core.c 197 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. int nid = cpu_to_node(cpu);
  966. const struct cpumask *nodemask = NULL;
  967. enum { cpuset, possible, fail } state = cpuset;
  968. int dest_cpu;
  969. /*
  970. * If the node that the cpu is on has been offlined, cpu_to_node()
  971. * will return -1. There is no cpu on the node, and we should
  972. * select the cpu on the other node.
  973. */
  974. if (nid != -1) {
  975. nodemask = cpumask_of_node(nid);
  976. /* Look for allowed, online CPU in same node. */
  977. for_each_cpu(dest_cpu, nodemask) {
  978. if (!cpu_online(dest_cpu))
  979. continue;
  980. if (!cpu_active(dest_cpu))
  981. continue;
  982. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  983. return dest_cpu;
  984. }
  985. }
  986. for (;;) {
  987. /* Any allowed, online CPU? */
  988. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  989. if (!cpu_online(dest_cpu))
  990. continue;
  991. if (!cpu_active(dest_cpu))
  992. continue;
  993. goto out;
  994. }
  995. switch (state) {
  996. case cpuset:
  997. /* No more Mr. Nice Guy. */
  998. cpuset_cpus_allowed_fallback(p);
  999. state = possible;
  1000. break;
  1001. case possible:
  1002. do_set_cpus_allowed(p, cpu_possible_mask);
  1003. state = fail;
  1004. break;
  1005. case fail:
  1006. BUG();
  1007. break;
  1008. }
  1009. }
  1010. out:
  1011. if (state != cpuset) {
  1012. /*
  1013. * Don't tell them about moving exiting tasks or
  1014. * kernel threads (both mm NULL), since they never
  1015. * leave kernel.
  1016. */
  1017. if (p->mm && printk_ratelimit()) {
  1018. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1019. task_pid_nr(p), p->comm, cpu);
  1020. }
  1021. }
  1022. return dest_cpu;
  1023. }
  1024. /*
  1025. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1026. */
  1027. static inline
  1028. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1029. {
  1030. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1031. /*
  1032. * In order not to call set_task_cpu() on a blocking task we need
  1033. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1034. * cpu.
  1035. *
  1036. * Since this is common to all placement strategies, this lives here.
  1037. *
  1038. * [ this allows ->select_task() to simply return task_cpu(p) and
  1039. * not worry about this generic constraint ]
  1040. */
  1041. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1042. !cpu_online(cpu)))
  1043. cpu = select_fallback_rq(task_cpu(p), p);
  1044. return cpu;
  1045. }
  1046. static void update_avg(u64 *avg, u64 sample)
  1047. {
  1048. s64 diff = sample - *avg;
  1049. *avg += diff >> 3;
  1050. }
  1051. #endif
  1052. static void
  1053. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1054. {
  1055. #ifdef CONFIG_SCHEDSTATS
  1056. struct rq *rq = this_rq();
  1057. #ifdef CONFIG_SMP
  1058. int this_cpu = smp_processor_id();
  1059. if (cpu == this_cpu) {
  1060. schedstat_inc(rq, ttwu_local);
  1061. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1062. } else {
  1063. struct sched_domain *sd;
  1064. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1065. rcu_read_lock();
  1066. for_each_domain(this_cpu, sd) {
  1067. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1068. schedstat_inc(sd, ttwu_wake_remote);
  1069. break;
  1070. }
  1071. }
  1072. rcu_read_unlock();
  1073. }
  1074. if (wake_flags & WF_MIGRATED)
  1075. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1076. #endif /* CONFIG_SMP */
  1077. schedstat_inc(rq, ttwu_count);
  1078. schedstat_inc(p, se.statistics.nr_wakeups);
  1079. if (wake_flags & WF_SYNC)
  1080. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1081. #endif /* CONFIG_SCHEDSTATS */
  1082. }
  1083. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1084. {
  1085. activate_task(rq, p, en_flags);
  1086. p->on_rq = 1;
  1087. /* if a worker is waking up, notify workqueue */
  1088. if (p->flags & PF_WQ_WORKER)
  1089. wq_worker_waking_up(p, cpu_of(rq));
  1090. }
  1091. /*
  1092. * Mark the task runnable and perform wakeup-preemption.
  1093. */
  1094. static void
  1095. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1096. {
  1097. trace_sched_wakeup(p, true);
  1098. check_preempt_curr(rq, p, wake_flags);
  1099. p->state = TASK_RUNNING;
  1100. #ifdef CONFIG_SMP
  1101. if (p->sched_class->task_woken)
  1102. p->sched_class->task_woken(rq, p);
  1103. if (rq->idle_stamp) {
  1104. u64 delta = rq->clock - rq->idle_stamp;
  1105. u64 max = 2*sysctl_sched_migration_cost;
  1106. if (delta > max)
  1107. rq->avg_idle = max;
  1108. else
  1109. update_avg(&rq->avg_idle, delta);
  1110. rq->idle_stamp = 0;
  1111. }
  1112. #endif
  1113. }
  1114. static void
  1115. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1116. {
  1117. #ifdef CONFIG_SMP
  1118. if (p->sched_contributes_to_load)
  1119. rq->nr_uninterruptible--;
  1120. #endif
  1121. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1122. ttwu_do_wakeup(rq, p, wake_flags);
  1123. }
  1124. /*
  1125. * Called in case the task @p isn't fully descheduled from its runqueue,
  1126. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1127. * since all we need to do is flip p->state to TASK_RUNNING, since
  1128. * the task is still ->on_rq.
  1129. */
  1130. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1131. {
  1132. struct rq *rq;
  1133. int ret = 0;
  1134. rq = __task_rq_lock(p);
  1135. if (p->on_rq) {
  1136. ttwu_do_wakeup(rq, p, wake_flags);
  1137. ret = 1;
  1138. }
  1139. __task_rq_unlock(rq);
  1140. return ret;
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void sched_ttwu_pending(void)
  1144. {
  1145. struct rq *rq = this_rq();
  1146. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1147. struct task_struct *p;
  1148. raw_spin_lock(&rq->lock);
  1149. while (llist) {
  1150. p = llist_entry(llist, struct task_struct, wake_entry);
  1151. llist = llist_next(llist);
  1152. ttwu_do_activate(rq, p, 0);
  1153. }
  1154. raw_spin_unlock(&rq->lock);
  1155. }
  1156. void scheduler_ipi(void)
  1157. {
  1158. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1159. return;
  1160. /*
  1161. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1162. * traditionally all their work was done from the interrupt return
  1163. * path. Now that we actually do some work, we need to make sure
  1164. * we do call them.
  1165. *
  1166. * Some archs already do call them, luckily irq_enter/exit nest
  1167. * properly.
  1168. *
  1169. * Arguably we should visit all archs and update all handlers,
  1170. * however a fair share of IPIs are still resched only so this would
  1171. * somewhat pessimize the simple resched case.
  1172. */
  1173. irq_enter();
  1174. sched_ttwu_pending();
  1175. /*
  1176. * Check if someone kicked us for doing the nohz idle load balance.
  1177. */
  1178. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1179. this_rq()->idle_balance = 1;
  1180. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1181. }
  1182. irq_exit();
  1183. }
  1184. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1185. {
  1186. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1187. smp_send_reschedule(cpu);
  1188. }
  1189. bool cpus_share_cache(int this_cpu, int that_cpu)
  1190. {
  1191. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1192. }
  1193. #endif /* CONFIG_SMP */
  1194. static void ttwu_queue(struct task_struct *p, int cpu)
  1195. {
  1196. struct rq *rq = cpu_rq(cpu);
  1197. #if defined(CONFIG_SMP)
  1198. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1199. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1200. ttwu_queue_remote(p, cpu);
  1201. return;
  1202. }
  1203. #endif
  1204. raw_spin_lock(&rq->lock);
  1205. ttwu_do_activate(rq, p, 0);
  1206. raw_spin_unlock(&rq->lock);
  1207. }
  1208. /**
  1209. * try_to_wake_up - wake up a thread
  1210. * @p: the thread to be awakened
  1211. * @state: the mask of task states that can be woken
  1212. * @wake_flags: wake modifier flags (WF_*)
  1213. *
  1214. * Put it on the run-queue if it's not already there. The "current"
  1215. * thread is always on the run-queue (except when the actual
  1216. * re-schedule is in progress), and as such you're allowed to do
  1217. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1218. * runnable without the overhead of this.
  1219. *
  1220. * Returns %true if @p was woken up, %false if it was already running
  1221. * or @state didn't match @p's state.
  1222. */
  1223. static int
  1224. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1225. {
  1226. unsigned long flags;
  1227. int cpu, success = 0;
  1228. smp_wmb();
  1229. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1230. if (!(p->state & state))
  1231. goto out;
  1232. success = 1; /* we're going to change ->state */
  1233. cpu = task_cpu(p);
  1234. if (p->on_rq && ttwu_remote(p, wake_flags))
  1235. goto stat;
  1236. #ifdef CONFIG_SMP
  1237. /*
  1238. * If the owning (remote) cpu is still in the middle of schedule() with
  1239. * this task as prev, wait until its done referencing the task.
  1240. */
  1241. while (p->on_cpu)
  1242. cpu_relax();
  1243. /*
  1244. * Pairs with the smp_wmb() in finish_lock_switch().
  1245. */
  1246. smp_rmb();
  1247. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1248. p->state = TASK_WAKING;
  1249. if (p->sched_class->task_waking)
  1250. p->sched_class->task_waking(p);
  1251. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1252. if (task_cpu(p) != cpu) {
  1253. wake_flags |= WF_MIGRATED;
  1254. set_task_cpu(p, cpu);
  1255. }
  1256. #endif /* CONFIG_SMP */
  1257. ttwu_queue(p, cpu);
  1258. stat:
  1259. ttwu_stat(p, cpu, wake_flags);
  1260. out:
  1261. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1262. return success;
  1263. }
  1264. /**
  1265. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1266. * @p: the thread to be awakened
  1267. *
  1268. * Put @p on the run-queue if it's not already there. The caller must
  1269. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1270. * the current task.
  1271. */
  1272. static void try_to_wake_up_local(struct task_struct *p)
  1273. {
  1274. struct rq *rq = task_rq(p);
  1275. BUG_ON(rq != this_rq());
  1276. BUG_ON(p == current);
  1277. lockdep_assert_held(&rq->lock);
  1278. if (!raw_spin_trylock(&p->pi_lock)) {
  1279. raw_spin_unlock(&rq->lock);
  1280. raw_spin_lock(&p->pi_lock);
  1281. raw_spin_lock(&rq->lock);
  1282. }
  1283. if (!(p->state & TASK_NORMAL))
  1284. goto out;
  1285. if (!p->on_rq)
  1286. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1287. ttwu_do_wakeup(rq, p, 0);
  1288. ttwu_stat(p, smp_processor_id(), 0);
  1289. out:
  1290. raw_spin_unlock(&p->pi_lock);
  1291. }
  1292. /**
  1293. * wake_up_process - Wake up a specific process
  1294. * @p: The process to be woken up.
  1295. *
  1296. * Attempt to wake up the nominated process and move it to the set of runnable
  1297. * processes. Returns 1 if the process was woken up, 0 if it was already
  1298. * running.
  1299. *
  1300. * It may be assumed that this function implies a write memory barrier before
  1301. * changing the task state if and only if any tasks are woken up.
  1302. */
  1303. int wake_up_process(struct task_struct *p)
  1304. {
  1305. WARN_ON(task_is_stopped_or_traced(p));
  1306. return try_to_wake_up(p, TASK_NORMAL, 0);
  1307. }
  1308. EXPORT_SYMBOL(wake_up_process);
  1309. int wake_up_state(struct task_struct *p, unsigned int state)
  1310. {
  1311. return try_to_wake_up(p, state, 0);
  1312. }
  1313. /*
  1314. * Perform scheduler related setup for a newly forked process p.
  1315. * p is forked by current.
  1316. *
  1317. * __sched_fork() is basic setup used by init_idle() too:
  1318. */
  1319. static void __sched_fork(struct task_struct *p)
  1320. {
  1321. p->on_rq = 0;
  1322. p->se.on_rq = 0;
  1323. p->se.exec_start = 0;
  1324. p->se.sum_exec_runtime = 0;
  1325. p->se.prev_sum_exec_runtime = 0;
  1326. p->se.nr_migrations = 0;
  1327. p->se.vruntime = 0;
  1328. INIT_LIST_HEAD(&p->se.group_node);
  1329. /*
  1330. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1331. * removed when useful for applications beyond shares distribution (e.g.
  1332. * load-balance).
  1333. */
  1334. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1335. p->se.avg.runnable_avg_period = 0;
  1336. p->se.avg.runnable_avg_sum = 0;
  1337. #endif
  1338. #ifdef CONFIG_SCHEDSTATS
  1339. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1340. #endif
  1341. INIT_LIST_HEAD(&p->rt.run_list);
  1342. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1343. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1344. #endif
  1345. #ifdef CONFIG_NUMA_BALANCING
  1346. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1347. p->mm->numa_next_scan = jiffies;
  1348. p->mm->numa_next_reset = jiffies;
  1349. p->mm->numa_scan_seq = 0;
  1350. }
  1351. p->node_stamp = 0ULL;
  1352. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1353. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1354. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1355. p->numa_work.next = &p->numa_work;
  1356. #endif /* CONFIG_NUMA_BALANCING */
  1357. }
  1358. #ifdef CONFIG_NUMA_BALANCING
  1359. #ifdef CONFIG_SCHED_DEBUG
  1360. void set_numabalancing_state(bool enabled)
  1361. {
  1362. if (enabled)
  1363. sched_feat_set("NUMA");
  1364. else
  1365. sched_feat_set("NO_NUMA");
  1366. }
  1367. #else
  1368. __read_mostly bool numabalancing_enabled;
  1369. void set_numabalancing_state(bool enabled)
  1370. {
  1371. numabalancing_enabled = enabled;
  1372. }
  1373. #endif /* CONFIG_SCHED_DEBUG */
  1374. #endif /* CONFIG_NUMA_BALANCING */
  1375. /*
  1376. * fork()/clone()-time setup:
  1377. */
  1378. void sched_fork(struct task_struct *p)
  1379. {
  1380. unsigned long flags;
  1381. int cpu = get_cpu();
  1382. __sched_fork(p);
  1383. /*
  1384. * We mark the process as running here. This guarantees that
  1385. * nobody will actually run it, and a signal or other external
  1386. * event cannot wake it up and insert it on the runqueue either.
  1387. */
  1388. p->state = TASK_RUNNING;
  1389. /*
  1390. * Make sure we do not leak PI boosting priority to the child.
  1391. */
  1392. p->prio = current->normal_prio;
  1393. /*
  1394. * Revert to default priority/policy on fork if requested.
  1395. */
  1396. if (unlikely(p->sched_reset_on_fork)) {
  1397. if (task_has_rt_policy(p)) {
  1398. p->policy = SCHED_NORMAL;
  1399. p->static_prio = NICE_TO_PRIO(0);
  1400. p->rt_priority = 0;
  1401. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1402. p->static_prio = NICE_TO_PRIO(0);
  1403. p->prio = p->normal_prio = __normal_prio(p);
  1404. set_load_weight(p);
  1405. /*
  1406. * We don't need the reset flag anymore after the fork. It has
  1407. * fulfilled its duty:
  1408. */
  1409. p->sched_reset_on_fork = 0;
  1410. }
  1411. if (!rt_prio(p->prio))
  1412. p->sched_class = &fair_sched_class;
  1413. if (p->sched_class->task_fork)
  1414. p->sched_class->task_fork(p);
  1415. /*
  1416. * The child is not yet in the pid-hash so no cgroup attach races,
  1417. * and the cgroup is pinned to this child due to cgroup_fork()
  1418. * is ran before sched_fork().
  1419. *
  1420. * Silence PROVE_RCU.
  1421. */
  1422. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1423. set_task_cpu(p, cpu);
  1424. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1425. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1426. if (likely(sched_info_on()))
  1427. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1428. #endif
  1429. #if defined(CONFIG_SMP)
  1430. p->on_cpu = 0;
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT_COUNT
  1433. /* Want to start with kernel preemption disabled. */
  1434. task_thread_info(p)->preempt_count = 1;
  1435. #endif
  1436. #ifdef CONFIG_SMP
  1437. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1438. #endif
  1439. put_cpu();
  1440. }
  1441. /*
  1442. * wake_up_new_task - wake up a newly created task for the first time.
  1443. *
  1444. * This function will do some initial scheduler statistics housekeeping
  1445. * that must be done for every newly created context, then puts the task
  1446. * on the runqueue and wakes it.
  1447. */
  1448. void wake_up_new_task(struct task_struct *p)
  1449. {
  1450. unsigned long flags;
  1451. struct rq *rq;
  1452. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1453. #ifdef CONFIG_SMP
  1454. /*
  1455. * Fork balancing, do it here and not earlier because:
  1456. * - cpus_allowed can change in the fork path
  1457. * - any previously selected cpu might disappear through hotplug
  1458. */
  1459. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1460. #endif
  1461. rq = __task_rq_lock(p);
  1462. activate_task(rq, p, 0);
  1463. p->on_rq = 1;
  1464. trace_sched_wakeup_new(p, true);
  1465. check_preempt_curr(rq, p, WF_FORK);
  1466. #ifdef CONFIG_SMP
  1467. if (p->sched_class->task_woken)
  1468. p->sched_class->task_woken(rq, p);
  1469. #endif
  1470. task_rq_unlock(rq, p, &flags);
  1471. }
  1472. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1473. /**
  1474. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1475. * @notifier: notifier struct to register
  1476. */
  1477. void preempt_notifier_register(struct preempt_notifier *notifier)
  1478. {
  1479. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1480. }
  1481. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1482. /**
  1483. * preempt_notifier_unregister - no longer interested in preemption notifications
  1484. * @notifier: notifier struct to unregister
  1485. *
  1486. * This is safe to call from within a preemption notifier.
  1487. */
  1488. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1489. {
  1490. hlist_del(&notifier->link);
  1491. }
  1492. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1493. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1494. {
  1495. struct preempt_notifier *notifier;
  1496. struct hlist_node *node;
  1497. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1498. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1499. }
  1500. static void
  1501. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1502. struct task_struct *next)
  1503. {
  1504. struct preempt_notifier *notifier;
  1505. struct hlist_node *node;
  1506. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1507. notifier->ops->sched_out(notifier, next);
  1508. }
  1509. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1510. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1511. {
  1512. }
  1513. static void
  1514. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1515. struct task_struct *next)
  1516. {
  1517. }
  1518. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1519. /**
  1520. * prepare_task_switch - prepare to switch tasks
  1521. * @rq: the runqueue preparing to switch
  1522. * @prev: the current task that is being switched out
  1523. * @next: the task we are going to switch to.
  1524. *
  1525. * This is called with the rq lock held and interrupts off. It must
  1526. * be paired with a subsequent finish_task_switch after the context
  1527. * switch.
  1528. *
  1529. * prepare_task_switch sets up locking and calls architecture specific
  1530. * hooks.
  1531. */
  1532. static inline void
  1533. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1534. struct task_struct *next)
  1535. {
  1536. trace_sched_switch(prev, next);
  1537. sched_info_switch(prev, next);
  1538. perf_event_task_sched_out(prev, next);
  1539. fire_sched_out_preempt_notifiers(prev, next);
  1540. prepare_lock_switch(rq, next);
  1541. prepare_arch_switch(next);
  1542. }
  1543. /**
  1544. * finish_task_switch - clean up after a task-switch
  1545. * @rq: runqueue associated with task-switch
  1546. * @prev: the thread we just switched away from.
  1547. *
  1548. * finish_task_switch must be called after the context switch, paired
  1549. * with a prepare_task_switch call before the context switch.
  1550. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1551. * and do any other architecture-specific cleanup actions.
  1552. *
  1553. * Note that we may have delayed dropping an mm in context_switch(). If
  1554. * so, we finish that here outside of the runqueue lock. (Doing it
  1555. * with the lock held can cause deadlocks; see schedule() for
  1556. * details.)
  1557. */
  1558. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1559. __releases(rq->lock)
  1560. {
  1561. struct mm_struct *mm = rq->prev_mm;
  1562. long prev_state;
  1563. rq->prev_mm = NULL;
  1564. /*
  1565. * A task struct has one reference for the use as "current".
  1566. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1567. * schedule one last time. The schedule call will never return, and
  1568. * the scheduled task must drop that reference.
  1569. * The test for TASK_DEAD must occur while the runqueue locks are
  1570. * still held, otherwise prev could be scheduled on another cpu, die
  1571. * there before we look at prev->state, and then the reference would
  1572. * be dropped twice.
