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3198. /*
  3199. * The array state can be:
  3200. *
  3201. * clear
  3202. * No devices, no size, no level
  3203. * Equivalent to STOP_ARRAY ioctl
  3204. * inactive
  3205. * May have some settings, but array is not active
  3206. * all IO results in error
  3207. * When written, doesn't tear down array, but just stops it
  3208. * suspended (not supported yet)
  3209. * All IO requests will block. The array can be reconfigured.
  3210. * Writing this, if accepted, will block until array is quiescent
  3211. * readonly
  3212. * no resync can happen. no superblocks get written.
  3213. * write requests fail
  3214. * read-auto
  3215. * like readonly, but behaves like 'clean' on a write request.
  3216. *
  3217. * clean - no pending writes, but otherwise active.
  3218. * When written to inactive array, starts without resync
  3219. * If a write request arrives then
  3220. * if metadata is known, mark 'dirty' and switch to 'active'.
  3221. * if not known, block and switch to write-pending
  3222. * If written to an active array that has pending writes, then fails.
  3223. * active
  3224. * fully active: IO and resync can be happening.
  3225. * When written to inactive array, starts with resync
  3226. *
  3227. * write-pending
  3228. * clean, but writes are blocked waiting for 'active' to be written.
  3229. *
  3230. * active-idle
  3231. * like active, but no writes have been seen for a while (100msec).
  3232. *
  3233. */
  3234. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3235. write_pending, active_idle, bad_word};
  3236. static char *array_states[] = {
  3237. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3238. "write-pending", "active-idle", NULL };
  3239. static int match_word(const char *word, char **list)
  3240. {
  3241. int n;
  3242. for (n=0; list[n]; n++)
  3243. if (cmd_match(word, list[n]))
  3244. break;
  3245. return n;
  3246. }
  3247. static ssize_t
  3248. array_state_show(struct mddev *mddev, char *page)
  3249. {
  3250. enum array_state st = inactive;
  3251. if (mddev->pers)
  3252. switch(mddev->ro) {
  3253. case 1:
  3254. st = readonly;
  3255. break;
  3256. case 2:
  3257. st = read_auto;
  3258. break;
  3259. case 0:
  3260. if (mddev->in_sync)
  3261. st = clean;
  3262. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3263. st = write_pending;
  3264. else if (mddev->safemode)
  3265. st = active_idle;
  3266. else
  3267. st = active;
  3268. }
  3269. else {
  3270. if (list_empty(&mddev->disks) &&
  3271. mddev->raid_disks == 0 &&
  3272. mddev->dev_sectors == 0)
  3273. st = clear;
  3274. else
  3275. st = inactive;
  3276. }
  3277. return sprintf(page, "%s\n", array_states[st]);
  3278. }
  3279. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3280. static int md_set_readonly(struct mddev * mddev, int is_open);
  3281. static int do_md_run(struct mddev * mddev);
  3282. static int restart_array(struct mddev *mddev);
  3283. static ssize_t
  3284. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3285. {
  3286. int err = -EINVAL;
  3287. enum array_state st = match_word(buf, array_states);
  3288. switch(st) {
  3289. case bad_word:
  3290. break;
  3291. case clear:
  3292. /* stopping an active array */
  3293. if (atomic_read(&mddev->openers) > 0)
  3294. return -EBUSY;
  3295. err = do_md_stop(mddev, 0, 0);
  3296. break;
  3297. case inactive:
  3298. /* stopping an active array */
  3299. if (mddev->pers) {
  3300. if (atomic_read(&mddev->openers) > 0)
  3301. return -EBUSY;
  3302. err = do_md_stop(mddev, 2, 0);
  3303. } else
  3304. err = 0; /* already inactive */
  3305. break;
  3306. case suspended:
  3307. break; /* not supported yet */
  3308. case readonly:
  3309. if (mddev->pers)
  3310. err = md_set_readonly(mddev, 0);
  3311. else {
  3312. mddev->ro = 1;
  3313. set_disk_ro(mddev->gendisk, 1);
  3314. err = do_md_run(mddev);
  3315. }
  3316. break;
  3317. case read_auto:
  3318. if (mddev->pers) {
  3319. if (mddev->ro == 0)
  3320. err = md_set_readonly(mddev, 0);
  3321. else if (mddev->ro == 1)
  3322. err = restart_array(mddev);
  3323. if (err == 0) {
  3324. mddev->ro = 2;
  3325. set_disk_ro(mddev->gendisk, 0);
  3326. }
  3327. } else {
  3328. mddev->ro = 2;
  3329. err = do_md_run(mddev);
  3330. }
  3331. break;
  3332. case clean:
  3333. if (mddev->pers) {
  3334. restart_array(mddev);
  3335. spin_lock_irq(&mddev->write_lock);
  3336. if (atomic_read(&mddev->writes_pending) == 0) {
  3337. if (mddev->in_sync == 0) {
  3338. mddev->in_sync = 1;
  3339. if (mddev->safemode == 1)
  3340. mddev->safemode = 0;
  3341. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3342. }
  3343. err = 0;
  3344. } else
  3345. err = -EBUSY;
  3346. spin_unlock_irq(&mddev->write_lock);
  3347. } else
  3348. err = -EINVAL;
  3349. break;
  3350. case active:
  3351. if (mddev->pers) {
  3352. restart_array(mddev);
  3353. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3354. wake_up(&mddev->sb_wait);
  3355. err = 0;
  3356. } else {
  3357. mddev->ro = 0;
  3358. set_disk_ro(mddev->gendisk, 0);
  3359. err = do_md_run(mddev);
  3360. }
  3361. break;
  3362. case write_pending:
  3363. case active_idle:
  3364. /* these cannot be set */
  3365. break;
  3366. }
  3367. if (err)
  3368. return err;
  3369. else {
  3370. if (mddev->hold_active == UNTIL_IOCTL)
  3371. mddev->hold_active = 0;
  3372. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3373. return len;
  3374. }
  3375. }
  3376. static struct md_sysfs_entry md_array_state =
  3377. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3378. static ssize_t
  3379. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3380. return sprintf(page, "%d\n",
  3381. atomic_read(&mddev->max_corr_read_errors));
  3382. }
  3383. static ssize_t
  3384. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3385. {
  3386. char *e;
  3387. unsigned long n = simple_strtoul(buf, &e, 10);
  3388. if (*buf && (*e == 0 || *e == '\n')) {
  3389. atomic_set(&mddev->max_corr_read_errors, n);
  3390. return len;
  3391. }
  3392. return -EINVAL;
  3393. }
  3394. static struct md_sysfs_entry max_corr_read_errors =
  3395. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3396. max_corrected_read_errors_store);
  3397. static ssize_t
  3398. null_show(struct mddev *mddev, char *page)
  3399. {
  3400. return -EINVAL;
  3401. }
  3402. static ssize_t
  3403. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3404. {
  3405. /* buf must be %d:%d\n? giving major and minor numbers */
  3406. /* The new device is added to the array.
  3407. * If the array has a persistent superblock, we read the
  3408. * superblock to initialise info and check validity.
  3409. * Otherwise, only checking done is that in bind_rdev_to_array,
  3410. * which mainly checks size.
  3411. */
  3412. char *e;
  3413. int major = simple_strtoul(buf, &e, 10);
  3414. int minor;
  3415. dev_t dev;
  3416. struct md_rdev *rdev;
  3417. int err;
  3418. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3419. return -EINVAL;
  3420. minor = simple_strtoul(e+1, &e, 10);
  3421. if (*e && *e != '\n')
  3422. return -EINVAL;
  3423. dev = MKDEV(major, minor);
  3424. if (major != MAJOR(dev) ||
  3425. minor != MINOR(dev))
  3426. return -EOVERFLOW;
  3427. if (mddev->persistent) {
  3428. rdev = md_import_device(dev, mddev->major_version,
  3429. mddev->minor_version);
  3430. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3431. struct md_rdev *rdev0
  3432. = list_entry(mddev->disks.next,
  3433. struct md_rdev, same_set);
  3434. err = super_types[mddev->major_version]
  3435. .load_super(rdev, rdev0, mddev->minor_version);
  3436. if (err < 0)
  3437. goto out;
  3438. }
  3439. } else if (mddev->external)
  3440. rdev = md_import_device(dev, -2, -1);
  3441. else
  3442. rdev = md_import_device(dev, -1, -1);
  3443. if (IS_ERR(rdev))
  3444. return PTR_ERR(rdev);
  3445. err = bind_rdev_to_array(rdev, mddev);
  3446. out:
  3447. if (err)
  3448. export_rdev(rdev);
  3449. return err ? err : len;
  3450. }
  3451. static struct md_sysfs_entry md_new_device =
  3452. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3453. static ssize_t
  3454. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3455. {
  3456. char *end;
  3457. unsigned long chunk, end_chunk;
  3458. if (!mddev->bitmap)
  3459. goto out;
  3460. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3461. while (*buf) {
  3462. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3463. if (buf == end) break;
  3464. if (*end == '-') { /* range */
  3465. buf = end + 1;
  3466. end_chunk = simple_strtoul(buf, &end, 0);
  3467. if (buf == end) break;
  3468. }
  3469. if (*end && !isspace(*end)) break;
  3470. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3471. buf = skip_spaces(end);
  3472. }
  3473. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3474. out:
  3475. return len;
  3476. }
  3477. static struct md_sysfs_entry md_bitmap =
  3478. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3479. static ssize_t
  3480. size_show(struct mddev *mddev, char *page)
  3481. {
  3482. return sprintf(page, "%llu\n",
  3483. (unsigned long long)mddev->dev_sectors / 2);
  3484. }
  3485. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3486. static ssize_t
  3487. size_store(struct mddev *mddev, const char *buf, size_t len)
  3488. {
  3489. /* If array is inactive, we can reduce the component size, but
  3490. * not increase it (except from 0).
  3491. * If array is active, we can try an on-line resize
  3492. */
  3493. sector_t sectors;
  3494. int err = strict_blocks_to_sectors(buf, &sectors);
  3495. if (err < 0)
  3496. return err;
  3497. if (mddev->pers) {
  3498. err = update_size(mddev, sectors);
  3499. md_update_sb(mddev, 1);
  3500. } else {
  3501. if (mddev->dev_sectors == 0 ||
  3502. mddev->dev_sectors > sectors)
  3503. mddev->dev_sectors = sectors;
  3504. else
  3505. err = -ENOSPC;
  3506. }
  3507. return err ? err : len;
  3508. }
  3509. static struct md_sysfs_entry md_size =
  3510. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3511. /* Metdata version.
  3512. * This is one of
  3513. * 'none' for arrays with no metadata (good luck...)
  3514. * 'external' for arrays with externally managed metadata,
  3515. * or N.M for internally known formats
  3516. */
  3517. static ssize_t
  3518. metadata_show(struct mddev *mddev, char *page)
  3519. {
  3520. if (mddev->persistent)
  3521. return sprintf(page, "%d.%d\n",
  3522. mddev->major_version, mddev->minor_version);
  3523. else if (mddev->external)
  3524. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3525. else
  3526. return sprintf(page, "none\n");
  3527. }
  3528. static ssize_t
  3529. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3530. {
  3531. int major, minor;
  3532. char *e;
  3533. /* Changing the details of 'external' metadata is
  3534. * always permitted. Otherwise there must be
  3535. * no devices attached to the array.
  3536. */
  3537. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3538. ;
  3539. else if (!list_empty(&mddev->disks))
  3540. return -EBUSY;
  3541. if (cmd_match(buf, "none")) {
  3542. mddev->persistent = 0;
  3543. mddev->external = 0;
  3544. mddev->major_version = 0;
  3545. mddev->minor_version = 90;
  3546. return len;
  3547. }
  3548. if (strncmp(buf, "external:", 9) == 0) {
  3549. size_t namelen = len-9;
  3550. if (namelen >= sizeof(mddev->metadata_type))
  3551. namelen = sizeof(mddev->metadata_type)-1;
  3552. strncpy(mddev->metadata_type, buf+9, namelen);
  3553. mddev->metadata_type[namelen] = 0;
  3554. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3555. mddev->metadata_type[--namelen] = 0;
  3556. mddev->persistent = 0;
  3557. mddev->external = 1;
  3558. mddev->major_version = 0;
  3559. mddev->minor_version = 90;
  3560. return len;
  3561. }
  3562. major = simple_strtoul(buf, &e, 10);
  3563. if (e==buf || *e != '.')
  3564. return -EINVAL;
  3565. buf = e+1;
  3566. minor = simple_strtoul(buf, &e, 10);
  3567. if (e==buf || (*e && *e != '\n') )
  3568. return -EINVAL;
  3569. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3570. return -ENOENT;
  3571. mddev->major_version = major;
  3572. mddev->minor_version = minor;
  3573. mddev->persistent = 1;
  3574. mddev->external = 0;
  3575. return len;
  3576. }
  3577. static struct md_sysfs_entry md_metadata =
  3578. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3579. static ssize_t
  3580. action_show(struct mddev *mddev, char *page)
  3581. {
  3582. char *type = "idle";
  3583. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3584. type = "frozen";
  3585. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3586. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3587. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3588. type = "reshape";
  3589. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3590. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3591. type = "resync";
  3592. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3593. type = "check";
  3594. else
  3595. type = "repair";
  3596. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3597. type = "recover";
  3598. }
  3599. return sprintf(page, "%s\n", type);
  3600. }
  3601. static void reap_sync_thread(struct mddev *mddev);
  3602. static ssize_t
  3603. action_store(struct mddev *mddev, const char *page, size_t len)
  3604. {
  3605. if (!mddev->pers || !mddev->pers->sync_request)
  3606. return -EINVAL;
  3607. if (cmd_match(page, "frozen"))
  3608. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3609. else
  3610. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3611. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3612. if (mddev->sync_thread) {
  3613. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3614. reap_sync_thread(mddev);
  3615. }
  3616. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3617. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3618. return -EBUSY;
  3619. else if (cmd_match(page, "resync"))
  3620. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3621. else if (cmd_match(page, "recover")) {
  3622. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3623. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3624. } else if (cmd_match(page, "reshape")) {
  3625. int err;
  3626. if (mddev->pers->start_reshape == NULL)
  3627. return -EINVAL;
  3628. err = mddev->pers->start_reshape(mddev);
  3629. if (err)
  3630. return err;
  3631. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3632. } else {
  3633. if (cmd_match(page, "check"))
  3634. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3635. else if (!cmd_match(page, "repair"))
  3636. return -EINVAL;
  3637. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3638. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3639. }
  3640. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3641. md_wakeup_thread(mddev->thread);
  3642. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3643. return len;
  3644. }
  3645. static ssize_t
  3646. mismatch_cnt_show(struct mddev *mddev, char *page)
  3647. {
  3648. return sprintf(page, "%llu\n",
  3649. (unsigned long long) mddev->resync_mismatches);
  3650. }
  3651. static struct md_sysfs_entry md_scan_mode =
  3652. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3653. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3654. static ssize_t
  3655. sync_min_show(struct mddev *mddev, char *page)
  3656. {
  3657. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3658. mddev->sync_speed_min ? "local": "system");
  3659. }
  3660. static ssize_t
  3661. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3662. {
  3663. int min;
  3664. char *e;
  3665. if (strncmp(buf, "system", 6)==0) {
  3666. mddev->sync_speed_min = 0;
  3667. return len;
  3668. }
  3669. min = simple_strtoul(buf, &e, 10);
  3670. if (buf == e || (*e && *e != '\n') || min <= 0)
  3671. return -EINVAL;
  3672. mddev->sync_speed_min = min;
  3673. return len;
  3674. }
  3675. static struct md_sysfs_entry md_sync_min =
  3676. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3677. static ssize_t
  3678. sync_max_show(struct mddev *mddev, char *page)
  3679. {
  3680. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3681. mddev->sync_speed_max ? "local": "system");
  3682. }
  3683. static ssize_t
  3684. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3685. {
  3686. int max;
  3687. char *e;
  3688. if (strncmp(buf, "system", 6)==0) {
  3689. mddev->sync_speed_max = 0;
  3690. return len;
  3691. }
  3692. max = simple_strtoul(buf, &e, 10);
  3693. if (buf == e || (*e && *e != '\n') || max <= 0)
  3694. return -EINVAL;
  3695. mddev->sync_speed_max = max;
  3696. return len;
  3697. }
  3698. static struct md_sysfs_entry md_sync_max =
  3699. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3700. static ssize_t
  3701. degraded_show(struct mddev *mddev, char *page)
  3702. {
  3703. return sprintf(page, "%d\n", mddev->degraded);
  3704. }
  3705. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3706. static ssize_t
  3707. sync_force_parallel_show(struct mddev *mddev, char *page)
  3708. {
  3709. return sprintf(page, "%d\n", mddev->parallel_resync);
  3710. }
  3711. static ssize_t
  3712. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3713. {
  3714. long n;
  3715. if (strict_strtol(buf, 10, &n))
  3716. return -EINVAL;
  3717. if (n != 0 && n != 1)
  3718. return -EINVAL;
  3719. mddev->parallel_resync = n;
  3720. if (mddev->sync_thread)
  3721. wake_up(&resync_wait);
  3722. return len;
  3723. }
  3724. /* force parallel resync, even with shared block devices */
  3725. static struct md_sysfs_entry md_sync_force_parallel =
  3726. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3727. sync_force_parallel_show, sync_force_parallel_store);
  3728. static ssize_t
  3729. sync_speed_show(struct mddev *mddev, char *page)
  3730. {
  3731. unsigned long resync, dt, db;
