perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/perf_event.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/cputype.h>
  22. #include <asm/irq.h>
  23. #include <asm/irq_regs.h>
  24. #include <asm/pmu.h>
  25. #include <asm/stacktrace.h>
  26. /*
  27. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  28. * another platform that supports more, we need to increase this to be the
  29. * largest of all platforms.
  30. *
  31. * ARMv7 supports up to 32 events:
  32. * cycle counter CCNT + 31 events counters CNT0..30.
  33. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  34. */
  35. #define ARMPMU_MAX_HWEVENTS 32
  36. static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
  37. static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
  38. static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
  39. #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
  40. /* Set at runtime when we know what CPU type we are. */
  41. static struct arm_pmu *cpu_pmu;
  42. enum arm_perf_pmu_ids
  43. armpmu_get_pmu_id(void)
  44. {
  45. int id = -ENODEV;
  46. if (cpu_pmu != NULL)
  47. id = cpu_pmu->id;
  48. return id;
  49. }
  50. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  51. int perf_num_counters(void)
  52. {
  53. int max_events = 0;
  54. if (cpu_pmu != NULL)
  55. max_events = cpu_pmu->num_events;
  56. return max_events;
  57. }
  58. EXPORT_SYMBOL_GPL(perf_num_counters);
  59. #define HW_OP_UNSUPPORTED 0xFFFF
  60. #define C(_x) \
  61. PERF_COUNT_HW_CACHE_##_x
  62. #define CACHE_OP_UNSUPPORTED 0xFFFF
  63. static int
  64. armpmu_map_cache_event(const unsigned (*cache_map)
  65. [PERF_COUNT_HW_CACHE_MAX]
  66. [PERF_COUNT_HW_CACHE_OP_MAX]
  67. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  68. u64 config)
  69. {
  70. unsigned int cache_type, cache_op, cache_result, ret;
  71. cache_type = (config >> 0) & 0xff;
  72. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  73. return -EINVAL;
  74. cache_op = (config >> 8) & 0xff;
  75. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  76. return -EINVAL;
  77. cache_result = (config >> 16) & 0xff;
  78. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  81. if (ret == CACHE_OP_UNSUPPORTED)
  82. return -ENOENT;
  83. return ret;
  84. }
  85. static int
  86. armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  87. {
  88. int mapping = (*event_map)[config];
  89. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  90. }
  91. static int
  92. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  93. {
  94. return (int)(config & raw_event_mask);
  95. }
  96. static int map_cpu_event(struct perf_event *event,
  97. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  98. const unsigned (*cache_map)
  99. [PERF_COUNT_HW_CACHE_MAX]
  100. [PERF_COUNT_HW_CACHE_OP_MAX]
  101. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  102. u32 raw_event_mask)
  103. {
  104. u64 config = event->attr.config;
  105. switch (event->attr.type) {
  106. case PERF_TYPE_HARDWARE:
  107. return armpmu_map_event(event_map, config);
  108. case PERF_TYPE_HW_CACHE:
  109. return armpmu_map_cache_event(cache_map, config);
  110. case PERF_TYPE_RAW:
  111. return armpmu_map_raw_event(raw_event_mask, config);
  112. }
  113. return -ENOENT;
  114. }
  115. int
  116. armpmu_event_set_period(struct perf_event *event,
  117. struct hw_perf_event *hwc,
  118. int idx)
  119. {
  120. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  121. s64 left = local64_read(&hwc->period_left);
  122. s64 period = hwc->sample_period;
  123. int ret = 0;
  124. if (unlikely(left <= -period)) {
  125. left = period;
  126. local64_set(&hwc->period_left, left);
  127. hwc->last_period = period;
  128. ret = 1;
  129. }
  130. if (unlikely(left <= 0)) {
  131. left += period;
  132. local64_set(&hwc->period_left, left);
  133. hwc->last_period = period;
  134. ret = 1;
  135. }
  136. if (left > (s64)armpmu->max_period)
  137. left = armpmu->max_period;
  138. local64_set(&hwc->prev_count, (u64)-left);
  139. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  140. perf_event_update_userpage(event);
  141. return ret;
  142. }
  143. u64
  144. armpmu_event_update(struct perf_event *event,
  145. struct hw_perf_event *hwc,
  146. int idx, int overflow)
  147. {
  148. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  149. u64 delta, prev_raw_count, new_raw_count;
  150. again:
  151. prev_raw_count = local64_read(&hwc->prev_count);
  152. new_raw_count = armpmu->read_counter(idx);
  153. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  154. new_raw_count) != prev_raw_count)
  155. goto again;
  156. new_raw_count &= armpmu->max_period;
  157. prev_raw_count &= armpmu->max_period;
  158. if (overflow)
  159. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  160. else
  161. delta = new_raw_count - prev_raw_count;
  162. local64_add(delta, &event->count);
  163. local64_sub(delta, &hwc->period_left);
  164. return new_raw_count;
  165. }
  166. static void
  167. armpmu_read(struct perf_event *event)
  168. {
  169. struct hw_perf_event *hwc = &event->hw;
  170. /* Don't read disabled counters! */
  171. if (hwc->idx < 0)
  172. return;
  173. armpmu_event_update(event, hwc, hwc->idx, 0);
  174. }
  175. static void
  176. armpmu_stop(struct perf_event *event, int flags)
  177. {
  178. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  179. struct hw_perf_event *hwc = &event->hw;
  180. /*
  181. * ARM pmu always has to update the counter, so ignore
  182. * PERF_EF_UPDATE, see comments in armpmu_start().