  1573. * Manfred Spraul <manfred@colorfullife.com>
  1574. */
  1575. prev_state = prev->state;
  1576. vtime_task_switch(prev);
  1577. finish_arch_switch(prev);
  1578. perf_event_task_sched_in(prev, current);
  1579. finish_lock_switch(rq, prev);
  1580. finish_arch_post_lock_switch();
  1581. fire_sched_in_preempt_notifiers(current);
  1582. if (mm)
  1583. mmdrop(mm);
  1584. if (unlikely(prev_state == TASK_DEAD)) {
  1585. /*
  1586. * Remove function-return probe instances associated with this
  1587. * task and put them back on the free list.
  1588. */
  1589. kprobe_flush_task(prev);
  1590. put_task_struct(prev);
  1591. }
  1592. }
  1593. #ifdef CONFIG_SMP
  1594. /* assumes rq->lock is held */
  1595. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1596. {
  1597. if (prev->sched_class->pre_schedule)
  1598. prev->sched_class->pre_schedule(rq, prev);
  1599. }
  1600. /* rq->lock is NOT held, but preemption is disabled */
  1601. static inline void post_schedule(struct rq *rq)
  1602. {
  1603. if (rq->post_schedule) {
  1604. unsigned long flags;
  1605. raw_spin_lock_irqsave(&rq->lock, flags);
  1606. if (rq->curr->sched_class->post_schedule)
  1607. rq->curr->sched_class->post_schedule(rq);
  1608. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1609. rq->post_schedule = 0;
  1610. }
  1611. }
  1612. #else
  1613. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1614. {
  1615. }
  1616. static inline void post_schedule(struct rq *rq)
  1617. {
  1618. }
  1619. #endif
  1620. /**
  1621. * schedule_tail - first thing a freshly forked thread must call.
  1622. * @prev: the thread we just switched away from.
  1623. */
  1624. asmlinkage void schedule_tail(struct task_struct *prev)
  1625. __releases(rq->lock)
  1626. {
  1627. struct rq *rq = this_rq();
  1628. finish_task_switch(rq, prev);
  1629. /*
  1630. * FIXME: do we need to worry about rq being invalidated by the
  1631. * task_switch?
  1632. */
  1633. post_schedule(rq);
  1634. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1635. /* In this case, finish_task_switch does not reenable preemption */
  1636. preempt_enable();
  1637. #endif
  1638. if (current->set_child_tid)
  1639. put_user(task_pid_vnr(current), current->set_child_tid);
  1640. }
  1641. /*
  1642. * context_switch - switch to the new MM and the new
  1643. * thread's register state.
  1644. */
  1645. static inline void
  1646. context_switch(struct rq *rq, struct task_struct *prev,
  1647. struct task_struct *next)
  1648. {
  1649. struct mm_struct *mm, *oldmm;
  1650. prepare_task_switch(rq, prev, next);
  1651. mm = next->mm;
  1652. oldmm = prev->active_mm;
  1653. /*
  1654. * For paravirt, this is coupled with an exit in switch_to to
  1655. * combine the page table reload and the switch backend into
  1656. * one hypercall.
  1657. */
  1658. arch_start_context_switch(prev);
  1659. if (!mm) {
  1660. next->active_mm = oldmm;
  1661. atomic_inc(&oldmm->mm_count);
  1662. enter_lazy_tlb(oldmm, next);
  1663. } else
  1664. switch_mm(oldmm, mm, next);
  1665. if (!prev->mm) {
  1666. prev->active_mm = NULL;
  1667. rq->prev_mm = oldmm;
  1668. }
  1669. /*
  1670. * Since the runqueue lock will be released by the next
  1671. * task (which is an invalid locking op but in the case
  1672. * of the scheduler it's an obvious special-case), so we
  1673. * do an early lockdep release here:
  1674. */
  1675. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1676. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1677. #endif
  1678. context_tracking_task_switch(prev, next);
  1679. /* Here we just switch the register state and the stack. */
  1680. switch_to(prev, next, prev);
  1681. barrier();
  1682. /*
  1683. * this_rq must be evaluated again because prev may have moved
  1684. * CPUs since it called schedule(), thus the 'rq' on its stack
  1685. * frame will be invalid.
  1686. */
  1687. finish_task_switch(this_rq(), prev);
  1688. }
  1689. /*
  1690. * nr_running and nr_context_switches:
  1691. *
  1692. * externally visible scheduler statistics: current number of runnable
  1693. * threads, total number of context switches performed since bootup.
  1694. */
  1695. unsigned long nr_running(void)
  1696. {
  1697. unsigned long i, sum = 0;
  1698. for_each_online_cpu(i)
  1699. sum += cpu_rq(i)->nr_running;
  1700. return sum;
  1701. }
  1702. unsigned long long nr_context_switches(void)
  1703. {
  1704. int i;
  1705. unsigned long long sum = 0;
  1706. for_each_possible_cpu(i)
  1707. sum += cpu_rq(i)->nr_switches;
  1708. return sum;
  1709. }
  1710. unsigned long nr_iowait(void)
  1711. {
  1712. unsigned long i, sum = 0;
  1713. for_each_possible_cpu(i)
  1714. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1715. return sum;
  1716. }
  1717. unsigned long nr_iowait_cpu(int cpu)
  1718. {
  1719. struct rq *this = cpu_rq(cpu);
  1720. return atomic_read(&this->nr_iowait);
  1721. }
  1722. unsigned long this_cpu_load(void)
  1723. {
  1724. struct rq *this = this_rq();
  1725. return this->cpu_load[0];
  1726. }
  1727. /*
  1728. * Global load-average calculations
  1729. *
  1730. * We take a distributed and async approach to calculating the global load-avg
  1731. * in order to minimize overhead.
  1732. *
  1733. * The global load average is an exponentially decaying average of nr_running +
  1734. * nr_uninterruptible.
  1735. *
  1736. * Once every LOAD_FREQ:
  1737. *
  1738. * nr_active = 0;
  1739. * for_each_possible_cpu(cpu)
  1740. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1741. *
  1742. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1743. *
  1744. * Due to a number of reasons the above turns in the mess below:
  1745. *
  1746. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1747. * serious number of cpus, therefore we need to take a distributed approach
  1748. * to calculating nr_active.
  1749. *
  1750. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1751. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1752. *
  1753. * So assuming nr_active := 0 when we start out -- true per definition, we
  1754. * can simply take per-cpu deltas and fold those into a global accumulate
  1755. * to obtain the same result. See calc_load_fold_active().
  1756. *
  1757. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1758. * across the machine, we assume 10 ticks is sufficient time for every
  1759. * cpu to have completed this task.
  1760. *
  1761. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1762. * again, being late doesn't loose the delta, just wrecks the sample.
  1763. *
  1764. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1765. * this would add another cross-cpu cacheline miss and atomic operation
  1766. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1767. * when it went into uninterruptible state and decrement on whatever cpu
  1768. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1769. * all cpus yields the correct result.
  1770. *
  1771. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1772. */
  1773. /* Variables and functions for calc_load */
  1774. static atomic_long_t calc_load_tasks;
  1775. static unsigned long calc_load_update;
  1776. unsigned long avenrun[3];
  1777. EXPORT_SYMBOL(avenrun); /* should be removed */
  1778. /**
  1779. * get_avenrun - get the load average array
  1780. * @loads: pointer to dest load array
  1781. * @offset: offset to add
  1782. * @shift: shift count to shift the result left
  1783. *
  1784. * These values are estimates at best, so no need for locking.
  1785. */
  1786. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1787. {
  1788. loads[0] = (avenrun[0] + offset) << shift;
  1789. loads[1] = (avenrun[1] + offset) << shift;
  1790. loads[2] = (avenrun[2] + offset) << shift;
  1791. }
  1792. static long calc_load_fold_active(struct rq *this_rq)
  1793. {
  1794. long nr_active, delta = 0;
  1795. nr_active = this_rq->nr_running;
  1796. nr_active += (long) this_rq->nr_uninterruptible;
  1797. if (nr_active != this_rq->calc_load_active) {
  1798. delta = nr_active - this_rq->calc_load_active;
  1799. this_rq->calc_load_active = nr_active;
  1800. }
  1801. return delta;
  1802. }
  1803. /*
  1804. * a1 = a0 * e + a * (1 - e)
  1805. */
  1806. static unsigned long
  1807. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1808. {
  1809. load *= exp;
  1810. load += active * (FIXED_1 - exp);
  1811. load += 1UL << (FSHIFT - 1);
  1812. return load >> FSHIFT;
  1813. }
  1814. #ifdef CONFIG_NO_HZ
  1815. /*
  1816. * Handle NO_HZ for the global load-average.
  1817. *
  1818. * Since the above described distributed algorithm to compute the global
  1819. * load-average relies on per-cpu sampling from the tick, it is affected by
  1820. * NO_HZ.
  1821. *
  1822. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1823. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1824. * when we read the global state.
  1825. *
  1826. * Obviously reality has to ruin such a delightfully simple scheme:
  1827. *
  1828. * - When we go NO_HZ idle during the window, we can negate our sample
  1829. * contribution, causing under-accounting.
  1830. *
  1831. * We avoid this by keeping two idle-delta counters and flipping them
  1832. * when the window starts, thus separating old and new NO_HZ load.
  1833. *
  1834. * The only trick is the slight shift in index flip for read vs write.
  1835. *
  1836. * 0s 5s 10s 15s
  1837. * +10 +10 +10 +10
  1838. * |-|-----------|-|-----------|-|-----------|-|
  1839. * r:0 0 1 1 0 0 1 1 0
  1840. * w:0 1 1 0 0 1 1 0 0
  1841. *
  1842. * This ensures we'll fold the old idle contribution in this window while
  1843. * accumlating the new one.
  1844. *
  1845. * - When we wake up from NO_HZ idle during the window, we push up our
  1846. * contribution, since we effectively move our sample point to a known
  1847. * busy state.
  1848. *
  1849. * This is solved by pushing the window forward, and thus skipping the
  1850. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1851. * was in effect at the time the window opened). This also solves the issue
  1852. * of having to deal with a cpu having been in NOHZ idle for multiple
  1853. * LOAD_FREQ intervals.
  1854. *
  1855. * When making the ILB scale, we should try to pull this in as well.
  1856. */
  1857. static atomic_long_t calc_load_idle[2];
  1858. static int calc_load_idx;
  1859. static inline int calc_load_write_idx(void)
  1860. {
  1861. int idx = calc_load_idx;
  1862. /*
  1863. * See calc_global_nohz(), if we observe the new index, we also
  1864. * need to observe the new update time.
  1865. */
  1866. smp_rmb();
  1867. /*
  1868. * If the folding window started, make sure we start writing in the
  1869. * next idle-delta.
  1870. */
  1871. if (!time_before(jiffies, calc_load_update))
  1872. idx++;
  1873. return idx & 1;
  1874. }
  1875. static inline int calc_load_read_idx(void)
  1876. {
  1877. return calc_load_idx & 1;
  1878. }
  1879. void calc_load_enter_idle(void)
  1880. {
  1881. struct rq *this_rq = this_rq();
  1882. long delta;
  1883. /*
  1884. * We're going into NOHZ mode, if there's any pending delta, fold it
  1885. * into the pending idle delta.
  1886. */
  1887. delta = calc_load_fold_active(this_rq);
  1888. if (delta) {
  1889. int idx = calc_load_write_idx();
  1890. atomic_long_add(delta, &calc_load_idle[idx]);
  1891. }
  1892. }
  1893. void calc_load_exit_idle(void)
  1894. {
  1895. struct rq *this_rq = this_rq();
  1896. /*
  1897. * If we're still before the sample window, we're done.
  1898. */
  1899. if (time_before(jiffies, this_rq->calc_load_update))
  1900. return;
  1901. /*
  1902. * We woke inside or after the sample window, this means we're already
  1903. * accounted through the nohz accounting, so skip the entire deal and
  1904. * sync up for the next window.
  1905. */
  1906. this_rq->calc_load_update = calc_load_update;
  1907. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1908. this_rq->calc_load_update += LOAD_FREQ;
  1909. }
  1910. static long calc_load_fold_idle(void)
  1911. {
  1912. int idx = calc_load_read_idx();
  1913. long delta = 0;
  1914. if (atomic_long_read(&calc_load_idle[idx]))
  1915. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1916. return delta;
  1917. }
  1918. /**
  1919. * fixed_power_int - compute: x^n, in O(log n) time
  1920. *
  1921. * @x: base of the power
  1922. * @frac_bits: fractional bits of @x
  1923. * @n: power to raise @x to.
  1924. *
  1925. * By exploiting the relation between the definition of the natural power
  1926. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1927. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1928. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1929. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1930. * of course trivially computable in O(log_2 n), the length of our binary
  1931. * vector.
  1932. */
  1933. static unsigned long
  1934. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1935. {
  1936. unsigned long result = 1UL << frac_bits;
  1937. if (n) for (;;) {
  1938. if (n & 1) {
  1939. result *= x;
  1940. result += 1UL << (frac_bits - 1);
  1941. result >>= frac_bits;
  1942. }
  1943. n >>= 1;
  1944. if (!n)
  1945. break;
  1946. x *= x;
  1947. x += 1UL << (frac_bits - 1);
  1948. x >>= frac_bits;
  1949. }
  1950. return result;
  1951. }
  1952. /*
  1953. * a1 = a0 * e + a * (1 - e)
  1954. *
  1955. * a2 = a1 * e + a * (1 - e)
  1956. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1957. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1958. *
  1959. * a3 = a2 * e + a * (1 - e)
  1960. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1961. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1962. *
  1963. * ...
  1964. *
  1965. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1966. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1967. * = a0 * e^n + a * (1 - e^n)
  1968. *
  1969. * [1] application of the geometric series:
  1970. *
  1971. * n 1 - x^(n+1)
  1972. * S_n := \Sum x^i = -------------
  1973. * i=0 1 - x
  1974. */
  1975. static unsigned long
  1976. calc_load_n(unsigned long load, unsigned long exp,
  1977. unsigned long active, unsigned int n)
  1978. {
  1979. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1980. }
  1981. /*
  1982. * NO_HZ can leave us missing all per-cpu ticks calling
  1983. * calc_load_account_active(), but since an idle CPU folds its delta into
  1984. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1985. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1986. *
  1987. * Once we've updated the global active value, we need to apply the exponential
  1988. * weights adjusted to the number of cycles missed.
  1989. */
  1990. static void calc_global_nohz(void)
  1991. {
  1992. long delta, active, n;
  1993. if (!time_before(jiffies, calc_load_update + 10)) {
  1994. /*
  1995. * Catch-up, fold however many we are behind still
  1996. */
  1997. delta = jiffies - calc_load_update - 10;
  1998. n = 1 + (delta / LOAD_FREQ);
  1999. active = atomic_long_read(&calc_load_tasks);
  2000. active = active > 0 ? active * FIXED_1 : 0;
  2001. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2002. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2003. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2004. calc_load_update += n * LOAD_FREQ;
  2005. }
  2006. /*
  2007. * Flip the idle index...
  2008. *
  2009. * Make sure we first write the new time then flip the index, so that
  2010. * calc_load_write_idx() will see the new time when it reads the new
  2011. * index, this avoids a double flip messing things up.
  2012. */
  2013. smp_wmb();
  2014. calc_load_idx++;
  2015. }
  2016. #else /* !CONFIG_NO_HZ */
  2017. static inline long calc_load_fold_idle(void) { return 0; }
  2018. static inline void calc_global_nohz(void) { }
  2019. #endif /* CONFIG_NO_HZ */
  2020. /*
  2021. * calc_load - update the avenrun load estimates 10 ticks after the
  2022. * CPUs have updated calc_load_tasks.
  2023. */
  2024. void calc_global_load(unsigned long ticks)
  2025. {
  2026. long active, delta;
  2027. if (time_before(jiffies, calc_load_update + 10))
  2028. return;
  2029. /*
  2030. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2031. */
  2032. delta = calc_load_fold_idle();
  2033. if (delta)
  2034. atomic_long_add(delta, &calc_load_tasks);
  2035. active = atomic_long_read(&calc_load_tasks);
  2036. active = active > 0 ? active * FIXED_1 : 0;
  2037. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2038. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2039. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2040. calc_load_update += LOAD_FREQ;
  2041. /*
  2042. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2043. */
  2044. calc_global_nohz();
  2045. }
  2046. /*
  2047. * Called from update_cpu_load() to periodically update this CPU's
  2048. * active count.
  2049. */
  2050. static void calc_load_account_active(struct rq *this_rq)
  2051. {
  2052. long delta;
  2053. if (time_before(jiffies, this_rq->calc_load_update))
  2054. return;
  2055. delta = calc_load_fold_active(this_rq);
  2056. if (delta)
  2057. atomic_long_add(delta, &calc_load_tasks);
  2058. this_rq->calc_load_update += LOAD_FREQ;
  2059. }
  2060. /*
  2061. * End of global load-average stuff
  2062. */
  2063. /*
  2064. * The exact cpuload at various idx values, calculated at every tick would be
  2065. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2066. *
  2067. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2068. * on nth tick when cpu may be busy, then we have:
  2069. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2070. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2071. *
  2072. * decay_load_missed() below does efficient calculation of
  2073. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2074. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2075. *
  2076. * The calculation is approximated on a 128 point scale.
  2077. * degrade_zero_ticks is the number of ticks after which load at any
  2078. * particular idx is approximated to be zero.
  2079. * degrade_factor is a precomputed table, a row for each load idx.
  2080. * Each column corresponds to degradation factor for a power of two ticks,
  2081. * based on 128 point scale.
  2082. * Example:
  2083. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2084. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2085. *
  2086. * With this power of 2 load factors, we can degrade the load n times
  2087. * by looking at 1 bits in n and doing as many mult/shift instead of
  2088. * n mult/shifts needed by the exact degradation.
  2089. */
  2090. #define DEGRADE_SHIFT 7
  2091. static const unsigned char
  2092. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2093. static const unsigned char
  2094. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2095. {0, 0, 0, 0, 0, 0, 0, 0},
  2096. {64, 32, 8, 0, 0, 0, 0, 0},
  2097. {96, 72, 40, 12, 1, 0, 0},
  2098. {112, 98, 75, 43, 15, 1, 0},
  2099. {120, 112, 98, 76, 45, 16, 2} };
  2100. /*
  2101. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2102. * would be when CPU is idle and so we just decay the old load without
  2103. * adding any new load.
  2104. */
  2105. static unsigned long
  2106. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2107. {
  2108. int j = 0;
  2109. if (!missed_updates)
  2110. return load;
  2111. if (missed_updates >= degrade_zero_ticks[idx])
  2112. return 0;
  2113. if (idx == 1)
  2114. return load >> missed_updates;
  2115. while (missed_updates) {
  2116. if (missed_updates % 2)
  2117. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2118. missed_updates >>= 1;
  2119. j++;
  2120. }
  2121. return load;
  2122. }
  2123. /*
  2124. * Update rq->cpu_load[] statistics. This function is usually called every
  2125. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2126. * every tick. We fix it up based on jiffies.
  2127. */
  2128. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2129. unsigned long pending_updates)
  2130. {
  2131. int i, scale;
  2132. this_rq->nr_load_updates++;
  2133. /* Update our load: */
  2134. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2135. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2136. unsigned long old_load, new_load;
  2137. /* scale is effectively 1 << i now, and >> i divides by scale */
  2138. old_load = this_rq->cpu_load[i];
  2139. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2140. new_load = this_load;
  2141. /*
  2142. * Round up the averaging division if load is increasing. This
  2143. * prevents us from getting stuck on 9 if the load is 10, for
  2144. * example.
  2145. */
  2146. if (new_load > old_load)
  2147. new_load += scale - 1;
  2148. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2149. }
  2150. sched_avg_update(this_rq);
  2151. }
  2152. #ifdef CONFIG_NO_HZ
  2153. /*
  2154. * There is no sane way to deal with nohz on smp when using jiffies because the
  2155. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2156. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2157. *
  2158. * Therefore we cannot use the delta approach from the regular tick since that
  2159. * would seriously skew the load calculation. However we'll make do for those
  2160. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2161. * (tick_nohz_idle_exit).
  2162. *
  2163. * This means we might still be one tick off for nohz periods.
  2164. */
  2165. /*
  2166. * Called from nohz_idle_balance() to update the load ratings before doing the
  2167. * idle balance.
  2168. */
  2169. void update_idle_cpu_load(struct rq *this_rq)
  2170. {
  2171. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2172. unsigned long load = this_rq->load.weight;
  2173. unsigned long pending_updates;
  2174. /*
  2175. * bail if there's load or we're actually up-to-date.
