af9033.c 22 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. { 0x800045, state->cfg.adc_multiplier, 0xff },
  195. };
  196. /* program clock control */
  197. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  198. buf[0] = (clock_cw >> 0) & 0xff;
  199. buf[1] = (clock_cw >> 8) & 0xff;
  200. buf[2] = (clock_cw >> 16) & 0xff;
  201. buf[3] = (clock_cw >> 24) & 0xff;
  202. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  203. __func__, state->cfg.clock, clock_cw);
  204. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  205. if (ret < 0)
  206. goto err;
  207. /* program ADC control */
  208. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  209. if (clock_adc_lut[i].clock == state->cfg.clock)
  210. break;
  211. }
  212. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  213. buf[0] = (adc_cw >> 0) & 0xff;
  214. buf[1] = (adc_cw >> 8) & 0xff;
  215. buf[2] = (adc_cw >> 16) & 0xff;
  216. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  217. __func__, clock_adc_lut[i].adc, adc_cw);
  218. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  219. if (ret < 0)
  220. goto err;
  221. /* program register table */
  222. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  223. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  224. tab[i].mask);
  225. if (ret < 0)
  226. goto err;
  227. }
  228. /* settings for TS interface */
  229. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  230. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  231. if (ret < 0)
  232. goto err;
  233. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  234. if (ret < 0)
  235. goto err;
  236. } else {
  237. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  238. if (ret < 0)
  239. goto err;
  240. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  241. if (ret < 0)
  242. goto err;
  243. }
  244. /*
  245. * FIXME: These inits are logically property of demodulator driver
  246. * (that driver), but currently in case of IT9135 those are done by
  247. * tuner driver.
  248. */
  249. /* load OFSM settings */
  250. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  251. switch (state->cfg.tuner) {
  252. case AF9033_TUNER_IT9135_38:
  253. case AF9033_TUNER_IT9135_51:
  254. case AF9033_TUNER_IT9135_52:
  255. case AF9033_TUNER_IT9135_60:
  256. case AF9033_TUNER_IT9135_61:
  257. case AF9033_TUNER_IT9135_62:
  258. len = 0;
  259. break;
  260. default:
  261. len = ARRAY_SIZE(ofsm_init);
  262. init = ofsm_init;
  263. break;
  264. }
  265. for (i = 0; i < len; i++) {
  266. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  267. if (ret < 0)
  268. goto err;
  269. }
  270. /* load tuner specific settings */
  271. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  272. __func__);
  273. switch (state->cfg.tuner) {
  274. case AF9033_TUNER_TUA9001:
  275. len = ARRAY_SIZE(tuner_init_tua9001);
  276. init = tuner_init_tua9001;
  277. break;
  278. case AF9033_TUNER_FC0011:
  279. len = ARRAY_SIZE(tuner_init_fc0011);
  280. init = tuner_init_fc0011;
  281. break;
  282. case AF9033_TUNER_MXL5007T:
  283. len = ARRAY_SIZE(tuner_init_mxl5007t);
  284. init = tuner_init_mxl5007t;
  285. break;
  286. case AF9033_TUNER_TDA18218:
  287. len = ARRAY_SIZE(tuner_init_tda18218);
  288. init = tuner_init_tda18218;
  289. break;
  290. case AF9033_TUNER_FC2580:
  291. len = ARRAY_SIZE(tuner_init_fc2580);
  292. init = tuner_init_fc2580;
  293. break;
  294. case AF9033_TUNER_FC0012:
  295. len = ARRAY_SIZE(tuner_init_fc0012);
  296. init = tuner_init_fc0012;
  297. break;
  298. case AF9033_TUNER_IT9135_38:
  299. case AF9033_TUNER_IT9135_51:
  300. case AF9033_TUNER_IT9135_52:
  301. case AF9033_TUNER_IT9135_60:
  302. case AF9033_TUNER_IT9135_61:
  303. case AF9033_TUNER_IT9135_62:
  304. len = 0;
  305. break;
  306. default:
  307. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  308. __func__, state->cfg.tuner);
  309. ret = -ENODEV;
  310. goto err;
  311. }
  312. for (i = 0; i < len; i++) {
  313. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  314. if (ret < 0)
  315. goto err;
  316. }