  3732. if (mddev->curr_resync == 0)
  3733. return sprintf(page, "none\n");
  3734. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3735. dt = (jiffies - mddev->resync_mark) / HZ;
  3736. if (!dt) dt++;
  3737. db = resync - mddev->resync_mark_cnt;
  3738. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3739. }
  3740. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3741. static ssize_t
  3742. sync_completed_show(struct mddev *mddev, char *page)
  3743. {
  3744. unsigned long long max_sectors, resync;
  3745. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3746. return sprintf(page, "none\n");
  3747. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3748. max_sectors = mddev->resync_max_sectors;
  3749. else
  3750. max_sectors = mddev->dev_sectors;
  3751. resync = mddev->curr_resync_completed;
  3752. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3753. }
  3754. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3755. static ssize_t
  3756. min_sync_show(struct mddev *mddev, char *page)
  3757. {
  3758. return sprintf(page, "%llu\n",
  3759. (unsigned long long)mddev->resync_min);
  3760. }
  3761. static ssize_t
  3762. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3763. {
  3764. unsigned long long min;
  3765. if (strict_strtoull(buf, 10, &min))
  3766. return -EINVAL;
  3767. if (min > mddev->resync_max)
  3768. return -EINVAL;
  3769. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3770. return -EBUSY;
  3771. /* Must be a multiple of chunk_size */
  3772. if (mddev->chunk_sectors) {
  3773. sector_t temp = min;
  3774. if (sector_div(temp, mddev->chunk_sectors))
  3775. return -EINVAL;
  3776. }
  3777. mddev->resync_min = min;
  3778. return len;
  3779. }
  3780. static struct md_sysfs_entry md_min_sync =
  3781. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3782. static ssize_t
  3783. max_sync_show(struct mddev *mddev, char *page)
  3784. {
  3785. if (mddev->resync_max == MaxSector)
  3786. return sprintf(page, "max\n");
  3787. else
  3788. return sprintf(page, "%llu\n",
  3789. (unsigned long long)mddev->resync_max);
  3790. }
  3791. static ssize_t
  3792. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3793. {
  3794. if (strncmp(buf, "max", 3) == 0)
  3795. mddev->resync_max = MaxSector;
  3796. else {
  3797. unsigned long long max;
  3798. if (strict_strtoull(buf, 10, &max))
  3799. return -EINVAL;
  3800. if (max < mddev->resync_min)
  3801. return -EINVAL;
  3802. if (max < mddev->resync_max &&
  3803. mddev->ro == 0 &&
  3804. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3805. return -EBUSY;
  3806. /* Must be a multiple of chunk_size */
  3807. if (mddev->chunk_sectors) {
  3808. sector_t temp = max;
  3809. if (sector_div(temp, mddev->chunk_sectors))
  3810. return -EINVAL;
  3811. }
  3812. mddev->resync_max = max;
  3813. }
  3814. wake_up(&mddev->recovery_wait);
  3815. return len;
  3816. }
  3817. static struct md_sysfs_entry md_max_sync =
  3818. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3819. static ssize_t
  3820. suspend_lo_show(struct mddev *mddev, char *page)
  3821. {
  3822. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3823. }
  3824. static ssize_t
  3825. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3826. {
  3827. char *e;
  3828. unsigned long long new = simple_strtoull(buf, &e, 10);
  3829. unsigned long long old = mddev->suspend_lo;
  3830. if (mddev->pers == NULL ||
  3831. mddev->pers->quiesce == NULL)
  3832. return -EINVAL;
  3833. if (buf == e || (*e && *e != '\n'))
  3834. return -EINVAL;
  3835. mddev->suspend_lo = new;
  3836. if (new >= old)
  3837. /* Shrinking suspended region */
  3838. mddev->pers->quiesce(mddev, 2);
  3839. else {
  3840. /* Expanding suspended region - need to wait */
  3841. mddev->pers->quiesce(mddev, 1);
  3842. mddev->pers->quiesce(mddev, 0);
  3843. }
  3844. return len;
  3845. }
  3846. static struct md_sysfs_entry md_suspend_lo =
  3847. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3848. static ssize_t
  3849. suspend_hi_show(struct mddev *mddev, char *page)
  3850. {
  3851. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3852. }
  3853. static ssize_t
  3854. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3855. {
  3856. char *e;
  3857. unsigned long long new = simple_strtoull(buf, &e, 10);
  3858. unsigned long long old = mddev->suspend_hi;
  3859. if (mddev->pers == NULL ||
  3860. mddev->pers->quiesce == NULL)
  3861. return -EINVAL;
  3862. if (buf == e || (*e && *e != '\n'))
  3863. return -EINVAL;
  3864. mddev->suspend_hi = new;
  3865. if (new <= old)
  3866. /* Shrinking suspended region */
  3867. mddev->pers->quiesce(mddev, 2);
  3868. else {
  3869. /* Expanding suspended region - need to wait */
  3870. mddev->pers->quiesce(mddev, 1);
  3871. mddev->pers->quiesce(mddev, 0);
  3872. }
  3873. return len;
  3874. }
  3875. static struct md_sysfs_entry md_suspend_hi =
  3876. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3877. static ssize_t
  3878. reshape_position_show(struct mddev *mddev, char *page)
  3879. {
  3880. if (mddev->reshape_position != MaxSector)
  3881. return sprintf(page, "%llu\n",
  3882. (unsigned long long)mddev->reshape_position);
  3883. strcpy(page, "none\n");
  3884. return 5;
  3885. }
  3886. static ssize_t
  3887. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3888. {
  3889. char *e;
  3890. unsigned long long new = simple_strtoull(buf, &e, 10);
  3891. if (mddev->pers)
  3892. return -EBUSY;
  3893. if (buf == e || (*e && *e != '\n'))
  3894. return -EINVAL;
  3895. mddev->reshape_position = new;
  3896. mddev->delta_disks = 0;
  3897. mddev->new_level = mddev->level;
  3898. mddev->new_layout = mddev->layout;
  3899. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3900. return len;
  3901. }
  3902. static struct md_sysfs_entry md_reshape_position =
  3903. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3904. reshape_position_store);
  3905. static ssize_t
  3906. array_size_show(struct mddev *mddev, char *page)
  3907. {
  3908. if (mddev->external_size)
  3909. return sprintf(page, "%llu\n",
  3910. (unsigned long long)mddev->array_sectors/2);
  3911. else
  3912. return sprintf(page, "default\n");
  3913. }
  3914. static ssize_t
  3915. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3916. {
  3917. sector_t sectors;
  3918. if (strncmp(buf, "default", 7) == 0) {
  3919. if (mddev->pers)
  3920. sectors = mddev->pers->size(mddev, 0, 0);
  3921. else
  3922. sectors = mddev->array_sectors;
  3923. mddev->external_size = 0;
  3924. } else {
  3925. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3926. return -EINVAL;
  3927. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3928. return -E2BIG;
  3929. mddev->external_size = 1;
  3930. }
  3931. mddev->array_sectors = sectors;
  3932. if (mddev->pers) {
  3933. set_capacity(mddev->gendisk, mddev->array_sectors);
  3934. revalidate_disk(mddev->gendisk);
  3935. }
  3936. return len;
  3937. }
  3938. static struct md_sysfs_entry md_array_size =
  3939. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3940. array_size_store);
  3941. static struct attribute *md_default_attrs[] = {
  3942. &md_level.attr,
  3943. &md_layout.attr,
  3944. &md_raid_disks.attr,
  3945. &md_chunk_size.attr,
  3946. &md_size.attr,
  3947. &md_resync_start.attr,
  3948. &md_metadata.attr,
  3949. &md_new_device.attr,
  3950. &md_safe_delay.attr,
  3951. &md_array_state.attr,
  3952. &md_reshape_position.attr,
  3953. &md_array_size.attr,
  3954. &max_corr_read_errors.attr,
  3955. NULL,
  3956. };
  3957. static struct attribute *md_redundancy_attrs[] = {
  3958. &md_scan_mode.attr,
  3959. &md_mismatches.attr,
  3960. &md_sync_min.attr,
  3961. &md_sync_max.attr,
  3962. &md_sync_speed.attr,
  3963. &md_sync_force_parallel.attr,
  3964. &md_sync_completed.attr,
  3965. &md_min_sync.attr,
  3966. &md_max_sync.attr,
  3967. &md_suspend_lo.attr,
  3968. &md_suspend_hi.attr,
  3969. &md_bitmap.attr,
  3970. &md_degraded.attr,
  3971. NULL,
  3972. };
  3973. static struct attribute_group md_redundancy_group = {
  3974. .name = NULL,
  3975. .attrs = md_redundancy_attrs,
  3976. };
  3977. static ssize_t
  3978. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3979. {
  3980. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3981. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3982. ssize_t rv;
  3983. if (!entry->show)
  3984. return -EIO;
  3985. spin_lock(&all_mddevs_lock);
  3986. if (list_empty(&mddev->all_mddevs)) {
  3987. spin_unlock(&all_mddevs_lock);
  3988. return -EBUSY;
  3989. }
  3990. mddev_get(mddev);
  3991. spin_unlock(&all_mddevs_lock);
  3992. rv = mddev_lock(mddev);
  3993. if (!rv) {
  3994. rv = entry->show(mddev, page);
  3995. mddev_unlock(mddev);
  3996. }
  3997. mddev_put(mddev);
  3998. return rv;
  3999. }
  4000. static ssize_t
  4001. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4002. const char *page, size_t length)
  4003. {
  4004. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4005. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4006. ssize_t rv;
  4007. if (!entry->store)
  4008. return -EIO;
  4009. if (!capable(CAP_SYS_ADMIN))
  4010. return -EACCES;
  4011. spin_lock(&all_mddevs_lock);
  4012. if (list_empty(&mddev->all_mddevs)) {
  4013. spin_unlock(&all_mddevs_lock);
  4014. return -EBUSY;
  4015. }
  4016. mddev_get(mddev);
  4017. spin_unlock(&all_mddevs_lock);
  4018. rv = mddev_lock(mddev);
  4019. if (!rv) {
  4020. rv = entry->store(mddev, page, length);
  4021. mddev_unlock(mddev);
  4022. }
  4023. mddev_put(mddev);
  4024. return rv;
  4025. }
  4026. static void md_free(struct kobject *ko)
  4027. {
  4028. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4029. if (mddev->sysfs_state)
  4030. sysfs_put(mddev->sysfs_state);
  4031. if (mddev->gendisk) {
  4032. del_gendisk(mddev->gendisk);
  4033. put_disk(mddev->gendisk);
  4034. }
  4035. if (mddev->queue)
  4036. blk_cleanup_queue(mddev->queue);
  4037. kfree(mddev);
  4038. }
  4039. static const struct sysfs_ops md_sysfs_ops = {
  4040. .show = md_attr_show,
  4041. .store = md_attr_store,
  4042. };
  4043. static struct kobj_type md_ktype = {
  4044. .release = md_free,
  4045. .sysfs_ops = &md_sysfs_ops,
  4046. .default_attrs = md_default_attrs,
  4047. };
  4048. int mdp_major = 0;
  4049. static void mddev_delayed_delete(struct work_struct *ws)
  4050. {
  4051. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4052. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4053. kobject_del(&mddev->kobj);
  4054. kobject_put(&mddev->kobj);
  4055. }
  4056. static int md_alloc(dev_t dev, char *name)
  4057. {
  4058. static DEFINE_MUTEX(disks_mutex);
  4059. struct mddev *mddev = mddev_find(dev);
  4060. struct gendisk *disk;
  4061. int partitioned;
  4062. int shift;
  4063. int unit;
  4064. int error;
  4065. if (!mddev)
  4066. return -ENODEV;
  4067. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4068. shift = partitioned ? MdpMinorShift : 0;
  4069. unit = MINOR(mddev->unit) >> shift;
  4070. /* wait for any previous instance of this device to be
  4071. * completely removed (mddev_delayed_delete).
  4072. */
  4073. flush_workqueue(md_misc_wq);
  4074. mutex_lock(&disks_mutex);
  4075. error = -EEXIST;
  4076. if (mddev->gendisk)
  4077. goto abort;
  4078. if (name) {
  4079. /* Need to ensure that 'name' is not a duplicate.
  4080. */
  4081. struct mddev *mddev2;
  4082. spin_lock(&all_mddevs_lock);
  4083. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4084. if (mddev2->gendisk &&
  4085. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4086. spin_unlock(&all_mddevs_lock);
  4087. goto abort;
  4088. }
  4089. spin_unlock(&all_mddevs_lock);
  4090. }
  4091. error = -ENOMEM;
  4092. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4093. if (!mddev->queue)
  4094. goto abort;
  4095. mddev->queue->queuedata = mddev;
  4096. blk_queue_make_request(mddev->queue, md_make_request);
  4097. disk = alloc_disk(1 << shift);
  4098. if (!disk) {
  4099. blk_cleanup_queue(mddev->queue);
  4100. mddev->queue = NULL;
  4101. goto abort;
  4102. }
  4103. disk->major = MAJOR(mddev->unit);
  4104. disk->first_minor = unit << shift;
  4105. if (name)
  4106. strcpy(disk->disk_name, name);
  4107. else if (partitioned)
  4108. sprintf(disk->disk_name, "md_d%d", unit);
  4109. else
  4110. sprintf(disk->disk_name, "md%d", unit);
  4111. disk->fops = &md_fops;
  4112. disk->private_data = mddev;
  4113. disk->queue = mddev->queue;
  4114. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4115. /* Allow extended partitions. This makes the
  4116. * 'mdp' device redundant, but we can't really
  4117. * remove it now.
  4118. */
  4119. disk->flags |= GENHD_FL_EXT_DEVT;
  4120. mddev->gendisk = disk;
  4121. /* As soon as we call add_disk(), another thread could get
  4122. * through to md_open, so make sure it doesn't get too far
  4123. */
  4124. mutex_lock(&mddev->open_mutex);
  4125. add_disk(disk);
  4126. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4127. &disk_to_dev(disk)->kobj, "%s", "md");
  4128. if (error) {
  4129. /* This isn't possible, but as kobject_init_and_add is marked
  4130. * __must_check, we must do something with the result
  4131. */
  4132. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4133. disk->disk_name);
  4134. error = 0;
  4135. }
  4136. if (mddev->kobj.sd &&
  4137. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4138. printk(KERN_DEBUG "pointless warning\n");
  4139. mutex_unlock(&mddev->open_mutex);
  4140. abort:
  4141. mutex_unlock(&disks_mutex);
  4142. if (!error && mddev->kobj.sd) {
  4143. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4144. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4145. }
  4146. mddev_put(mddev);
  4147. return error;
  4148. }
  4149. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4150. {
  4151. md_alloc(dev, NULL);
  4152. return NULL;
  4153. }
  4154. static int add_named_array(const char *val, struct kernel_param *kp)
  4155. {
  4156. /* val must be "md_*" where * is not all digits.
  4157. * We allocate an array with a large free minor number, and
  4158. * set the name to val. val must not already be an active name.
  4159. */
  4160. int len = strlen(val);
  4161. char buf[DISK_NAME_LEN];
  4162. while (len && val[len-1] == '\n')
  4163. len--;
  4164. if (len >= DISK_NAME_LEN)
  4165. return -E2BIG;
  4166. strlcpy(buf, val, len+1);
  4167. if (strncmp(buf, "md_", 3) != 0)
  4168. return -EINVAL;
  4169. return md_alloc(0, buf);
  4170. }
  4171. static void md_safemode_timeout(unsigned long data)
  4172. {
  4173. struct mddev *mddev = (struct mddev *) data;
  4174. if (!atomic_read(&mddev->writes_pending)) {
  4175. mddev->safemode = 1;
  4176. if (mddev->external)
  4177. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4178. }
  4179. md_wakeup_thread(mddev->thread);
  4180. }
  4181. static int start_dirty_degraded;
  4182. int md_run(struct mddev *mddev)
  4183. {
  4184. int err;
  4185. struct md_rdev *rdev;
  4186. struct md_personality *pers;
  4187. if (list_empty(&mddev->disks))
  4188. /* cannot run an array with no devices.. */
  4189. return -EINVAL;
  4190. if (mddev->pers)
  4191. return -EBUSY;
  4192. /* Cannot run until previous stop completes properly */
  4193. if (mddev->sysfs_active)
  4194. return -EBUSY;
  4195. /*
  4196. * Analyze all RAID superblock(s)
  4197. */
  4198. if (!mddev->raid_disks) {
  4199. if (!mddev->persistent)
  4200. return -EINVAL;
  4201. analyze_sbs(mddev);
  4202. }
  4203. if (mddev->level != LEVEL_NONE)
  4204. request_module("md-level-%d", mddev->level);
  4205. else if (mddev->clevel[0])
  4206. request_module("md-%s", mddev->clevel);
  4207. /*
  4208. * Drop all container device buffers, from now on
  4209. * the only valid external interface is through the md
  4210. * device.
  4211. */
  4212. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4213. if (test_bit(Faulty, &rdev->flags))
  4214. continue;
  4215. sync_blockdev(rdev->bdev);
  4216. invalidate_bdev(rdev->bdev);
  4217. /* perform some consistency tests on the device.
  4218. * We don't want the data to overlap the metadata,
  4219. * Internal Bitmap issues have been handled elsewhere.
  4220. */
  4221. if (rdev->meta_bdev) {
  4222. /* Nothing to check */;
  4223. } else if (rdev->data_offset < rdev->sb_start) {
  4224. if (mddev->dev_sectors &&
  4225. rdev->data_offset + mddev->dev_sectors
  4226. > rdev->sb_start) {
  4227. printk("md: %s: data overlaps metadata\n",
  4228. mdname(mddev));
  4229. return -EINVAL;
  4230. }
  4231. } else {
  4232. if (rdev->sb_start + rdev->sb_size/512
  4233. > rdev->data_offset) {
  4234. printk("md: %s: metadata overlaps data\n",
  4235. mdname(mddev));
  4236. return -EINVAL;
  4237. }
  4238. }
  4239. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4240. }
  4241. if (mddev->bio_set == NULL)
  4242. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4243. sizeof(struct mddev *));
  4244. spin_lock(&pers_lock);
  4245. pers = find_pers(mddev->level, mddev->clevel);
  4246. if (!pers || !try_module_get(pers->owner)) {
  4247. spin_unlock(&pers_lock);
  4248. if (mddev->level != LEVEL_NONE)
  4249. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4250. mddev->level);
  4251. else
  4252. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4253. mddev->clevel);
  4254. return -EINVAL;
  4255. }
  4256. mddev->pers = pers;
  4257. spin_unlock(&pers_lock);
  4258. if (mddev->level != pers->level) {
  4259. mddev->level = pers->level;
  4260. mddev->new_level = pers->level;
  4261. }
  4262. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4263. if (mddev->reshape_position != MaxSector &&
  4264. pers->start_reshape == NULL) {
  4265. /* This personality cannot handle reshaping... */
  4266. mddev->pers = NULL;
  4267. module_put(pers->owner);
  4268. return -EINVAL;
  4269. }
  4270. if (pers->sync_request) {
  4271. /* Warn if this is a potentially silly
  4272. * configuration.