  2176. */
  2177. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2178. return;
  2179. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2180. this_rq->last_load_update_tick = curr_jiffies;
  2181. __update_cpu_load(this_rq, load, pending_updates);
  2182. }
  2183. /*
  2184. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2185. */
  2186. void update_cpu_load_nohz(void)
  2187. {
  2188. struct rq *this_rq = this_rq();
  2189. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2190. unsigned long pending_updates;
  2191. if (curr_jiffies == this_rq->last_load_update_tick)
  2192. return;
  2193. raw_spin_lock(&this_rq->lock);
  2194. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2195. if (pending_updates) {
  2196. this_rq->last_load_update_tick = curr_jiffies;
  2197. /*
  2198. * We were idle, this means load 0, the current load might be
  2199. * !0 due to remote wakeups and the sort.
  2200. */
  2201. __update_cpu_load(this_rq, 0, pending_updates);
  2202. }
  2203. raw_spin_unlock(&this_rq->lock);
  2204. }
  2205. #endif /* CONFIG_NO_HZ */
  2206. /*
  2207. * Called from scheduler_tick()
  2208. */
  2209. static void update_cpu_load_active(struct rq *this_rq)
  2210. {
  2211. /*
  2212. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2213. */
  2214. this_rq->last_load_update_tick = jiffies;
  2215. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2216. calc_load_account_active(this_rq);
  2217. }
  2218. #ifdef CONFIG_SMP
  2219. /*
  2220. * sched_exec - execve() is a valuable balancing opportunity, because at
  2221. * this point the task has the smallest effective memory and cache footprint.
  2222. */
  2223. void sched_exec(void)
  2224. {
  2225. struct task_struct *p = current;
  2226. unsigned long flags;
  2227. int dest_cpu;
  2228. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2229. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2230. if (dest_cpu == smp_processor_id())
  2231. goto unlock;
  2232. if (likely(cpu_active(dest_cpu))) {
  2233. struct migration_arg arg = { p, dest_cpu };
  2234. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2235. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2236. return;
  2237. }
  2238. unlock:
  2239. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2240. }
  2241. #endif
  2242. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2243. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2244. EXPORT_PER_CPU_SYMBOL(kstat);
  2245. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2246. /*
  2247. * Return any ns on the sched_clock that have not yet been accounted in
  2248. * @p in case that task is currently running.
  2249. *
  2250. * Called with task_rq_lock() held on @rq.
  2251. */
  2252. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2253. {
  2254. u64 ns = 0;
  2255. if (task_current(rq, p)) {
  2256. update_rq_clock(rq);
  2257. ns = rq->clock_task - p->se.exec_start;
  2258. if ((s64)ns < 0)
  2259. ns = 0;
  2260. }
  2261. return ns;
  2262. }
  2263. unsigned long long task_delta_exec(struct task_struct *p)
  2264. {
  2265. unsigned long flags;
  2266. struct rq *rq;
  2267. u64 ns = 0;
  2268. rq = task_rq_lock(p, &flags);
  2269. ns = do_task_delta_exec(p, rq);
  2270. task_rq_unlock(rq, p, &flags);
  2271. return ns;
  2272. }
  2273. /*
  2274. * Return accounted runtime for the task.
  2275. * In case the task is currently running, return the runtime plus current's
  2276. * pending runtime that have not been accounted yet.
  2277. */
  2278. unsigned long long task_sched_runtime(struct task_struct *p)
  2279. {
  2280. unsigned long flags;
  2281. struct rq *rq;
  2282. u64 ns = 0;
  2283. rq = task_rq_lock(p, &flags);
  2284. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2285. task_rq_unlock(rq, p, &flags);
  2286. return ns;
  2287. }
  2288. /*
  2289. * This function gets called by the timer code, with HZ frequency.
  2290. * We call it with interrupts disabled.
  2291. */
  2292. void scheduler_tick(void)
  2293. {
  2294. int cpu = smp_processor_id();
  2295. struct rq *rq = cpu_rq(cpu);
  2296. struct task_struct *curr = rq->curr;
  2297. sched_clock_tick();
  2298. raw_spin_lock(&rq->lock);
  2299. update_rq_clock(rq);
  2300. update_cpu_load_active(rq);
  2301. curr->sched_class->task_tick(rq, curr, 0);
  2302. raw_spin_unlock(&rq->lock);
  2303. perf_event_task_tick();
  2304. #ifdef CONFIG_SMP
  2305. rq->idle_balance = idle_cpu(cpu);
  2306. trigger_load_balance(rq, cpu);
  2307. #endif
  2308. }
  2309. notrace unsigned long get_parent_ip(unsigned long addr)
  2310. {
  2311. if (in_lock_functions(addr)) {
  2312. addr = CALLER_ADDR2;
  2313. if (in_lock_functions(addr))
  2314. addr = CALLER_ADDR3;
  2315. }
  2316. return addr;
  2317. }
  2318. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2319. defined(CONFIG_PREEMPT_TRACER))
  2320. void __kprobes add_preempt_count(int val)
  2321. {
  2322. #ifdef CONFIG_DEBUG_PREEMPT
  2323. /*
  2324. * Underflow?
  2325. */
  2326. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2327. return;
  2328. #endif
  2329. preempt_count() += val;
  2330. #ifdef CONFIG_DEBUG_PREEMPT
  2331. /*
  2332. * Spinlock count overflowing soon?
  2333. */
  2334. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2335. PREEMPT_MASK - 10);
  2336. #endif
  2337. if (preempt_count() == val)
  2338. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2339. }
  2340. EXPORT_SYMBOL(add_preempt_count);
  2341. void __kprobes sub_preempt_count(int val)
  2342. {
  2343. #ifdef CONFIG_DEBUG_PREEMPT
  2344. /*
  2345. * Underflow?
  2346. */
  2347. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2348. return;
  2349. /*
  2350. * Is the spinlock portion underflowing?
  2351. */
  2352. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2353. !(preempt_count() & PREEMPT_MASK)))
  2354. return;
  2355. #endif
  2356. if (preempt_count() == val)
  2357. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2358. preempt_count() -= val;
  2359. }
  2360. EXPORT_SYMBOL(sub_preempt_count);
  2361. #endif
  2362. /*
  2363. * Print scheduling while atomic bug:
  2364. */
  2365. static noinline void __schedule_bug(struct task_struct *prev)
  2366. {
  2367. if (oops_in_progress)
  2368. return;
  2369. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2370. prev->comm, prev->pid, preempt_count());
  2371. debug_show_held_locks(prev);
  2372. print_modules();
  2373. if (irqs_disabled())
  2374. print_irqtrace_events(prev);
  2375. dump_stack();
  2376. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2377. }
  2378. /*
  2379. * Various schedule()-time debugging checks and statistics:
  2380. */
  2381. static inline void schedule_debug(struct task_struct *prev)
  2382. {
  2383. /*
  2384. * Test if we are atomic. Since do_exit() needs to call into
  2385. * schedule() atomically, we ignore that path for now.
  2386. * Otherwise, whine if we are scheduling when we should not be.
  2387. */
  2388. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2389. __schedule_bug(prev);
  2390. rcu_sleep_check();
  2391. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2392. schedstat_inc(this_rq(), sched_count);
  2393. }
  2394. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2395. {
  2396. if (prev->on_rq || rq->skip_clock_update < 0)
  2397. update_rq_clock(rq);
  2398. prev->sched_class->put_prev_task(rq, prev);
  2399. }
  2400. /*
  2401. * Pick up the highest-prio task:
  2402. */
  2403. static inline struct task_struct *
  2404. pick_next_task(struct rq *rq)
  2405. {
  2406. const struct sched_class *class;
  2407. struct task_struct *p;
  2408. /*
  2409. * Optimization: we know that if all tasks are in
  2410. * the fair class we can call that function directly:
  2411. */
  2412. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2413. p = fair_sched_class.pick_next_task(rq);
  2414. if (likely(p))
  2415. return p;
  2416. }
  2417. for_each_class(class) {
  2418. p = class->pick_next_task(rq);
  2419. if (p)
  2420. return p;
  2421. }
  2422. BUG(); /* the idle class will always have a runnable task */
  2423. }
  2424. /*
  2425. * __schedule() is the main scheduler function.
  2426. *
  2427. * The main means of driving the scheduler and thus entering this function are:
  2428. *
  2429. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2430. *
  2431. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2432. * paths. For example, see arch/x86/entry_64.S.
  2433. *
  2434. * To drive preemption between tasks, the scheduler sets the flag in timer
  2435. * interrupt handler scheduler_tick().
  2436. *
  2437. * 3. Wakeups don't really cause entry into schedule(). They add a
  2438. * task to the run-queue and that's it.
  2439. *
  2440. * Now, if the new task added to the run-queue preempts the current
  2441. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2442. * called on the nearest possible occasion:
  2443. *
  2444. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2445. *
  2446. * - in syscall or exception context, at the next outmost
  2447. * preempt_enable(). (this might be as soon as the wake_up()'s
  2448. * spin_unlock()!)
  2449. *
  2450. * - in IRQ context, return from interrupt-handler to
  2451. * preemptible context
  2452. *
  2453. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2454. * then at the next:
  2455. *
  2456. * - cond_resched() call
  2457. * - explicit schedule() call
  2458. * - return from syscall or exception to user-space
  2459. * - return from interrupt-handler to user-space
  2460. */
  2461. static void __sched __schedule(void)
  2462. {
  2463. struct task_struct *prev, *next;
  2464. unsigned long *switch_count;
  2465. struct rq *rq;
  2466. int cpu;
  2467. need_resched:
  2468. preempt_disable();
  2469. cpu = smp_processor_id();
  2470. rq = cpu_rq(cpu);
  2471. rcu_note_context_switch(cpu);
  2472. prev = rq->curr;
  2473. schedule_debug(prev);
  2474. if (sched_feat(HRTICK))
  2475. hrtick_clear(rq);
  2476. raw_spin_lock_irq(&rq->lock);
  2477. switch_count = &prev->nivcsw;
  2478. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2479. if (unlikely(signal_pending_state(prev->state, prev))) {
  2480. prev->state = TASK_RUNNING;
  2481. } else {
  2482. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2483. prev->on_rq = 0;
  2484. /*
  2485. * If a worker went to sleep, notify and ask workqueue
  2486. * whether it wants to wake up a task to maintain
  2487. * concurrency.
  2488. */
  2489. if (prev->flags & PF_WQ_WORKER) {
  2490. struct task_struct *to_wakeup;
  2491. to_wakeup = wq_worker_sleeping(prev, cpu);
  2492. if (to_wakeup)
  2493. try_to_wake_up_local(to_wakeup);
  2494. }
  2495. }
  2496. switch_count = &prev->nvcsw;
  2497. }
  2498. pre_schedule(rq, prev);
  2499. if (unlikely(!rq->nr_running))
  2500. idle_balance(cpu, rq);
  2501. put_prev_task(rq, prev);
  2502. next = pick_next_task(rq);
  2503. clear_tsk_need_resched(prev);
  2504. rq->skip_clock_update = 0;
  2505. if (likely(prev != next)) {
  2506. rq->nr_switches++;
  2507. rq->curr = next;
  2508. ++*switch_count;
  2509. context_switch(rq, prev, next); /* unlocks the rq */
  2510. /*
  2511. * The context switch have flipped the stack from under us
  2512. * and restored the local variables which were saved when
  2513. * this task called schedule() in the past. prev == current
  2514. * is still correct, but it can be moved to another cpu/rq.
  2515. */
  2516. cpu = smp_processor_id();
  2517. rq = cpu_rq(cpu);
  2518. } else
  2519. raw_spin_unlock_irq(&rq->lock);
  2520. post_schedule(rq);
  2521. sched_preempt_enable_no_resched();
  2522. if (need_resched())
  2523. goto need_resched;
  2524. }
  2525. static inline void sched_submit_work(struct task_struct *tsk)
  2526. {
  2527. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2528. return;
  2529. /*
  2530. * If we are going to sleep and we have plugged IO queued,
  2531. * make sure to submit it to avoid deadlocks.
  2532. */
  2533. if (blk_needs_flush_plug(tsk))
  2534. blk_schedule_flush_plug(tsk);
  2535. }
  2536. asmlinkage void __sched schedule(void)
  2537. {
  2538. struct task_struct *tsk = current;
  2539. sched_submit_work(tsk);
  2540. __schedule();
  2541. }
  2542. EXPORT_SYMBOL(schedule);
  2543. #ifdef CONFIG_CONTEXT_TRACKING
  2544. asmlinkage void __sched schedule_user(void)
  2545. {
  2546. /*
  2547. * If we come here after a random call to set_need_resched(),
  2548. * or we have been woken up remotely but the IPI has not yet arrived,
  2549. * we haven't yet exited the RCU idle mode. Do it here manually until
  2550. * we find a better solution.
  2551. */
  2552. user_exit();
  2553. schedule();
  2554. user_enter();
  2555. }
  2556. #endif
  2557. /**
  2558. * schedule_preempt_disabled - called with preemption disabled
  2559. *
  2560. * Returns with preemption disabled. Note: preempt_count must be 1
  2561. */
  2562. void __sched schedule_preempt_disabled(void)
  2563. {
  2564. sched_preempt_enable_no_resched();
  2565. schedule();
  2566. preempt_disable();
  2567. }
  2568. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2569. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2570. {
  2571. if (lock->owner != owner)
  2572. return false;
  2573. /*
  2574. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2575. * lock->owner still matches owner, if that fails, owner might
  2576. * point to free()d memory, if it still matches, the rcu_read_lock()
  2577. * ensures the memory stays valid.
  2578. */
  2579. barrier();
  2580. return owner->on_cpu;
  2581. }
  2582. /*
  2583. * Look out! "owner" is an entirely speculative pointer
  2584. * access and not reliable.
  2585. */
  2586. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2587. {
  2588. if (!sched_feat(OWNER_SPIN))
  2589. return 0;
  2590. rcu_read_lock();
  2591. while (owner_running(lock, owner)) {
  2592. if (need_resched())
  2593. break;
  2594. arch_mutex_cpu_relax();
  2595. }
  2596. rcu_read_unlock();
  2597. /*
  2598. * We break out the loop above on need_resched() and when the
  2599. * owner changed, which is a sign for heavy contention. Return
  2600. * success only when lock->owner is NULL.
  2601. */
  2602. return lock->owner == NULL;
  2603. }
  2604. #endif
  2605. #ifdef CONFIG_PREEMPT
  2606. /*
  2607. * this is the entry point to schedule() from in-kernel preemption
  2608. * off of preempt_enable. Kernel preemptions off return from interrupt
  2609. * occur there and call schedule directly.
  2610. */
  2611. asmlinkage void __sched notrace preempt_schedule(void)
  2612. {
  2613. struct thread_info *ti = current_thread_info();
  2614. /*
  2615. * If there is a non-zero preempt_count or interrupts are disabled,
  2616. * we do not want to preempt the current task. Just return..
  2617. */
  2618. if (likely(ti->preempt_count || irqs_disabled()))
  2619. return;
  2620. do {
  2621. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2622. __schedule();
  2623. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2624. /*
  2625. * Check again in case we missed a preemption opportunity
  2626. * between schedule and now.
  2627. */
  2628. barrier();
  2629. } while (need_resched());
  2630. }
  2631. EXPORT_SYMBOL(preempt_schedule);
  2632. /*
  2633. * this is the entry point to schedule() from kernel preemption
  2634. * off of irq context.
  2635. * Note, that this is called and return with irqs disabled. This will
  2636. * protect us against recursive calling from irq.
  2637. */
  2638. asmlinkage void __sched preempt_schedule_irq(void)
  2639. {
  2640. struct thread_info *ti = current_thread_info();
  2641. /* Catch callers which need to be fixed */
  2642. BUG_ON(ti->preempt_count || !irqs_disabled());
  2643. user_exit();
  2644. do {
  2645. add_preempt_count(PREEMPT_ACTIVE);
  2646. local_irq_enable();
  2647. __schedule();
  2648. local_irq_disable();
  2649. sub_preempt_count(PREEMPT_ACTIVE);
  2650. /*
  2651. * Check again in case we missed a preemption opportunity
  2652. * between schedule and now.
  2653. */
  2654. barrier();
  2655. } while (need_resched());
  2656. }
  2657. #endif /* CONFIG_PREEMPT */
  2658. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2659. void *key)
  2660. {
  2661. return try_to_wake_up(curr->private, mode, wake_flags);
  2662. }
  2663. EXPORT_SYMBOL(default_wake_function);
  2664. /*
  2665. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2666. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2667. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2668. *
  2669. * There are circumstances in which we can try to wake a task which has already
  2670. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2671. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2672. */
  2673. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2674. int nr_exclusive, int wake_flags, void *key)
  2675. {
  2676. wait_queue_t *curr, *next;
  2677. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2678. unsigned flags = curr->flags;
  2679. if (curr->func(curr, mode, wake_flags, key) &&
  2680. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2681. break;
  2682. }
  2683. }
  2684. /**
  2685. * __wake_up - wake up threads blocked on a waitqueue.
  2686. * @q: the waitqueue
  2687. * @mode: which threads
  2688. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2689. * @key: is directly passed to the wakeup function
  2690. *
  2691. * It may be assumed that this function implies a write memory barrier before
  2692. * changing the task state if and only if any tasks are woken up.
  2693. */
  2694. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2695. int nr_exclusive, void *key)
  2696. {
  2697. unsigned long flags;
  2698. spin_lock_irqsave(&q->lock, flags);
  2699. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2700. spin_unlock_irqrestore(&q->lock, flags);
  2701. }
  2702. EXPORT_SYMBOL(__wake_up);
  2703. /*
  2704. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2705. */
  2706. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2707. {
  2708. __wake_up_common(q, mode, nr, 0, NULL);
  2709. }
  2710. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2711. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2712. {
  2713. __wake_up_common(q, mode, 1, 0, key);
  2714. }
  2715. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2716. /**
  2717. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2718. * @q: the waitqueue
  2719. * @mode: which threads
  2720. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2721. * @key: opaque value to be passed to wakeup targets
  2722. *
  2723. * The sync wakeup differs that the waker knows that it will schedule
  2724. * away soon, so while the target thread will be woken up, it will not
  2725. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2726. * with each other. This can prevent needless bouncing between CPUs.
  2727. *
  2728. * On UP it can prevent extra preemption.
  2729. *
  2730. * It may be assumed that this function implies a write memory barrier before
  2731. * changing the task state if and only if any tasks are woken up.
  2732. */
  2733. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2734. int nr_exclusive, void *key)
  2735. {
  2736. unsigned long flags;
  2737. int wake_flags = WF_SYNC;
  2738. if (unlikely(!q))
  2739. return;
  2740. if (unlikely(!nr_exclusive))
  2741. wake_flags = 0;
  2742. spin_lock_irqsave(&q->lock, flags);
  2743. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2744. spin_unlock_irqrestore(&q->lock, flags);
  2745. }
  2746. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2747. /*
  2748. * __wake_up_sync - see __wake_up_sync_key()
  2749. */
  2750. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2751. {
  2752. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2753. }
  2754. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2755. /**
  2756. * complete: - signals a single thread waiting on this completion
  2757. * @x: holds the state of this particular completion
  2758. *
  2759. * This will wake up a single thread waiting on this completion. Threads will be
  2760. * awakened in the same order in which they were queued.
  2761. *
  2762. * See also complete_all(), wait_for_completion() and related routines.
  2763. *
  2764. * It may be assumed that this function implies a write memory barrier before
  2765. * changing the task state if and only if any tasks are woken up.
  2766. */
  2767. void complete(struct completion *x)
  2768. {
  2769. unsigned long flags;
  2770. spin_lock_irqsave(&x->wait.lock, flags);
  2771. x->done++;
  2772. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2773. spin_unlock_irqrestore(&x->wait.lock, flags);
  2774. }
  2775. EXPORT_SYMBOL(complete);
  2776. /**
  2777. * complete_all: - signals all threads waiting on this completion
  2778. * @x: holds the state of this particular completion
  2779. *
  2780. * This will wake up all threads waiting on this particular completion event.
  2781. *
  2782. * It may be assumed that this function implies a write memory barrier before
  2783. * changing the task state if and only if any tasks are woken up.