  317. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  318. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  319. if (ret < 0)
  320. goto err;
  321. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  322. if (ret < 0)
  323. goto err;
  324. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  325. if (ret < 0)
  326. goto err;
  327. }
  328. state->bandwidth_hz = 0; /* force to program all parameters */
  329. return 0;
  330. err:
  331. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  332. return ret;
  333. }
  334. static int af9033_sleep(struct dvb_frontend *fe)
  335. {
  336. struct af9033_state *state = fe->demodulator_priv;
  337. int ret, i;
  338. u8 tmp;
  339. ret = af9033_wr_reg(state, 0x80004c, 1);
  340. if (ret < 0)
  341. goto err;
  342. ret = af9033_wr_reg(state, 0x800000, 0);
  343. if (ret < 0)
  344. goto err;
  345. for (i = 100, tmp = 1; i && tmp; i--) {
  346. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  347. if (ret < 0)
  348. goto err;
  349. usleep_range(200, 10000);
  350. }
  351. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  352. if (i == 0) {
  353. ret = -ETIMEDOUT;
  354. goto err;
  355. }
  356. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  357. if (ret < 0)
  358. goto err;
  359. /* prevent current leak (?) */
  360. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  361. /* enable parallel TS */
  362. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  363. if (ret < 0)
  364. goto err;
  365. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  366. if (ret < 0)
  367. goto err;
  368. }
  369. return 0;
  370. err:
  371. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  372. return ret;
  373. }
  374. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  375. struct dvb_frontend_tune_settings *fesettings)
  376. {
  377. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  378. fesettings->min_delay_ms = 2000;
  379. fesettings->step_size = 0;
  380. fesettings->max_drift = 0;
  381. return 0;
  382. }
  383. static int af9033_set_frontend(struct dvb_frontend *fe)
  384. {
  385. struct af9033_state *state = fe->demodulator_priv;
  386. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  387. int ret, i, spec_inv, sampling_freq;
  388. u8 tmp, buf[3], bandwidth_reg_val;
  389. u32 if_frequency, freq_cw, adc_freq;
  390. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  391. __func__, c->frequency, c->bandwidth_hz);
  392. /* check bandwidth */
  393. switch (c->bandwidth_hz) {
  394. case 6000000:
  395. bandwidth_reg_val = 0x00;
  396. break;
  397. case 7000000:
  398. bandwidth_reg_val = 0x01;
  399. break;
  400. case 8000000:
  401. bandwidth_reg_val = 0x02;
  402. break;
  403. default:
  404. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  405. __func__);
  406. ret = -EINVAL;
  407. goto err;
  408. }
  409. /* program tuner */
  410. if (fe->ops.tuner_ops.set_params)
  411. fe->ops.tuner_ops.set_params(fe);
  412. /* program CFOE coefficients */
  413. if (c->bandwidth_hz != state->bandwidth_hz) {
  414. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  415. if (coeff_lut[i].clock == state->cfg.clock &&
  416. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  417. break;
  418. }
  419. }
  420. ret = af9033_wr_regs(state, 0x800001,
  421. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  422. }
  423. /* program frequency control */
  424. if (c->bandwidth_hz != state->bandwidth_hz) {
  425. spec_inv = state->cfg.spec_inv ? -1 : 1;
  426. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  427. if (clock_adc_lut[i].clock == state->cfg.clock)
  428. break;
  429. }
  430. adc_freq = clock_adc_lut[i].adc;
  431. /* get used IF frequency */
  432. if (fe->ops.tuner_ops.get_if_frequency)
  433. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  434. else
  435. if_frequency = 0;
  436. sampling_freq = if_frequency;
  437. while (sampling_freq > (adc_freq / 2))
  438. sampling_freq -= adc_freq;
  439. if (sampling_freq >= 0)
  440. spec_inv *= -1;
  441. else
  442. sampling_freq *= -1;
  443. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  444. if (spec_inv == -1)