  4273. */
  4274. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4275. struct md_rdev *rdev2;
  4276. int warned = 0;
  4277. list_for_each_entry(rdev, &mddev->disks, same_set)
  4278. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4279. if (rdev < rdev2 &&
  4280. rdev->bdev->bd_contains ==
  4281. rdev2->bdev->bd_contains) {
  4282. printk(KERN_WARNING
  4283. "%s: WARNING: %s appears to be"
  4284. " on the same physical disk as"
  4285. " %s.\n",
  4286. mdname(mddev),
  4287. bdevname(rdev->bdev,b),
  4288. bdevname(rdev2->bdev,b2));
  4289. warned = 1;
  4290. }
  4291. }
  4292. if (warned)
  4293. printk(KERN_WARNING
  4294. "True protection against single-disk"
  4295. " failure might be compromised.\n");
  4296. }
  4297. mddev->recovery = 0;
  4298. /* may be over-ridden by personality */
  4299. mddev->resync_max_sectors = mddev->dev_sectors;
  4300. mddev->ok_start_degraded = start_dirty_degraded;
  4301. if (start_readonly && mddev->ro == 0)
  4302. mddev->ro = 2; /* read-only, but switch on first write */
  4303. err = mddev->pers->run(mddev);
  4304. if (err)
  4305. printk(KERN_ERR "md: pers->run() failed ...\n");
  4306. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4307. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4308. " but 'external_size' not in effect?\n", __func__);
  4309. printk(KERN_ERR
  4310. "md: invalid array_size %llu > default size %llu\n",
  4311. (unsigned long long)mddev->array_sectors / 2,
  4312. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4313. err = -EINVAL;
  4314. mddev->pers->stop(mddev);
  4315. }
  4316. if (err == 0 && mddev->pers->sync_request) {
  4317. err = bitmap_create(mddev);
  4318. if (err) {
  4319. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4320. mdname(mddev), err);
  4321. mddev->pers->stop(mddev);
  4322. }
  4323. }
  4324. if (err) {
  4325. module_put(mddev->pers->owner);
  4326. mddev->pers = NULL;
  4327. bitmap_destroy(mddev);
  4328. return err;
  4329. }
  4330. if (mddev->pers->sync_request) {
  4331. if (mddev->kobj.sd &&
  4332. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4333. printk(KERN_WARNING
  4334. "md: cannot register extra attributes for %s\n",
  4335. mdname(mddev));
  4336. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4337. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4338. mddev->ro = 0;
  4339. atomic_set(&mddev->writes_pending,0);
  4340. atomic_set(&mddev->max_corr_read_errors,
  4341. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4342. mddev->safemode = 0;
  4343. mddev->safemode_timer.function = md_safemode_timeout;
  4344. mddev->safemode_timer.data = (unsigned long) mddev;
  4345. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4346. mddev->in_sync = 1;
  4347. smp_wmb();
  4348. mddev->ready = 1;
  4349. list_for_each_entry(rdev, &mddev->disks, same_set)
  4350. if (rdev->raid_disk >= 0)
  4351. if (sysfs_link_rdev(mddev, rdev))
  4352. /* failure here is OK */;
  4353. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4354. if (mddev->flags)
  4355. md_update_sb(mddev, 0);
  4356. md_new_event(mddev);
  4357. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4358. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4359. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4360. return 0;
  4361. }
  4362. EXPORT_SYMBOL_GPL(md_run);
  4363. static int do_md_run(struct mddev *mddev)
  4364. {
  4365. int err;
  4366. err = md_run(mddev);
  4367. if (err)
  4368. goto out;
  4369. err = bitmap_load(mddev);
  4370. if (err) {
  4371. bitmap_destroy(mddev);
  4372. goto out;
  4373. }
  4374. md_wakeup_thread(mddev->thread);
  4375. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4376. set_capacity(mddev->gendisk, mddev->array_sectors);
  4377. revalidate_disk(mddev->gendisk);
  4378. mddev->changed = 1;
  4379. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4380. out:
  4381. return err;
  4382. }
  4383. static int restart_array(struct mddev *mddev)
  4384. {
  4385. struct gendisk *disk = mddev->gendisk;
  4386. /* Complain if it has no devices */
  4387. if (list_empty(&mddev->disks))
  4388. return -ENXIO;
  4389. if (!mddev->pers)
  4390. return -EINVAL;
  4391. if (!mddev->ro)
  4392. return -EBUSY;
  4393. mddev->safemode = 0;
  4394. mddev->ro = 0;
  4395. set_disk_ro(disk, 0);
  4396. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4397. mdname(mddev));
  4398. /* Kick recovery or resync if necessary */
  4399. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4400. md_wakeup_thread(mddev->thread);
  4401. md_wakeup_thread(mddev->sync_thread);
  4402. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4403. return 0;
  4404. }
  4405. /* similar to deny_write_access, but accounts for our holding a reference
  4406. * to the file ourselves */
  4407. static int deny_bitmap_write_access(struct file * file)
  4408. {
  4409. struct inode *inode = file->f_mapping->host;
  4410. spin_lock(&inode->i_lock);
  4411. if (atomic_read(&inode->i_writecount) > 1) {
  4412. spin_unlock(&inode->i_lock);
  4413. return -ETXTBSY;
  4414. }
  4415. atomic_set(&inode->i_writecount, -1);
  4416. spin_unlock(&inode->i_lock);
  4417. return 0;
  4418. }
  4419. void restore_bitmap_write_access(struct file *file)
  4420. {
  4421. struct inode *inode = file->f_mapping->host;
  4422. spin_lock(&inode->i_lock);
  4423. atomic_set(&inode->i_writecount, 1);
  4424. spin_unlock(&inode->i_lock);
  4425. }
  4426. static void md_clean(struct mddev *mddev)
  4427. {
  4428. mddev->array_sectors = 0;
  4429. mddev->external_size = 0;
  4430. mddev->dev_sectors = 0;
  4431. mddev->raid_disks = 0;
  4432. mddev->recovery_cp = 0;
  4433. mddev->resync_min = 0;
  4434. mddev->resync_max = MaxSector;
  4435. mddev->reshape_position = MaxSector;
  4436. mddev->external = 0;
  4437. mddev->persistent = 0;
  4438. mddev->level = LEVEL_NONE;
  4439. mddev->clevel[0] = 0;
  4440. mddev->flags = 0;
  4441. mddev->ro = 0;
  4442. mddev->metadata_type[0] = 0;
  4443. mddev->chunk_sectors = 0;
  4444. mddev->ctime = mddev->utime = 0;
  4445. mddev->layout = 0;
  4446. mddev->max_disks = 0;
  4447. mddev->events = 0;
  4448. mddev->can_decrease_events = 0;
  4449. mddev->delta_disks = 0;
  4450. mddev->new_level = LEVEL_NONE;
  4451. mddev->new_layout = 0;
  4452. mddev->new_chunk_sectors = 0;
  4453. mddev->curr_resync = 0;
  4454. mddev->resync_mismatches = 0;
  4455. mddev->suspend_lo = mddev->suspend_hi = 0;
  4456. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4457. mddev->recovery = 0;
  4458. mddev->in_sync = 0;
  4459. mddev->changed = 0;
  4460. mddev->degraded = 0;
  4461. mddev->safemode = 0;
  4462. mddev->bitmap_info.offset = 0;
  4463. mddev->bitmap_info.default_offset = 0;
  4464. mddev->bitmap_info.chunksize = 0;
  4465. mddev->bitmap_info.daemon_sleep = 0;
  4466. mddev->bitmap_info.max_write_behind = 0;
  4467. }
  4468. static void __md_stop_writes(struct mddev *mddev)
  4469. {
  4470. if (mddev->sync_thread) {
  4471. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4472. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4473. reap_sync_thread(mddev);
  4474. }
  4475. del_timer_sync(&mddev->safemode_timer);
  4476. bitmap_flush(mddev);
  4477. md_super_wait(mddev);
  4478. if (!mddev->in_sync || mddev->flags) {
  4479. /* mark array as shutdown cleanly */
  4480. mddev->in_sync = 1;
  4481. md_update_sb(mddev, 1);
  4482. }
  4483. }
  4484. void md_stop_writes(struct mddev *mddev)
  4485. {
  4486. mddev_lock(mddev);
  4487. __md_stop_writes(mddev);
  4488. mddev_unlock(mddev);
  4489. }
  4490. EXPORT_SYMBOL_GPL(md_stop_writes);
  4491. void md_stop(struct mddev *mddev)
  4492. {
  4493. mddev->ready = 0;
  4494. mddev->pers->stop(mddev);
  4495. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4496. mddev->to_remove = &md_redundancy_group;
  4497. module_put(mddev->pers->owner);
  4498. mddev->pers = NULL;
  4499. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4500. }
  4501. EXPORT_SYMBOL_GPL(md_stop);
  4502. static int md_set_readonly(struct mddev *mddev, int is_open)
  4503. {
  4504. int err = 0;
  4505. mutex_lock(&mddev->open_mutex);
  4506. if (atomic_read(&mddev->openers) > is_open) {
  4507. printk("md: %s still in use.\n",mdname(mddev));
  4508. err = -EBUSY;
  4509. goto out;
  4510. }
  4511. if (mddev->pers) {
  4512. __md_stop_writes(mddev);
  4513. err = -ENXIO;
  4514. if (mddev->ro==1)
  4515. goto out;
  4516. mddev->ro = 1;
  4517. set_disk_ro(mddev->gendisk, 1);
  4518. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4519. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4520. err = 0;
  4521. }
  4522. out:
  4523. mutex_unlock(&mddev->open_mutex);
  4524. return err;
  4525. }
  4526. /* mode:
  4527. * 0 - completely stop and dis-assemble array
  4528. * 2 - stop but do not disassemble array
  4529. */
  4530. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4531. {
  4532. struct gendisk *disk = mddev->gendisk;
  4533. struct md_rdev *rdev;
  4534. mutex_lock(&mddev->open_mutex);
  4535. if (atomic_read(&mddev->openers) > is_open ||
  4536. mddev->sysfs_active) {
  4537. printk("md: %s still in use.\n",mdname(mddev));
  4538. mutex_unlock(&mddev->open_mutex);
  4539. return -EBUSY;
  4540. }
  4541. if (mddev->pers) {
  4542. if (mddev->ro)
  4543. set_disk_ro(disk, 0);
  4544. __md_stop_writes(mddev);
  4545. md_stop(mddev);
  4546. mddev->queue->merge_bvec_fn = NULL;
  4547. mddev->queue->backing_dev_info.congested_fn = NULL;
  4548. /* tell userspace to handle 'inactive' */
  4549. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4550. list_for_each_entry(rdev, &mddev->disks, same_set)
  4551. if (rdev->raid_disk >= 0)
  4552. sysfs_unlink_rdev(mddev, rdev);
  4553. set_capacity(disk, 0);
  4554. mutex_unlock(&mddev->open_mutex);
  4555. mddev->changed = 1;
  4556. revalidate_disk(disk);
  4557. if (mddev->ro)
  4558. mddev->ro = 0;
  4559. } else
  4560. mutex_unlock(&mddev->open_mutex);
  4561. /*
  4562. * Free resources if final stop
  4563. */
  4564. if (mode == 0) {
  4565. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4566. bitmap_destroy(mddev);
  4567. if (mddev->bitmap_info.file) {
  4568. restore_bitmap_write_access(mddev->bitmap_info.file);
  4569. fput(mddev->bitmap_info.file);
  4570. mddev->bitmap_info.file = NULL;
  4571. }
  4572. mddev->bitmap_info.offset = 0;
  4573. export_array(mddev);
  4574. md_clean(mddev);
  4575. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4576. if (mddev->hold_active == UNTIL_STOP)
  4577. mddev->hold_active = 0;
  4578. }
  4579. blk_integrity_unregister(disk);
  4580. md_new_event(mddev);
  4581. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4582. return 0;
  4583. }
  4584. #ifndef MODULE
  4585. static void autorun_array(struct mddev *mddev)
  4586. {
  4587. struct md_rdev *rdev;
  4588. int err;
  4589. if (list_empty(&mddev->disks))
  4590. return;
  4591. printk(KERN_INFO "md: running: ");
  4592. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4593. char b[BDEVNAME_SIZE];
  4594. printk("<%s>", bdevname(rdev->bdev,b));
  4595. }
  4596. printk("\n");
  4597. err = do_md_run(mddev);
  4598. if (err) {
  4599. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4600. do_md_stop(mddev, 0, 0);
  4601. }
  4602. }
  4603. /*
  4604. * lets try to run arrays based on all disks that have arrived
  4605. * until now. (those are in pending_raid_disks)
  4606. *
  4607. * the method: pick the first pending disk, collect all disks with
  4608. * the same UUID, remove all from the pending list and put them into
  4609. * the 'same_array' list. Then order this list based on superblock
  4610. * update time (freshest comes first), kick out 'old' disks and
  4611. * compare superblocks. If everything's fine then run it.
  4612. *
  4613. * If "unit" is allocated, then bump its reference count
  4614. */
  4615. static void autorun_devices(int part)
  4616. {
  4617. struct md_rdev *rdev0, *rdev, *tmp;
  4618. struct mddev *mddev;
  4619. char b[BDEVNAME_SIZE];
  4620. printk(KERN_INFO "md: autorun ...\n");
  4621. while (!list_empty(&pending_raid_disks)) {
  4622. int unit;
  4623. dev_t dev;
  4624. LIST_HEAD(candidates);
  4625. rdev0 = list_entry(pending_raid_disks.next,
  4626. struct md_rdev, same_set);
  4627. printk(KERN_INFO "md: considering %s ...\n",
  4628. bdevname(rdev0->bdev,b));
  4629. INIT_LIST_HEAD(&candidates);
  4630. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4631. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4632. printk(KERN_INFO "md: adding %s ...\n",
  4633. bdevname(rdev->bdev,b));
  4634. list_move(&rdev->same_set, &candidates);
  4635. }
  4636. /*
  4637. * now we have a set of devices, with all of them having
  4638. * mostly sane superblocks. It's time to allocate the
  4639. * mddev.
  4640. */
  4641. if (part) {
  4642. dev = MKDEV(mdp_major,
  4643. rdev0->preferred_minor << MdpMinorShift);
  4644. unit = MINOR(dev) >> MdpMinorShift;
  4645. } else {
  4646. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4647. unit = MINOR(dev);
  4648. }
  4649. if (rdev0->preferred_minor != unit) {
  4650. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4651. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4652. break;
  4653. }
  4654. md_probe(dev, NULL, NULL);
  4655. mddev = mddev_find(dev);
  4656. if (!mddev || !mddev->gendisk) {
  4657. if (mddev)
  4658. mddev_put(mddev);
  4659. printk(KERN_ERR
  4660. "md: cannot allocate memory for md drive.\n");
  4661. break;
  4662. }
  4663. if (mddev_lock(mddev))
  4664. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4665. mdname(mddev));
  4666. else if (mddev->raid_disks || mddev->major_version
  4667. || !list_empty(&mddev->disks)) {
  4668. printk(KERN_WARNING
  4669. "md: %s already running, cannot run %s\n",
  4670. mdname(mddev), bdevname(rdev0->bdev,b));
  4671. mddev_unlock(mddev);
  4672. } else {
  4673. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4674. mddev->persistent = 1;
  4675. rdev_for_each_list(rdev, tmp, &candidates) {
  4676. list_del_init(&rdev->same_set);
  4677. if (bind_rdev_to_array(rdev, mddev))
  4678. export_rdev(rdev);
  4679. }
  4680. autorun_array(mddev);
  4681. mddev_unlock(mddev);
  4682. }
  4683. /* on success, candidates will be empty, on error
  4684. * it won't...