  2784. */
  2785. void complete_all(struct completion *x)
  2786. {
  2787. unsigned long flags;
  2788. spin_lock_irqsave(&x->wait.lock, flags);
  2789. x->done += UINT_MAX/2;
  2790. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2791. spin_unlock_irqrestore(&x->wait.lock, flags);
  2792. }
  2793. EXPORT_SYMBOL(complete_all);
  2794. static inline long __sched
  2795. do_wait_for_common(struct completion *x, long timeout, int state)
  2796. {
  2797. if (!x->done) {
  2798. DECLARE_WAITQUEUE(wait, current);
  2799. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2800. do {
  2801. if (signal_pending_state(state, current)) {
  2802. timeout = -ERESTARTSYS;
  2803. break;
  2804. }
  2805. __set_current_state(state);
  2806. spin_unlock_irq(&x->wait.lock);
  2807. timeout = schedule_timeout(timeout);
  2808. spin_lock_irq(&x->wait.lock);
  2809. } while (!x->done && timeout);
  2810. __remove_wait_queue(&x->wait, &wait);
  2811. if (!x->done)
  2812. return timeout;
  2813. }
  2814. x->done--;
  2815. return timeout ?: 1;
  2816. }
  2817. static long __sched
  2818. wait_for_common(struct completion *x, long timeout, int state)
  2819. {
  2820. might_sleep();
  2821. spin_lock_irq(&x->wait.lock);
  2822. timeout = do_wait_for_common(x, timeout, state);
  2823. spin_unlock_irq(&x->wait.lock);
  2824. return timeout;
  2825. }
  2826. /**
  2827. * wait_for_completion: - waits for completion of a task
  2828. * @x: holds the state of this particular completion
  2829. *
  2830. * This waits to be signaled for completion of a specific task. It is NOT
  2831. * interruptible and there is no timeout.
  2832. *
  2833. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2834. * and interrupt capability. Also see complete().
  2835. */
  2836. void __sched wait_for_completion(struct completion *x)
  2837. {
  2838. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2839. }
  2840. EXPORT_SYMBOL(wait_for_completion);
  2841. /**
  2842. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2843. * @x: holds the state of this particular completion
  2844. * @timeout: timeout value in jiffies
  2845. *
  2846. * This waits for either a completion of a specific task to be signaled or for a
  2847. * specified timeout to expire. The timeout is in jiffies. It is not
  2848. * interruptible.
  2849. *
  2850. * The return value is 0 if timed out, and positive (at least 1, or number of
  2851. * jiffies left till timeout) if completed.
  2852. */
  2853. unsigned long __sched
  2854. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2855. {
  2856. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2857. }
  2858. EXPORT_SYMBOL(wait_for_completion_timeout);
  2859. /**
  2860. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2861. * @x: holds the state of this particular completion
  2862. *
  2863. * This waits for completion of a specific task to be signaled. It is
  2864. * interruptible.
  2865. *
  2866. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2867. */
  2868. int __sched wait_for_completion_interruptible(struct completion *x)
  2869. {
  2870. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2871. if (t == -ERESTARTSYS)
  2872. return t;
  2873. return 0;
  2874. }
  2875. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2876. /**
  2877. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2878. * @x: holds the state of this particular completion
  2879. * @timeout: timeout value in jiffies
  2880. *
  2881. * This waits for either a completion of a specific task to be signaled or for a
  2882. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2883. *
  2884. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2885. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2886. */
  2887. long __sched
  2888. wait_for_completion_interruptible_timeout(struct completion *x,
  2889. unsigned long timeout)
  2890. {
  2891. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2892. }
  2893. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2894. /**
  2895. * wait_for_completion_killable: - waits for completion of a task (killable)
  2896. * @x: holds the state of this particular completion
  2897. *
  2898. * This waits to be signaled for completion of a specific task. It can be
  2899. * interrupted by a kill signal.
  2900. *
  2901. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2902. */
  2903. int __sched wait_for_completion_killable(struct completion *x)
  2904. {
  2905. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2906. if (t == -ERESTARTSYS)
  2907. return t;
  2908. return 0;
  2909. }
  2910. EXPORT_SYMBOL(wait_for_completion_killable);
  2911. /**
  2912. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2913. * @x: holds the state of this particular completion
  2914. * @timeout: timeout value in jiffies
  2915. *
  2916. * This waits for either a completion of a specific task to be
  2917. * signaled or for a specified timeout to expire. It can be
  2918. * interrupted by a kill signal. The timeout is in jiffies.
  2919. *
  2920. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2921. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2922. */
  2923. long __sched
  2924. wait_for_completion_killable_timeout(struct completion *x,
  2925. unsigned long timeout)
  2926. {
  2927. return wait_for_common(x, timeout, TASK_KILLABLE);
  2928. }
  2929. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2930. /**
  2931. * try_wait_for_completion - try to decrement a completion without blocking
  2932. * @x: completion structure
  2933. *
  2934. * Returns: 0 if a decrement cannot be done without blocking
  2935. * 1 if a decrement succeeded.
  2936. *
  2937. * If a completion is being used as a counting completion,
  2938. * attempt to decrement the counter without blocking. This
  2939. * enables us to avoid waiting if the resource the completion
  2940. * is protecting is not available.
  2941. */
  2942. bool try_wait_for_completion(struct completion *x)
  2943. {
  2944. unsigned long flags;
  2945. int ret = 1;
  2946. spin_lock_irqsave(&x->wait.lock, flags);
  2947. if (!x->done)
  2948. ret = 0;
  2949. else
  2950. x->done--;
  2951. spin_unlock_irqrestore(&x->wait.lock, flags);
  2952. return ret;
  2953. }
  2954. EXPORT_SYMBOL(try_wait_for_completion);
  2955. /**
  2956. * completion_done - Test to see if a completion has any waiters
  2957. * @x: completion structure
  2958. *
  2959. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2960. * 1 if there are no waiters.
  2961. *
  2962. */
  2963. bool completion_done(struct completion *x)
  2964. {
  2965. unsigned long flags;
  2966. int ret = 1;
  2967. spin_lock_irqsave(&x->wait.lock, flags);
  2968. if (!x->done)
  2969. ret = 0;
  2970. spin_unlock_irqrestore(&x->wait.lock, flags);
  2971. return ret;
  2972. }
  2973. EXPORT_SYMBOL(completion_done);
  2974. static long __sched
  2975. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2976. {
  2977. unsigned long flags;
  2978. wait_queue_t wait;
  2979. init_waitqueue_entry(&wait, current);
  2980. __set_current_state(state);
  2981. spin_lock_irqsave(&q->lock, flags);
  2982. __add_wait_queue(q, &wait);
  2983. spin_unlock(&q->lock);
  2984. timeout = schedule_timeout(timeout);
  2985. spin_lock_irq(&q->lock);
  2986. __remove_wait_queue(q, &wait);
  2987. spin_unlock_irqrestore(&q->lock, flags);
  2988. return timeout;
  2989. }
  2990. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2991. {
  2992. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2993. }
  2994. EXPORT_SYMBOL(interruptible_sleep_on);
  2995. long __sched
  2996. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2997. {
  2998. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2999. }
  3000. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3001. void __sched sleep_on(wait_queue_head_t *q)
  3002. {
  3003. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3004. }
  3005. EXPORT_SYMBOL(sleep_on);
  3006. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3007. {
  3008. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3009. }
  3010. EXPORT_SYMBOL(sleep_on_timeout);
  3011. #ifdef CONFIG_RT_MUTEXES
  3012. /*
  3013. * rt_mutex_setprio - set the current priority of a task
  3014. * @p: task
  3015. * @prio: prio value (kernel-internal form)
  3016. *
  3017. * This function changes the 'effective' priority of a task. It does
  3018. * not touch ->normal_prio like __setscheduler().
  3019. *
  3020. * Used by the rt_mutex code to implement priority inheritance logic.
  3021. */
  3022. void rt_mutex_setprio(struct task_struct *p, int prio)
  3023. {
  3024. int oldprio, on_rq, running;
  3025. struct rq *rq;
  3026. const struct sched_class *prev_class;
  3027. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3028. rq = __task_rq_lock(p);
  3029. /*
  3030. * Idle task boosting is a nono in general. There is one
  3031. * exception, when PREEMPT_RT and NOHZ is active:
  3032. *
  3033. * The idle task calls get_next_timer_interrupt() and holds
  3034. * the timer wheel base->lock on the CPU and another CPU wants
  3035. * to access the timer (probably to cancel it). We can safely
  3036. * ignore the boosting request, as the idle CPU runs this code
  3037. * with interrupts disabled and will complete the lock
  3038. * protected section without being interrupted. So there is no
  3039. * real need to boost.
  3040. */
  3041. if (unlikely(p == rq->idle)) {
  3042. WARN_ON(p != rq->curr);
  3043. WARN_ON(p->pi_blocked_on);
  3044. goto out_unlock;
  3045. }
  3046. trace_sched_pi_setprio(p, prio);
  3047. oldprio = p->prio;
  3048. prev_class = p->sched_class;
  3049. on_rq = p->on_rq;
  3050. running = task_current(rq, p);
  3051. if (on_rq)
  3052. dequeue_task(rq, p, 0);
  3053. if (running)
  3054. p->sched_class->put_prev_task(rq, p);
  3055. if (rt_prio(prio))
  3056. p->sched_class = &rt_sched_class;
  3057. else
  3058. p->sched_class = &fair_sched_class;
  3059. p->prio = prio;
  3060. if (running)
  3061. p->sched_class->set_curr_task(rq);
  3062. if (on_rq)
  3063. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3064. check_class_changed(rq, p, prev_class, oldprio);
  3065. out_unlock:
  3066. __task_rq_unlock(rq);
  3067. }
  3068. #endif
  3069. void set_user_nice(struct task_struct *p, long nice)
  3070. {
  3071. int old_prio, delta, on_rq;
  3072. unsigned long flags;
  3073. struct rq *rq;
  3074. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3075. return;
  3076. /*
  3077. * We have to be careful, if called from sys_setpriority(),
  3078. * the task might be in the middle of scheduling on another CPU.
  3079. */
  3080. rq = task_rq_lock(p, &flags);
  3081. /*
  3082. * The RT priorities are set via sched_setscheduler(), but we still
  3083. * allow the 'normal' nice value to be set - but as expected
  3084. * it wont have any effect on scheduling until the task is
  3085. * SCHED_FIFO/SCHED_RR:
  3086. */
  3087. if (task_has_rt_policy(p)) {
  3088. p->static_prio = NICE_TO_PRIO(nice);
  3089. goto out_unlock;
  3090. }
  3091. on_rq = p->on_rq;
  3092. if (on_rq)
  3093. dequeue_task(rq, p, 0);
  3094. p->static_prio = NICE_TO_PRIO(nice);
  3095. set_load_weight(p);
  3096. old_prio = p->prio;
  3097. p->prio = effective_prio(p);
  3098. delta = p->prio - old_prio;
  3099. if (on_rq) {
  3100. enqueue_task(rq, p, 0);
  3101. /*
  3102. * If the task increased its priority or is running and
  3103. * lowered its priority, then reschedule its CPU:
  3104. */
  3105. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3106. resched_task(rq->curr);
  3107. }
  3108. out_unlock:
  3109. task_rq_unlock(rq, p, &flags);
  3110. }
  3111. EXPORT_SYMBOL(set_user_nice);
  3112. /*
  3113. * can_nice - check if a task can reduce its nice value
  3114. * @p: task
  3115. * @nice: nice value
  3116. */
  3117. int can_nice(const struct task_struct *p, const int nice)
  3118. {
  3119. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3120. int nice_rlim = 20 - nice;
  3121. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3122. capable(CAP_SYS_NICE));
  3123. }
  3124. #ifdef __ARCH_WANT_SYS_NICE
  3125. /*
  3126. * sys_nice - change the priority of the current process.
  3127. * @increment: priority increment
  3128. *
  3129. * sys_setpriority is a more generic, but much slower function that
  3130. * does similar things.
  3131. */
  3132. SYSCALL_DEFINE1(nice, int, increment)
  3133. {
  3134. long nice, retval;
  3135. /*
  3136. * Setpriority might change our priority at the same moment.
  3137. * We don't have to worry. Conceptually one call occurs first
  3138. * and we have a single winner.
  3139. */
  3140. if (increment < -40)
  3141. increment = -40;
  3142. if (increment > 40)
  3143. increment = 40;
  3144. nice = TASK_NICE(current) + increment;
  3145. if (nice < -20)
  3146. nice = -20;
  3147. if (nice > 19)
  3148. nice = 19;
  3149. if (increment < 0 && !can_nice(current, nice))
  3150. return -EPERM;
  3151. retval = security_task_setnice(current, nice);
  3152. if (retval)
  3153. return retval;
  3154. set_user_nice(current, nice);
  3155. return 0;
  3156. }
  3157. #endif
  3158. /**
  3159. * task_prio - return the priority value of a given task.
  3160. * @p: the task in question.
  3161. *
  3162. * This is the priority value as seen by users in /proc.
  3163. * RT tasks are offset by -200. Normal tasks are centered
  3164. * around 0, value goes from -16 to +15.
  3165. */
  3166. int task_prio(const struct task_struct *p)
  3167. {
  3168. return p->prio - MAX_RT_PRIO;
  3169. }
  3170. /**
  3171. * task_nice - return the nice value of a given task.
  3172. * @p: the task in question.
  3173. */
  3174. int task_nice(const struct task_struct *p)
  3175. {
  3176. return TASK_NICE(p);
  3177. }
  3178. EXPORT_SYMBOL(task_nice);
  3179. /**
  3180. * idle_cpu - is a given cpu idle currently?
  3181. * @cpu: the processor in question.
  3182. */
  3183. int idle_cpu(int cpu)
  3184. {
  3185. struct rq *rq = cpu_rq(cpu);
  3186. if (rq->curr != rq->idle)
  3187. return 0;
  3188. if (rq->nr_running)
  3189. return 0;
  3190. #ifdef CONFIG_SMP
  3191. if (!llist_empty(&rq->wake_list))
  3192. return 0;
  3193. #endif
  3194. return 1;
  3195. }
  3196. /**
  3197. * idle_task - return the idle task for a given cpu.
  3198. * @cpu: the processor in question.
  3199. */
  3200. struct task_struct *idle_task(int cpu)
  3201. {
  3202. return cpu_rq(cpu)->idle;
  3203. }
  3204. /**
  3205. * find_process_by_pid - find a process with a matching PID value.
  3206. * @pid: the pid in question.
  3207. */
  3208. static struct task_struct *find_process_by_pid(pid_t pid)
  3209. {
  3210. return pid ? find_task_by_vpid(pid) : current;
  3211. }
  3212. /* Actually do priority change: must hold rq lock. */
  3213. static void
  3214. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3215. {
  3216. p->policy = policy;
  3217. p->rt_priority = prio;
  3218. p->normal_prio = normal_prio(p);
  3219. /* we are holding p->pi_lock already */
  3220. p->prio = rt_mutex_getprio(p);
  3221. if (rt_prio(p->prio))
  3222. p->sched_class = &rt_sched_class;
  3223. else
  3224. p->sched_class = &fair_sched_class;
  3225. set_load_weight(p);
  3226. }
  3227. /*
  3228. * check the target process has a UID that matches the current process's
  3229. */
  3230. static bool check_same_owner(struct task_struct *p)
  3231. {
  3232. const struct cred *cred = current_cred(), *pcred;
  3233. bool match;
  3234. rcu_read_lock();
  3235. pcred = __task_cred(p);
  3236. match = (uid_eq(cred->euid, pcred->euid) ||
  3237. uid_eq(cred->euid, pcred->uid));
  3238. rcu_read_unlock();
  3239. return match;
  3240. }
  3241. static int __sched_setscheduler(struct task_struct *p, int policy,
  3242. const struct sched_param *param, bool user)
  3243. {
  3244. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3245. unsigned long flags;
  3246. const struct sched_class *prev_class;
  3247. struct rq *rq;
  3248. int reset_on_fork;
  3249. /* may grab non-irq protected spin_locks */
  3250. BUG_ON(in_interrupt());
  3251. recheck:
  3252. /* double check policy once rq lock held */
  3253. if (policy < 0) {
  3254. reset_on_fork = p->sched_reset_on_fork;
  3255. policy = oldpolicy = p->policy;
  3256. } else {
  3257. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3258. policy &= ~SCHED_RESET_ON_FORK;
  3259. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3260. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3261. policy != SCHED_IDLE)
  3262. return -EINVAL;
  3263. }
  3264. /*
  3265. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3266. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3267. * SCHED_BATCH and SCHED_IDLE is 0.
  3268. */
  3269. if (param->sched_priority < 0 ||
  3270. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3271. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3272. return -EINVAL;
  3273. if (rt_policy(policy) != (param->sched_priority != 0))
  3274. return -EINVAL;
  3275. /*
  3276. * Allow unprivileged RT tasks to decrease priority:
  3277. */
  3278. if (user && !capable(CAP_SYS_NICE)) {
  3279. if (rt_policy(policy)) {
  3280. unsigned long rlim_rtprio =
  3281. task_rlimit(p, RLIMIT_RTPRIO);
  3282. /* can't set/change the rt policy */
  3283. if (policy != p->policy && !rlim_rtprio)
  3284. return -EPERM;
  3285. /* can't increase priority */
  3286. if (param->sched_priority > p->rt_priority &&
  3287. param->sched_priority > rlim_rtprio)
  3288. return -EPERM;
  3289. }
  3290. /*
  3291. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3292. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3293. */
  3294. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3295. if (!can_nice(p, TASK_NICE(p)))
  3296. return -EPERM;
  3297. }
  3298. /* can't change other user's priorities */
  3299. if (!check_same_owner(p))
  3300. return -EPERM;
  3301. /* Normal users shall not reset the sched_reset_on_fork flag */
  3302. if (p->sched_reset_on_fork && !reset_on_fork)
  3303. return -EPERM;
  3304. }
  3305. if (user) {
  3306. retval = security_task_setscheduler(p);
  3307. if (retval)
  3308. return retval;
  3309. }
  3310. /*
  3311. * make sure no PI-waiters arrive (or leave) while we are
  3312. * changing the priority of the task:
  3313. *
  3314. * To be able to change p->policy safely, the appropriate
  3315. * runqueue lock must be held.
  3316. */
  3317. rq = task_rq_lock(p, &flags);
  3318. /*
  3319. * Changing the policy of the stop threads its a very bad idea
  3320. */
  3321. if (p == rq->stop) {
  3322. task_rq_unlock(rq, p, &flags);
  3323. return -EINVAL;
  3324. }
  3325. /*
  3326. * If not changing anything there's no need to proceed further:
  3327. */
  3328. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3329. param->sched_priority == p->rt_priority))) {
  3330. task_rq_unlock(rq, p, &flags);
  3331. return 0;
  3332. }
  3333. #ifdef CONFIG_RT_GROUP_SCHED
  3334. if (user) {
  3335. /*
  3336. * Do not allow realtime tasks into groups that have no runtime
  3337. * assigned.
  3338. */
  3339. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3340. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3341. !task_group_is_autogroup(task_group(p))) {
  3342. task_rq_unlock(rq, p, &flags);
  3343. return -EPERM;
  3344. }
  3345. }
  3346. #endif
  3347. /* recheck policy now with rq lock held */
  3348. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3349. policy = oldpolicy = -1;
  3350. task_rq_unlock(rq, p, &flags);
  3351. goto recheck;
  3352. }
  3353. on_rq = p->on_rq;
  3354. running = task_current(rq, p);
  3355. if (on_rq)
  3356. dequeue_task(rq, p, 0);
  3357. if (running)
  3358. p->sched_class->put_prev_task(rq, p);
  3359. p->sched_reset_on_fork = reset_on_fork;
  3360. oldprio = p->prio;
  3361. prev_class = p->sched_class;
  3362. __setscheduler(rq, p, policy, param->sched_priority);
  3363. if (running)
  3364. p->sched_class->set_curr_task(rq);
  3365. if (on_rq)
  3366. enqueue_task(rq, p, 0);
  3367. check_class_changed(rq, p, prev_class, oldprio);
  3368. task_rq_unlock(rq, p, &flags);
  3369. rt_mutex_adjust_pi(p);
  3370. return 0;
  3371. }
  3372. /**
  3373. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3374. * @p: the task in question.
  3375. * @policy: new policy.
  3376. * @param: structure containing the new RT priority.
  3377. *
  3378. * NOTE that the task may be already dead.
  3379. */
  3380. int sched_setscheduler(struct task_struct *p, int policy,
  3381. const struct sched_param *param)
  3382. {
  3383. return __sched_setscheduler(p, policy, param, true);
  3384. }
  3385. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3386. /**
  3387. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3388. * @p: the task in question.
  3389. * @policy: new policy.
  3390. * @param: structure containing the new RT priority.
  3391. *
  3392. * Just like sched_setscheduler, only don't bother checking if the
  3393. * current context has permission. For example, this is needed in
  3394. * stop_machine(): we create temporary high priority worker threads,
  3395. * but our caller might not have that capability.