  445. freq_cw = 0x800000 - freq_cw;
  446. if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  447. freq_cw /= 2;
  448. buf[0] = (freq_cw >> 0) & 0xff;
  449. buf[1] = (freq_cw >> 8) & 0xff;
  450. buf[2] = (freq_cw >> 16) & 0x7f;
  451. /* FIXME: there seems to be calculation error here... */
  452. if (if_frequency == 0)
  453. buf[2] = 0;
  454. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  455. if (ret < 0)
  456. goto err;
  457. state->bandwidth_hz = c->bandwidth_hz;
  458. }
  459. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  460. if (ret < 0)
  461. goto err;
  462. ret = af9033_wr_reg(state, 0x800040, 0x00);
  463. if (ret < 0)
  464. goto err;
  465. ret = af9033_wr_reg(state, 0x800047, 0x00);
  466. if (ret < 0)
  467. goto err;
  468. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  469. if (ret < 0)
  470. goto err;
  471. if (c->frequency <= 230000000)
  472. tmp = 0x00; /* VHF */
  473. else
  474. tmp = 0x01; /* UHF */
  475. ret = af9033_wr_reg(state, 0x80004b, tmp);
  476. if (ret < 0)
  477. goto err;
  478. ret = af9033_wr_reg(state, 0x800000, 0x00);
  479. if (ret < 0)
  480. goto err;
  481. return 0;
  482. err:
  483. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  484. return ret;
  485. }
  486. static int af9033_get_frontend(struct dvb_frontend *fe)
  487. {
  488. struct af9033_state *state = fe->demodulator_priv;
  489. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  490. int ret;
  491. u8 buf[8];
  492. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  493. /* read all needed registers */
  494. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  495. if (ret < 0)
  496. goto err;
  497. switch ((buf[0] >> 0) & 3) {
  498. case 0:
  499. c->transmission_mode = TRANSMISSION_MODE_2K;
  500. break;
  501. case 1:
  502. c->transmission_mode = TRANSMISSION_MODE_8K;
  503. break;
  504. }
  505. switch ((buf[1] >> 0) & 3) {
  506. case 0:
  507. c->guard_interval = GUARD_INTERVAL_1_32;
  508. break;
  509. case 1:
  510. c->guard_interval = GUARD_INTERVAL_1_16;
  511. break;
  512. case 2:
  513. c->guard_interval = GUARD_INTERVAL_1_8;
  514. break;
  515. case 3:
  516. c->guard_interval = GUARD_INTERVAL_1_4;
  517. break;
  518. }
  519. switch ((buf[2] >> 0) & 7) {
  520. case 0:
  521. c->hierarchy = HIERARCHY_NONE;
  522. break;
  523. case 1:
  524. c->hierarchy = HIERARCHY_1;
  525. break;
  526. case 2:
  527. c->hierarchy = HIERARCHY_2;
  528. break;
  529. case 3:
  530. c->hierarchy = HIERARCHY_4;
  531. break;
  532. }
  533. switch ((buf[3] >> 0) & 3) {
  534. case 0:
  535. c->modulation = QPSK;
  536. break;
  537. case 1:
  538. c->modulation = QAM_16;
  539. break;
  540. case 2:
  541. c->modulation = QAM_64;
  542. break;
  543. }
  544. switch ((buf[4] >> 0) & 3) {
  545. case 0:
  546. c->bandwidth_hz = 6000000;
  547. break;
  548. case 1:
  549. c->bandwidth_hz = 7000000;
  550. break;
  551. case 2:
  552. c->bandwidth_hz = 8000000;
  553. break;
  554. }
  555. switch ((buf[6] >> 0) & 7) {
  556. case 0:
  557. c->code_rate_HP = FEC_1_2;
  558. break;
  559. case 1:
  560. c->code_rate_HP = FEC_2_3;
  561. break;
  562. case 2:
  563. c->code_rate_HP = FEC_3_4;
  564. break;
  565. case 3:
  566. c->code_rate_HP = FEC_5_6;
  567. break;
  568. case 4:
  569. c->code_rate_HP = FEC_7_8;
  570. break;
  571. case 5:
  572. c->code_rate_HP = FEC_NONE;
  573. break;
  574. }
  575. switch ((buf[7] >> 0) & 7) {
  576. case 0:
  577. c->code_rate_LP = FEC_1_2;
  578. break;
  579. case 1:
  580. c->code_rate_LP = FEC_2_3;
  581. break;
  582. case 2:
  583. c->code_rate_LP = FEC_3_4;
  584. break;
  585. case 3:
  586. c->code_rate_LP = FEC_5_6;
  587. break;
  588. case 4:
  589. c->code_rate_LP = FEC_7_8;
  590. break;
  591. case 5:
  592. c->code_rate_LP = FEC_NONE;
  593. break;
  594. }
  595. return 0;
  596. err:
  597. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  598. return ret;
  599. }
  600. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  601. {
  602. struct af9033_state *state = fe->demodulator_priv;
  603. int ret;