  4685. */
  4686. rdev_for_each_list(rdev, tmp, &candidates) {
  4687. list_del_init(&rdev->same_set);
  4688. export_rdev(rdev);
  4689. }
  4690. mddev_put(mddev);
  4691. }
  4692. printk(KERN_INFO "md: ... autorun DONE.\n");
  4693. }
  4694. #endif /* !MODULE */
  4695. static int get_version(void __user * arg)
  4696. {
  4697. mdu_version_t ver;
  4698. ver.major = MD_MAJOR_VERSION;
  4699. ver.minor = MD_MINOR_VERSION;
  4700. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4701. if (copy_to_user(arg, &ver, sizeof(ver)))
  4702. return -EFAULT;
  4703. return 0;
  4704. }
  4705. static int get_array_info(struct mddev * mddev, void __user * arg)
  4706. {
  4707. mdu_array_info_t info;
  4708. int nr,working,insync,failed,spare;
  4709. struct md_rdev *rdev;
  4710. nr=working=insync=failed=spare=0;
  4711. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4712. nr++;
  4713. if (test_bit(Faulty, &rdev->flags))
  4714. failed++;
  4715. else {
  4716. working++;
  4717. if (test_bit(In_sync, &rdev->flags))
  4718. insync++;
  4719. else
  4720. spare++;
  4721. }
  4722. }
  4723. info.major_version = mddev->major_version;
  4724. info.minor_version = mddev->minor_version;
  4725. info.patch_version = MD_PATCHLEVEL_VERSION;
  4726. info.ctime = mddev->ctime;
  4727. info.level = mddev->level;
  4728. info.size = mddev->dev_sectors / 2;
  4729. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4730. info.size = -1;
  4731. info.nr_disks = nr;
  4732. info.raid_disks = mddev->raid_disks;
  4733. info.md_minor = mddev->md_minor;
  4734. info.not_persistent= !mddev->persistent;
  4735. info.utime = mddev->utime;
  4736. info.state = 0;
  4737. if (mddev->in_sync)
  4738. info.state = (1<<MD_SB_CLEAN);
  4739. if (mddev->bitmap && mddev->bitmap_info.offset)
  4740. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4741. info.active_disks = insync;
  4742. info.working_disks = working;
  4743. info.failed_disks = failed;
  4744. info.spare_disks = spare;
  4745. info.layout = mddev->layout;
  4746. info.chunk_size = mddev->chunk_sectors << 9;
  4747. if (copy_to_user(arg, &info, sizeof(info)))
  4748. return -EFAULT;
  4749. return 0;
  4750. }
  4751. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4752. {
  4753. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4754. char *ptr, *buf = NULL;
  4755. int err = -ENOMEM;
  4756. if (md_allow_write(mddev))
  4757. file = kmalloc(sizeof(*file), GFP_NOIO);
  4758. else
  4759. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4760. if (!file)
  4761. goto out;
  4762. /* bitmap disabled, zero the first byte and copy out */
  4763. if (!mddev->bitmap || !mddev->bitmap->file) {
  4764. file->pathname[0] = '\0';
  4765. goto copy_out;
  4766. }
  4767. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4768. if (!buf)
  4769. goto out;
  4770. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4771. if (IS_ERR(ptr))
  4772. goto out;
  4773. strcpy(file->pathname, ptr);
  4774. copy_out:
  4775. err = 0;
  4776. if (copy_to_user(arg, file, sizeof(*file)))
  4777. err = -EFAULT;
  4778. out:
  4779. kfree(buf);
  4780. kfree(file);
  4781. return err;
  4782. }
  4783. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4784. {
  4785. mdu_disk_info_t info;
  4786. struct md_rdev *rdev;
  4787. if (copy_from_user(&info, arg, sizeof(info)))
  4788. return -EFAULT;
  4789. rdev = find_rdev_nr(mddev, info.number);
  4790. if (rdev) {
  4791. info.major = MAJOR(rdev->bdev->bd_dev);
  4792. info.minor = MINOR(rdev->bdev->bd_dev);
  4793. info.raid_disk = rdev->raid_disk;
  4794. info.state = 0;
  4795. if (test_bit(Faulty, &rdev->flags))
  4796. info.state |= (1<<MD_DISK_FAULTY);
  4797. else if (test_bit(In_sync, &rdev->flags)) {
  4798. info.state |= (1<<MD_DISK_ACTIVE);
  4799. info.state |= (1<<MD_DISK_SYNC);
  4800. }
  4801. if (test_bit(WriteMostly, &rdev->flags))
  4802. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4803. } else {
  4804. info.major = info.minor = 0;
  4805. info.raid_disk = -1;
  4806. info.state = (1<<MD_DISK_REMOVED);
  4807. }
  4808. if (copy_to_user(arg, &info, sizeof(info)))
  4809. return -EFAULT;
  4810. return 0;
  4811. }
  4812. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4813. {
  4814. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4815. struct md_rdev *rdev;
  4816. dev_t dev = MKDEV(info->major,info->minor);
  4817. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4818. return -EOVERFLOW;
  4819. if (!mddev->raid_disks) {
  4820. int err;
  4821. /* expecting a device which has a superblock */
  4822. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4823. if (IS_ERR(rdev)) {
  4824. printk(KERN_WARNING
  4825. "md: md_import_device returned %ld\n",
  4826. PTR_ERR(rdev));
  4827. return PTR_ERR(rdev);
  4828. }
  4829. if (!list_empty(&mddev->disks)) {
  4830. struct md_rdev *rdev0
  4831. = list_entry(mddev->disks.next,
  4832. struct md_rdev, same_set);
  4833. err = super_types[mddev->major_version]
  4834. .load_super(rdev, rdev0, mddev->minor_version);
  4835. if (err < 0) {
  4836. printk(KERN_WARNING
  4837. "md: %s has different UUID to %s\n",
  4838. bdevname(rdev->bdev,b),
  4839. bdevname(rdev0->bdev,b2));
  4840. export_rdev(rdev);
  4841. return -EINVAL;
  4842. }
  4843. }
  4844. err = bind_rdev_to_array(rdev, mddev);
  4845. if (err)
  4846. export_rdev(rdev);
  4847. return err;
  4848. }
  4849. /*
  4850. * add_new_disk can be used once the array is assembled
  4851. * to add "hot spares". They must already have a superblock
  4852. * written
  4853. */
  4854. if (mddev->pers) {
  4855. int err;
  4856. if (!mddev->pers->hot_add_disk) {
  4857. printk(KERN_WARNING
  4858. "%s: personality does not support diskops!\n",
  4859. mdname(mddev));
  4860. return -EINVAL;
  4861. }
  4862. if (mddev->persistent)
  4863. rdev = md_import_device(dev, mddev->major_version,
  4864. mddev->minor_version);
  4865. else
  4866. rdev = md_import_device(dev, -1, -1);
  4867. if (IS_ERR(rdev)) {
  4868. printk(KERN_WARNING
  4869. "md: md_import_device returned %ld\n",
  4870. PTR_ERR(rdev));
  4871. return PTR_ERR(rdev);
  4872. }
  4873. /* set saved_raid_disk if appropriate */
  4874. if (!mddev->persistent) {
  4875. if (info->state & (1<<MD_DISK_SYNC) &&
  4876. info->raid_disk < mddev->raid_disks) {
  4877. rdev->raid_disk = info->raid_disk;
  4878. set_bit(In_sync, &rdev->flags);
  4879. } else
  4880. rdev->raid_disk = -1;
  4881. } else
  4882. super_types[mddev->major_version].
  4883. validate_super(mddev, rdev);
  4884. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4885. (!test_bit(In_sync, &rdev->flags) ||
  4886. rdev->raid_disk != info->raid_disk)) {
  4887. /* This was a hot-add request, but events doesn't
  4888. * match, so reject it.
  4889. */
  4890. export_rdev(rdev);
  4891. return -EINVAL;
  4892. }
  4893. if (test_bit(In_sync, &rdev->flags))
  4894. rdev->saved_raid_disk = rdev->raid_disk;
  4895. else
  4896. rdev->saved_raid_disk = -1;
  4897. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4898. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4899. set_bit(WriteMostly, &rdev->flags);
  4900. else
  4901. clear_bit(WriteMostly, &rdev->flags);
  4902. rdev->raid_disk = -1;
  4903. err = bind_rdev_to_array(rdev, mddev);
  4904. if (!err && !mddev->pers->hot_remove_disk) {
  4905. /* If there is hot_add_disk but no hot_remove_disk
  4906. * then added disks for geometry changes,
  4907. * and should be added immediately.
  4908. */
  4909. super_types[mddev->major_version].
  4910. validate_super(mddev, rdev);
  4911. err = mddev->pers->hot_add_disk(mddev, rdev);
  4912. if (err)
  4913. unbind_rdev_from_array(rdev);
  4914. }
  4915. if (err)
  4916. export_rdev(rdev);
  4917. else
  4918. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4919. md_update_sb(mddev, 1);
  4920. if (mddev->degraded)
  4921. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4922. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4923. if (!err)
  4924. md_new_event(mddev);
  4925. md_wakeup_thread(mddev->thread);
  4926. return err;
  4927. }
  4928. /* otherwise, add_new_disk is only allowed
  4929. * for major_version==0 superblocks
  4930. */
  4931. if (mddev->major_version != 0) {
  4932. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4933. mdname(mddev));
  4934. return -EINVAL;
  4935. }
  4936. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4937. int err;
  4938. rdev = md_import_device(dev, -1, 0);
  4939. if (IS_ERR(rdev)) {
  4940. printk(KERN_WARNING
  4941. "md: error, md_import_device() returned %ld\n",
  4942. PTR_ERR(rdev));
  4943. return PTR_ERR(rdev);
  4944. }
  4945. rdev->desc_nr = info->number;
  4946. if (info->raid_disk < mddev->raid_disks)
  4947. rdev->raid_disk = info->raid_disk;
  4948. else
  4949. rdev->raid_disk = -1;
  4950. if (rdev->raid_disk < mddev->raid_disks)
  4951. if (info->state & (1<<MD_DISK_SYNC))
  4952. set_bit(In_sync, &rdev->flags);
  4953. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4954. set_bit(WriteMostly, &rdev->flags);
  4955. if (!mddev->persistent) {
  4956. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4957. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4958. } else
  4959. rdev->sb_start = calc_dev_sboffset(rdev);
  4960. rdev->sectors = rdev->sb_start;
  4961. err = bind_rdev_to_array(rdev, mddev);
  4962. if (err) {
  4963. export_rdev(rdev);
  4964. return err;
  4965. }
  4966. }
  4967. return 0;
  4968. }
  4969. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  4970. {
  4971. char b[BDEVNAME_SIZE];
  4972. struct md_rdev *rdev;
  4973. rdev = find_rdev(mddev, dev);
  4974. if (!rdev)
  4975. return -ENXIO;
  4976. if (rdev->raid_disk >= 0)
  4977. goto busy;
  4978. kick_rdev_from_array(rdev);
  4979. md_update_sb(mddev, 1);
  4980. md_new_event(mddev);
  4981. return 0;
  4982. busy:
  4983. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4984. bdevname(rdev->bdev,b), mdname(mddev));
  4985. return -EBUSY;
  4986. }
  4987. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  4988. {
  4989. char b[BDEVNAME_SIZE];
  4990. int err;
  4991. struct md_rdev *rdev;
  4992. if (!mddev->pers)
  4993. return -ENODEV;
  4994. if (mddev->major_version != 0) {
  4995. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4996. " version-0 superblocks.\n",
  4997. mdname(mddev));
  4998. return -EINVAL;
  4999. }
  5000. if (!mddev->pers->hot_add_disk) {
  5001. printk(KERN_WARNING
  5002. "%s: personality does not support diskops!\n",
  5003. mdname(mddev));
  5004. return -EINVAL;
  5005. }
  5006. rdev = md_import_device(dev, -1, 0);
  5007. if (IS_ERR(rdev)) {
  5008. printk(KERN_WARNING
  5009. "md: error, md_import_device() returned %ld\n",
  5010. PTR_ERR(rdev));
  5011. return -EINVAL;
  5012. }
  5013. if (mddev->persistent)
  5014. rdev->sb_start = calc_dev_sboffset(rdev);
  5015. else
  5016. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5017. rdev->sectors = rdev->sb_start;
  5018. if (test_bit(Faulty, &rdev->flags)) {
  5019. printk(KERN_WARNING
  5020. "md: can not hot-add faulty %s disk to %s!\n",
  5021. bdevname(rdev->bdev,b), mdname(mddev));
  5022. err = -EINVAL;
  5023. goto abort_export;
  5024. }
  5025. clear_bit(In_sync, &rdev->flags);
  5026. rdev->desc_nr = -1;
  5027. rdev->saved_raid_disk = -1;
  5028. err = bind_rdev_to_array(rdev, mddev);
  5029. if (err)
  5030. goto abort_export;
  5031. /*
  5032. * The rest should better be atomic, we can have disk failures
  5033. * noticed in interrupt contexts ...
  5034. */
  5035. rdev->raid_disk = -1;
  5036. md_update_sb(mddev, 1);
  5037. /*
  5038. * Kick recovery, maybe this spare has to be added to the
  5039. * array immediately.
  5040. */
  5041. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5042. md_wakeup_thread(mddev->thread);
  5043. md_new_event(mddev);
  5044. return 0;
  5045. abort_export:
  5046. export_rdev(rdev);
  5047. return err;
  5048. }
  5049. static int set_bitmap_file(struct mddev *mddev, int fd)
  5050. {
  5051. int err;
  5052. if (mddev->pers) {
  5053. if (!mddev->pers->quiesce)
  5054. return -EBUSY;
  5055. if (mddev->recovery || mddev->sync_thread)
  5056. return -EBUSY;
  5057. /* we should be able to change the bitmap.. */
  5058. }
  5059. if (fd >= 0) {
  5060. if (mddev->bitmap)
  5061. return -EEXIST; /* cannot add when bitmap is present */
  5062. mddev->bitmap_info.file = fget(fd);
  5063. if (mddev->bitmap_info.file == NULL) {
  5064. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5065. mdname(mddev));
  5066. return -EBADF;
  5067. }
  5068. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5069. if (err) {
  5070. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5071. mdname(mddev));
  5072. fput(mddev->bitmap_info.file);
  5073. mddev->bitmap_info.file = NULL;
  5074. return err;
  5075. }
  5076. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5077. } else if (mddev->bitmap == NULL)
  5078. return -ENOENT; /* cannot remove what isn't there */
  5079. err = 0;
  5080. if (mddev->pers) {
  5081. mddev->pers->quiesce(mddev, 1);
  5082. if (fd >= 0) {
  5083. err = bitmap_create(mddev);
  5084. if (!err)
  5085. err = bitmap_load(mddev);
  5086. }
  5087. if (fd < 0 || err) {
  5088. bitmap_destroy(mddev);
  5089. fd = -1; /* make sure to put the file */
  5090. }
  5091. mddev->pers->quiesce(mddev, 0);
  5092. }
  5093. if (fd < 0) {
  5094. if (mddev->bitmap_info.file) {
  5095. restore_bitmap_write_access(mddev->bitmap_info.file);
  5096. fput(mddev->bitmap_info.file);
  5097. }
  5098. mddev->bitmap_info.file = NULL;
  5099. }
  5100. return err;
  5101. }
  5102. /*
  5103. * set_array_info is used two different ways
  5104. * The original usage is when creating a new array.
  5105. * In this usage, raid_disks is > 0 and it together with
  5106. * level, size, not_persistent,layout,chunksize determine the
  5107. * shape of the array.
  5108. * This will always create an array with a type-0.90.0 superblock.
  5109. * The newer usage is when assembling an array.
  5110. * In this case raid_disks will be 0, and the major_version field is
  5111. * use to determine which style super-blocks are to be found on the devices.
  5112. * The minor and patch _version numbers are also kept incase the
  5113. * super_block handler wishes to interpret them.
  5114. */
  5115. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5116. {
  5117. if (info->raid_disks == 0) {
  5118. /* just setting version number for superblock loading */
  5119. if (info->major_version < 0 ||
  5120. info->major_version >= ARRAY_SIZE(super_types) ||
  5121. super_types[info->major_version].name == NULL) {
  5122. /* maybe try to auto-load a module? */
  5123. printk(KERN_INFO
  5124. "md: superblock version %d not known\n",
  5125. info->major_version);
  5126. return -EINVAL;
  5127. }
  5128. mddev->major_version = info->major_version;
  5129. mddev->minor_version = info->minor_version;
  5130. mddev->patch_version = info->patch_version;
  5131. mddev->persistent = !info->not_persistent;
  5132. /* ensure mddev_put doesn't delete this now that there
  5133. * is some minimal configuration.
  5134. */
  5135. mddev->ctime = get_seconds();
  5136. return 0;
  5137. }
  5138. mddev->major_version = MD_MAJOR_VERSION;
  5139. mddev->minor_version = MD_MINOR_VERSION;
  5140. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5141. mddev->ctime = get_seconds();
  5142. mddev->level = info->level;
  5143. mddev->clevel[0] = 0;
  5144. mddev->dev_sectors = 2 * (sector_t)info->size;
  5145. mddev->raid_disks = info->raid_disks;
  5146. /* don't set md_minor, it is determined by which /dev/md* was
  5147. * openned
  5148. */
  5149. if (info->state & (1<<MD_SB_CLEAN))
  5150. mddev->recovery_cp = MaxSector;
  5151. else
  5152. mddev->recovery_cp = 0;
  5153. mddev->persistent = ! info->not_persistent;
  5154. mddev->external = 0;
  5155. mddev->layout = info->layout;
  5156. mddev->chunk_sectors = info->chunk_size >> 9;
  5157. mddev->max_disks = MD_SB_DISKS;
  5158. if (mddev->persistent)
  5159. mddev->flags = 0;
  5160. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5161. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5162. mddev->bitmap_info.offset = 0;
  5163. mddev->reshape_position = MaxSector;
  5164. /*
  5165. * Generate a 128 bit UUID
  5166. */
  5167. get_random_bytes(mddev->uuid, 16);
  5168. mddev->new_level = mddev->level;
  5169. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5170. mddev->new_layout = mddev->layout;
  5171. mddev->delta_disks = 0;
  5172. return 0;
  5173. }
  5174. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5175. {
  5176. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5177. if (mddev->external_size)
  5178. return;
  5179. mddev->array_sectors = array_sectors;
  5180. }
  5181. EXPORT_SYMBOL(md_set_array_sectors);
  5182. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5183. {
  5184. struct md_rdev *rdev;
  5185. int rv;
  5186. int fit = (num_sectors == 0);
  5187. if (mddev->pers->resize == NULL)
  5188. return -EINVAL;
  5189. /* The "num_sectors" is the number of sectors of each device that
  5190. * is used. This can only make sense for arrays with redundancy.
  5191. * linear and raid0 always use whatever space is available. We can only
  5192. * consider changing this number if no resync or reconstruction is
  5193. * happening, and if the new size is acceptable. It must fit before the
  5194. * sb_start or, if that is <data_offset, it must fit before the size
  5195. * of each device. If num_sectors is zero, we find the largest size
  5196. * that fits.
  5197. */
  5198. if (mddev->sync_thread)
  5199. return -EBUSY;
  5200. if (mddev->bitmap)
  5201. /* Sorry, cannot grow a bitmap yet, just remove it,
  5202. * grow, and re-add.
  5203. */
  5204. return -EBUSY;
  5205. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5206. sector_t avail = rdev->sectors;
  5207. if (fit && (num_sectors == 0 || num_sectors > avail))
  5208. num_sectors = avail;
  5209. if (avail < num_sectors)
  5210. return -ENOSPC;
  5211. }
  5212. rv = mddev->pers->resize(mddev, num_sectors);
  5213. if (!rv)
  5214. revalidate_disk(mddev->gendisk);
  5215. return rv;
  5216. }
  5217. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5218. {
  5219. int rv;
  5220. /* change the number of raid disks */
  5221. if (mddev->pers->check_reshape == NULL)
  5222. return -EINVAL;
  5223. if (raid_disks <= 0 ||
  5224. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5225. return -EINVAL;
  5226. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5227. return -EBUSY;
  5228. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5229. rv = mddev->pers->check_reshape(mddev);
  5230. if (rv < 0)
  5231. mddev->delta_disks = 0;
  5232. return rv;
  5233. }
  5234. /*
  5235. * update_array_info is used to change the configuration of an
  5236. * on-line array.
  5237. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5238. * fields in the info are checked against the array.
  5239. * Any differences that cannot be handled will cause an error.
  5240. * Normally, only one change can be managed at a time.