  3396. */
  3397. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3398. const struct sched_param *param)
  3399. {
  3400. return __sched_setscheduler(p, policy, param, false);
  3401. }
  3402. static int
  3403. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3404. {
  3405. struct sched_param lparam;
  3406. struct task_struct *p;
  3407. int retval;
  3408. if (!param || pid < 0)
  3409. return -EINVAL;
  3410. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3411. return -EFAULT;
  3412. rcu_read_lock();
  3413. retval = -ESRCH;
  3414. p = find_process_by_pid(pid);
  3415. if (p != NULL)
  3416. retval = sched_setscheduler(p, policy, &lparam);
  3417. rcu_read_unlock();
  3418. return retval;
  3419. }
  3420. /**
  3421. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3422. * @pid: the pid in question.
  3423. * @policy: new policy.
  3424. * @param: structure containing the new RT priority.
  3425. */
  3426. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3427. struct sched_param __user *, param)
  3428. {
  3429. /* negative values for policy are not valid */
  3430. if (policy < 0)
  3431. return -EINVAL;
  3432. return do_sched_setscheduler(pid, policy, param);
  3433. }
  3434. /**
  3435. * sys_sched_setparam - set/change the RT priority of a thread
  3436. * @pid: the pid in question.
  3437. * @param: structure containing the new RT priority.
  3438. */
  3439. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3440. {
  3441. return do_sched_setscheduler(pid, -1, param);
  3442. }
  3443. /**
  3444. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3445. * @pid: the pid in question.
  3446. */
  3447. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3448. {
  3449. struct task_struct *p;
  3450. int retval;
  3451. if (pid < 0)
  3452. return -EINVAL;
  3453. retval = -ESRCH;
  3454. rcu_read_lock();
  3455. p = find_process_by_pid(pid);
  3456. if (p) {
  3457. retval = security_task_getscheduler(p);
  3458. if (!retval)
  3459. retval = p->policy
  3460. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3461. }
  3462. rcu_read_unlock();
  3463. return retval;
  3464. }
  3465. /**
  3466. * sys_sched_getparam - get the RT priority of a thread
  3467. * @pid: the pid in question.
  3468. * @param: structure containing the RT priority.
  3469. */
  3470. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3471. {
  3472. struct sched_param lp;
  3473. struct task_struct *p;
  3474. int retval;
  3475. if (!param || pid < 0)
  3476. return -EINVAL;
  3477. rcu_read_lock();
  3478. p = find_process_by_pid(pid);
  3479. retval = -ESRCH;
  3480. if (!p)
  3481. goto out_unlock;
  3482. retval = security_task_getscheduler(p);
  3483. if (retval)
  3484. goto out_unlock;
  3485. lp.sched_priority = p->rt_priority;
  3486. rcu_read_unlock();
  3487. /*
  3488. * This one might sleep, we cannot do it with a spinlock held ...
  3489. */
  3490. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3491. return retval;
  3492. out_unlock:
  3493. rcu_read_unlock();
  3494. return retval;
  3495. }
  3496. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3497. {
  3498. cpumask_var_t cpus_allowed, new_mask;
  3499. struct task_struct *p;
  3500. int retval;
  3501. get_online_cpus();
  3502. rcu_read_lock();
  3503. p = find_process_by_pid(pid);
  3504. if (!p) {
  3505. rcu_read_unlock();
  3506. put_online_cpus();
  3507. return -ESRCH;
  3508. }
  3509. /* Prevent p going away */
  3510. get_task_struct(p);
  3511. rcu_read_unlock();
  3512. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3513. retval = -ENOMEM;
  3514. goto out_put_task;
  3515. }
  3516. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3517. retval = -ENOMEM;
  3518. goto out_free_cpus_allowed;
  3519. }
  3520. retval = -EPERM;
  3521. if (!check_same_owner(p)) {
  3522. rcu_read_lock();
  3523. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3524. rcu_read_unlock();
  3525. goto out_unlock;
  3526. }
  3527. rcu_read_unlock();
  3528. }
  3529. retval = security_task_setscheduler(p);
  3530. if (retval)
  3531. goto out_unlock;
  3532. cpuset_cpus_allowed(p, cpus_allowed);
  3533. cpumask_and(new_mask, in_mask, cpus_allowed);
  3534. again:
  3535. retval = set_cpus_allowed_ptr(p, new_mask);
  3536. if (!retval) {
  3537. cpuset_cpus_allowed(p, cpus_allowed);
  3538. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3539. /*
  3540. * We must have raced with a concurrent cpuset
  3541. * update. Just reset the cpus_allowed to the
  3542. * cpuset's cpus_allowed
  3543. */
  3544. cpumask_copy(new_mask, cpus_allowed);
  3545. goto again;
  3546. }
  3547. }
  3548. out_unlock:
  3549. free_cpumask_var(new_mask);
  3550. out_free_cpus_allowed:
  3551. free_cpumask_var(cpus_allowed);
  3552. out_put_task:
  3553. put_task_struct(p);
  3554. put_online_cpus();
  3555. return retval;
  3556. }
  3557. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3558. struct cpumask *new_mask)
  3559. {
  3560. if (len < cpumask_size())
  3561. cpumask_clear(new_mask);
  3562. else if (len > cpumask_size())
  3563. len = cpumask_size();
  3564. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3565. }
  3566. /**
  3567. * sys_sched_setaffinity - set the cpu affinity of a process
  3568. * @pid: pid of the process
  3569. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3570. * @user_mask_ptr: user-space pointer to the new cpu mask
  3571. */
  3572. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3573. unsigned long __user *, user_mask_ptr)
  3574. {
  3575. cpumask_var_t new_mask;
  3576. int retval;
  3577. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3578. return -ENOMEM;
  3579. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3580. if (retval == 0)
  3581. retval = sched_setaffinity(pid, new_mask);
  3582. free_cpumask_var(new_mask);
  3583. return retval;
  3584. }
  3585. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3586. {
  3587. struct task_struct *p;
  3588. unsigned long flags;
  3589. int retval;
  3590. get_online_cpus();
  3591. rcu_read_lock();
  3592. retval = -ESRCH;
  3593. p = find_process_by_pid(pid);
  3594. if (!p)
  3595. goto out_unlock;
  3596. retval = security_task_getscheduler(p);
  3597. if (retval)
  3598. goto out_unlock;
  3599. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3600. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3601. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3602. out_unlock:
  3603. rcu_read_unlock();
  3604. put_online_cpus();
  3605. return retval;
  3606. }
  3607. /**
  3608. * sys_sched_getaffinity - get the cpu affinity of a process
  3609. * @pid: pid of the process
  3610. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3611. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3612. */
  3613. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3614. unsigned long __user *, user_mask_ptr)
  3615. {
  3616. int ret;
  3617. cpumask_var_t mask;
  3618. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3619. return -EINVAL;
  3620. if (len & (sizeof(unsigned long)-1))
  3621. return -EINVAL;
  3622. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3623. return -ENOMEM;
  3624. ret = sched_getaffinity(pid, mask);
  3625. if (ret == 0) {
  3626. size_t retlen = min_t(size_t, len, cpumask_size());
  3627. if (copy_to_user(user_mask_ptr, mask, retlen))
  3628. ret = -EFAULT;
  3629. else
  3630. ret = retlen;
  3631. }
  3632. free_cpumask_var(mask);
  3633. return ret;
  3634. }
  3635. /**
  3636. * sys_sched_yield - yield the current processor to other threads.
  3637. *
  3638. * This function yields the current CPU to other tasks. If there are no
  3639. * other threads running on this CPU then this function will return.
  3640. */
  3641. SYSCALL_DEFINE0(sched_yield)
  3642. {
  3643. struct rq *rq = this_rq_lock();
  3644. schedstat_inc(rq, yld_count);
  3645. current->sched_class->yield_task(rq);
  3646. /*
  3647. * Since we are going to call schedule() anyway, there's
  3648. * no need to preempt or enable interrupts:
  3649. */
  3650. __release(rq->lock);
  3651. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3652. do_raw_spin_unlock(&rq->lock);
  3653. sched_preempt_enable_no_resched();
  3654. schedule();
  3655. return 0;
  3656. }
  3657. static inline int should_resched(void)
  3658. {
  3659. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3660. }
  3661. static void __cond_resched(void)
  3662. {
  3663. add_preempt_count(PREEMPT_ACTIVE);
  3664. __schedule();
  3665. sub_preempt_count(PREEMPT_ACTIVE);
  3666. }
  3667. int __sched _cond_resched(void)
  3668. {
  3669. if (should_resched()) {
  3670. __cond_resched();
  3671. return 1;
  3672. }
  3673. return 0;
  3674. }
  3675. EXPORT_SYMBOL(_cond_resched);
  3676. /*
  3677. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3678. * call schedule, and on return reacquire the lock.
  3679. *
  3680. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3681. * operations here to prevent schedule() from being called twice (once via
  3682. * spin_unlock(), once by hand).
  3683. */
  3684. int __cond_resched_lock(spinlock_t *lock)
  3685. {
  3686. int resched = should_resched();
  3687. int ret = 0;
  3688. lockdep_assert_held(lock);
  3689. if (spin_needbreak(lock) || resched) {
  3690. spin_unlock(lock);
  3691. if (resched)
  3692. __cond_resched();
  3693. else
  3694. cpu_relax();
  3695. ret = 1;
  3696. spin_lock(lock);
  3697. }
  3698. return ret;
  3699. }
  3700. EXPORT_SYMBOL(__cond_resched_lock);
  3701. int __sched __cond_resched_softirq(void)
  3702. {
  3703. BUG_ON(!in_softirq());
  3704. if (should_resched()) {
  3705. local_bh_enable();
  3706. __cond_resched();
  3707. local_bh_disable();
  3708. return 1;
  3709. }
  3710. return 0;
  3711. }
  3712. EXPORT_SYMBOL(__cond_resched_softirq);
  3713. /**
  3714. * yield - yield the current processor to other threads.
  3715. *
  3716. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3717. *
  3718. * The scheduler is at all times free to pick the calling task as the most
  3719. * eligible task to run, if removing the yield() call from your code breaks
  3720. * it, its already broken.
  3721. *
  3722. * Typical broken usage is:
  3723. *
  3724. * while (!event)
  3725. * yield();
  3726. *
  3727. * where one assumes that yield() will let 'the other' process run that will
  3728. * make event true. If the current task is a SCHED_FIFO task that will never
  3729. * happen. Never use yield() as a progress guarantee!!
  3730. *
  3731. * If you want to use yield() to wait for something, use wait_event().
  3732. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3733. * If you still want to use yield(), do not!
  3734. */
  3735. void __sched yield(void)
  3736. {
  3737. set_current_state(TASK_RUNNING);
  3738. sys_sched_yield();
  3739. }
  3740. EXPORT_SYMBOL(yield);
  3741. /**
  3742. * yield_to - yield the current processor to another thread in
  3743. * your thread group, or accelerate that thread toward the
  3744. * processor it's on.
  3745. * @p: target task
  3746. * @preempt: whether task preemption is allowed or not
  3747. *
  3748. * It's the caller's job to ensure that the target task struct
  3749. * can't go away on us before we can do any checks.
  3750. *
  3751. * Returns:
  3752. * true (>0) if we indeed boosted the target task.
  3753. * false (0) if we failed to boost the target.
  3754. * -ESRCH if there's no task to yield to.
  3755. */
  3756. bool __sched yield_to(struct task_struct *p, bool preempt)
  3757. {
  3758. struct task_struct *curr = current;
  3759. struct rq *rq, *p_rq;
  3760. unsigned long flags;
  3761. int yielded = 0;
  3762. local_irq_save(flags);
  3763. rq = this_rq();
  3764. again:
  3765. p_rq = task_rq(p);
  3766. /*
  3767. * If we're the only runnable task on the rq and target rq also
  3768. * has only one task, there's absolutely no point in yielding.
  3769. */
  3770. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3771. yielded = -ESRCH;
  3772. goto out_irq;
  3773. }
  3774. double_rq_lock(rq, p_rq);
  3775. while (task_rq(p) != p_rq) {
  3776. double_rq_unlock(rq, p_rq);
  3777. goto again;
  3778. }
  3779. if (!curr->sched_class->yield_to_task)
  3780. goto out_unlock;
  3781. if (curr->sched_class != p->sched_class)
  3782. goto out_unlock;
  3783. if (task_running(p_rq, p) || p->state)
  3784. goto out_unlock;
  3785. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3786. if (yielded) {
  3787. schedstat_inc(rq, yld_count);
  3788. /*
  3789. * Make p's CPU reschedule; pick_next_entity takes care of
  3790. * fairness.
  3791. */
  3792. if (preempt && rq != p_rq)
  3793. resched_task(p_rq->curr);
  3794. }
  3795. out_unlock:
  3796. double_rq_unlock(rq, p_rq);
  3797. out_irq:
  3798. local_irq_restore(flags);
  3799. if (yielded > 0)
  3800. schedule();
  3801. return yielded;
  3802. }
  3803. EXPORT_SYMBOL_GPL(yield_to);
  3804. /*
  3805. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3806. * that process accounting knows that this is a task in IO wait state.
  3807. */
  3808. void __sched io_schedule(void)
  3809. {
  3810. struct rq *rq = raw_rq();
  3811. delayacct_blkio_start();
  3812. atomic_inc(&rq->nr_iowait);
  3813. blk_flush_plug(current);
  3814. current->in_iowait = 1;
  3815. schedule();
  3816. current->in_iowait = 0;
  3817. atomic_dec(&rq->nr_iowait);
  3818. delayacct_blkio_end();
  3819. }
  3820. EXPORT_SYMBOL(io_schedule);
  3821. long __sched io_schedule_timeout(long timeout)
  3822. {
  3823. struct rq *rq = raw_rq();
  3824. long ret;
  3825. delayacct_blkio_start();
  3826. atomic_inc(&rq->nr_iowait);
  3827. blk_flush_plug(current);
  3828. current->in_iowait = 1;
  3829. ret = schedule_timeout(timeout);
  3830. current->in_iowait = 0;
  3831. atomic_dec(&rq->nr_iowait);
  3832. delayacct_blkio_end();
  3833. return ret;
  3834. }
  3835. /**
  3836. * sys_sched_get_priority_max - return maximum RT priority.
  3837. * @policy: scheduling class.
  3838. *
  3839. * this syscall returns the maximum rt_priority that can be used
  3840. * by a given scheduling class.
  3841. */
  3842. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3843. {
  3844. int ret = -EINVAL;
  3845. switch (policy) {
  3846. case SCHED_FIFO:
  3847. case SCHED_RR:
  3848. ret = MAX_USER_RT_PRIO-1;
  3849. break;
  3850. case SCHED_NORMAL:
  3851. case SCHED_BATCH:
  3852. case SCHED_IDLE:
  3853. ret = 0;
  3854. break;
  3855. }
  3856. return ret;
  3857. }
  3858. /**
  3859. * sys_sched_get_priority_min - return minimum RT priority.
  3860. * @policy: scheduling class.
  3861. *
  3862. * this syscall returns the minimum rt_priority that can be used
  3863. * by a given scheduling class.
  3864. */
  3865. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3866. {
  3867. int ret = -EINVAL;
  3868. switch (policy) {
  3869. case SCHED_FIFO:
  3870. case SCHED_RR:
  3871. ret = 1;
  3872. break;
  3873. case SCHED_NORMAL:
  3874. case SCHED_BATCH:
  3875. case SCHED_IDLE:
  3876. ret = 0;
  3877. }
  3878. return ret;
  3879. }
  3880. /**
  3881. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3882. * @pid: pid of the process.
  3883. * @interval: userspace pointer to the timeslice value.
  3884. *
  3885. * this syscall writes the default timeslice value of a given process
  3886. * into the user-space timespec buffer. A value of '0' means infinity.
  3887. */
  3888. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3889. struct timespec __user *, interval)
  3890. {
  3891. struct task_struct *p;
  3892. unsigned int time_slice;
  3893. unsigned long flags;
  3894. struct rq *rq;
  3895. int retval;
  3896. struct timespec t;
  3897. if (pid < 0)
  3898. return -EINVAL;
  3899. retval = -ESRCH;
  3900. rcu_read_lock();
  3901. p = find_process_by_pid(pid);
  3902. if (!p)
  3903. goto out_unlock;
  3904. retval = security_task_getscheduler(p);
  3905. if (retval)
  3906. goto out_unlock;
  3907. rq = task_rq_lock(p, &flags);
  3908. time_slice = p->sched_class->get_rr_interval(rq, p);
  3909. task_rq_unlock(rq, p, &flags);
  3910. rcu_read_unlock();
  3911. jiffies_to_timespec(time_slice, &t);
  3912. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3913. return retval;
  3914. out_unlock:
  3915. rcu_read_unlock();
  3916. return retval;
  3917. }
  3918. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3919. void sched_show_task(struct task_struct *p)
  3920. {
  3921. unsigned long free = 0;
  3922. int ppid;
  3923. unsigned state;
  3924. state = p->state ? __ffs(p->state) + 1 : 0;
  3925. printk(KERN_INFO "%-15.15s %c", p->comm,
  3926. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3927. #if BITS_PER_LONG == 32
  3928. if (state == TASK_RUNNING)
  3929. printk(KERN_CONT " running ");
  3930. else
  3931. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3932. #else
  3933. if (state == TASK_RUNNING)
  3934. printk(KERN_CONT " running task ");
  3935. else
  3936. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3937. #endif
  3938. #ifdef CONFIG_DEBUG_STACK_USAGE
  3939. free = stack_not_used(p);
  3940. #endif
  3941. rcu_read_lock();
  3942. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3943. rcu_read_unlock();
  3944. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3945. task_pid_nr(p), ppid,
  3946. (unsigned long)task_thread_info(p)->flags);
  3947. show_stack(p, NULL);
  3948. }
  3949. void show_state_filter(unsigned long state_filter)
  3950. {
  3951. struct task_struct *g, *p;
  3952. #if BITS_PER_LONG == 32
  3953. printk(KERN_INFO
  3954. " task PC stack pid father\n");
  3955. #else
  3956. printk(KERN_INFO
  3957. " task PC stack pid father\n");
  3958. #endif
  3959. rcu_read_lock();
  3960. do_each_thread(g, p) {
  3961. /*
  3962. * reset the NMI-timeout, listing all files on a slow
  3963. * console might take a lot of time:
  3964. */
  3965. touch_nmi_watchdog();
  3966. if (!state_filter || (p->state & state_filter))
  3967. sched_show_task(p);
  3968. } while_each_thread(g, p);
  3969. touch_all_softlockup_watchdogs();
  3970. #ifdef CONFIG_SCHED_DEBUG
  3971. sysrq_sched_debug_show();
  3972. #endif
  3973. rcu_read_unlock();
  3974. /*
  3975. * Only show locks if all tasks are dumped:
  3976. */
  3977. if (!state_filter)
  3978. debug_show_all_locks();
  3979. }
  3980. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3981. {
  3982. idle->sched_class = &idle_sched_class;
  3983. }
  3984. /**
  3985. * init_idle - set up an idle thread for a given CPU
  3986. * @idle: task in question
  3987. * @cpu: cpu the idle task belongs to
  3988. *
  3989. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3990. * flag, to make booting more robust.
  3991. */
  3992. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3993. {
  3994. struct rq *rq = cpu_rq(cpu);
  3995. unsigned long flags;
  3996. raw_spin_lock_irqsave(&rq->lock, flags);
  3997. __sched_fork(idle);
  3998. idle->state = TASK_RUNNING;
  3999. idle->se.exec_start = sched_clock();
  4000. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4001. /*
  4002. * We're having a chicken and egg problem, even though we are
  4003. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4004. * lockdep check in task_group() will fail.
  4005. *
  4006. * Similar case to sched_fork(). / Alternatively we could
  4007. * use task_rq_lock() here and obtain the other rq->lock.
  4008. *
  4009. * Silence PROVE_RCU
  4010. */
  4011. rcu_read_lock();
  4012. __set_task_cpu(idle, cpu);
  4013. rcu_read_unlock();
  4014. rq->curr = rq->idle = idle;
  4015. #if defined(CONFIG_SMP)
  4016. idle->on_cpu = 1;
  4017. #endif
  4018. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4019. /* Set the preempt count _outside_ the spinlocks! */
  4020. task_thread_info(idle)->preempt_count = 0;
  4021. /*
  4022. * The idle tasks have their own, simple scheduling class:
  4023. */
  4024. idle->sched_class = &idle_sched_class;
  4025. ftrace_graph_init_idle_task(idle, cpu);
  4026. vtime_init_idle(idle);
  4027. #if defined(CONFIG_SMP)
  4028. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4029. #endif
  4030. }
  4031. #ifdef CONFIG_SMP
  4032. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4033. {
  4034. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4035. p->sched_class->set_cpus_allowed(p, new_mask);
  4036. cpumask_copy(&p->cpus_allowed, new_mask);
  4037. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4038. }
  4039. /*
  4040. * This is how migration works:
  4041. *
  4042. * 1) we invoke migration_cpu_stop() on the target CPU using
  4043. * stop_one_cpu().