  183. */
  184. if (!(hwc->state & PERF_HES_STOPPED)) {
  185. armpmu->disable(hwc, hwc->idx);
  186. barrier(); /* why? */
  187. armpmu_event_update(event, hwc, hwc->idx, 0);
  188. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  189. }
  190. }
  191. static void
  192. armpmu_start(struct perf_event *event, int flags)
  193. {
  194. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  195. struct hw_perf_event *hwc = &event->hw;
  196. /*
  197. * ARM pmu always has to reprogram the period, so ignore
  198. * PERF_EF_RELOAD, see the comment below.
  199. */
  200. if (flags & PERF_EF_RELOAD)
  201. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  202. hwc->state = 0;
  203. /*
  204. * Set the period again. Some counters can't be stopped, so when we
  205. * were stopped we simply disabled the IRQ source and the counter
  206. * may have been left counting. If we don't do this step then we may
  207. * get an interrupt too soon or *way* too late if the overflow has
  208. * happened since disabling.
  209. */
  210. armpmu_event_set_period(event, hwc, hwc->idx);
  211. armpmu->enable(hwc, hwc->idx);
  212. }
  213. static void
  214. armpmu_del(struct perf_event *event, int flags)
  215. {
  216. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  217. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  218. struct hw_perf_event *hwc = &event->hw;
  219. int idx = hwc->idx;
  220. WARN_ON(idx < 0);
  221. armpmu_stop(event, PERF_EF_UPDATE);
  222. hw_events->events[idx] = NULL;
  223. clear_bit(idx, hw_events->used_mask);
  224. perf_event_update_userpage(event);
  225. }
  226. static int
  227. armpmu_add(struct perf_event *event, int flags)
  228. {
  229. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  230. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  231. struct hw_perf_event *hwc = &event->hw;
  232. int idx;
  233. int err = 0;
  234. perf_pmu_disable(event->pmu);
  235. /* If we don't have a space for the counter then finish early. */
  236. idx = armpmu->get_event_idx(hw_events, hwc);
  237. if (idx < 0) {
  238. err = idx;
  239. goto out;
  240. }
  241. /*
  242. * If there is an event in the counter we are going to use then make
  243. * sure it is disabled.
  244. */
  245. event->hw.idx = idx;
  246. armpmu->disable(hwc, idx);
  247. hw_events->events[idx] = event;
  248. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  249. if (flags & PERF_EF_START)
  250. armpmu_start(event, PERF_EF_RELOAD);
  251. /* Propagate our changes to the userspace mapping. */
  252. perf_event_update_userpage(event);
  253. out:
  254. perf_pmu_enable(event->pmu);
  255. return err;
  256. }
  257. static int
  258. validate_event(struct pmu_hw_events *hw_events,
  259. struct perf_event *event)
  260. {
  261. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  262. struct hw_perf_event fake_event = event->hw;
  263. struct pmu *leader_pmu = event->group_leader->pmu;
  264. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  265. return 1;
  266. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  267. }
  268. static int
  269. validate_group(struct perf_event *event)
  270. {
  271. struct perf_event *sibling, *leader = event->group_leader;
  272. struct pmu_hw_events fake_pmu;
  273. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  274. /*
  275. * Initialise the fake PMU. We only need to populate the
  276. * used_mask for the purposes of validation.