  5241. */
  5242. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5243. {
  5244. int rv = 0;
  5245. int cnt = 0;
  5246. int state = 0;
  5247. /* calculate expected state,ignoring low bits */
  5248. if (mddev->bitmap && mddev->bitmap_info.offset)
  5249. state |= (1 << MD_SB_BITMAP_PRESENT);
  5250. if (mddev->major_version != info->major_version ||
  5251. mddev->minor_version != info->minor_version ||
  5252. /* mddev->patch_version != info->patch_version || */
  5253. mddev->ctime != info->ctime ||
  5254. mddev->level != info->level ||
  5255. /* mddev->layout != info->layout || */
  5256. !mddev->persistent != info->not_persistent||
  5257. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5258. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5259. ((state^info->state) & 0xfffffe00)
  5260. )
  5261. return -EINVAL;
  5262. /* Check there is only one change */
  5263. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5264. cnt++;
  5265. if (mddev->raid_disks != info->raid_disks)
  5266. cnt++;
  5267. if (mddev->layout != info->layout)
  5268. cnt++;
  5269. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5270. cnt++;
  5271. if (cnt == 0)
  5272. return 0;
  5273. if (cnt > 1)
  5274. return -EINVAL;
  5275. if (mddev->layout != info->layout) {
  5276. /* Change layout
  5277. * we don't need to do anything at the md level, the
  5278. * personality will take care of it all.
  5279. */
  5280. if (mddev->pers->check_reshape == NULL)
  5281. return -EINVAL;
  5282. else {
  5283. mddev->new_layout = info->layout;
  5284. rv = mddev->pers->check_reshape(mddev);
  5285. if (rv)
  5286. mddev->new_layout = mddev->layout;
  5287. return rv;
  5288. }
  5289. }
  5290. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5291. rv = update_size(mddev, (sector_t)info->size * 2);
  5292. if (mddev->raid_disks != info->raid_disks)
  5293. rv = update_raid_disks(mddev, info->raid_disks);
  5294. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5295. if (mddev->pers->quiesce == NULL)
  5296. return -EINVAL;
  5297. if (mddev->recovery || mddev->sync_thread)
  5298. return -EBUSY;
  5299. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5300. /* add the bitmap */
  5301. if (mddev->bitmap)
  5302. return -EEXIST;
  5303. if (mddev->bitmap_info.default_offset == 0)
  5304. return -EINVAL;
  5305. mddev->bitmap_info.offset =
  5306. mddev->bitmap_info.default_offset;
  5307. mddev->pers->quiesce(mddev, 1);
  5308. rv = bitmap_create(mddev);
  5309. if (!rv)
  5310. rv = bitmap_load(mddev);
  5311. if (rv)
  5312. bitmap_destroy(mddev);
  5313. mddev->pers->quiesce(mddev, 0);
  5314. } else {
  5315. /* remove the bitmap */
  5316. if (!mddev->bitmap)
  5317. return -ENOENT;
  5318. if (mddev->bitmap->file)
  5319. return -EINVAL;
  5320. mddev->pers->quiesce(mddev, 1);
  5321. bitmap_destroy(mddev);
  5322. mddev->pers->quiesce(mddev, 0);
  5323. mddev->bitmap_info.offset = 0;
  5324. }
  5325. }
  5326. md_update_sb(mddev, 1);
  5327. return rv;
  5328. }
  5329. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5330. {
  5331. struct md_rdev *rdev;
  5332. if (mddev->pers == NULL)
  5333. return -ENODEV;
  5334. rdev = find_rdev(mddev, dev);
  5335. if (!rdev)
  5336. return -ENODEV;
  5337. md_error(mddev, rdev);
  5338. if (!test_bit(Faulty, &rdev->flags))
  5339. return -EBUSY;
  5340. return 0;
  5341. }
  5342. /*
  5343. * We have a problem here : there is no easy way to give a CHS
  5344. * virtual geometry. We currently pretend that we have a 2 heads
  5345. * 4 sectors (with a BIG number of cylinders...). This drives
  5346. * dosfs just mad... ;-)
  5347. */
  5348. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5349. {
  5350. struct mddev *mddev = bdev->bd_disk->private_data;
  5351. geo->heads = 2;
  5352. geo->sectors = 4;
  5353. geo->cylinders = mddev->array_sectors / 8;
  5354. return 0;
  5355. }
  5356. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5357. unsigned int cmd, unsigned long arg)
  5358. {
  5359. int err = 0;
  5360. void __user *argp = (void __user *)arg;
  5361. struct mddev *mddev = NULL;
  5362. int ro;
  5363. if (!capable(CAP_SYS_ADMIN))
  5364. return -EACCES;
  5365. /*
  5366. * Commands dealing with the RAID driver but not any
  5367. * particular array:
  5368. */
  5369. switch (cmd)
  5370. {
  5371. case RAID_VERSION:
  5372. err = get_version(argp);
  5373. goto done;
  5374. case PRINT_RAID_DEBUG:
  5375. err = 0;
  5376. md_print_devices();
  5377. goto done;
  5378. #ifndef MODULE
  5379. case RAID_AUTORUN:
  5380. err = 0;
  5381. autostart_arrays(arg);
  5382. goto done;
  5383. #endif
  5384. default:;
  5385. }
  5386. /*
  5387. * Commands creating/starting a new array:
  5388. */
  5389. mddev = bdev->bd_disk->private_data;
  5390. if (!mddev) {
  5391. BUG();
  5392. goto abort;
  5393. }
  5394. err = mddev_lock(mddev);
  5395. if (err) {
  5396. printk(KERN_INFO
  5397. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5398. err, cmd);
  5399. goto abort;
  5400. }
  5401. switch (cmd)
  5402. {
  5403. case SET_ARRAY_INFO:
  5404. {
  5405. mdu_array_info_t info;
  5406. if (!arg)
  5407. memset(&info, 0, sizeof(info));
  5408. else if (copy_from_user(&info, argp, sizeof(info))) {
  5409. err = -EFAULT;
  5410. goto abort_unlock;
  5411. }
  5412. if (mddev->pers) {
  5413. err = update_array_info(mddev, &info);
  5414. if (err) {
  5415. printk(KERN_WARNING "md: couldn't update"
  5416. " array info. %d\n", err);
  5417. goto abort_unlock;
  5418. }
  5419. goto done_unlock;
  5420. }
  5421. if (!list_empty(&mddev->disks)) {
  5422. printk(KERN_WARNING
  5423. "md: array %s already has disks!\n",
  5424. mdname(mddev));
  5425. err = -EBUSY;
  5426. goto abort_unlock;
  5427. }
  5428. if (mddev->raid_disks) {
  5429. printk(KERN_WARNING
  5430. "md: array %s already initialised!\n",
  5431. mdname(mddev));
  5432. err = -EBUSY;
  5433. goto abort_unlock;
  5434. }
  5435. err = set_array_info(mddev, &info);
  5436. if (err) {
  5437. printk(KERN_WARNING "md: couldn't set"
  5438. " array info. %d\n", err);
  5439. goto abort_unlock;
  5440. }
  5441. }
  5442. goto done_unlock;
  5443. default:;
  5444. }
  5445. /*
  5446. * Commands querying/configuring an existing array:
  5447. */
  5448. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5449. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5450. if ((!mddev->raid_disks && !mddev->external)
  5451. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5452. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5453. && cmd != GET_BITMAP_FILE) {
  5454. err = -ENODEV;
  5455. goto abort_unlock;
  5456. }
  5457. /*
  5458. * Commands even a read-only array can execute:
  5459. */
  5460. switch (cmd)
  5461. {
  5462. case GET_ARRAY_INFO:
  5463. err = get_array_info(mddev, argp);
  5464. goto done_unlock;
  5465. case GET_BITMAP_FILE:
  5466. err = get_bitmap_file(mddev, argp);
  5467. goto done_unlock;
  5468. case GET_DISK_INFO:
  5469. err = get_disk_info(mddev, argp);
  5470. goto done_unlock;
  5471. case RESTART_ARRAY_RW:
  5472. err = restart_array(mddev);
  5473. goto done_unlock;
  5474. case STOP_ARRAY:
  5475. err = do_md_stop(mddev, 0, 1);
  5476. goto done_unlock;
  5477. case STOP_ARRAY_RO:
  5478. err = md_set_readonly(mddev, 1);
  5479. goto done_unlock;
  5480. case BLKROSET:
  5481. if (get_user(ro, (int __user *)(arg))) {
  5482. err = -EFAULT;
  5483. goto done_unlock;
  5484. }
  5485. err = -EINVAL;
  5486. /* if the bdev is going readonly the value of mddev->ro
  5487. * does not matter, no writes are coming
  5488. */
  5489. if (ro)
  5490. goto done_unlock;
  5491. /* are we are already prepared for writes? */
  5492. if (mddev->ro != 1)
  5493. goto done_unlock;
  5494. /* transitioning to readauto need only happen for
  5495. * arrays that call md_write_start
  5496. */
  5497. if (mddev->pers) {
  5498. err = restart_array(mddev);
  5499. if (err == 0) {
  5500. mddev->ro = 2;
  5501. set_disk_ro(mddev->gendisk, 0);
  5502. }
  5503. }
  5504. goto done_unlock;
  5505. }
  5506. /*
  5507. * The remaining ioctls are changing the state of the
  5508. * superblock, so we do not allow them on read-only arrays.
  5509. * However non-MD ioctls (e.g. get-size) will still come through
  5510. * here and hit the 'default' below, so only disallow
  5511. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5512. */
  5513. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5514. if (mddev->ro == 2) {
  5515. mddev->ro = 0;
  5516. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5517. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5518. md_wakeup_thread(mddev->thread);
  5519. } else {
  5520. err = -EROFS;
  5521. goto abort_unlock;
  5522. }
  5523. }
  5524. switch (cmd)
  5525. {
  5526. case ADD_NEW_DISK:
  5527. {
  5528. mdu_disk_info_t info;
  5529. if (copy_from_user(&info, argp, sizeof(info)))
  5530. err = -EFAULT;
  5531. else
  5532. err = add_new_disk(mddev, &info);
  5533. goto done_unlock;
  5534. }
  5535. case HOT_REMOVE_DISK:
  5536. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5537. goto done_unlock;
  5538. case HOT_ADD_DISK:
  5539. err = hot_add_disk(mddev, new_decode_dev(arg));
  5540. goto done_unlock;
  5541. case SET_DISK_FAULTY:
  5542. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5543. goto done_unlock;
  5544. case RUN_ARRAY:
  5545. err = do_md_run(mddev);
  5546. goto done_unlock;
  5547. case SET_BITMAP_FILE:
  5548. err = set_bitmap_file(mddev, (int)arg);
  5549. goto done_unlock;
  5550. default:
  5551. err = -EINVAL;
  5552. goto abort_unlock;
  5553. }
  5554. done_unlock:
  5555. abort_unlock:
  5556. if (mddev->hold_active == UNTIL_IOCTL &&
  5557. err != -EINVAL)
  5558. mddev->hold_active = 0;
  5559. mddev_unlock(mddev);
  5560. return err;
  5561. done:
  5562. if (err)
  5563. MD_BUG();
  5564. abort:
  5565. return err;
  5566. }
  5567. #ifdef CONFIG_COMPAT
  5568. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5569. unsigned int cmd, unsigned long arg)
  5570. {
  5571. switch (cmd) {
  5572. case HOT_REMOVE_DISK:
  5573. case HOT_ADD_DISK:
  5574. case SET_DISK_FAULTY:
  5575. case SET_BITMAP_FILE:
  5576. /* These take in integer arg, do not convert */
  5577. break;
  5578. default:
  5579. arg = (unsigned long)compat_ptr(arg);
  5580. break;
  5581. }
  5582. return md_ioctl(bdev, mode, cmd, arg);
  5583. }
  5584. #endif /* CONFIG_COMPAT */
  5585. static int md_open(struct block_device *bdev, fmode_t mode)
  5586. {
  5587. /*
  5588. * Succeed if we can lock the mddev, which confirms that
  5589. * it isn't being stopped right now.
  5590. */
  5591. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5592. int err;
  5593. if (mddev->gendisk != bdev->bd_disk) {
  5594. /* we are racing with mddev_put which is discarding this
  5595. * bd_disk.
  5596. */
  5597. mddev_put(mddev);
  5598. /* Wait until bdev->bd_disk is definitely gone */
  5599. flush_workqueue(md_misc_wq);
  5600. /* Then retry the open from the top */
  5601. return -ERESTARTSYS;
  5602. }
  5603. BUG_ON(mddev != bdev->bd_disk->private_data);
  5604. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5605. goto out;
  5606. err = 0;
  5607. atomic_inc(&mddev->openers);
  5608. mutex_unlock(&mddev->open_mutex);
  5609. check_disk_change(bdev);
  5610. out:
  5611. return err;
  5612. }
  5613. static int md_release(struct gendisk *disk, fmode_t mode)
  5614. {
  5615. struct mddev *mddev = disk->private_data;
  5616. BUG_ON(!mddev);
  5617. atomic_dec(&mddev->openers);
  5618. mddev_put(mddev);
  5619. return 0;
  5620. }
  5621. static int md_media_changed(struct gendisk *disk)
  5622. {
  5623. struct mddev *mddev = disk->private_data;
  5624. return mddev->changed;
  5625. }
  5626. static int md_revalidate(struct gendisk *disk)
  5627. {
  5628. struct mddev *mddev = disk->private_data;
  5629. mddev->changed = 0;
  5630. return 0;
  5631. }
  5632. static const struct block_device_operations md_fops =
  5633. {
  5634. .owner = THIS_MODULE,
  5635. .open = md_open,
  5636. .release = md_release,
  5637. .ioctl = md_ioctl,
  5638. #ifdef CONFIG_COMPAT
  5639. .compat_ioctl = md_compat_ioctl,
  5640. #endif
  5641. .getgeo = md_getgeo,
  5642. .media_changed = md_media_changed,
  5643. .revalidate_disk= md_revalidate,
  5644. };
  5645. static int md_thread(void * arg)
  5646. {
  5647. struct md_thread *thread = arg;
  5648. /*
  5649. * md_thread is a 'system-thread', it's priority should be very
  5650. * high. We avoid resource deadlocks individually in each
  5651. * raid personality. (RAID5 does preallocation) We also use RR and
  5652. * the very same RT priority as kswapd, thus we will never get
  5653. * into a priority inversion deadlock.
  5654. *
  5655. * we definitely have to have equal or higher priority than
  5656. * bdflush, otherwise bdflush will deadlock if there are too
  5657. * many dirty RAID5 blocks.
  5658. */
  5659. allow_signal(SIGKILL);
  5660. while (!kthread_should_stop()) {
  5661. /* We need to wait INTERRUPTIBLE so that
  5662. * we don't add to the load-average.
  5663. * That means we need to be sure no signals are
  5664. * pending
  5665. */
  5666. if (signal_pending(current))
  5667. flush_signals(current);
  5668. wait_event_interruptible_timeout
  5669. (thread->wqueue,
  5670. test_bit(THREAD_WAKEUP, &thread->flags)
  5671. || kthread_should_stop(),
  5672. thread->timeout);
  5673. clear_bit(THREAD_WAKEUP, &thread->flags);
  5674. if (!kthread_should_stop())
  5675. thread->run(thread->mddev);
  5676. }
  5677. return 0;
  5678. }
  5679. void md_wakeup_thread(struct md_thread *thread)
  5680. {
  5681. if (thread) {
  5682. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5683. set_bit(THREAD_WAKEUP, &thread->flags);
  5684. wake_up(&thread->wqueue);
  5685. }
  5686. }
  5687. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5688. const char *name)
  5689. {
  5690. struct md_thread *thread;
  5691. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5692. if (!thread)
  5693. return NULL;
  5694. init_waitqueue_head(&thread->wqueue);
  5695. thread->run = run;
  5696. thread->mddev = mddev;
  5697. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5698. thread->tsk = kthread_run(md_thread, thread,
  5699. "%s_%s",
  5700. mdname(thread->mddev),
  5701. name ?: mddev->pers->name);
  5702. if (IS_ERR(thread->tsk)) {
  5703. kfree(thread);
  5704. return NULL;
  5705. }
  5706. return thread;
  5707. }
  5708. void md_unregister_thread(struct md_thread **threadp)
  5709. {
  5710. struct md_thread *thread = *threadp;
  5711. if (!thread)
  5712. return;
  5713. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5714. /* Locking ensures that mddev_unlock does not wake_up a
  5715. * non-existent thread
  5716. */
  5717. spin_lock(&pers_lock);
  5718. *threadp = NULL;
  5719. spin_unlock(&pers_lock);
  5720. kthread_stop(thread->tsk);
  5721. kfree(thread);
  5722. }
  5723. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5724. {
  5725. if (!mddev) {
  5726. MD_BUG();
  5727. return;
  5728. }
  5729. if (!rdev || test_bit(Faulty, &rdev->flags))
  5730. return;
  5731. if (!mddev->pers || !mddev->pers->error_handler)
  5732. return;
  5733. mddev->pers->error_handler(mddev,rdev);
  5734. if (mddev->degraded)
  5735. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5736. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5737. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5738. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5739. md_wakeup_thread(mddev->thread);
  5740. if (mddev->event_work.func)
  5741. queue_work(md_misc_wq, &mddev->event_work);
  5742. md_new_event_inintr(mddev);
  5743. }
  5744. /* seq_file implementation /proc/mdstat */
  5745. static void status_unused(struct seq_file *seq)
  5746. {
  5747. int i = 0;
  5748. struct md_rdev *rdev;
  5749. seq_printf(seq, "unused devices: ");
  5750. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5751. char b[BDEVNAME_SIZE];
  5752. i++;
  5753. seq_printf(seq, "%s ",
  5754. bdevname(rdev->bdev,b));
  5755. }
  5756. if (!i)
  5757. seq_printf(seq, "<none>");
  5758. seq_printf(seq, "\n");
  5759. }
  5760. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5761. {
  5762. sector_t max_sectors, resync, res;
  5763. unsigned long dt, db;
  5764. sector_t rt;
  5765. int scale;
  5766. unsigned int per_milli;
  5767. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5768. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5769. max_sectors = mddev->resync_max_sectors;
  5770. else
  5771. max_sectors = mddev->dev_sectors;
  5772. /*
  5773. * Should not happen.
  5774. */
  5775. if (!max_sectors) {
  5776. MD_BUG();
  5777. return;
  5778. }
  5779. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5780. * in a sector_t, and (max_sectors>>scale) will fit in a
  5781. * u32, as those are the requirements for sector_div.
