smp_twd.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. /*
  2. * linux/arch/arm/kernel/smp_twd.c
  3. *
  4. * Copyright (C) 2002 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/delay.h>
  14. #include <linux/device.h>
  15. #include <linux/smp.h>
  16. #include <linux/jiffies.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/irq.h>
  19. #include <linux/io.h>
  20. #include <asm/smp_twd.h>
  21. #include <asm/localtimer.h>
  22. #include <asm/hardware/gic.h>
  23. /* set up by the platform code */
  24. void __iomem *twd_base;
  25. static unsigned long twd_timer_rate;
  26. static struct clock_event_device __percpu **twd_evt;
  27. static void twd_set_mode(enum clock_event_mode mode,
  28. struct clock_event_device *clk)
  29. {
  30. unsigned long ctrl;
  31. switch (mode) {
  32. case CLOCK_EVT_MODE_PERIODIC:
  33. /* timer load already set up */
  34. ctrl = TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE
  35. | TWD_TIMER_CONTROL_PERIODIC;
  36. __raw_writel(twd_timer_rate / HZ, twd_base + TWD_TIMER_LOAD);
  37. break;
  38. case CLOCK_EVT_MODE_ONESHOT:
  39. /* period set, and timer enabled in 'next_event' hook */
  40. ctrl = TWD_TIMER_CONTROL_IT_ENABLE | TWD_TIMER_CONTROL_ONESHOT;
  41. break;
  42. case CLOCK_EVT_MODE_UNUSED:
  43. case CLOCK_EVT_MODE_SHUTDOWN:
  44. default:
  45. ctrl = 0;
  46. }
  47. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  48. }
  49. static int twd_set_next_event(unsigned long evt,
  50. struct clock_event_device *unused)
  51. {
  52. unsigned long ctrl = __raw_readl(twd_base + TWD_TIMER_CONTROL);
  53. ctrl |= TWD_TIMER_CONTROL_ENABLE;
  54. __raw_writel(evt, twd_base + TWD_TIMER_COUNTER);
  55. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  56. return 0;
  57. }
  58. /*
  59. * local_timer_ack: checks for a local timer interrupt.
  60. *
  61. * If a local timer interrupt has occurred, acknowledge and return 1.
  62. * Otherwise, return 0.
  63. */
  64. int twd_timer_ack(void)
  65. {
  66. if (__raw_readl(twd_base + TWD_TIMER_INTSTAT)) {
  67. __raw_writel(1, twd_base + TWD_TIMER_INTSTAT);
  68. return 1;
  69. }
  70. return 0;
  71. }
  72. void twd_timer_stop(struct clock_event_device *clk)
  73. {
  74. twd_set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  75. disable_percpu_irq(clk->irq);
  76. }
  77. static void __cpuinit twd_calibrate_rate(void)
  78. {
  79. unsigned long count;
  80. u64 waitjiffies;
  81. /*
  82. * If this is the first time round, we need to work out how fast
  83. * the timer ticks
  84. */
  85. if (twd_timer_rate == 0) {
  86. printk(KERN_INFO "Calibrating local timer... ");
  87. /* Wait for a tick to start */
  88. waitjiffies = get_jiffies_64() + 1;
  89. while (get_jiffies_64() < waitjiffies)
  90. udelay(10);
  91. /* OK, now the tick has started, let's get the timer going */
  92. waitjiffies += 5;
  93. /* enable, no interrupt or reload */
  94. __raw_writel(0x1, twd_base + TWD_TIMER_CONTROL);
  95. /* maximum value */
  96. __raw_writel(0xFFFFFFFFU, twd_base + TWD_TIMER_COUNTER);
  97. while (get_jiffies_64() < waitjiffies)
  98. udelay(10);
  99. count = __raw_readl(twd_base + TWD_TIMER_COUNTER);
  100. twd_timer_rate = (0xFFFFFFFFU - count) * (HZ / 5);
  101. printk("%lu.%02luMHz.\n", twd_timer_rate / 1000000,
  102. (twd_timer_rate / 10000) % 100);
  103. }
  104. }
  105. static irqreturn_t twd_handler(int irq, void *dev_id)
  106. {
  107. struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
  108. if (twd_timer_ack()) {
  109. evt->event_handler(evt);
  110. return IRQ_HANDLED;
  111. }
  112. return IRQ_NONE;
  113. }
  114. /*
  115. * Setup the local clock events for a CPU.
  116. */
  117. void __cpuinit twd_timer_setup(struct clock_event_device *clk)
  118. {
  119. struct clock_event_device **this_cpu_clk;
  120. if (!twd_evt) {
  121. int err;
  122. twd_evt = alloc_percpu(struct clock_event_device *);
  123. if (!twd_evt) {
  124. pr_err("twd: can't allocate memory\n");
  125. return;
  126. }
  127. err = request_percpu_irq(clk->irq, twd_handler,
  128. "twd", twd_evt);
  129. if (err) {
  130. pr_err("twd: can't register interrupt %d (%d)\n",
  131. clk->irq, err);
  132. return;
  133. }
  134. }
  135. twd_calibrate_rate();
  136. clk->name = "local_timer";
  137. clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
  138. CLOCK_EVT_FEAT_C3STOP;
  139. clk->rating = 350;
  140. clk->set_mode = twd_set_mode;
  141. clk->set_next_event = twd_set_next_event;
  142. clk->shift = 20;
  143. clk->mult = div_sc(twd_timer_rate, NSEC_PER_SEC, clk->shift);
  144. clk->max_delta_ns = clockevent_delta2ns(0xffffffff, clk);
  145. clk->min_delta_ns = clockevent_delta2ns(0xf, clk);
  146. this_cpu_clk = __this_cpu_ptr(twd_evt);
  147. *this_cpu_clk = clk;
  148. clockevents_register_device(clk);
  149. enable_percpu_irq(clk->irq, 0);
  150. }