  604. u8 tmp;
  605. *status = 0;
  606. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  607. ret = af9033_rd_reg(state, 0x800047, &tmp);
  608. if (ret < 0)
  609. goto err;
  610. /* has signal */
  611. if (tmp == 0x01)
  612. *status |= FE_HAS_SIGNAL;
  613. if (tmp != 0x02) {
  614. /* TPS lock */
  615. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  616. if (ret < 0)
  617. goto err;
  618. if (tmp)
  619. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  620. FE_HAS_VITERBI;
  621. /* full lock */
  622. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  623. if (ret < 0)
  624. goto err;
  625. if (tmp)
  626. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  627. FE_HAS_VITERBI | FE_HAS_SYNC |
  628. FE_HAS_LOCK;
  629. }
  630. return 0;
  631. err:
  632. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  633. return ret;
  634. }
  635. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  636. {
  637. struct af9033_state *state = fe->demodulator_priv;
  638. int ret, i, len;
  639. u8 buf[3], tmp;
  640. u32 snr_val;
  641. const struct val_snr *uninitialized_var(snr_lut);
  642. /* read value */
  643. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  644. if (ret < 0)
  645. goto err;
  646. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  647. /* read current modulation */
  648. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  649. if (ret < 0)
  650. goto err;
  651. switch ((tmp >> 0) & 3) {
  652. case 0:
  653. len = ARRAY_SIZE(qpsk_snr_lut);
  654. snr_lut = qpsk_snr_lut;
  655. break;
  656. case 1:
  657. len = ARRAY_SIZE(qam16_snr_lut);
  658. snr_lut = qam16_snr_lut;
  659. break;
  660. case 2:
  661. len = ARRAY_SIZE(qam64_snr_lut);
  662. snr_lut = qam64_snr_lut;
  663. break;
  664. default:
  665. goto err;
  666. }
  667. for (i = 0; i < len; i++) {
  668. tmp = snr_lut[i].snr;
  669. if (snr_val < snr_lut[i].val)
  670. break;
  671. }
  672. *snr = tmp * 10; /* dB/10 */
  673. return 0;
  674. err:
  675. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  676. return ret;
  677. }
  678. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  679. {
  680. struct af9033_state *state = fe->demodulator_priv;
  681. int ret;
  682. u8 strength2;
  683. /* read signal strength of 0-100 scale */
  684. ret = af9033_rd_reg(state, 0x800048, &strength2);
  685. if (ret < 0)
  686. goto err;
  687. /* scale value to 0x0000-0xffff */
  688. *strength = strength2 * 0xffff / 100;
  689. return 0;
  690. err:
  691. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  692. return ret;
  693. }
  694. static int af9033_update_ch_stat(struct af9033_state *state)
  695. {
  696. int ret = 0;
  697. u32 err_cnt, bit_cnt;
  698. u16 abort_cnt;
  699. u8 buf[7];
  700. /* only update data every half second */
  701. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  702. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  703. if (ret < 0)
  704. goto err;
  705. /* in 8 byte packets? */
  706. abort_cnt = (buf[1] << 8) + buf[0];
  707. /* in bits */
  708. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  709. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  710. bit_cnt = (buf[6] << 8) + buf[5];
  711. if (bit_cnt < abort_cnt) {
  712. abort_cnt = 1000;
  713. state->ber = 0xffffffff;
  714. } else {
  715. /* 8 byte packets, that have not been rejected already */
  716. bit_cnt -= (u32)abort_cnt;
  717. if (bit_cnt == 0) {
  718. state->ber = 0xffffffff;
  719. } else {
  720. err_cnt -= (u32)abort_cnt * 8 * 8;
  721. bit_cnt *= 8 * 8;
  722. state->ber = err_cnt * (0xffffffff / bit_cnt);
  723. }
  724. }
  725. state->ucb += abort_cnt;
  726. state->last_stat_check = jiffies;
  727. }
  728. return 0;
  729. err:
  730. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  731. return ret;
  732. }
  733. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  734. {
  735. struct af9033_state *state = fe->demodulator_priv;
  736. int ret;
  737. ret = af9033_update_ch_stat(state);
  738. if (ret < 0)
  739. return ret;
  740. *ber = state->ber;
  741. return 0;
  742. }