  4044. * 2) stopper starts to run (implicitly forcing the migrated thread
  4045. * off the CPU)
  4046. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4047. * 4) if it's in the wrong runqueue then the migration thread removes
  4048. * it and puts it into the right queue.
  4049. * 5) stopper completes and stop_one_cpu() returns and the migration
  4050. * is done.
  4051. */
  4052. /*
  4053. * Change a given task's CPU affinity. Migrate the thread to a
  4054. * proper CPU and schedule it away if the CPU it's executing on
  4055. * is removed from the allowed bitmask.
  4056. *
  4057. * NOTE: the caller must have a valid reference to the task, the
  4058. * task must not exit() & deallocate itself prematurely. The
  4059. * call is not atomic; no spinlocks may be held.
  4060. */
  4061. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4062. {
  4063. unsigned long flags;
  4064. struct rq *rq;
  4065. unsigned int dest_cpu;
  4066. int ret = 0;
  4067. rq = task_rq_lock(p, &flags);
  4068. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4069. goto out;
  4070. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4071. ret = -EINVAL;
  4072. goto out;
  4073. }
  4074. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4075. ret = -EINVAL;
  4076. goto out;
  4077. }
  4078. do_set_cpus_allowed(p, new_mask);
  4079. /* Can the task run on the task's current CPU? If so, we're done */
  4080. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4081. goto out;
  4082. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4083. if (p->on_rq) {
  4084. struct migration_arg arg = { p, dest_cpu };
  4085. /* Need help from migration thread: drop lock and wait. */
  4086. task_rq_unlock(rq, p, &flags);
  4087. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4088. tlb_migrate_finish(p->mm);
  4089. return 0;
  4090. }
  4091. out:
  4092. task_rq_unlock(rq, p, &flags);
  4093. return ret;
  4094. }
  4095. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4096. /*
  4097. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4098. * this because either it can't run here any more (set_cpus_allowed()
  4099. * away from this CPU, or CPU going down), or because we're
  4100. * attempting to rebalance this task on exec (sched_exec).
  4101. *
  4102. * So we race with normal scheduler movements, but that's OK, as long
  4103. * as the task is no longer on this CPU.
  4104. *
  4105. * Returns non-zero if task was successfully migrated.
  4106. */
  4107. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4108. {
  4109. struct rq *rq_dest, *rq_src;
  4110. int ret = 0;
  4111. if (unlikely(!cpu_active(dest_cpu)))
  4112. return ret;
  4113. rq_src = cpu_rq(src_cpu);
  4114. rq_dest = cpu_rq(dest_cpu);
  4115. raw_spin_lock(&p->pi_lock);
  4116. double_rq_lock(rq_src, rq_dest);
  4117. /* Already moved. */
  4118. if (task_cpu(p) != src_cpu)
  4119. goto done;
  4120. /* Affinity changed (again). */
  4121. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4122. goto fail;
  4123. /*
  4124. * If we're not on a rq, the next wake-up will ensure we're
  4125. * placed properly.
  4126. */
  4127. if (p->on_rq) {
  4128. dequeue_task(rq_src, p, 0);
  4129. set_task_cpu(p, dest_cpu);
  4130. enqueue_task(rq_dest, p, 0);
  4131. check_preempt_curr(rq_dest, p, 0);
  4132. }
  4133. done:
  4134. ret = 1;
  4135. fail:
  4136. double_rq_unlock(rq_src, rq_dest);
  4137. raw_spin_unlock(&p->pi_lock);
  4138. return ret;
  4139. }
  4140. /*
  4141. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4142. * and performs thread migration by bumping thread off CPU then
  4143. * 'pushing' onto another runqueue.
  4144. */
  4145. static int migration_cpu_stop(void *data)
  4146. {
  4147. struct migration_arg *arg = data;
  4148. /*
  4149. * The original target cpu might have gone down and we might
  4150. * be on another cpu but it doesn't matter.
  4151. */
  4152. local_irq_disable();
  4153. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4154. local_irq_enable();
  4155. return 0;
  4156. }
  4157. #ifdef CONFIG_HOTPLUG_CPU
  4158. /*
  4159. * Ensures that the idle task is using init_mm right before its cpu goes
  4160. * offline.
  4161. */
  4162. void idle_task_exit(void)
  4163. {
  4164. struct mm_struct *mm = current->active_mm;
  4165. BUG_ON(cpu_online(smp_processor_id()));
  4166. if (mm != &init_mm)
  4167. switch_mm(mm, &init_mm, current);
  4168. mmdrop(mm);
  4169. }
  4170. /*
  4171. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4172. * we might have. Assumes we're called after migrate_tasks() so that the
  4173. * nr_active count is stable.
  4174. *
  4175. * Also see the comment "Global load-average calculations".
  4176. */
  4177. static void calc_load_migrate(struct rq *rq)
  4178. {
  4179. long delta = calc_load_fold_active(rq);
  4180. if (delta)
  4181. atomic_long_add(delta, &calc_load_tasks);
  4182. }
  4183. /*
  4184. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4185. * try_to_wake_up()->select_task_rq().
  4186. *
  4187. * Called with rq->lock held even though we'er in stop_machine() and
  4188. * there's no concurrency possible, we hold the required locks anyway
  4189. * because of lock validation efforts.
  4190. */
  4191. static void migrate_tasks(unsigned int dead_cpu)
  4192. {
  4193. struct rq *rq = cpu_rq(dead_cpu);
  4194. struct task_struct *next, *stop = rq->stop;
  4195. int dest_cpu;
  4196. /*
  4197. * Fudge the rq selection such that the below task selection loop
  4198. * doesn't get stuck on the currently eligible stop task.
  4199. *
  4200. * We're currently inside stop_machine() and the rq is either stuck
  4201. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4202. * either way we should never end up calling schedule() until we're
  4203. * done here.
  4204. */
  4205. rq->stop = NULL;
  4206. for ( ; ; ) {
  4207. /*
  4208. * There's this thread running, bail when that's the only
  4209. * remaining thread.
  4210. */
  4211. if (rq->nr_running == 1)
  4212. break;
  4213. next = pick_next_task(rq);
  4214. BUG_ON(!next);
  4215. next->sched_class->put_prev_task(rq, next);
  4216. /* Find suitable destination for @next, with force if needed. */
  4217. dest_cpu = select_fallback_rq(dead_cpu, next);
  4218. raw_spin_unlock(&rq->lock);
  4219. __migrate_task(next, dead_cpu, dest_cpu);
  4220. raw_spin_lock(&rq->lock);
  4221. }
  4222. rq->stop = stop;
  4223. }
  4224. #endif /* CONFIG_HOTPLUG_CPU */
  4225. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4226. static struct ctl_table sd_ctl_dir[] = {
  4227. {
  4228. .procname = "sched_domain",
  4229. .mode = 0555,
  4230. },
  4231. {}
  4232. };
  4233. static struct ctl_table sd_ctl_root[] = {
  4234. {
  4235. .procname = "kernel",
  4236. .mode = 0555,
  4237. .child = sd_ctl_dir,
  4238. },
  4239. {}
  4240. };
  4241. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4242. {
  4243. struct ctl_table *entry =
  4244. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4245. return entry;
  4246. }
  4247. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4248. {
  4249. struct ctl_table *entry;
  4250. /*
  4251. * In the intermediate directories, both the child directory and
  4252. * procname are dynamically allocated and could fail but the mode
  4253. * will always be set. In the lowest directory the names are
  4254. * static strings and all have proc handlers.
  4255. */
  4256. for (entry = *tablep; entry->mode; entry++) {
  4257. if (entry->child)
  4258. sd_free_ctl_entry(&entry->child);
  4259. if (entry->proc_handler == NULL)
  4260. kfree(entry->procname);
  4261. }
  4262. kfree(*tablep);
  4263. *tablep = NULL;
  4264. }
  4265. static int min_load_idx = 0;
  4266. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4267. static void
  4268. set_table_entry(struct ctl_table *entry,
  4269. const char *procname, void *data, int maxlen,
  4270. umode_t mode, proc_handler *proc_handler,
  4271. bool load_idx)
  4272. {
  4273. entry->procname = procname;
  4274. entry->data = data;
  4275. entry->maxlen = maxlen;
  4276. entry->mode = mode;
  4277. entry->proc_handler = proc_handler;
  4278. if (load_idx) {
  4279. entry->extra1 = &min_load_idx;
  4280. entry->extra2 = &max_load_idx;
  4281. }
  4282. }
  4283. static struct ctl_table *
  4284. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4285. {
  4286. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4287. if (table == NULL)
  4288. return NULL;
  4289. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4290. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4291. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4292. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4293. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4294. sizeof(int), 0644, proc_dointvec_minmax, true);
  4295. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4296. sizeof(int), 0644, proc_dointvec_minmax, true);
  4297. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4298. sizeof(int), 0644, proc_dointvec_minmax, true);
  4299. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4300. sizeof(int), 0644, proc_dointvec_minmax, true);
  4301. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4302. sizeof(int), 0644, proc_dointvec_minmax, true);
  4303. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4304. sizeof(int), 0644, proc_dointvec_minmax, false);
  4305. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4306. sizeof(int), 0644, proc_dointvec_minmax, false);
  4307. set_table_entry(&table[9], "cache_nice_tries",
  4308. &sd->cache_nice_tries,
  4309. sizeof(int), 0644, proc_dointvec_minmax, false);
  4310. set_table_entry(&table[10], "flags", &sd->flags,
  4311. sizeof(int), 0644, proc_dointvec_minmax, false);
  4312. set_table_entry(&table[11], "name", sd->name,
  4313. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4314. /* &table[12] is terminator */
  4315. return table;
  4316. }
  4317. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4318. {
  4319. struct ctl_table *entry, *table;
  4320. struct sched_domain *sd;
  4321. int domain_num = 0, i;
  4322. char buf[32];
  4323. for_each_domain(cpu, sd)
  4324. domain_num++;
  4325. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4326. if (table == NULL)
  4327. return NULL;
  4328. i = 0;
  4329. for_each_domain(cpu, sd) {
  4330. snprintf(buf, 32, "domain%d", i);
  4331. entry->procname = kstrdup(buf, GFP_KERNEL);
  4332. entry->mode = 0555;
  4333. entry->child = sd_alloc_ctl_domain_table(sd);
  4334. entry++;
  4335. i++;
  4336. }
  4337. return table;
  4338. }
  4339. static struct ctl_table_header *sd_sysctl_header;
  4340. static void register_sched_domain_sysctl(void)
  4341. {
  4342. int i, cpu_num = num_possible_cpus();
  4343. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4344. char buf[32];
  4345. WARN_ON(sd_ctl_dir[0].child);
  4346. sd_ctl_dir[0].child = entry;
  4347. if (entry == NULL)
  4348. return;
  4349. for_each_possible_cpu(i) {
  4350. snprintf(buf, 32, "cpu%d", i);
  4351. entry->procname = kstrdup(buf, GFP_KERNEL);
  4352. entry->mode = 0555;
  4353. entry->child = sd_alloc_ctl_cpu_table(i);
  4354. entry++;
  4355. }
  4356. WARN_ON(sd_sysctl_header);
  4357. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4358. }
  4359. /* may be called multiple times per register */
  4360. static void unregister_sched_domain_sysctl(void)
  4361. {
  4362. if (sd_sysctl_header)
  4363. unregister_sysctl_table(sd_sysctl_header);
  4364. sd_sysctl_header = NULL;
  4365. if (sd_ctl_dir[0].child)
  4366. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4367. }
  4368. #else
  4369. static void register_sched_domain_sysctl(void)
  4370. {
  4371. }
  4372. static void unregister_sched_domain_sysctl(void)
  4373. {
  4374. }
  4375. #endif
  4376. static void set_rq_online(struct rq *rq)
  4377. {
  4378. if (!rq->online) {
  4379. const struct sched_class *class;
  4380. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4381. rq->online = 1;
  4382. for_each_class(class) {
  4383. if (class->rq_online)
  4384. class->rq_online(rq);
  4385. }
  4386. }
  4387. }
  4388. static void set_rq_offline(struct rq *rq)
  4389. {
  4390. if (rq->online) {
  4391. const struct sched_class *class;
  4392. for_each_class(class) {
  4393. if (class->rq_offline)
  4394. class->rq_offline(rq);
  4395. }
  4396. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4397. rq->online = 0;
  4398. }
  4399. }
  4400. /*
  4401. * migration_call - callback that gets triggered when a CPU is added.
  4402. * Here we can start up the necessary migration thread for the new CPU.
  4403. */
  4404. static int __cpuinit
  4405. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4406. {
  4407. int cpu = (long)hcpu;
  4408. unsigned long flags;
  4409. struct rq *rq = cpu_rq(cpu);
  4410. switch (action & ~CPU_TASKS_FROZEN) {
  4411. case CPU_UP_PREPARE:
  4412. rq->calc_load_update = calc_load_update;
  4413. break;
  4414. case CPU_ONLINE:
  4415. /* Update our root-domain */
  4416. raw_spin_lock_irqsave(&rq->lock, flags);
  4417. if (rq->rd) {
  4418. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4419. set_rq_online(rq);
  4420. }
  4421. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4422. break;
  4423. #ifdef CONFIG_HOTPLUG_CPU
  4424. case CPU_DYING:
  4425. sched_ttwu_pending();
  4426. /* Update our root-domain */
  4427. raw_spin_lock_irqsave(&rq->lock, flags);
  4428. if (rq->rd) {
  4429. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4430. set_rq_offline(rq);
  4431. }
  4432. migrate_tasks(cpu);
  4433. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4434. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4435. break;
  4436. case CPU_DEAD:
  4437. calc_load_migrate(rq);
  4438. break;
  4439. #endif
  4440. }
  4441. update_max_interval();
  4442. return NOTIFY_OK;
  4443. }
  4444. /*
  4445. * Register at high priority so that task migration (migrate_all_tasks)
  4446. * happens before everything else. This has to be lower priority than
  4447. * the notifier in the perf_event subsystem, though.
  4448. */
  4449. static struct notifier_block __cpuinitdata migration_notifier = {
  4450. .notifier_call = migration_call,
  4451. .priority = CPU_PRI_MIGRATION,
  4452. };
  4453. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4454. unsigned long action, void *hcpu)
  4455. {
  4456. switch (action & ~CPU_TASKS_FROZEN) {
  4457. case CPU_STARTING:
  4458. case CPU_DOWN_FAILED:
  4459. set_cpu_active((long)hcpu, true);
  4460. return NOTIFY_OK;
  4461. default:
  4462. return NOTIFY_DONE;
  4463. }
  4464. }
  4465. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4466. unsigned long action, void *hcpu)
  4467. {
  4468. switch (action & ~CPU_TASKS_FROZEN) {
  4469. case CPU_DOWN_PREPARE:
  4470. set_cpu_active((long)hcpu, false);
  4471. return NOTIFY_OK;
  4472. default:
  4473. return NOTIFY_DONE;
  4474. }
  4475. }
  4476. static int __init migration_init(void)
  4477. {
  4478. void *cpu = (void *)(long)smp_processor_id();
  4479. int err;
  4480. /* Initialize migration for the boot CPU */
  4481. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4482. BUG_ON(err == NOTIFY_BAD);
  4483. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4484. register_cpu_notifier(&migration_notifier);
  4485. /* Register cpu active notifiers */
  4486. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4487. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4488. return 0;
  4489. }
  4490. early_initcall(migration_init);
  4491. #endif
  4492. #ifdef CONFIG_SMP
  4493. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4494. #ifdef CONFIG_SCHED_DEBUG
  4495. static __read_mostly int sched_debug_enabled;
  4496. static int __init sched_debug_setup(char *str)
  4497. {
  4498. sched_debug_enabled = 1;
  4499. return 0;
  4500. }
  4501. early_param("sched_debug", sched_debug_setup);
  4502. static inline bool sched_debug(void)
  4503. {
  4504. return sched_debug_enabled;
  4505. }
  4506. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4507. struct cpumask *groupmask)
  4508. {
  4509. struct sched_group *group = sd->groups;
  4510. char str[256];
  4511. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4512. cpumask_clear(groupmask);
  4513. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4514. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4515. printk("does not load-balance\n");
  4516. if (sd->parent)
  4517. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4518. " has parent");
  4519. return -1;
  4520. }
  4521. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4522. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4523. printk(KERN_ERR "ERROR: domain->span does not contain "
  4524. "CPU%d\n", cpu);
  4525. }
  4526. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4527. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4528. " CPU%d\n", cpu);
  4529. }
  4530. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4531. do {
  4532. if (!group) {
  4533. printk("\n");
  4534. printk(KERN_ERR "ERROR: group is NULL\n");
  4535. break;
  4536. }
  4537. /*
  4538. * Even though we initialize ->power to something semi-sane,
  4539. * we leave power_orig unset. This allows us to detect if
  4540. * domain iteration is still funny without causing /0 traps.
  4541. */
  4542. if (!group->sgp->power_orig) {
  4543. printk(KERN_CONT "\n");
  4544. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4545. "set\n");
  4546. break;
  4547. }
  4548. if (!cpumask_weight(sched_group_cpus(group))) {
  4549. printk(KERN_CONT "\n");
  4550. printk(KERN_ERR "ERROR: empty group\n");
  4551. break;
  4552. }
  4553. if (!(sd->flags & SD_OVERLAP) &&
  4554. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4555. printk(KERN_CONT "\n");
  4556. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4557. break;
  4558. }
  4559. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4560. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4561. printk(KERN_CONT " %s", str);
  4562. if (group->sgp->power != SCHED_POWER_SCALE) {
  4563. printk(KERN_CONT " (cpu_power = %d)",
  4564. group->sgp->power);
  4565. }
  4566. group = group->next;
  4567. } while (group != sd->groups);
  4568. printk(KERN_CONT "\n");
  4569. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4570. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4571. if (sd->parent &&
  4572. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4573. printk(KERN_ERR "ERROR: parent span is not a superset "
  4574. "of domain->span\n");
  4575. return 0;
  4576. }
  4577. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4578. {
  4579. int level = 0;
  4580. if (!sched_debug_enabled)
  4581. return;
  4582. if (!sd) {
  4583. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4584. return;
  4585. }
  4586. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4587. for (;;) {
  4588. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4589. break;
  4590. level++;
  4591. sd = sd->parent;
  4592. if (!sd)
  4593. break;
  4594. }
  4595. }
  4596. #else /* !CONFIG_SCHED_DEBUG */
  4597. # define sched_domain_debug(sd, cpu) do { } while (0)
  4598. static inline bool sched_debug(void)
  4599. {
  4600. return false;
  4601. }
  4602. #endif /* CONFIG_SCHED_DEBUG */
  4603. static int sd_degenerate(struct sched_domain *sd)
  4604. {
  4605. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4606. return 1;
  4607. /* Following flags need at least 2 groups */
  4608. if (sd->flags & (SD_LOAD_BALANCE |
  4609. SD_BALANCE_NEWIDLE |
  4610. SD_BALANCE_FORK |
  4611. SD_BALANCE_EXEC |
  4612. SD_SHARE_CPUPOWER |
  4613. SD_SHARE_PKG_RESOURCES)) {
  4614. if (sd->groups != sd->groups->next)
  4615. return 0;
  4616. }
  4617. /* Following flags don't use groups */
  4618. if (sd->flags & (SD_WAKE_AFFINE))
  4619. return 0;
  4620. return 1;
  4621. }
  4622. static int
  4623. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4624. {
  4625. unsigned long cflags = sd->flags, pflags = parent->flags;
  4626. if (sd_degenerate(parent))
  4627. return 1;
  4628. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4629. return 0;
  4630. /* Flags needing groups don't count if only 1 group in parent */
  4631. if (parent->groups == parent->groups->next) {
  4632. pflags &= ~(SD_LOAD_BALANCE |
  4633. SD_BALANCE_NEWIDLE |
  4634. SD_BALANCE_FORK |
  4635. SD_BALANCE_EXEC |
  4636. SD_SHARE_CPUPOWER |
  4637. SD_SHARE_PKG_RESOURCES);
  4638. if (nr_node_ids == 1)
  4639. pflags &= ~SD_SERIALIZE;
  4640. }
  4641. if (~cflags & pflags)
  4642. return 0;
  4643. return 1;
  4644. }
  4645. static void free_rootdomain(struct rcu_head *rcu)
  4646. {
  4647. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4648. cpupri_cleanup(&rd->cpupri);
  4649. free_cpumask_var(rd->rto_mask);
  4650. free_cpumask_var(rd->online);
  4651. free_cpumask_var(rd->span);
  4652. kfree(rd);
  4653. }
  4654. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4655. {
  4656. struct root_domain *old_rd = NULL;
  4657. unsigned long flags;
  4658. raw_spin_lock_irqsave(&rq->lock, flags);
  4659. if (rq->rd) {
  4660. old_rd = rq->rd;
  4661. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4662. set_rq_offline(rq);
  4663. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4664. /*
  4665. * If we dont want to free the old_rt yet then
  4666. * set old_rd to NULL to skip the freeing later
  4667. * in this function:
  4668. */
  4669. if (!atomic_dec_and_test(&old_rd->refcount))
  4670. old_rd = NULL;
  4671. }
  4672. atomic_inc(&rd->refcount);
  4673. rq->rd = rd;
  4674. cpumask_set_cpu(rq->cpu, rd->span);
  4675. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4676. set_rq_online(rq);
  4677. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4678. if (old_rd)
  4679. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4680. }
  4681. static int init_rootdomain(struct root_domain *rd)
  4682. {
  4683. memset(rd, 0, sizeof(*rd));
  4684. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4685. goto out;
  4686. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4687. goto free_span;
  4688. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4689. goto free_online;
  4690. if (cpupri_init(&rd->cpupri) != 0)
  4691. goto free_rto_mask;
  4692. return 0;
  4693. free_rto_mask:
  4694. free_cpumask_var(rd->rto_mask);
  4695. free_online:
  4696. free_cpumask_var(rd->online);
  4697. free_span:
  4698. free_cpumask_var(rd->span);
  4699. out:
  4700. return -ENOMEM;
  4701. }
  4702. /*
  4703. * By default the system creates a single root-domain with all cpus as
  4704. * members (mimicking the global state we have today).