  277. */
  278. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  279. fake_pmu.used_mask = fake_used_mask;
  280. if (!validate_event(&fake_pmu, leader))
  281. return -ENOSPC;
  282. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  283. if (!validate_event(&fake_pmu, sibling))
  284. return -ENOSPC;
  285. }
  286. if (!validate_event(&fake_pmu, event))
  287. return -ENOSPC;
  288. return 0;
  289. }
  290. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  291. {
  292. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  293. struct platform_device *plat_device = armpmu->plat_device;
  294. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  295. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  296. }
  297. static void
  298. armpmu_release_hardware(struct arm_pmu *armpmu)
  299. {
  300. int i, irq, irqs;
  301. struct platform_device *pmu_device = armpmu->plat_device;
  302. irqs = min(pmu_device->num_resources, num_possible_cpus());
  303. for (i = 0; i < irqs; ++i) {
  304. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  305. continue;
  306. irq = platform_get_irq(pmu_device, i);
  307. if (irq >= 0)
  308. free_irq(irq, armpmu);
  309. }
  310. release_pmu(armpmu->type);
  311. }
  312. static int
  313. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  314. {
  315. struct arm_pmu_platdata *plat;
  316. irq_handler_t handle_irq;
  317. int i, err, irq, irqs;
  318. struct platform_device *pmu_device = armpmu->plat_device;
  319. if (!pmu_device)
  320. return -ENODEV;
  321. err = reserve_pmu(armpmu->type);
  322. if (err) {
  323. pr_warning("unable to reserve pmu\n");
  324. return err;
  325. }
  326. plat = dev_get_platdata(&pmu_device->dev);
  327. if (plat && plat->handle_irq)
  328. handle_irq = armpmu_platform_irq;
  329. else
  330. handle_irq = armpmu->handle_irq;
  331. irqs = min(pmu_device->num_resources, num_possible_cpus());
  332. if (irqs < 1) {
  333. pr_err("no irqs for PMUs defined\n");
  334. return -ENODEV;
  335. }
  336. for (i = 0; i < irqs; ++i) {
  337. err = 0;
  338. irq = platform_get_irq(pmu_device, i);
  339. if (irq < 0)
  340. continue;
  341. /*
  342. * If we have a single PMU interrupt that we can't shift,
  343. * assume that we're running on a uniprocessor machine and
  344. * continue. Otherwise, continue without this interrupt.
  345. */
  346. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  347. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  348. irq, i);
  349. continue;
  350. }
  351. err = request_irq(irq, handle_irq,
  352. IRQF_DISABLED | IRQF_NOBALANCING,
  353. "arm-pmu", armpmu);
  354. if (err) {
  355. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  356. irq);
  357. armpmu_release_hardware(armpmu);
  358. return err;
  359. }
  360. cpumask_set_cpu(i, &armpmu->active_irqs);
  361. }
  362. return 0;
  363. }
  364. static void
  365. hw_perf_event_destroy(struct perf_event *event)
  366. {
  367. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  368. atomic_t *active_events = &armpmu->active_events;
  369. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  370. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  371. armpmu_release_hardware(armpmu);
  372. mutex_unlock(pmu_reserve_mutex);
  373. }
  374. }
  375. static int
  376. event_requires_mode_exclusion(struct perf_event_attr *attr)
  377. {
  378. return attr->exclude_idle || attr->exclude_user ||
  379. attr->exclude_kernel || attr->exclude_hv;
  380. }
  381. static int
  382. __hw_perf_event_init(struct perf_event *event)
  383. {
  384. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  385. struct hw_perf_event *hwc = &event->hw;
  386. int mapping, err;
  387. mapping = armpmu->map_event(event);
  388. if (mapping < 0) {
  389. pr_debug("event %x:%llx not supported\n", event->attr.type,
  390. event->attr.config);
  391. return mapping;
  392. }
  393. /*
  394. * We don't assign an index until we actually place the event onto
  395. * hardware. Use -1 to signify that we haven't decided where to put it
  396. * yet. For SMP systems, each core has it's own PMU so we can't do any
  397. * clever allocation or constraints checking at this point.
  398. */
  399. hwc->idx = -1;
  400. hwc->config_base = 0;
  401. hwc->config = 0;
  402. hwc->event_base = 0;
  403. /*
  404. * Check whether we need to exclude the counter from certain modes.
  405. */
  406. if ((!armpmu->set_event_filter ||
  407. armpmu->set_event_filter(hwc, &event->attr)) &&
  408. event_requires_mode_exclusion(&event->attr)) {
  409. pr_debug("ARM performance counters do not support "
  410. "mode exclusion\n");
  411. return -EPERM;
  412. }
  413. /*
  414. * Store the event encoding into the config_base field.