  743. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  744. {
  745. struct af9033_state *state = fe->demodulator_priv;
  746. int ret;
  747. ret = af9033_update_ch_stat(state);
  748. if (ret < 0)
  749. return ret;
  750. *ucblocks = state->ucb;
  751. return 0;
  752. }
  753. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  754. {
  755. struct af9033_state *state = fe->demodulator_priv;
  756. int ret;
  757. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  758. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  759. if (ret < 0)
  760. goto err;
  761. return 0;
  762. err:
  763. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  764. return ret;
  765. }
  766. static struct dvb_frontend_ops af9033_ops;
  767. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  768. struct i2c_adapter *i2c)
  769. {
  770. int ret;
  771. struct af9033_state *state;
  772. u8 buf[8];
  773. dev_dbg(&i2c->dev, "%s:\n", __func__);
  774. /* allocate memory for the internal state */
  775. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  776. if (state == NULL)
  777. goto err;
  778. /* setup the state */
  779. state->i2c = i2c;
  780. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  781. if (state->cfg.clock != 12000000) {
  782. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  783. "only 12000000 Hz is supported currently\n",
  784. KBUILD_MODNAME, state->cfg.clock);
  785. goto err;
  786. }
  787. /* firmware version */
  788. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  789. if (ret < 0)
  790. goto err;
  791. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  792. if (ret < 0)
  793. goto err;
  794. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  795. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  796. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  797. /* FIXME: Do not abuse adc_multiplier for detecting IT9135 */
  798. if (state->cfg.adc_multiplier != AF9033_ADC_MULTIPLIER_2X) {
  799. /* sleep */
  800. ret = af9033_wr_reg(state, 0x80004c, 1);
  801. if (ret < 0)
  802. goto err;
  803. ret = af9033_wr_reg(state, 0x800000, 0);
  804. if (ret < 0)
  805. goto err;
  806. }
  807. /* configure internal TS mode */
  808. switch (state->cfg.ts_mode) {
  809. case AF9033_TS_MODE_PARALLEL:
  810. state->ts_mode_parallel = true;
  811. break;
  812. case AF9033_TS_MODE_SERIAL:
  813. state->ts_mode_serial = true;
  814. break;
  815. case AF9033_TS_MODE_USB:
  816. /* usb mode for AF9035 */
  817. default:
  818. break;
  819. }
  820. /* create dvb_frontend */
  821. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  822. state->fe.demodulator_priv = state;
  823. return &state->fe;
  824. err:
  825. kfree(state);
  826. return NULL;
  827. }
  828. EXPORT_SYMBOL(af9033_attach);
  829. static struct dvb_frontend_ops af9033_ops = {
  830. .delsys = { SYS_DVBT },
  831. .info = {
  832. .name = "Afatech AF9033 (DVB-T)",
  833. .frequency_min = 174000000,
  834. .frequency_max = 862000000,
  835. .frequency_stepsize = 250000,
  836. .frequency_tolerance = 0,
  837. .caps = FE_CAN_FEC_1_2 |
  838. FE_CAN_FEC_2_3 |
  839. FE_CAN_FEC_3_4 |
  840. FE_CAN_FEC_5_6 |
  841. FE_CAN_FEC_7_8 |
  842. FE_CAN_FEC_AUTO |
  843. FE_CAN_QPSK |
  844. FE_CAN_QAM_16 |
  845. FE_CAN_QAM_64 |
  846. FE_CAN_QAM_AUTO |
  847. FE_CAN_TRANSMISSION_MODE_AUTO |
  848. FE_CAN_GUARD_INTERVAL_AUTO |
  849. FE_CAN_HIERARCHY_AUTO |
  850. FE_CAN_RECOVER |
  851. FE_CAN_MUTE_TS
  852. },
  853. .release = af9033_release,
  854. .init = af9033_init,
  855. .sleep = af9033_sleep,
  856. .get_tune_settings = af9033_get_tune_settings,
  857. .set_frontend = af9033_set_frontend,
  858. .get_frontend = af9033_get_frontend,
  859. .read_status = af9033_read_status,
  860. .read_snr = af9033_read_snr,
  861. .read_signal_strength = af9033_read_signal_strength,
  862. .read_ber = af9033_read_ber,
  863. .read_ucblocks = af9033_read_ucblocks,
  864. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  865. };
  866. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  867. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  868. MODULE_LICENSE("GPL");