  5782. * Thus 'scale' must be at least 10
  5783. */
  5784. scale = 10;
  5785. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5786. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5787. scale++;
  5788. }
  5789. res = (resync>>scale)*1000;
  5790. sector_div(res, (u32)((max_sectors>>scale)+1));
  5791. per_milli = res;
  5792. {
  5793. int i, x = per_milli/50, y = 20-x;
  5794. seq_printf(seq, "[");
  5795. for (i = 0; i < x; i++)
  5796. seq_printf(seq, "=");
  5797. seq_printf(seq, ">");
  5798. for (i = 0; i < y; i++)
  5799. seq_printf(seq, ".");
  5800. seq_printf(seq, "] ");
  5801. }
  5802. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5803. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5804. "reshape" :
  5805. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5806. "check" :
  5807. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5808. "resync" : "recovery"))),
  5809. per_milli/10, per_milli % 10,
  5810. (unsigned long long) resync/2,
  5811. (unsigned long long) max_sectors/2);
  5812. /*
  5813. * dt: time from mark until now
  5814. * db: blocks written from mark until now
  5815. * rt: remaining time
  5816. *
  5817. * rt is a sector_t, so could be 32bit or 64bit.
  5818. * So we divide before multiply in case it is 32bit and close
  5819. * to the limit.
  5820. * We scale the divisor (db) by 32 to avoid losing precision
  5821. * near the end of resync when the number of remaining sectors
  5822. * is close to 'db'.
  5823. * We then divide rt by 32 after multiplying by db to compensate.
  5824. * The '+1' avoids division by zero if db is very small.
  5825. */
  5826. dt = ((jiffies - mddev->resync_mark) / HZ);
  5827. if (!dt) dt++;
  5828. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5829. - mddev->resync_mark_cnt;
  5830. rt = max_sectors - resync; /* number of remaining sectors */
  5831. sector_div(rt, db/32+1);
  5832. rt *= dt;
  5833. rt >>= 5;
  5834. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5835. ((unsigned long)rt % 60)/6);
  5836. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5837. }
  5838. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5839. {
  5840. struct list_head *tmp;
  5841. loff_t l = *pos;
  5842. struct mddev *mddev;
  5843. if (l >= 0x10000)
  5844. return NULL;
  5845. if (!l--)
  5846. /* header */
  5847. return (void*)1;
  5848. spin_lock(&all_mddevs_lock);
  5849. list_for_each(tmp,&all_mddevs)
  5850. if (!l--) {
  5851. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5852. mddev_get(mddev);
  5853. spin_unlock(&all_mddevs_lock);
  5854. return mddev;
  5855. }
  5856. spin_unlock(&all_mddevs_lock);
  5857. if (!l--)
  5858. return (void*)2;/* tail */
  5859. return NULL;
  5860. }
  5861. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5862. {
  5863. struct list_head *tmp;
  5864. struct mddev *next_mddev, *mddev = v;
  5865. ++*pos;
  5866. if (v == (void*)2)
  5867. return NULL;
  5868. spin_lock(&all_mddevs_lock);
  5869. if (v == (void*)1)
  5870. tmp = all_mddevs.next;
  5871. else
  5872. tmp = mddev->all_mddevs.next;
  5873. if (tmp != &all_mddevs)
  5874. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5875. else {
  5876. next_mddev = (void*)2;
  5877. *pos = 0x10000;
  5878. }
  5879. spin_unlock(&all_mddevs_lock);
  5880. if (v != (void*)1)
  5881. mddev_put(mddev);
  5882. return next_mddev;
  5883. }
  5884. static void md_seq_stop(struct seq_file *seq, void *v)
  5885. {
  5886. struct mddev *mddev = v;
  5887. if (mddev && v != (void*)1 && v != (void*)2)
  5888. mddev_put(mddev);
  5889. }
  5890. static int md_seq_show(struct seq_file *seq, void *v)
  5891. {
  5892. struct mddev *mddev = v;
  5893. sector_t sectors;
  5894. struct md_rdev *rdev;
  5895. struct bitmap *bitmap;
  5896. if (v == (void*)1) {
  5897. struct md_personality *pers;
  5898. seq_printf(seq, "Personalities : ");
  5899. spin_lock(&pers_lock);
  5900. list_for_each_entry(pers, &pers_list, list)
  5901. seq_printf(seq, "[%s] ", pers->name);
  5902. spin_unlock(&pers_lock);
  5903. seq_printf(seq, "\n");
  5904. seq->poll_event = atomic_read(&md_event_count);
  5905. return 0;
  5906. }
  5907. if (v == (void*)2) {
  5908. status_unused(seq);
  5909. return 0;
  5910. }
  5911. if (mddev_lock(mddev) < 0)
  5912. return -EINTR;
  5913. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5914. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5915. mddev->pers ? "" : "in");
  5916. if (mddev->pers) {
  5917. if (mddev->ro==1)
  5918. seq_printf(seq, " (read-only)");
  5919. if (mddev->ro==2)
  5920. seq_printf(seq, " (auto-read-only)");
  5921. seq_printf(seq, " %s", mddev->pers->name);
  5922. }
  5923. sectors = 0;
  5924. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5925. char b[BDEVNAME_SIZE];
  5926. seq_printf(seq, " %s[%d]",
  5927. bdevname(rdev->bdev,b), rdev->desc_nr);
  5928. if (test_bit(WriteMostly, &rdev->flags))
  5929. seq_printf(seq, "(W)");
  5930. if (test_bit(Faulty, &rdev->flags)) {
  5931. seq_printf(seq, "(F)");
  5932. continue;
  5933. } else if (rdev->raid_disk < 0)
  5934. seq_printf(seq, "(S)"); /* spare */
  5935. sectors += rdev->sectors;
  5936. }
  5937. if (!list_empty(&mddev->disks)) {
  5938. if (mddev->pers)
  5939. seq_printf(seq, "\n %llu blocks",
  5940. (unsigned long long)
  5941. mddev->array_sectors / 2);
  5942. else
  5943. seq_printf(seq, "\n %llu blocks",
  5944. (unsigned long long)sectors / 2);
  5945. }
  5946. if (mddev->persistent) {
  5947. if (mddev->major_version != 0 ||
  5948. mddev->minor_version != 90) {
  5949. seq_printf(seq," super %d.%d",
  5950. mddev->major_version,
  5951. mddev->minor_version);
  5952. }
  5953. } else if (mddev->external)
  5954. seq_printf(seq, " super external:%s",
  5955. mddev->metadata_type);
  5956. else
  5957. seq_printf(seq, " super non-persistent");
  5958. if (mddev->pers) {
  5959. mddev->pers->status(seq, mddev);
  5960. seq_printf(seq, "\n ");
  5961. if (mddev->pers->sync_request) {
  5962. if (mddev->curr_resync > 2) {
  5963. status_resync(seq, mddev);
  5964. seq_printf(seq, "\n ");
  5965. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5966. seq_printf(seq, "\tresync=DELAYED\n ");
  5967. else if (mddev->recovery_cp < MaxSector)
  5968. seq_printf(seq, "\tresync=PENDING\n ");
  5969. }
  5970. } else
  5971. seq_printf(seq, "\n ");
  5972. if ((bitmap = mddev->bitmap)) {
  5973. unsigned long chunk_kb;
  5974. unsigned long flags;
  5975. spin_lock_irqsave(&bitmap->lock, flags);
  5976. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5977. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5978. "%lu%s chunk",
  5979. bitmap->pages - bitmap->missing_pages,
  5980. bitmap->pages,
  5981. (bitmap->pages - bitmap->missing_pages)
  5982. << (PAGE_SHIFT - 10),
  5983. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5984. chunk_kb ? "KB" : "B");
  5985. if (bitmap->file) {
  5986. seq_printf(seq, ", file: ");
  5987. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5988. }
  5989. seq_printf(seq, "\n");
  5990. spin_unlock_irqrestore(&bitmap->lock, flags);
  5991. }
  5992. seq_printf(seq, "\n");
  5993. }
  5994. mddev_unlock(mddev);
  5995. return 0;
  5996. }
  5997. static const struct seq_operations md_seq_ops = {
  5998. .start = md_seq_start,
  5999. .next = md_seq_next,
  6000. .stop = md_seq_stop,
  6001. .show = md_seq_show,
  6002. };
  6003. static int md_seq_open(struct inode *inode, struct file *file)
  6004. {
  6005. struct seq_file *seq;
  6006. int error;
  6007. error = seq_open(file, &md_seq_ops);
  6008. if (error)
  6009. return error;
  6010. seq = file->private_data;
  6011. seq->poll_event = atomic_read(&md_event_count);
  6012. return error;
  6013. }
  6014. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6015. {
  6016. struct seq_file *seq = filp->private_data;
  6017. int mask;
  6018. poll_wait(filp, &md_event_waiters, wait);
  6019. /* always allow read */
  6020. mask = POLLIN | POLLRDNORM;
  6021. if (seq->poll_event != atomic_read(&md_event_count))
  6022. mask |= POLLERR | POLLPRI;
  6023. return mask;
  6024. }
  6025. static const struct file_operations md_seq_fops = {
  6026. .owner = THIS_MODULE,
  6027. .open = md_seq_open,
  6028. .read = seq_read,
  6029. .llseek = seq_lseek,
  6030. .release = seq_release_private,
  6031. .poll = mdstat_poll,
  6032. };
  6033. int register_md_personality(struct md_personality *p)
  6034. {
  6035. spin_lock(&pers_lock);
  6036. list_add_tail(&p->list, &pers_list);
  6037. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6038. spin_unlock(&pers_lock);
  6039. return 0;
  6040. }
  6041. int unregister_md_personality(struct md_personality *p)
  6042. {
  6043. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6044. spin_lock(&pers_lock);
  6045. list_del_init(&p->list);
  6046. spin_unlock(&pers_lock);
  6047. return 0;
  6048. }
  6049. static int is_mddev_idle(struct mddev *mddev, int init)
  6050. {
  6051. struct md_rdev * rdev;
  6052. int idle;
  6053. int curr_events;
  6054. idle = 1;
  6055. rcu_read_lock();
  6056. rdev_for_each_rcu(rdev, mddev) {
  6057. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6058. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6059. (int)part_stat_read(&disk->part0, sectors[1]) -
  6060. atomic_read(&disk->sync_io);
  6061. /* sync IO will cause sync_io to increase before the disk_stats
  6062. * as sync_io is counted when a request starts, and
  6063. * disk_stats is counted when it completes.
  6064. * So resync activity will cause curr_events to be smaller than
  6065. * when there was no such activity.
  6066. * non-sync IO will cause disk_stat to increase without
  6067. * increasing sync_io so curr_events will (eventually)
  6068. * be larger than it was before. Once it becomes
  6069. * substantially larger, the test below will cause
  6070. * the array to appear non-idle, and resync will slow
  6071. * down.
  6072. * If there is a lot of outstanding resync activity when
  6073. * we set last_event to curr_events, then all that activity
  6074. * completing might cause the array to appear non-idle
  6075. * and resync will be slowed down even though there might
  6076. * not have been non-resync activity. This will only
  6077. * happen once though. 'last_events' will soon reflect
  6078. * the state where there is little or no outstanding
  6079. * resync requests, and further resync activity will
  6080. * always make curr_events less than last_events.
  6081. *
  6082. */
  6083. if (init || curr_events - rdev->last_events > 64) {
  6084. rdev->last_events = curr_events;
  6085. idle = 0;
  6086. }
  6087. }
  6088. rcu_read_unlock();
  6089. return idle;
  6090. }
  6091. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6092. {
  6093. /* another "blocks" (512byte) blocks have been synced */
  6094. atomic_sub(blocks, &mddev->recovery_active);
  6095. wake_up(&mddev->recovery_wait);
  6096. if (!ok) {
  6097. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6098. md_wakeup_thread(mddev->thread);
  6099. // stop recovery, signal do_sync ....
  6100. }
  6101. }
  6102. /* md_write_start(mddev, bi)
  6103. * If we need to update some array metadata (e.g. 'active' flag
  6104. * in superblock) before writing, schedule a superblock update
  6105. * and wait for it to complete.
  6106. */
  6107. void md_write_start(struct mddev *mddev, struct bio *bi)
  6108. {
  6109. int did_change = 0;
  6110. if (bio_data_dir(bi) != WRITE)
  6111. return;
  6112. BUG_ON(mddev->ro == 1);
  6113. if (mddev->ro == 2) {
  6114. /* need to switch to read/write */
  6115. mddev->ro = 0;
  6116. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6117. md_wakeup_thread(mddev->thread);
  6118. md_wakeup_thread(mddev->sync_thread);
  6119. did_change = 1;
  6120. }
  6121. atomic_inc(&mddev->writes_pending);
  6122. if (mddev->safemode == 1)
  6123. mddev->safemode = 0;
  6124. if (mddev->in_sync) {
  6125. spin_lock_irq(&mddev->write_lock);
  6126. if (mddev->in_sync) {
  6127. mddev->in_sync = 0;
  6128. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6129. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6130. md_wakeup_thread(mddev->thread);
  6131. did_change = 1;
  6132. }
  6133. spin_unlock_irq(&mddev->write_lock);
  6134. }
  6135. if (did_change)
  6136. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6137. wait_event(mddev->sb_wait,
  6138. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6139. }
  6140. void md_write_end(struct mddev *mddev)
  6141. {
  6142. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6143. if (mddev->safemode == 2)
  6144. md_wakeup_thread(mddev->thread);
  6145. else if (mddev->safemode_delay)
  6146. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6147. }
  6148. }
  6149. /* md_allow_write(mddev)
  6150. * Calling this ensures that the array is marked 'active' so that writes
  6151. * may proceed without blocking. It is important to call this before
  6152. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6153. * Must be called with mddev_lock held.
  6154. *
  6155. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6156. * is dropped, so return -EAGAIN after notifying userspace.
  6157. */
  6158. int md_allow_write(struct mddev *mddev)
  6159. {
  6160. if (!mddev->pers)
  6161. return 0;
  6162. if (mddev->ro)
  6163. return 0;
  6164. if (!mddev->pers->sync_request)
  6165. return 0;
  6166. spin_lock_irq(&mddev->write_lock);
  6167. if (mddev->in_sync) {
  6168. mddev->in_sync = 0;
  6169. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6170. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6171. if (mddev->safemode_delay &&
  6172. mddev->safemode == 0)
  6173. mddev->safemode = 1;
  6174. spin_unlock_irq(&mddev->write_lock);
  6175. md_update_sb(mddev, 0);
  6176. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6177. } else
  6178. spin_unlock_irq(&mddev->write_lock);
  6179. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6180. return -EAGAIN;
  6181. else
  6182. return 0;
  6183. }
  6184. EXPORT_SYMBOL_GPL(md_allow_write);
  6185. #define SYNC_MARKS 10
  6186. #define SYNC_MARK_STEP (3*HZ)
  6187. void md_do_sync(struct mddev *mddev)
  6188. {
  6189. struct mddev *mddev2;
  6190. unsigned int currspeed = 0,
  6191. window;
  6192. sector_t max_sectors,j, io_sectors;
  6193. unsigned long mark[SYNC_MARKS];
  6194. sector_t mark_cnt[SYNC_MARKS];
  6195. int last_mark,m;
  6196. struct list_head *tmp;
  6197. sector_t last_check;
  6198. int skipped = 0;
  6199. struct md_rdev *rdev;
  6200. char *desc;
  6201. /* just incase thread restarts... */
  6202. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6203. return;
  6204. if (mddev->ro) /* never try to sync a read-only array */
  6205. return;
  6206. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6207. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6208. desc = "data-check";
  6209. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6210. desc = "requested-resync";
  6211. else
  6212. desc = "resync";
  6213. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6214. desc = "reshape";
  6215. else
  6216. desc = "recovery";
  6217. /* we overload curr_resync somewhat here.
  6218. * 0 == not engaged in resync at all
  6219. * 2 == checking that there is no conflict with another sync
  6220. * 1 == like 2, but have yielded to allow conflicting resync to
  6221. * commense
  6222. * other == active in resync - this many blocks
  6223. *
  6224. * Before starting a resync we must have set curr_resync to
  6225. * 2, and then checked that every "conflicting" array has curr_resync
  6226. * less than ours. When we find one that is the same or higher
  6227. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6228. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6229. * This will mean we have to start checking from the beginning again.
  6230. *
  6231. */
  6232. do {
  6233. mddev->curr_resync = 2;
  6234. try_again:
  6235. if (kthread_should_stop())
  6236. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6237. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6238. goto skip;
  6239. for_each_mddev(mddev2, tmp) {
  6240. if (mddev2 == mddev)
  6241. continue;
  6242. if (!mddev->parallel_resync
  6243. && mddev2->curr_resync
  6244. && match_mddev_units(mddev, mddev2)) {
  6245. DEFINE_WAIT(wq);
  6246. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6247. /* arbitrarily yield */
  6248. mddev->curr_resync = 1;
  6249. wake_up(&resync_wait);
  6250. }
  6251. if (mddev > mddev2 && mddev->curr_resync == 1)
  6252. /* no need to wait here, we can wait the next
  6253. * time 'round when curr_resync == 2
  6254. */
  6255. continue;
  6256. /* We need to wait 'interruptible' so as not to
  6257. * contribute to the load average, and not to
  6258. * be caught by 'softlockup'
  6259. */
  6260. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6261. if (!kthread_should_stop() &&
  6262. mddev2->curr_resync >= mddev->curr_resync) {
  6263. printk(KERN_INFO "md: delaying %s of %s"
  6264. " until %s has finished (they"
  6265. " share one or more physical units)\n",
  6266. desc, mdname(mddev), mdname(mddev2));
  6267. mddev_put(mddev2);
  6268. if (signal_pending(current))
  6269. flush_signals(current);
  6270. schedule();
  6271. finish_wait(&resync_wait, &wq);
  6272. goto try_again;
  6273. }
  6274. finish_wait(&resync_wait, &wq);
  6275. }
  6276. }
  6277. } while (mddev->curr_resync < 2);
  6278. j = 0;
  6279. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6280. /* resync follows the size requested by the personality,
  6281. * which defaults to physical size, but can be virtual size
  6282. */
  6283. max_sectors = mddev->resync_max_sectors;
  6284. mddev->resync_mismatches = 0;
  6285. /* we don't use the checkpoint if there's a bitmap */
  6286. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6287. j = mddev->resync_min;
  6288. else if (!mddev->bitmap)
  6289. j = mddev->recovery_cp;
  6290. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6291. max_sectors = mddev->dev_sectors;
  6292. else {
  6293. /* recovery follows the physical size of devices */
  6294. max_sectors = mddev->dev_sectors;
  6295. j = MaxSector;
  6296. rcu_read_lock();
  6297. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6298. if (rdev->raid_disk >= 0 &&
  6299. !test_bit(Faulty, &rdev->flags) &&
  6300. !test_bit(In_sync, &rdev->flags) &&
  6301. rdev->recovery_offset < j)
  6302. j = rdev->recovery_offset;
  6303. rcu_read_unlock();
  6304. }
  6305. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6306. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6307. " %d KB/sec/disk.\n", speed_min(mddev));
  6308. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6309. "(but not more than %d KB/sec) for %s.\n",
  6310. speed_max(mddev), desc);
  6311. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6312. io_sectors = 0;
  6313. for (m = 0; m < SYNC_MARKS; m++) {
  6314. mark[m] = jiffies;
  6315. mark_cnt[m] = io_sectors;
  6316. }
  6317. last_mark = 0;
  6318. mddev->resync_mark = mark[last_mark];
  6319. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6320. /*
  6321. * Tune reconstruction:
  6322. */
  6323. window = 32*(PAGE_SIZE/512);
  6324. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6325. window/2, (unsigned long long)max_sectors/2);
  6326. atomic_set(&mddev->recovery_active, 0);
  6327. last_check = 0;
  6328. if (j>2) {
  6329. printk(KERN_INFO
  6330. "md: resuming %s of %s from checkpoint.\n",
  6331. desc, mdname(mddev));
  6332. mddev->curr_resync = j;
  6333. }
  6334. mddev->curr_resync_completed = j;
  6335. while (j < max_sectors) {
  6336. sector_t sectors;
  6337. skipped = 0;
  6338. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6339. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6340. (mddev->curr_resync - mddev->curr_resync_completed)
  6341. > (max_sectors >> 4)) ||
  6342. (j - mddev->curr_resync_completed)*2
  6343. >= mddev->resync_max - mddev->curr_resync_completed
  6344. )) {
  6345. /* time to update curr_resync_completed */
  6346. wait_event(mddev->recovery_wait,
  6347. atomic_read(&mddev->recovery_active) == 0);
  6348. mddev->curr_resync_completed = j;
  6349. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6350. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6351. }
  6352. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6353. /* As this condition is controlled by user-space,
  6354. * we can block indefinitely, so use '_interruptible'
  6355. * to avoid triggering warnings.