  415. */
  416. hwc->config_base |= (unsigned long)mapping;
  417. if (!hwc->sample_period) {
  418. hwc->sample_period = armpmu->max_period;
  419. hwc->last_period = hwc->sample_period;
  420. local64_set(&hwc->period_left, hwc->sample_period);
  421. }
  422. err = 0;
  423. if (event->group_leader != event) {
  424. err = validate_group(event);
  425. if (err)
  426. return -EINVAL;
  427. }
  428. return err;
  429. }
  430. static int armpmu_event_init(struct perf_event *event)
  431. {
  432. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  433. int err = 0;
  434. atomic_t *active_events = &armpmu->active_events;
  435. if (armpmu->map_event(event) == -ENOENT)
  436. return -ENOENT;
  437. event->destroy = hw_perf_event_destroy;
  438. if (!atomic_inc_not_zero(active_events)) {
  439. mutex_lock(&armpmu->reserve_mutex);
  440. if (atomic_read(active_events) == 0)
  441. err = armpmu_reserve_hardware(armpmu);
  442. if (!err)
  443. atomic_inc(active_events);
  444. mutex_unlock(&armpmu->reserve_mutex);
  445. }
  446. if (err)
  447. return err;
  448. err = __hw_perf_event_init(event);
  449. if (err)
  450. hw_perf_event_destroy(event);
  451. return err;
  452. }
  453. static void armpmu_enable(struct pmu *pmu)
  454. {
  455. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  456. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  457. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  458. if (enabled)
  459. armpmu->start();
  460. }
  461. static void armpmu_disable(struct pmu *pmu)
  462. {
  463. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  464. armpmu->stop();
  465. }
  466. static void __init armpmu_init(struct arm_pmu *armpmu)
  467. {
  468. atomic_set(&armpmu->active_events, 0);
  469. mutex_init(&armpmu->reserve_mutex);
  470. armpmu->pmu = (struct pmu) {
  471. .pmu_enable = armpmu_enable,
  472. .pmu_disable = armpmu_disable,
  473. .event_init = armpmu_event_init,
  474. .add = armpmu_add,
  475. .del = armpmu_del,
  476. .start = armpmu_start,
  477. .stop = armpmu_stop,
  478. .read = armpmu_read,
  479. };
  480. }
  481. int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  482. {
  483. armpmu_init(armpmu);
  484. return perf_pmu_register(&armpmu->pmu, name, type);
  485. }
  486. /* Include the PMU-specific implementations. */
  487. #include "perf_event_xscale.c"
  488. #include "perf_event_v6.c"
  489. #include "perf_event_v7.c"
  490. /*
  491. * Ensure the PMU has sane values out of reset.
  492. * This requires SMP to be available, so exists as a separate initcall.
  493. */
  494. static int __init
  495. cpu_pmu_reset(void)
  496. {
  497. if (cpu_pmu && cpu_pmu->reset)
  498. return on_each_cpu(cpu_pmu->reset, NULL, 1);
  499. return 0;
  500. }
  501. arch_initcall(cpu_pmu_reset);
  502. /*
  503. * PMU platform driver and devicetree bindings.
  504. */
  505. static struct of_device_id armpmu_of_device_ids[] = {
  506. {.compatible = "arm,cortex-a9-pmu"},
  507. {.compatible = "arm,cortex-a8-pmu"},
  508. {.compatible = "arm,arm1136-pmu"},
  509. {.compatible = "arm,arm1176-pmu"},
  510. {},
  511. };
  512. static struct platform_device_id armpmu_plat_device_ids[] = {
  513. {.name = "arm-pmu"},
  514. {},
  515. };
  516. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  517. {
  518. cpu_pmu->plat_device = pdev;
  519. return 0;
  520. }
  521. static struct platform_driver armpmu_driver = {
  522. .driver = {
  523. .name = "arm-pmu",
  524. .of_match_table = armpmu_of_device_ids,
  525. },
  526. .probe = armpmu_device_probe,
  527. .id_table = armpmu_plat_device_ids,
  528. };
  529. static int __init register_pmu_driver(void)
  530. {
  531. return platform_driver_register(&armpmu_driver);
  532. }
  533. device_initcall(register_pmu_driver);
  534. static struct pmu_hw_events *armpmu_get_cpu_events(void)
  535. {
  536. return &__get_cpu_var(cpu_hw_events);
  537. }
  538. static void __init cpu_pmu_init(struct arm_pmu *armpmu)
  539. {
  540. int cpu;
  541. for_each_possible_cpu(cpu) {
  542. struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
  543. events->events = per_cpu(hw_events, cpu);
  544. events->used_mask = per_cpu(used_mask, cpu);
  545. raw_spin_lock_init(&events->pmu_lock);
  546. }
  547. armpmu->get_hw_events = armpmu_get_cpu_events;
  548. armpmu->type = ARM_PMU_DEVICE_CPU;
  549. }
  550. /*
  551. * CPU PMU identification and registration.