  4705. */
  4706. struct root_domain def_root_domain;
  4707. static void init_defrootdomain(void)
  4708. {
  4709. init_rootdomain(&def_root_domain);
  4710. atomic_set(&def_root_domain.refcount, 1);
  4711. }
  4712. static struct root_domain *alloc_rootdomain(void)
  4713. {
  4714. struct root_domain *rd;
  4715. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4716. if (!rd)
  4717. return NULL;
  4718. if (init_rootdomain(rd) != 0) {
  4719. kfree(rd);
  4720. return NULL;
  4721. }
  4722. return rd;
  4723. }
  4724. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4725. {
  4726. struct sched_group *tmp, *first;
  4727. if (!sg)
  4728. return;
  4729. first = sg;
  4730. do {
  4731. tmp = sg->next;
  4732. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4733. kfree(sg->sgp);
  4734. kfree(sg);
  4735. sg = tmp;
  4736. } while (sg != first);
  4737. }
  4738. static void free_sched_domain(struct rcu_head *rcu)
  4739. {
  4740. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4741. /*
  4742. * If its an overlapping domain it has private groups, iterate and
  4743. * nuke them all.
  4744. */
  4745. if (sd->flags & SD_OVERLAP) {
  4746. free_sched_groups(sd->groups, 1);
  4747. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4748. kfree(sd->groups->sgp);
  4749. kfree(sd->groups);
  4750. }
  4751. kfree(sd);
  4752. }
  4753. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4754. {
  4755. call_rcu(&sd->rcu, free_sched_domain);
  4756. }
  4757. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4758. {
  4759. for (; sd; sd = sd->parent)
  4760. destroy_sched_domain(sd, cpu);
  4761. }
  4762. /*
  4763. * Keep a special pointer to the highest sched_domain that has
  4764. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4765. * allows us to avoid some pointer chasing select_idle_sibling().
  4766. *
  4767. * Also keep a unique ID per domain (we use the first cpu number in
  4768. * the cpumask of the domain), this allows us to quickly tell if
  4769. * two cpus are in the same cache domain, see cpus_share_cache().
  4770. */
  4771. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4772. DEFINE_PER_CPU(int, sd_llc_id);
  4773. static void update_top_cache_domain(int cpu)
  4774. {
  4775. struct sched_domain *sd;
  4776. int id = cpu;
  4777. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4778. if (sd)
  4779. id = cpumask_first(sched_domain_span(sd));
  4780. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4781. per_cpu(sd_llc_id, cpu) = id;
  4782. }
  4783. /*
  4784. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4785. * hold the hotplug lock.
  4786. */
  4787. static void
  4788. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4789. {
  4790. struct rq *rq = cpu_rq(cpu);
  4791. struct sched_domain *tmp;
  4792. /* Remove the sched domains which do not contribute to scheduling. */
  4793. for (tmp = sd; tmp; ) {
  4794. struct sched_domain *parent = tmp->parent;
  4795. if (!parent)
  4796. break;
  4797. if (sd_parent_degenerate(tmp, parent)) {
  4798. tmp->parent = parent->parent;
  4799. if (parent->parent)
  4800. parent->parent->child = tmp;
  4801. destroy_sched_domain(parent, cpu);
  4802. } else
  4803. tmp = tmp->parent;
  4804. }
  4805. if (sd && sd_degenerate(sd)) {
  4806. tmp = sd;
  4807. sd = sd->parent;
  4808. destroy_sched_domain(tmp, cpu);
  4809. if (sd)
  4810. sd->child = NULL;
  4811. }
  4812. sched_domain_debug(sd, cpu);
  4813. rq_attach_root(rq, rd);
  4814. tmp = rq->sd;
  4815. rcu_assign_pointer(rq->sd, sd);
  4816. destroy_sched_domains(tmp, cpu);
  4817. update_top_cache_domain(cpu);
  4818. }
  4819. /* cpus with isolated domains */
  4820. static cpumask_var_t cpu_isolated_map;
  4821. /* Setup the mask of cpus configured for isolated domains */
  4822. static int __init isolated_cpu_setup(char *str)
  4823. {
  4824. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4825. cpulist_parse(str, cpu_isolated_map);
  4826. return 1;
  4827. }
  4828. __setup("isolcpus=", isolated_cpu_setup);
  4829. static const struct cpumask *cpu_cpu_mask(int cpu)
  4830. {
  4831. return cpumask_of_node(cpu_to_node(cpu));
  4832. }
  4833. struct sd_data {
  4834. struct sched_domain **__percpu sd;
  4835. struct sched_group **__percpu sg;
  4836. struct sched_group_power **__percpu sgp;
  4837. };
  4838. struct s_data {
  4839. struct sched_domain ** __percpu sd;
  4840. struct root_domain *rd;
  4841. };
  4842. enum s_alloc {
  4843. sa_rootdomain,
  4844. sa_sd,
  4845. sa_sd_storage,
  4846. sa_none,
  4847. };
  4848. struct sched_domain_topology_level;
  4849. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4850. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4851. #define SDTL_OVERLAP 0x01
  4852. struct sched_domain_topology_level {
  4853. sched_domain_init_f init;
  4854. sched_domain_mask_f mask;
  4855. int flags;
  4856. int numa_level;
  4857. struct sd_data data;
  4858. };
  4859. /*
  4860. * Build an iteration mask that can exclude certain CPUs from the upwards
  4861. * domain traversal.
  4862. *
  4863. * Asymmetric node setups can result in situations where the domain tree is of
  4864. * unequal depth, make sure to skip domains that already cover the entire
  4865. * range.
  4866. *
  4867. * In that case build_sched_domains() will have terminated the iteration early
  4868. * and our sibling sd spans will be empty. Domains should always include the
  4869. * cpu they're built on, so check that.
  4870. *
  4871. */
  4872. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4873. {
  4874. const struct cpumask *span = sched_domain_span(sd);
  4875. struct sd_data *sdd = sd->private;
  4876. struct sched_domain *sibling;
  4877. int i;
  4878. for_each_cpu(i, span) {
  4879. sibling = *per_cpu_ptr(sdd->sd, i);
  4880. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4881. continue;
  4882. cpumask_set_cpu(i, sched_group_mask(sg));
  4883. }
  4884. }
  4885. /*
  4886. * Return the canonical balance cpu for this group, this is the first cpu
  4887. * of this group that's also in the iteration mask.
  4888. */
  4889. int group_balance_cpu(struct sched_group *sg)
  4890. {
  4891. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4892. }
  4893. static int
  4894. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4895. {
  4896. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4897. const struct cpumask *span = sched_domain_span(sd);
  4898. struct cpumask *covered = sched_domains_tmpmask;
  4899. struct sd_data *sdd = sd->private;
  4900. struct sched_domain *child;
  4901. int i;
  4902. cpumask_clear(covered);
  4903. for_each_cpu(i, span) {
  4904. struct cpumask *sg_span;
  4905. if (cpumask_test_cpu(i, covered))
  4906. continue;
  4907. child = *per_cpu_ptr(sdd->sd, i);
  4908. /* See the comment near build_group_mask(). */
  4909. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4910. continue;
  4911. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4912. GFP_KERNEL, cpu_to_node(cpu));
  4913. if (!sg)
  4914. goto fail;
  4915. sg_span = sched_group_cpus(sg);
  4916. if (child->child) {
  4917. child = child->child;
  4918. cpumask_copy(sg_span, sched_domain_span(child));
  4919. } else
  4920. cpumask_set_cpu(i, sg_span);
  4921. cpumask_or(covered, covered, sg_span);
  4922. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4923. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4924. build_group_mask(sd, sg);
  4925. /*
  4926. * Initialize sgp->power such that even if we mess up the
  4927. * domains and no possible iteration will get us here, we won't
  4928. * die on a /0 trap.
  4929. */
  4930. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4931. /*
  4932. * Make sure the first group of this domain contains the
  4933. * canonical balance cpu. Otherwise the sched_domain iteration
  4934. * breaks. See update_sg_lb_stats().
  4935. */
  4936. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4937. group_balance_cpu(sg) == cpu)
  4938. groups = sg;
  4939. if (!first)
  4940. first = sg;
  4941. if (last)
  4942. last->next = sg;
  4943. last = sg;
  4944. last->next = first;
  4945. }
  4946. sd->groups = groups;
  4947. return 0;
  4948. fail:
  4949. free_sched_groups(first, 0);
  4950. return -ENOMEM;
  4951. }
  4952. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4953. {
  4954. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4955. struct sched_domain *child = sd->child;
  4956. if (child)
  4957. cpu = cpumask_first(sched_domain_span(child));
  4958. if (sg) {
  4959. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4960. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4961. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4962. }
  4963. return cpu;
  4964. }
  4965. /*
  4966. * build_sched_groups will build a circular linked list of the groups
  4967. * covered by the given span, and will set each group's ->cpumask correctly,
  4968. * and ->cpu_power to 0.
  4969. *
  4970. * Assumes the sched_domain tree is fully constructed
  4971. */
  4972. static int
  4973. build_sched_groups(struct sched_domain *sd, int cpu)
  4974. {
  4975. struct sched_group *first = NULL, *last = NULL;
  4976. struct sd_data *sdd = sd->private;
  4977. const struct cpumask *span = sched_domain_span(sd);
  4978. struct cpumask *covered;
  4979. int i;
  4980. get_group(cpu, sdd, &sd->groups);
  4981. atomic_inc(&sd->groups->ref);
  4982. if (cpu != cpumask_first(sched_domain_span(sd)))
  4983. return 0;
  4984. lockdep_assert_held(&sched_domains_mutex);
  4985. covered = sched_domains_tmpmask;
  4986. cpumask_clear(covered);
  4987. for_each_cpu(i, span) {
  4988. struct sched_group *sg;
  4989. int group = get_group(i, sdd, &sg);
  4990. int j;
  4991. if (cpumask_test_cpu(i, covered))
  4992. continue;
  4993. cpumask_clear(sched_group_cpus(sg));
  4994. sg->sgp->power = 0;
  4995. cpumask_setall(sched_group_mask(sg));
  4996. for_each_cpu(j, span) {
  4997. if (get_group(j, sdd, NULL) != group)
  4998. continue;
  4999. cpumask_set_cpu(j, covered);
  5000. cpumask_set_cpu(j, sched_group_cpus(sg));
  5001. }
  5002. if (!first)
  5003. first = sg;
  5004. if (last)
  5005. last->next = sg;
  5006. last = sg;
  5007. }
  5008. last->next = first;
  5009. return 0;
  5010. }
  5011. /*
  5012. * Initialize sched groups cpu_power.
  5013. *
  5014. * cpu_power indicates the capacity of sched group, which is used while
  5015. * distributing the load between different sched groups in a sched domain.
  5016. * Typically cpu_power for all the groups in a sched domain will be same unless
  5017. * there are asymmetries in the topology. If there are asymmetries, group
  5018. * having more cpu_power will pickup more load compared to the group having
  5019. * less cpu_power.
  5020. */
  5021. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5022. {
  5023. struct sched_group *sg = sd->groups;
  5024. WARN_ON(!sd || !sg);
  5025. do {
  5026. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5027. sg = sg->next;
  5028. } while (sg != sd->groups);
  5029. if (cpu != group_balance_cpu(sg))
  5030. return;
  5031. update_group_power(sd, cpu);
  5032. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5033. }
  5034. int __weak arch_sd_sibling_asym_packing(void)
  5035. {
  5036. return 0*SD_ASYM_PACKING;
  5037. }
  5038. /*
  5039. * Initializers for schedule domains
  5040. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5041. */
  5042. #ifdef CONFIG_SCHED_DEBUG
  5043. # define SD_INIT_NAME(sd, type) sd->name = #type
  5044. #else
  5045. # define SD_INIT_NAME(sd, type) do { } while (0)
  5046. #endif
  5047. #define SD_INIT_FUNC(type) \
  5048. static noinline struct sched_domain * \
  5049. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5050. { \
  5051. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5052. *sd = SD_##type##_INIT; \
  5053. SD_INIT_NAME(sd, type); \
  5054. sd->private = &tl->data; \
  5055. return sd; \
  5056. }
  5057. SD_INIT_FUNC(CPU)
  5058. #ifdef CONFIG_SCHED_SMT
  5059. SD_INIT_FUNC(SIBLING)
  5060. #endif
  5061. #ifdef CONFIG_SCHED_MC
  5062. SD_INIT_FUNC(MC)
  5063. #endif
  5064. #ifdef CONFIG_SCHED_BOOK
  5065. SD_INIT_FUNC(BOOK)
  5066. #endif
  5067. static int default_relax_domain_level = -1;
  5068. int sched_domain_level_max;
  5069. static int __init setup_relax_domain_level(char *str)
  5070. {
  5071. if (kstrtoint(str, 0, &default_relax_domain_level))
  5072. pr_warn("Unable to set relax_domain_level\n");
  5073. return 1;
  5074. }
  5075. __setup("relax_domain_level=", setup_relax_domain_level);
  5076. static void set_domain_attribute(struct sched_domain *sd,
  5077. struct sched_domain_attr *attr)
  5078. {
  5079. int request;
  5080. if (!attr || attr->relax_domain_level < 0) {
  5081. if (default_relax_domain_level < 0)
  5082. return;
  5083. else
  5084. request = default_relax_domain_level;
  5085. } else
  5086. request = attr->relax_domain_level;
  5087. if (request < sd->level) {
  5088. /* turn off idle balance on this domain */
  5089. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5090. } else {
  5091. /* turn on idle balance on this domain */
  5092. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5093. }
  5094. }
  5095. static void __sdt_free(const struct cpumask *cpu_map);
  5096. static int __sdt_alloc(const struct cpumask *cpu_map);
  5097. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5098. const struct cpumask *cpu_map)
  5099. {
  5100. switch (what) {
  5101. case sa_rootdomain:
  5102. if (!atomic_read(&d->rd->refcount))
  5103. free_rootdomain(&d->rd->rcu); /* fall through */
  5104. case sa_sd:
  5105. free_percpu(d->sd); /* fall through */
  5106. case sa_sd_storage:
  5107. __sdt_free(cpu_map); /* fall through */
  5108. case sa_none:
  5109. break;
  5110. }
  5111. }
  5112. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5113. const struct cpumask *cpu_map)
  5114. {
  5115. memset(d, 0, sizeof(*d));
  5116. if (__sdt_alloc(cpu_map))
  5117. return sa_sd_storage;
  5118. d->sd = alloc_percpu(struct sched_domain *);
  5119. if (!d->sd)
  5120. return sa_sd_storage;
  5121. d->rd = alloc_rootdomain();
  5122. if (!d->rd)
  5123. return sa_sd;
  5124. return sa_rootdomain;
  5125. }
  5126. /*
  5127. * NULL the sd_data elements we've used to build the sched_domain and
  5128. * sched_group structure so that the subsequent __free_domain_allocs()
  5129. * will not free the data we're using.
  5130. */
  5131. static void claim_allocations(int cpu, struct sched_domain *sd)
  5132. {
  5133. struct sd_data *sdd = sd->private;
  5134. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5135. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5136. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5137. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5138. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5139. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5140. }
  5141. #ifdef CONFIG_SCHED_SMT
  5142. static const struct cpumask *cpu_smt_mask(int cpu)
  5143. {
  5144. return topology_thread_cpumask(cpu);
  5145. }
  5146. #endif
  5147. /*
  5148. * Topology list, bottom-up.
  5149. */
  5150. static struct sched_domain_topology_level default_topology[] = {
  5151. #ifdef CONFIG_SCHED_SMT
  5152. { sd_init_SIBLING, cpu_smt_mask, },
  5153. #endif
  5154. #ifdef CONFIG_SCHED_MC
  5155. { sd_init_MC, cpu_coregroup_mask, },
  5156. #endif
  5157. #ifdef CONFIG_SCHED_BOOK
  5158. { sd_init_BOOK, cpu_book_mask, },
  5159. #endif
  5160. { sd_init_CPU, cpu_cpu_mask, },
  5161. { NULL, },
  5162. };
  5163. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5164. #ifdef CONFIG_NUMA
  5165. static int sched_domains_numa_levels;
  5166. static int *sched_domains_numa_distance;
  5167. static struct cpumask ***sched_domains_numa_masks;
  5168. static int sched_domains_curr_level;
  5169. static inline int sd_local_flags(int level)
  5170. {
  5171. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5172. return 0;
  5173. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5174. }
  5175. static struct sched_domain *
  5176. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5177. {
  5178. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5179. int level = tl->numa_level;
  5180. int sd_weight = cpumask_weight(
  5181. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5182. *sd = (struct sched_domain){
  5183. .min_interval = sd_weight,
  5184. .max_interval = 2*sd_weight,
  5185. .busy_factor = 32,
  5186. .imbalance_pct = 125,
  5187. .cache_nice_tries = 2,
  5188. .busy_idx = 3,
  5189. .idle_idx = 2,
  5190. .newidle_idx = 0,
  5191. .wake_idx = 0,
  5192. .forkexec_idx = 0,
  5193. .flags = 1*SD_LOAD_BALANCE
  5194. | 1*SD_BALANCE_NEWIDLE
  5195. | 0*SD_BALANCE_EXEC
  5196. | 0*SD_BALANCE_FORK
  5197. | 0*SD_BALANCE_WAKE
  5198. | 0*SD_WAKE_AFFINE
  5199. | 0*SD_SHARE_CPUPOWER
  5200. | 0*SD_SHARE_PKG_RESOURCES
  5201. | 1*SD_SERIALIZE
  5202. | 0*SD_PREFER_SIBLING
  5203. | sd_local_flags(level)
  5204. ,
  5205. .last_balance = jiffies,
  5206. .balance_interval = sd_weight,
  5207. };
  5208. SD_INIT_NAME(sd, NUMA);
  5209. sd->private = &tl->data;
  5210. /*
  5211. * Ugly hack to pass state to sd_numa_mask()...
  5212. */
  5213. sched_domains_curr_level = tl->numa_level;
  5214. return sd;
  5215. }
  5216. static const struct cpumask *sd_numa_mask(int cpu)
  5217. {
  5218. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5219. }
  5220. static void sched_numa_warn(const char *str)
  5221. {
  5222. static int done = false;
  5223. int i,j;
  5224. if (done)
  5225. return;
  5226. done = true;
  5227. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5228. for (i = 0; i < nr_node_ids; i++) {
  5229. printk(KERN_WARNING " ");
  5230. for (j = 0; j < nr_node_ids; j++)
  5231. printk(KERN_CONT "%02d ", node_distance(i,j));
  5232. printk(KERN_CONT "\n");
  5233. }
  5234. printk(KERN_WARNING "\n");
  5235. }
  5236. static bool find_numa_distance(int distance)
  5237. {
  5238. int i;
  5239. if (distance == node_distance(0, 0))
  5240. return true;
  5241. for (i = 0; i < sched_domains_numa_levels; i++) {
  5242. if (sched_domains_numa_distance[i] == distance)
  5243. return true;
  5244. }
  5245. return false;
  5246. }
  5247. static void sched_init_numa(void)
  5248. {
  5249. int next_distance, curr_distance = node_distance(0, 0);
  5250. struct sched_domain_topology_level *tl;
  5251. int level = 0;
  5252. int i, j, k;
  5253. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5254. if (!sched_domains_numa_distance)
  5255. return;
  5256. /*
  5257. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5258. * unique distances in the node_distance() table.