  6356. */
  6357. flush_signals(current); /* just in case */
  6358. wait_event_interruptible(mddev->recovery_wait,
  6359. mddev->resync_max > j
  6360. || kthread_should_stop());
  6361. }
  6362. if (kthread_should_stop())
  6363. goto interrupted;
  6364. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6365. currspeed < speed_min(mddev));
  6366. if (sectors == 0) {
  6367. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6368. goto out;
  6369. }
  6370. if (!skipped) { /* actual IO requested */
  6371. io_sectors += sectors;
  6372. atomic_add(sectors, &mddev->recovery_active);
  6373. }
  6374. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6375. break;
  6376. j += sectors;
  6377. if (j>1) mddev->curr_resync = j;
  6378. mddev->curr_mark_cnt = io_sectors;
  6379. if (last_check == 0)
  6380. /* this is the earliest that rebuild will be
  6381. * visible in /proc/mdstat
  6382. */
  6383. md_new_event(mddev);
  6384. if (last_check + window > io_sectors || j == max_sectors)
  6385. continue;
  6386. last_check = io_sectors;
  6387. repeat:
  6388. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6389. /* step marks */
  6390. int next = (last_mark+1) % SYNC_MARKS;
  6391. mddev->resync_mark = mark[next];
  6392. mddev->resync_mark_cnt = mark_cnt[next];
  6393. mark[next] = jiffies;
  6394. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6395. last_mark = next;
  6396. }
  6397. if (kthread_should_stop())
  6398. goto interrupted;
  6399. /*
  6400. * this loop exits only if either when we are slower than
  6401. * the 'hard' speed limit, or the system was IO-idle for
  6402. * a jiffy.
  6403. * the system might be non-idle CPU-wise, but we only care
  6404. * about not overloading the IO subsystem. (things like an
  6405. * e2fsck being done on the RAID array should execute fast)
  6406. */
  6407. cond_resched();
  6408. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6409. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6410. if (currspeed > speed_min(mddev)) {
  6411. if ((currspeed > speed_max(mddev)) ||
  6412. !is_mddev_idle(mddev, 0)) {
  6413. msleep(500);
  6414. goto repeat;
  6415. }
  6416. }
  6417. }
  6418. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6419. /*
  6420. * this also signals 'finished resyncing' to md_stop
  6421. */
  6422. out:
  6423. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6424. /* tell personality that we are finished */
  6425. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6426. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6427. mddev->curr_resync > 2) {
  6428. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6429. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6430. if (mddev->curr_resync >= mddev->recovery_cp) {
  6431. printk(KERN_INFO
  6432. "md: checkpointing %s of %s.\n",
  6433. desc, mdname(mddev));
  6434. mddev->recovery_cp = mddev->curr_resync;
  6435. }
  6436. } else
  6437. mddev->recovery_cp = MaxSector;
  6438. } else {
  6439. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6440. mddev->curr_resync = MaxSector;
  6441. rcu_read_lock();
  6442. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6443. if (rdev->raid_disk >= 0 &&
  6444. mddev->delta_disks >= 0 &&
  6445. !test_bit(Faulty, &rdev->flags) &&
  6446. !test_bit(In_sync, &rdev->flags) &&
  6447. rdev->recovery_offset < mddev->curr_resync)
  6448. rdev->recovery_offset = mddev->curr_resync;
  6449. rcu_read_unlock();
  6450. }
  6451. }
  6452. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6453. skip:
  6454. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6455. /* We completed so min/max setting can be forgotten if used. */
  6456. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6457. mddev->resync_min = 0;
  6458. mddev->resync_max = MaxSector;
  6459. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6460. mddev->resync_min = mddev->curr_resync_completed;
  6461. mddev->curr_resync = 0;
  6462. wake_up(&resync_wait);
  6463. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6464. md_wakeup_thread(mddev->thread);
  6465. return;
  6466. interrupted:
  6467. /*
  6468. * got a signal, exit.
  6469. */
  6470. printk(KERN_INFO
  6471. "md: md_do_sync() got signal ... exiting\n");
  6472. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6473. goto out;
  6474. }
  6475. EXPORT_SYMBOL_GPL(md_do_sync);
  6476. static int remove_and_add_spares(struct mddev *mddev)
  6477. {
  6478. struct md_rdev *rdev;
  6479. int spares = 0;
  6480. mddev->curr_resync_completed = 0;
  6481. list_for_each_entry(rdev, &mddev->disks, same_set)
  6482. if (rdev->raid_disk >= 0 &&
  6483. !test_bit(Blocked, &rdev->flags) &&
  6484. (test_bit(Faulty, &rdev->flags) ||
  6485. ! test_bit(In_sync, &rdev->flags)) &&
  6486. atomic_read(&rdev->nr_pending)==0) {
  6487. if (mddev->pers->hot_remove_disk(
  6488. mddev, rdev->raid_disk)==0) {
  6489. sysfs_unlink_rdev(mddev, rdev);
  6490. rdev->raid_disk = -1;
  6491. }
  6492. }
  6493. if (mddev->degraded) {
  6494. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6495. if (rdev->raid_disk >= 0 &&
  6496. !test_bit(In_sync, &rdev->flags) &&
  6497. !test_bit(Faulty, &rdev->flags))
  6498. spares++;
  6499. if (rdev->raid_disk < 0
  6500. && !test_bit(Faulty, &rdev->flags)) {
  6501. rdev->recovery_offset = 0;
  6502. if (mddev->pers->
  6503. hot_add_disk(mddev, rdev) == 0) {
  6504. if (sysfs_link_rdev(mddev, rdev))
  6505. /* failure here is OK */;
  6506. spares++;
  6507. md_new_event(mddev);
  6508. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6509. }
  6510. }
  6511. }
  6512. }
  6513. return spares;
  6514. }
  6515. static void reap_sync_thread(struct mddev *mddev)
  6516. {
  6517. struct md_rdev *rdev;
  6518. /* resync has finished, collect result */
  6519. md_unregister_thread(&mddev->sync_thread);
  6520. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6521. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6522. /* success...*/
  6523. /* activate any spares */
  6524. if (mddev->pers->spare_active(mddev))
  6525. sysfs_notify(&mddev->kobj, NULL,
  6526. "degraded");
  6527. }
  6528. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6529. mddev->pers->finish_reshape)
  6530. mddev->pers->finish_reshape(mddev);
  6531. /* If array is no-longer degraded, then any saved_raid_disk
  6532. * information must be scrapped. Also if any device is now
  6533. * In_sync we must scrape the saved_raid_disk for that device
  6534. * do the superblock for an incrementally recovered device
  6535. * written out.
  6536. */
  6537. list_for_each_entry(rdev, &mddev->disks, same_set)
  6538. if (!mddev->degraded ||
  6539. test_bit(In_sync, &rdev->flags))
  6540. rdev->saved_raid_disk = -1;
  6541. md_update_sb(mddev, 1);
  6542. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6543. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6544. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6545. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6546. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6547. /* flag recovery needed just to double check */
  6548. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6549. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6550. md_new_event(mddev);
  6551. if (mddev->event_work.func)
  6552. queue_work(md_misc_wq, &mddev->event_work);
  6553. }
  6554. /*
  6555. * This routine is regularly called by all per-raid-array threads to
  6556. * deal with generic issues like resync and super-block update.
  6557. * Raid personalities that don't have a thread (linear/raid0) do not
  6558. * need this as they never do any recovery or update the superblock.
  6559. *
  6560. * It does not do any resync itself, but rather "forks" off other threads
  6561. * to do that as needed.
  6562. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6563. * "->recovery" and create a thread at ->sync_thread.
  6564. * When the thread finishes it sets MD_RECOVERY_DONE
  6565. * and wakeups up this thread which will reap the thread and finish up.
  6566. * This thread also removes any faulty devices (with nr_pending == 0).
  6567. *
  6568. * The overall approach is:
  6569. * 1/ if the superblock needs updating, update it.
  6570. * 2/ If a recovery thread is running, don't do anything else.
  6571. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6572. * 4/ If there are any faulty devices, remove them.
  6573. * 5/ If array is degraded, try to add spares devices
  6574. * 6/ If array has spares or is not in-sync, start a resync thread.
  6575. */
  6576. void md_check_recovery(struct mddev *mddev)
  6577. {
  6578. if (mddev->suspended)
  6579. return;
  6580. if (mddev->bitmap)
  6581. bitmap_daemon_work(mddev);
  6582. if (signal_pending(current)) {
  6583. if (mddev->pers->sync_request && !mddev->external) {
  6584. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6585. mdname(mddev));
  6586. mddev->safemode = 2;
  6587. }
  6588. flush_signals(current);
  6589. }
  6590. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6591. return;
  6592. if ( ! (
  6593. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6594. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6595. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6596. (mddev->external == 0 && mddev->safemode == 1) ||
  6597. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6598. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6599. ))
  6600. return;
  6601. if (mddev_trylock(mddev)) {
  6602. int spares = 0;
  6603. if (mddev->ro) {
  6604. /* Only thing we do on a ro array is remove
  6605. * failed devices.
  6606. */
  6607. struct md_rdev *rdev;
  6608. list_for_each_entry(rdev, &mddev->disks, same_set)
  6609. if (rdev->raid_disk >= 0 &&
  6610. !test_bit(Blocked, &rdev->flags) &&
  6611. test_bit(Faulty, &rdev->flags) &&
  6612. atomic_read(&rdev->nr_pending)==0) {
  6613. if (mddev->pers->hot_remove_disk(
  6614. mddev, rdev->raid_disk)==0) {
  6615. sysfs_unlink_rdev(mddev, rdev);
  6616. rdev->raid_disk = -1;
  6617. }
  6618. }
  6619. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6620. goto unlock;
  6621. }
  6622. if (!mddev->external) {
  6623. int did_change = 0;
  6624. spin_lock_irq(&mddev->write_lock);
  6625. if (mddev->safemode &&
  6626. !atomic_read(&mddev->writes_pending) &&
  6627. !mddev->in_sync &&
  6628. mddev->recovery_cp == MaxSector) {
  6629. mddev->in_sync = 1;
  6630. did_change = 1;
  6631. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6632. }
  6633. if (mddev->safemode == 1)
  6634. mddev->safemode = 0;
  6635. spin_unlock_irq(&mddev->write_lock);
  6636. if (did_change)
  6637. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6638. }
  6639. if (mddev->flags)
  6640. md_update_sb(mddev, 0);
  6641. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6642. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6643. /* resync/recovery still happening */
  6644. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6645. goto unlock;
  6646. }
  6647. if (mddev->sync_thread) {
  6648. reap_sync_thread(mddev);
  6649. goto unlock;
  6650. }
  6651. /* Set RUNNING before clearing NEEDED to avoid
  6652. * any transients in the value of "sync_action".
  6653. */
  6654. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6655. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6656. /* Clear some bits that don't mean anything, but
  6657. * might be left set
  6658. */
  6659. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6660. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6661. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6662. goto unlock;
  6663. /* no recovery is running.
  6664. * remove any failed drives, then
  6665. * add spares if possible.
  6666. * Spare are also removed and re-added, to allow
  6667. * the personality to fail the re-add.
  6668. */
  6669. if (mddev->reshape_position != MaxSector) {
  6670. if (mddev->pers->check_reshape == NULL ||
  6671. mddev->pers->check_reshape(mddev) != 0)
  6672. /* Cannot proceed */
  6673. goto unlock;
  6674. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6675. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6676. } else if ((spares = remove_and_add_spares(mddev))) {
  6677. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6678. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6679. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6680. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6681. } else if (mddev->recovery_cp < MaxSector) {
  6682. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6683. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6684. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6685. /* nothing to be done ... */
  6686. goto unlock;
  6687. if (mddev->pers->sync_request) {
  6688. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6689. /* We are adding a device or devices to an array
  6690. * which has the bitmap stored on all devices.
  6691. * So make sure all bitmap pages get written
  6692. */
  6693. bitmap_write_all(mddev->bitmap);
  6694. }
  6695. mddev->sync_thread = md_register_thread(md_do_sync,
  6696. mddev,
  6697. "resync");
  6698. if (!mddev->sync_thread) {
  6699. printk(KERN_ERR "%s: could not start resync"
  6700. " thread...\n",
  6701. mdname(mddev));
  6702. /* leave the spares where they are, it shouldn't hurt */
  6703. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6704. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6705. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6706. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6707. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6708. } else
  6709. md_wakeup_thread(mddev->sync_thread);
  6710. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6711. md_new_event(mddev);
  6712. }
  6713. unlock:
  6714. if (!mddev->sync_thread) {
  6715. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6716. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6717. &mddev->recovery))
  6718. if (mddev->sysfs_action)
  6719. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6720. }
  6721. mddev_unlock(mddev);
  6722. }
  6723. }
  6724. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6725. {
  6726. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6727. wait_event_timeout(rdev->blocked_wait,
  6728. !test_bit(Blocked, &rdev->flags) &&
  6729. !test_bit(BlockedBadBlocks, &rdev->flags),
  6730. msecs_to_jiffies(5000));
  6731. rdev_dec_pending(rdev, mddev);
  6732. }
  6733. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6734. /* Bad block management.
  6735. * We can record which blocks on each device are 'bad' and so just
  6736. * fail those blocks, or that stripe, rather than the whole device.
  6737. * Entries in the bad-block table are 64bits wide. This comprises:
  6738. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6739. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6740. * A 'shift' can be set so that larger blocks are tracked and
  6741. * consequently larger devices can be covered.
  6742. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6743. *
  6744. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6745. * might need to retry if it is very unlucky.
  6746. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6747. * so we use the write_seqlock_irq variant.
  6748. *
  6749. * When looking for a bad block we specify a range and want to
  6750. * know if any block in the range is bad. So we binary-search
  6751. * to the last range that starts at-or-before the given endpoint,
  6752. * (or "before the sector after the target range")
  6753. * then see if it ends after the given start.
  6754. * We return
  6755. * 0 if there are no known bad blocks in the range
  6756. * 1 if there are known bad block which are all acknowledged
  6757. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6758. * plus the start/length of the first bad section we overlap.
  6759. */
  6760. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6761. sector_t *first_bad, int *bad_sectors)
  6762. {
  6763. int hi;
  6764. int lo = 0;
  6765. u64 *p = bb->page;
  6766. int rv = 0;
  6767. sector_t target = s + sectors;
  6768. unsigned seq;
  6769. if (bb->shift > 0) {
  6770. /* round the start down, and the end up */
  6771. s >>= bb->shift;
  6772. target += (1<<bb->shift) - 1;
  6773. target >>= bb->shift;
  6774. sectors = target - s;
  6775. }
  6776. /* 'target' is now the first block after the bad range */
  6777. retry:
  6778. seq = read_seqbegin(&bb->lock);
  6779. hi = bb->count;
  6780. /* Binary search between lo and hi for 'target'
  6781. * i.e. for the last range that starts before 'target'
  6782. */
  6783. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6784. * are known not to be the last range before target.
  6785. * VARIANT: hi-lo is the number of possible
  6786. * ranges, and decreases until it reaches 1
  6787. */
  6788. while (hi - lo > 1) {
  6789. int mid = (lo + hi) / 2;
  6790. sector_t a = BB_OFFSET(p[mid]);
  6791. if (a < target)
  6792. /* This could still be the one, earlier ranges
  6793. * could not. */
  6794. lo = mid;
  6795. else
  6796. /* This and later ranges are definitely out. */
  6797. hi = mid;
  6798. }
  6799. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6800. if (hi > lo) {
  6801. /* need to check all range that end after 's' to see if
  6802. * any are unacknowledged.
  6803. */
  6804. while (lo >= 0 &&
  6805. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6806. if (BB_OFFSET(p[lo]) < target) {
  6807. /* starts before the end, and finishes after
  6808. * the start, so they must overlap
  6809. */
  6810. if (rv != -1 && BB_ACK(p[lo]))
  6811. rv = 1;
  6812. else
  6813. rv = -1;
  6814. *first_bad = BB_OFFSET(p[lo]);
  6815. *bad_sectors = BB_LEN(p[lo]);
  6816. }
  6817. lo--;
  6818. }
  6819. }
  6820. if (read_seqretry(&bb->lock, seq))
  6821. goto retry;
  6822. return rv;
  6823. }
  6824. EXPORT_SYMBOL_GPL(md_is_badblock);
  6825. /*
  6826. * Add a range of bad blocks to the table.