  552. */
  553. static int __init
  554. init_hw_perf_events(void)
  555. {
  556. unsigned long cpuid = read_cpuid_id();
  557. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  558. unsigned long part_number = (cpuid & 0xFFF0);
  559. /* ARM Ltd CPUs. */
  560. if (0x41 == implementor) {
  561. switch (part_number) {
  562. case 0xB360: /* ARM1136 */
  563. case 0xB560: /* ARM1156 */
  564. case 0xB760: /* ARM1176 */
  565. cpu_pmu = armv6pmu_init();
  566. break;
  567. case 0xB020: /* ARM11mpcore */
  568. cpu_pmu = armv6mpcore_pmu_init();
  569. break;
  570. case 0xC080: /* Cortex-A8 */
  571. cpu_pmu = armv7_a8_pmu_init();
  572. break;
  573. case 0xC090: /* Cortex-A9 */
  574. cpu_pmu = armv7_a9_pmu_init();
  575. break;
  576. case 0xC050: /* Cortex-A5 */
  577. cpu_pmu = armv7_a5_pmu_init();
  578. break;
  579. case 0xC0F0: /* Cortex-A15 */
  580. cpu_pmu = armv7_a15_pmu_init();
  581. break;
  582. }
  583. /* Intel CPUs [xscale]. */
  584. } else if (0x69 == implementor) {
  585. part_number = (cpuid >> 13) & 0x7;
  586. switch (part_number) {
  587. case 1:
  588. cpu_pmu = xscale1pmu_init();
  589. break;
  590. case 2:
  591. cpu_pmu = xscale2pmu_init();
  592. break;
  593. }
  594. }
  595. if (cpu_pmu) {
  596. pr_info("enabled with %s PMU driver, %d counters available\n",
  597. cpu_pmu->name, cpu_pmu->num_events);
  598. cpu_pmu_init(cpu_pmu);
  599. armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
  600. } else {
  601. pr_info("no hardware support available\n");
  602. }
  603. return 0;
  604. }
  605. early_initcall(init_hw_perf_events);
  606. /*
  607. * Callchain handling code.
  608. */
  609. /*
  610. * The registers we're interested in are at the end of the variable
  611. * length saved register structure. The fp points at the end of this
  612. * structure so the address of this struct is:
  613. * (struct frame_tail *)(xxx->fp)-1
  614. *
  615. * This code has been adapted from the ARM OProfile support.
  616. */
  617. struct frame_tail {
  618. struct frame_tail __user *fp;
  619. unsigned long sp;
  620. unsigned long lr;
  621. } __attribute__((packed));
  622. /*
  623. * Get the return address for a single stackframe and return a pointer to the
  624. * next frame tail.
  625. */
  626. static struct frame_tail __user *
  627. user_backtrace(struct frame_tail __user *tail,
  628. struct perf_callchain_entry *entry)
  629. {
  630. struct frame_tail buftail;
  631. /* Also check accessibility of one struct frame_tail beyond */
  632. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  633. return NULL;
  634. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  635. return NULL;
  636. perf_callchain_store(entry, buftail.lr);
  637. /*
  638. * Frame pointers should strictly progress back up the stack
  639. * (towards higher addresses).
  640. */
  641. if (tail + 1 >= buftail.fp)
  642. return NULL;
  643. return buftail.fp - 1;
  644. }
  645. void
  646. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  647. {
  648. struct frame_tail __user *tail;
  649. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  650. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  651. tail && !((unsigned long)tail & 0x3))
  652. tail = user_backtrace(tail, entry);
  653. }
  654. /*
  655. * Gets called by walk_stackframe() for every stackframe. This will be called
  656. * whist unwinding the stackframe and is like a subroutine return so we use
  657. * the PC.
  658. */
  659. static int
  660. callchain_trace(struct stackframe *fr,
  661. void *data)
  662. {
  663. struct perf_callchain_entry *entry = data;
  664. perf_callchain_store(entry, fr->pc);
  665. return 0;
  666. }
  667. void
  668. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  669. {
  670. struct stackframe fr;
  671. fr.fp = regs->ARM_fp;
  672. fr.sp = regs->ARM_sp;
  673. fr.lr = regs->ARM_lr;
  674. fr.pc = regs->ARM_pc;
  675. walk_stackframe(&fr, callchain_trace, entry);
  676. }