  6827. * This might extend the table, or might contract it
  6828. * if two adjacent ranges can be merged.
  6829. * We binary-search to find the 'insertion' point, then
  6830. * decide how best to handle it.
  6831. */
  6832. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6833. int acknowledged)
  6834. {
  6835. u64 *p;
  6836. int lo, hi;
  6837. int rv = 1;
  6838. if (bb->shift < 0)
  6839. /* badblocks are disabled */
  6840. return 0;
  6841. if (bb->shift) {
  6842. /* round the start down, and the end up */
  6843. sector_t next = s + sectors;
  6844. s >>= bb->shift;
  6845. next += (1<<bb->shift) - 1;
  6846. next >>= bb->shift;
  6847. sectors = next - s;
  6848. }
  6849. write_seqlock_irq(&bb->lock);
  6850. p = bb->page;
  6851. lo = 0;
  6852. hi = bb->count;
  6853. /* Find the last range that starts at-or-before 's' */
  6854. while (hi - lo > 1) {
  6855. int mid = (lo + hi) / 2;
  6856. sector_t a = BB_OFFSET(p[mid]);
  6857. if (a <= s)
  6858. lo = mid;
  6859. else
  6860. hi = mid;
  6861. }
  6862. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6863. hi = lo;
  6864. if (hi > lo) {
  6865. /* we found a range that might merge with the start
  6866. * of our new range
  6867. */
  6868. sector_t a = BB_OFFSET(p[lo]);
  6869. sector_t e = a + BB_LEN(p[lo]);
  6870. int ack = BB_ACK(p[lo]);
  6871. if (e >= s) {
  6872. /* Yes, we can merge with a previous range */
  6873. if (s == a && s + sectors >= e)
  6874. /* new range covers old */
  6875. ack = acknowledged;
  6876. else
  6877. ack = ack && acknowledged;
  6878. if (e < s + sectors)
  6879. e = s + sectors;
  6880. if (e - a <= BB_MAX_LEN) {
  6881. p[lo] = BB_MAKE(a, e-a, ack);
  6882. s = e;
  6883. } else {
  6884. /* does not all fit in one range,
  6885. * make p[lo] maximal
  6886. */
  6887. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6888. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6889. s = a + BB_MAX_LEN;
  6890. }
  6891. sectors = e - s;
  6892. }
  6893. }
  6894. if (sectors && hi < bb->count) {
  6895. /* 'hi' points to the first range that starts after 's'.
  6896. * Maybe we can merge with the start of that range */
  6897. sector_t a = BB_OFFSET(p[hi]);
  6898. sector_t e = a + BB_LEN(p[hi]);
  6899. int ack = BB_ACK(p[hi]);
  6900. if (a <= s + sectors) {
  6901. /* merging is possible */
  6902. if (e <= s + sectors) {
  6903. /* full overlap */
  6904. e = s + sectors;
  6905. ack = acknowledged;
  6906. } else
  6907. ack = ack && acknowledged;
  6908. a = s;
  6909. if (e - a <= BB_MAX_LEN) {
  6910. p[hi] = BB_MAKE(a, e-a, ack);
  6911. s = e;
  6912. } else {
  6913. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6914. s = a + BB_MAX_LEN;
  6915. }
  6916. sectors = e - s;
  6917. lo = hi;
  6918. hi++;
  6919. }
  6920. }
  6921. if (sectors == 0 && hi < bb->count) {
  6922. /* we might be able to combine lo and hi */
  6923. /* Note: 's' is at the end of 'lo' */
  6924. sector_t a = BB_OFFSET(p[hi]);
  6925. int lolen = BB_LEN(p[lo]);
  6926. int hilen = BB_LEN(p[hi]);
  6927. int newlen = lolen + hilen - (s - a);
  6928. if (s >= a && newlen < BB_MAX_LEN) {
  6929. /* yes, we can combine them */
  6930. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6931. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6932. memmove(p + hi, p + hi + 1,
  6933. (bb->count - hi - 1) * 8);
  6934. bb->count--;
  6935. }
  6936. }
  6937. while (sectors) {
  6938. /* didn't merge (it all).
  6939. * Need to add a range just before 'hi' */
  6940. if (bb->count >= MD_MAX_BADBLOCKS) {
  6941. /* No room for more */
  6942. rv = 0;
  6943. break;
  6944. } else {
  6945. int this_sectors = sectors;
  6946. memmove(p + hi + 1, p + hi,
  6947. (bb->count - hi) * 8);
  6948. bb->count++;
  6949. if (this_sectors > BB_MAX_LEN)
  6950. this_sectors = BB_MAX_LEN;
  6951. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6952. sectors -= this_sectors;
  6953. s += this_sectors;
  6954. }
  6955. }
  6956. bb->changed = 1;
  6957. if (!acknowledged)
  6958. bb->unacked_exist = 1;
  6959. write_sequnlock_irq(&bb->lock);
  6960. return rv;
  6961. }
  6962. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  6963. int acknowledged)
  6964. {
  6965. int rv = md_set_badblocks(&rdev->badblocks,
  6966. s + rdev->data_offset, sectors, acknowledged);
  6967. if (rv) {
  6968. /* Make sure they get written out promptly */
  6969. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6970. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6971. md_wakeup_thread(rdev->mddev->thread);
  6972. }
  6973. return rv;
  6974. }
  6975. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6976. /*
  6977. * Remove a range of bad blocks from the table.
  6978. * This may involve extending the table if we spilt a region,
  6979. * but it must not fail. So if the table becomes full, we just
  6980. * drop the remove request.
  6981. */
  6982. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6983. {
  6984. u64 *p;
  6985. int lo, hi;
  6986. sector_t target = s + sectors;
  6987. int rv = 0;
  6988. if (bb->shift > 0) {
  6989. /* When clearing we round the start up and the end down.
  6990. * This should not matter as the shift should align with
  6991. * the block size and no rounding should ever be needed.
  6992. * However it is better the think a block is bad when it
  6993. * isn't than to think a block is not bad when it is.
  6994. */
  6995. s += (1<<bb->shift) - 1;
  6996. s >>= bb->shift;
  6997. target >>= bb->shift;
  6998. sectors = target - s;
  6999. }
  7000. write_seqlock_irq(&bb->lock);
  7001. p = bb->page;
  7002. lo = 0;
  7003. hi = bb->count;
  7004. /* Find the last range that starts before 'target' */
  7005. while (hi - lo > 1) {
  7006. int mid = (lo + hi) / 2;
  7007. sector_t a = BB_OFFSET(p[mid]);
  7008. if (a < target)
  7009. lo = mid;
  7010. else
  7011. hi = mid;
  7012. }
  7013. if (hi > lo) {
  7014. /* p[lo] is the last range that could overlap the
  7015. * current range. Earlier ranges could also overlap,
  7016. * but only this one can overlap the end of the range.
  7017. */
  7018. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7019. /* Partial overlap, leave the tail of this range */
  7020. int ack = BB_ACK(p[lo]);
  7021. sector_t a = BB_OFFSET(p[lo]);
  7022. sector_t end = a + BB_LEN(p[lo]);
  7023. if (a < s) {
  7024. /* we need to split this range */
  7025. if (bb->count >= MD_MAX_BADBLOCKS) {
  7026. rv = 0;
  7027. goto out;
  7028. }
  7029. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7030. bb->count++;
  7031. p[lo] = BB_MAKE(a, s-a, ack);
  7032. lo++;
  7033. }
  7034. p[lo] = BB_MAKE(target, end - target, ack);
  7035. /* there is no longer an overlap */
  7036. hi = lo;
  7037. lo--;
  7038. }
  7039. while (lo >= 0 &&
  7040. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7041. /* This range does overlap */
  7042. if (BB_OFFSET(p[lo]) < s) {
  7043. /* Keep the early parts of this range. */
  7044. int ack = BB_ACK(p[lo]);
  7045. sector_t start = BB_OFFSET(p[lo]);
  7046. p[lo] = BB_MAKE(start, s - start, ack);
  7047. /* now low doesn't overlap, so.. */
  7048. break;
  7049. }
  7050. lo--;
  7051. }
  7052. /* 'lo' is strictly before, 'hi' is strictly after,
  7053. * anything between needs to be discarded
  7054. */
  7055. if (hi - lo > 1) {
  7056. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7057. bb->count -= (hi - lo - 1);
  7058. }
  7059. }
  7060. bb->changed = 1;
  7061. out:
  7062. write_sequnlock_irq(&bb->lock);
  7063. return rv;
  7064. }
  7065. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7066. {
  7067. return md_clear_badblocks(&rdev->badblocks,
  7068. s + rdev->data_offset,
  7069. sectors);
  7070. }
  7071. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7072. /*
  7073. * Acknowledge all bad blocks in a list.
  7074. * This only succeeds if ->changed is clear. It is used by
  7075. * in-kernel metadata updates
  7076. */
  7077. void md_ack_all_badblocks(struct badblocks *bb)
  7078. {
  7079. if (bb->page == NULL || bb->changed)
  7080. /* no point even trying */
  7081. return;
  7082. write_seqlock_irq(&bb->lock);
  7083. if (bb->changed == 0) {
  7084. u64 *p = bb->page;
  7085. int i;
  7086. for (i = 0; i < bb->count ; i++) {
  7087. if (!BB_ACK(p[i])) {
  7088. sector_t start = BB_OFFSET(p[i]);
  7089. int len = BB_LEN(p[i]);
  7090. p[i] = BB_MAKE(start, len, 1);
  7091. }
  7092. }
  7093. bb->unacked_exist = 0;
  7094. }
  7095. write_sequnlock_irq(&bb->lock);
  7096. }
  7097. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7098. /* sysfs access to bad-blocks list.
  7099. * We present two files.
  7100. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7101. * are recorded as bad. The list is truncated to fit within
  7102. * the one-page limit of sysfs.
  7103. * Writing "sector length" to this file adds an acknowledged
  7104. * bad block list.
  7105. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7106. * been acknowledged. Writing to this file adds bad blocks
  7107. * without acknowledging them. This is largely for testing.
  7108. */
  7109. static ssize_t
  7110. badblocks_show(struct badblocks *bb, char *page, int unack)
  7111. {
  7112. size_t len;
  7113. int i;
  7114. u64 *p = bb->page;
  7115. unsigned seq;
  7116. if (bb->shift < 0)
  7117. return 0;
  7118. retry:
  7119. seq = read_seqbegin(&bb->lock);
  7120. len = 0;
  7121. i = 0;
  7122. while (len < PAGE_SIZE && i < bb->count) {
  7123. sector_t s = BB_OFFSET(p[i]);
  7124. unsigned int length = BB_LEN(p[i]);
  7125. int ack = BB_ACK(p[i]);
  7126. i++;
  7127. if (unack && ack)
  7128. continue;
  7129. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7130. (unsigned long long)s << bb->shift,
  7131. length << bb->shift);
  7132. }
  7133. if (unack && len == 0)
  7134. bb->unacked_exist = 0;
  7135. if (read_seqretry(&bb->lock, seq))
  7136. goto retry;
  7137. return len;
  7138. }
  7139. #define DO_DEBUG 1
  7140. static ssize_t
  7141. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7142. {
  7143. unsigned long long sector;
  7144. int length;
  7145. char newline;
  7146. #ifdef DO_DEBUG
  7147. /* Allow clearing via sysfs *only* for testing/debugging.
  7148. * Normally only a successful write may clear a badblock
  7149. */
  7150. int clear = 0;
  7151. if (page[0] == '-') {
  7152. clear = 1;
  7153. page++;
  7154. }
  7155. #endif /* DO_DEBUG */
  7156. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7157. case 3:
  7158. if (newline != '\n')
  7159. return -EINVAL;
  7160. case 2:
  7161. if (length <= 0)
  7162. return -EINVAL;
  7163. break;
  7164. default:
  7165. return -EINVAL;
  7166. }
  7167. #ifdef DO_DEBUG
  7168. if (clear) {
  7169. md_clear_badblocks(bb, sector, length);
  7170. return len;
  7171. }
  7172. #endif /* DO_DEBUG */
  7173. if (md_set_badblocks(bb, sector, length, !unack))
  7174. return len;
  7175. else
  7176. return -ENOSPC;
  7177. }
  7178. static int md_notify_reboot(struct notifier_block *this,
  7179. unsigned long code, void *x)
  7180. {
  7181. struct list_head *tmp;
  7182. struct mddev *mddev;
  7183. int need_delay = 0;
  7184. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7185. printk(KERN_INFO "md: stopping all md devices.\n");
  7186. for_each_mddev(mddev, tmp) {
  7187. if (mddev_trylock(mddev)) {
  7188. /* Force a switch to readonly even array
  7189. * appears to still be in use. Hence
  7190. * the '100'.
  7191. */
  7192. md_set_readonly(mddev, 100);
  7193. mddev_unlock(mddev);
  7194. }
  7195. need_delay = 1;
  7196. }
  7197. /*
  7198. * certain more exotic SCSI devices are known to be
  7199. * volatile wrt too early system reboots. While the
  7200. * right place to handle this issue is the given
  7201. * driver, we do want to have a safe RAID driver ...
  7202. */
  7203. if (need_delay)
  7204. mdelay(1000*1);
  7205. }
  7206. return NOTIFY_DONE;
  7207. }
  7208. static struct notifier_block md_notifier = {
  7209. .notifier_call = md_notify_reboot,
  7210. .next = NULL,
  7211. .priority = INT_MAX, /* before any real devices */
  7212. };
  7213. static void md_geninit(void)
  7214. {
  7215. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7216. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7217. }
  7218. static int __init md_init(void)
  7219. {
  7220. int ret = -ENOMEM;
  7221. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7222. if (!md_wq)
  7223. goto err_wq;
  7224. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7225. if (!md_misc_wq)
  7226. goto err_misc_wq;
  7227. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7228. goto err_md;
  7229. if ((ret = register_blkdev(0, "mdp")) < 0)
  7230. goto err_mdp;
  7231. mdp_major = ret;
  7232. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7233. md_probe, NULL, NULL);
  7234. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7235. md_probe, NULL, NULL);
  7236. register_reboot_notifier(&md_notifier);
  7237. raid_table_header = register_sysctl_table(raid_root_table);
  7238. md_geninit();
  7239. return 0;
  7240. err_mdp:
  7241. unregister_blkdev(MD_MAJOR, "md");
  7242. err_md:
  7243. destroy_workqueue(md_misc_wq);
  7244. err_misc_wq:
  7245. destroy_workqueue(md_wq);
  7246. err_wq:
  7247. return ret;
  7248. }
  7249. #ifndef MODULE
  7250. /*
  7251. * Searches all registered partitions for autorun RAID arrays
  7252. * at boot time.
  7253. */
  7254. static LIST_HEAD(all_detected_devices);
  7255. struct detected_devices_node {
  7256. struct list_head list;
  7257. dev_t dev;
  7258. };
  7259. void md_autodetect_dev(dev_t dev)
  7260. {
  7261. struct detected_devices_node *node_detected_dev;
  7262. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7263. if (node_detected_dev) {
  7264. node_detected_dev->dev = dev;
  7265. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7266. } else {
  7267. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7268. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7269. }
  7270. }
  7271. static void autostart_arrays(int part)
  7272. {
  7273. struct md_rdev *rdev;
  7274. struct detected_devices_node *node_detected_dev;
  7275. dev_t dev;
  7276. int i_scanned, i_passed;
  7277. i_scanned = 0;
  7278. i_passed = 0;
  7279. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7280. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7281. i_scanned++;
  7282. node_detected_dev = list_entry(all_detected_devices.next,
  7283. struct detected_devices_node, list);
  7284. list_del(&node_detected_dev->list);
  7285. dev = node_detected_dev->dev;
  7286. kfree(node_detected_dev);
  7287. rdev = md_import_device(dev,0, 90);
  7288. if (IS_ERR(rdev))
  7289. continue;
  7290. if (test_bit(Faulty, &rdev->flags)) {
  7291. MD_BUG();
  7292. continue;
  7293. }
  7294. set_bit(AutoDetected, &rdev->flags);
  7295. list_add(&rdev->same_set, &pending_raid_disks);
  7296. i_passed++;
  7297. }
  7298. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7299. i_scanned, i_passed);
  7300. autorun_devices(part);
  7301. }
  7302. #endif /* !MODULE */
  7303. static __exit void md_exit(void)
  7304. {
  7305. struct mddev *mddev;
  7306. struct list_head *tmp;
  7307. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7308. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7309. unregister_blkdev(MD_MAJOR,"md");
  7310. unregister_blkdev(mdp_major, "mdp");
  7311. unregister_reboot_notifier(&md_notifier);
  7312. unregister_sysctl_table(raid_table_header);
  7313. remove_proc_entry("mdstat", NULL);
  7314. for_each_mddev(mddev, tmp) {
  7315. export_array(mddev);
  7316. mddev->hold_active = 0;
  7317. }
  7318. destroy_workqueue(md_misc_wq);
  7319. destroy_workqueue(md_wq);
  7320. }
  7321. subsys_initcall(md_init);
  7322. module_exit(md_exit)
  7323. static int get_ro(char *buffer, struct kernel_param *kp)
  7324. {
  7325. return sprintf(buffer, "%d", start_readonly);
  7326. }
  7327. static int set_ro(const char *val, struct kernel_param *kp)
  7328. {
  7329. char *e;
  7330. int num = simple_strtoul(val, &e, 10);
  7331. if (*val && (*e == '\0' || *e == '\n')) {
  7332. start_readonly = num;
  7333. return 0;
  7334. }
  7335. return -EINVAL;
  7336. }
  7337. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7338. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7339. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7340. EXPORT_SYMBOL(register_md_personality);
  7341. EXPORT_SYMBOL(unregister_md_personality);
  7342. EXPORT_SYMBOL(md_error);
  7343. EXPORT_SYMBOL(md_done_sync);
  7344. EXPORT_SYMBOL(md_write_start);
  7345. EXPORT_SYMBOL(md_write_end);
  7346. EXPORT_SYMBOL(md_register_thread);
  7347. EXPORT_SYMBOL(md_unregister_thread);
  7348. EXPORT_SYMBOL(md_wakeup_thread);
  7349. EXPORT_SYMBOL(md_check_recovery);
  7350. MODULE_LICENSE("GPL");
  7351. MODULE_DESCRIPTION("MD RAID framework");
  7352. MODULE_ALIAS("md");
  7353. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);