  5259. *
  5260. * Assumes node_distance(0,j) includes all distances in
  5261. * node_distance(i,j) in order to avoid cubic time.
  5262. */
  5263. next_distance = curr_distance;
  5264. for (i = 0; i < nr_node_ids; i++) {
  5265. for (j = 0; j < nr_node_ids; j++) {
  5266. for (k = 0; k < nr_node_ids; k++) {
  5267. int distance = node_distance(i, k);
  5268. if (distance > curr_distance &&
  5269. (distance < next_distance ||
  5270. next_distance == curr_distance))
  5271. next_distance = distance;
  5272. /*
  5273. * While not a strong assumption it would be nice to know
  5274. * about cases where if node A is connected to B, B is not
  5275. * equally connected to A.
  5276. */
  5277. if (sched_debug() && node_distance(k, i) != distance)
  5278. sched_numa_warn("Node-distance not symmetric");
  5279. if (sched_debug() && i && !find_numa_distance(distance))
  5280. sched_numa_warn("Node-0 not representative");
  5281. }
  5282. if (next_distance != curr_distance) {
  5283. sched_domains_numa_distance[level++] = next_distance;
  5284. sched_domains_numa_levels = level;
  5285. curr_distance = next_distance;
  5286. } else break;
  5287. }
  5288. /*
  5289. * In case of sched_debug() we verify the above assumption.
  5290. */
  5291. if (!sched_debug())
  5292. break;
  5293. }
  5294. /*
  5295. * 'level' contains the number of unique distances, excluding the
  5296. * identity distance node_distance(i,i).
  5297. *
  5298. * The sched_domains_nume_distance[] array includes the actual distance
  5299. * numbers.
  5300. */
  5301. /*
  5302. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5303. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5304. * the array will contain less then 'level' members. This could be
  5305. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5306. * in other functions.
  5307. *
  5308. * We reset it to 'level' at the end of this function.
  5309. */
  5310. sched_domains_numa_levels = 0;
  5311. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5312. if (!sched_domains_numa_masks)
  5313. return;
  5314. /*
  5315. * Now for each level, construct a mask per node which contains all
  5316. * cpus of nodes that are that many hops away from us.
  5317. */
  5318. for (i = 0; i < level; i++) {
  5319. sched_domains_numa_masks[i] =
  5320. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5321. if (!sched_domains_numa_masks[i])
  5322. return;
  5323. for (j = 0; j < nr_node_ids; j++) {
  5324. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5325. if (!mask)
  5326. return;
  5327. sched_domains_numa_masks[i][j] = mask;
  5328. for (k = 0; k < nr_node_ids; k++) {
  5329. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5330. continue;
  5331. cpumask_or(mask, mask, cpumask_of_node(k));
  5332. }
  5333. }
  5334. }
  5335. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5336. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5337. if (!tl)
  5338. return;
  5339. /*
  5340. * Copy the default topology bits..
  5341. */
  5342. for (i = 0; default_topology[i].init; i++)
  5343. tl[i] = default_topology[i];
  5344. /*
  5345. * .. and append 'j' levels of NUMA goodness.
  5346. */
  5347. for (j = 0; j < level; i++, j++) {
  5348. tl[i] = (struct sched_domain_topology_level){
  5349. .init = sd_numa_init,
  5350. .mask = sd_numa_mask,
  5351. .flags = SDTL_OVERLAP,
  5352. .numa_level = j,
  5353. };
  5354. }
  5355. sched_domain_topology = tl;
  5356. sched_domains_numa_levels = level;
  5357. }
  5358. static void sched_domains_numa_masks_set(int cpu)
  5359. {
  5360. int i, j;
  5361. int node = cpu_to_node(cpu);
  5362. for (i = 0; i < sched_domains_numa_levels; i++) {
  5363. for (j = 0; j < nr_node_ids; j++) {
  5364. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5365. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5366. }
  5367. }
  5368. }
  5369. static void sched_domains_numa_masks_clear(int cpu)
  5370. {
  5371. int i, j;
  5372. for (i = 0; i < sched_domains_numa_levels; i++) {
  5373. for (j = 0; j < nr_node_ids; j++)
  5374. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5375. }
  5376. }
  5377. /*
  5378. * Update sched_domains_numa_masks[level][node] array when new cpus
  5379. * are onlined.
  5380. */
  5381. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5382. unsigned long action,
  5383. void *hcpu)
  5384. {
  5385. int cpu = (long)hcpu;
  5386. switch (action & ~CPU_TASKS_FROZEN) {
  5387. case CPU_ONLINE:
  5388. sched_domains_numa_masks_set(cpu);
  5389. break;
  5390. case CPU_DEAD:
  5391. sched_domains_numa_masks_clear(cpu);
  5392. break;
  5393. default:
  5394. return NOTIFY_DONE;
  5395. }
  5396. return NOTIFY_OK;
  5397. }
  5398. #else
  5399. static inline void sched_init_numa(void)
  5400. {
  5401. }
  5402. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5403. unsigned long action,
  5404. void *hcpu)
  5405. {
  5406. return 0;
  5407. }
  5408. #endif /* CONFIG_NUMA */
  5409. static int __sdt_alloc(const struct cpumask *cpu_map)
  5410. {
  5411. struct sched_domain_topology_level *tl;
  5412. int j;
  5413. for (tl = sched_domain_topology; tl->init; tl++) {
  5414. struct sd_data *sdd = &tl->data;
  5415. sdd->sd = alloc_percpu(struct sched_domain *);
  5416. if (!sdd->sd)
  5417. return -ENOMEM;
  5418. sdd->sg = alloc_percpu(struct sched_group *);
  5419. if (!sdd->sg)
  5420. return -ENOMEM;
  5421. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5422. if (!sdd->sgp)
  5423. return -ENOMEM;
  5424. for_each_cpu(j, cpu_map) {
  5425. struct sched_domain *sd;
  5426. struct sched_group *sg;
  5427. struct sched_group_power *sgp;
  5428. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5429. GFP_KERNEL, cpu_to_node(j));
  5430. if (!sd)
  5431. return -ENOMEM;
  5432. *per_cpu_ptr(sdd->sd, j) = sd;
  5433. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5434. GFP_KERNEL, cpu_to_node(j));
  5435. if (!sg)
  5436. return -ENOMEM;
  5437. sg->next = sg;
  5438. *per_cpu_ptr(sdd->sg, j) = sg;
  5439. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5440. GFP_KERNEL, cpu_to_node(j));
  5441. if (!sgp)
  5442. return -ENOMEM;
  5443. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5444. }
  5445. }
  5446. return 0;
  5447. }
  5448. static void __sdt_free(const struct cpumask *cpu_map)
  5449. {
  5450. struct sched_domain_topology_level *tl;
  5451. int j;
  5452. for (tl = sched_domain_topology; tl->init; tl++) {
  5453. struct sd_data *sdd = &tl->data;
  5454. for_each_cpu(j, cpu_map) {
  5455. struct sched_domain *sd;
  5456. if (sdd->sd) {
  5457. sd = *per_cpu_ptr(sdd->sd, j);
  5458. if (sd && (sd->flags & SD_OVERLAP))
  5459. free_sched_groups(sd->groups, 0);
  5460. kfree(*per_cpu_ptr(sdd->sd, j));
  5461. }
  5462. if (sdd->sg)
  5463. kfree(*per_cpu_ptr(sdd->sg, j));
  5464. if (sdd->sgp)
  5465. kfree(*per_cpu_ptr(sdd->sgp, j));
  5466. }
  5467. free_percpu(sdd->sd);
  5468. sdd->sd = NULL;
  5469. free_percpu(sdd->sg);
  5470. sdd->sg = NULL;
  5471. free_percpu(sdd->sgp);
  5472. sdd->sgp = NULL;
  5473. }
  5474. }
  5475. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5476. struct s_data *d, const struct cpumask *cpu_map,
  5477. struct sched_domain_attr *attr, struct sched_domain *child,
  5478. int cpu)
  5479. {
  5480. struct sched_domain *sd = tl->init(tl, cpu);
  5481. if (!sd)
  5482. return child;
  5483. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5484. if (child) {
  5485. sd->level = child->level + 1;
  5486. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5487. child->parent = sd;
  5488. }
  5489. sd->child = child;
  5490. set_domain_attribute(sd, attr);
  5491. return sd;
  5492. }
  5493. /*
  5494. * Build sched domains for a given set of cpus and attach the sched domains
  5495. * to the individual cpus
  5496. */
  5497. static int build_sched_domains(const struct cpumask *cpu_map,
  5498. struct sched_domain_attr *attr)
  5499. {
  5500. enum s_alloc alloc_state = sa_none;
  5501. struct sched_domain *sd;
  5502. struct s_data d;
  5503. int i, ret = -ENOMEM;
  5504. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5505. if (alloc_state != sa_rootdomain)
  5506. goto error;
  5507. /* Set up domains for cpus specified by the cpu_map. */
  5508. for_each_cpu(i, cpu_map) {
  5509. struct sched_domain_topology_level *tl;
  5510. sd = NULL;
  5511. for (tl = sched_domain_topology; tl->init; tl++) {
  5512. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5513. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5514. sd->flags |= SD_OVERLAP;
  5515. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5516. break;
  5517. }
  5518. while (sd->child)
  5519. sd = sd->child;
  5520. *per_cpu_ptr(d.sd, i) = sd;
  5521. }
  5522. /* Build the groups for the domains */
  5523. for_each_cpu(i, cpu_map) {
  5524. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5525. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5526. if (sd->flags & SD_OVERLAP) {
  5527. if (build_overlap_sched_groups(sd, i))
  5528. goto error;
  5529. } else {
  5530. if (build_sched_groups(sd, i))
  5531. goto error;
  5532. }
  5533. }
  5534. }
  5535. /* Calculate CPU power for physical packages and nodes */
  5536. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5537. if (!cpumask_test_cpu(i, cpu_map))
  5538. continue;
  5539. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5540. claim_allocations(i, sd);
  5541. init_sched_groups_power(i, sd);
  5542. }
  5543. }
  5544. /* Attach the domains */
  5545. rcu_read_lock();
  5546. for_each_cpu(i, cpu_map) {
  5547. sd = *per_cpu_ptr(d.sd, i);
  5548. cpu_attach_domain(sd, d.rd, i);
  5549. }
  5550. rcu_read_unlock();
  5551. ret = 0;
  5552. error:
  5553. __free_domain_allocs(&d, alloc_state, cpu_map);
  5554. return ret;
  5555. }
  5556. static cpumask_var_t *doms_cur; /* current sched domains */
  5557. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5558. static struct sched_domain_attr *dattr_cur;
  5559. /* attribues of custom domains in 'doms_cur' */
  5560. /*
  5561. * Special case: If a kmalloc of a doms_cur partition (array of
  5562. * cpumask) fails, then fallback to a single sched domain,
  5563. * as determined by the single cpumask fallback_doms.
  5564. */
  5565. static cpumask_var_t fallback_doms;
  5566. /*
  5567. * arch_update_cpu_topology lets virtualized architectures update the
  5568. * cpu core maps. It is supposed to return 1 if the topology changed
  5569. * or 0 if it stayed the same.
  5570. */
  5571. int __attribute__((weak)) arch_update_cpu_topology(void)
  5572. {
  5573. return 0;
  5574. }
  5575. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5576. {
  5577. int i;
  5578. cpumask_var_t *doms;
  5579. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5580. if (!doms)
  5581. return NULL;
  5582. for (i = 0; i < ndoms; i++) {
  5583. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5584. free_sched_domains(doms, i);
  5585. return NULL;
  5586. }
  5587. }
  5588. return doms;
  5589. }
  5590. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5591. {
  5592. unsigned int i;
  5593. for (i = 0; i < ndoms; i++)
  5594. free_cpumask_var(doms[i]);
  5595. kfree(doms);
  5596. }
  5597. /*
  5598. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5599. * For now this just excludes isolated cpus, but could be used to
  5600. * exclude other special cases in the future.
  5601. */
  5602. static int init_sched_domains(const struct cpumask *cpu_map)
  5603. {
  5604. int err;
  5605. arch_update_cpu_topology();
  5606. ndoms_cur = 1;
  5607. doms_cur = alloc_sched_domains(ndoms_cur);
  5608. if (!doms_cur)
  5609. doms_cur = &fallback_doms;
  5610. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5611. err = build_sched_domains(doms_cur[0], NULL);
  5612. register_sched_domain_sysctl();
  5613. return err;
  5614. }
  5615. /*
  5616. * Detach sched domains from a group of cpus specified in cpu_map
  5617. * These cpus will now be attached to the NULL domain
  5618. */
  5619. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5620. {
  5621. int i;
  5622. rcu_read_lock();
  5623. for_each_cpu(i, cpu_map)
  5624. cpu_attach_domain(NULL, &def_root_domain, i);
  5625. rcu_read_unlock();
  5626. }
  5627. /* handle null as "default" */
  5628. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5629. struct sched_domain_attr *new, int idx_new)
  5630. {
  5631. struct sched_domain_attr tmp;
  5632. /* fast path */
  5633. if (!new && !cur)
  5634. return 1;
  5635. tmp = SD_ATTR_INIT;
  5636. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5637. new ? (new + idx_new) : &tmp,
  5638. sizeof(struct sched_domain_attr));
  5639. }
  5640. /*
  5641. * Partition sched domains as specified by the 'ndoms_new'
  5642. * cpumasks in the array doms_new[] of cpumasks. This compares
  5643. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5644. * It destroys each deleted domain and builds each new domain.
  5645. *
  5646. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5647. * The masks don't intersect (don't overlap.) We should setup one
  5648. * sched domain for each mask. CPUs not in any of the cpumasks will
  5649. * not be load balanced. If the same cpumask appears both in the
  5650. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5651. * it as it is.
  5652. *
  5653. * The passed in 'doms_new' should be allocated using
  5654. * alloc_sched_domains. This routine takes ownership of it and will
  5655. * free_sched_domains it when done with it. If the caller failed the
  5656. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5657. * and partition_sched_domains() will fallback to the single partition
  5658. * 'fallback_doms', it also forces the domains to be rebuilt.
  5659. *
  5660. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5661. * ndoms_new == 0 is a special case for destroying existing domains,
  5662. * and it will not create the default domain.
  5663. *
  5664. * Call with hotplug lock held
  5665. */
  5666. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5667. struct sched_domain_attr *dattr_new)
  5668. {
  5669. int i, j, n;
  5670. int new_topology;
  5671. mutex_lock(&sched_domains_mutex);
  5672. /* always unregister in case we don't destroy any domains */
  5673. unregister_sched_domain_sysctl();
  5674. /* Let architecture update cpu core mappings. */
  5675. new_topology = arch_update_cpu_topology();
  5676. n = doms_new ? ndoms_new : 0;
  5677. /* Destroy deleted domains */
  5678. for (i = 0; i < ndoms_cur; i++) {
  5679. for (j = 0; j < n && !new_topology; j++) {
  5680. if (cpumask_equal(doms_cur[i], doms_new[j])
  5681. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5682. goto match1;
  5683. }
  5684. /* no match - a current sched domain not in new doms_new[] */
  5685. detach_destroy_domains(doms_cur[i]);
  5686. match1:
  5687. ;
  5688. }
  5689. if (doms_new == NULL) {
  5690. ndoms_cur = 0;
  5691. doms_new = &fallback_doms;
  5692. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5693. WARN_ON_ONCE(dattr_new);
  5694. }
  5695. /* Build new domains */
  5696. for (i = 0; i < ndoms_new; i++) {
  5697. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5698. if (cpumask_equal(doms_new[i], doms_cur[j])
  5699. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5700. goto match2;
  5701. }
  5702. /* no match - add a new doms_new */
  5703. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5704. match2:
  5705. ;
  5706. }
  5707. /* Remember the new sched domains */
  5708. if (doms_cur != &fallback_doms)
  5709. free_sched_domains(doms_cur, ndoms_cur);
  5710. kfree(dattr_cur); /* kfree(NULL) is safe */
  5711. doms_cur = doms_new;
  5712. dattr_cur = dattr_new;
  5713. ndoms_cur = ndoms_new;
  5714. register_sched_domain_sysctl();
  5715. mutex_unlock(&sched_domains_mutex);
  5716. }
  5717. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5718. /*
  5719. * Update cpusets according to cpu_active mask. If cpusets are
  5720. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5721. * around partition_sched_domains().
  5722. *
  5723. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5724. * want to restore it back to its original state upon resume anyway.
  5725. */
  5726. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5727. void *hcpu)
  5728. {
  5729. switch (action) {
  5730. case CPU_ONLINE_FROZEN:
  5731. case CPU_DOWN_FAILED_FROZEN:
  5732. /*
  5733. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5734. * resume sequence. As long as this is not the last online
  5735. * operation in the resume sequence, just build a single sched
  5736. * domain, ignoring cpusets.
  5737. */
  5738. num_cpus_frozen--;
  5739. if (likely(num_cpus_frozen)) {
  5740. partition_sched_domains(1, NULL, NULL);
  5741. break;
  5742. }
  5743. /*
  5744. * This is the last CPU online operation. So fall through and
  5745. * restore the original sched domains by considering the
  5746. * cpuset configurations.
  5747. */
  5748. case CPU_ONLINE:
  5749. case CPU_DOWN_FAILED:
  5750. cpuset_update_active_cpus(true);
  5751. break;
  5752. default:
  5753. return NOTIFY_DONE;
  5754. }
  5755. return NOTIFY_OK;
  5756. }
  5757. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5758. void *hcpu)
  5759. {
  5760. switch (action) {
  5761. case CPU_DOWN_PREPARE:
  5762. cpuset_update_active_cpus(false);
  5763. break;
  5764. case CPU_DOWN_PREPARE_FROZEN:
  5765. num_cpus_frozen++;
  5766. partition_sched_domains(1, NULL, NULL);
  5767. break;
  5768. default:
  5769. return NOTIFY_DONE;
  5770. }
  5771. return NOTIFY_OK;
  5772. }
  5773. void __init sched_init_smp(void)
  5774. {
  5775. cpumask_var_t non_isolated_cpus;
  5776. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5777. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5778. sched_init_numa();
  5779. get_online_cpus();
  5780. mutex_lock(&sched_domains_mutex);
  5781. init_sched_domains(cpu_active_mask);
  5782. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5783. if (cpumask_empty(non_isolated_cpus))
  5784. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5785. mutex_unlock(&sched_domains_mutex);
  5786. put_online_cpus();
  5787. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5788. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5789. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5790. /* RT runtime code needs to handle some hotplug events */
  5791. hotcpu_notifier(update_runtime, 0);
  5792. init_hrtick();
  5793. /* Move init over to a non-isolated CPU */
  5794. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5795. BUG();
  5796. sched_init_granularity();
  5797. free_cpumask_var(non_isolated_cpus);
  5798. init_sched_rt_class();
  5799. }
  5800. #else
  5801. void __init sched_init_smp(void)
  5802. {
  5803. sched_init_granularity();
  5804. }
  5805. #endif /* CONFIG_SMP */
  5806. const_debug unsigned int sysctl_timer_migration = 1;
  5807. int in_sched_functions(unsigned long addr)
  5808. {
  5809. return in_lock_functions(addr) ||
  5810. (addr >= (unsigned long)__sched_text_start
  5811. && addr < (unsigned long)__sched_text_end);
  5812. }
  5813. #ifdef CONFIG_CGROUP_SCHED
  5814. struct task_group root_task_group;
  5815. LIST_HEAD(task_groups);
  5816. #endif
  5817. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5818. void __init sched_init(void)
  5819. {
  5820. int i, j;
  5821. unsigned long alloc_size = 0, ptr;
  5822. #ifdef CONFIG_FAIR_GROUP_SCHED
  5823. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5824. #endif
  5825. #ifdef CONFIG_RT_GROUP_SCHED
  5826. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5827. #endif
  5828. #ifdef CONFIG_CPUMASK_OFFSTACK
  5829. alloc_size += num_possible_cpus() * cpumask_size();
  5830. #endif
  5831. if (alloc_size) {
  5832. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5833. #ifdef CONFIG_FAIR_GROUP_SCHED
  5834. root_task_group.se = (struct sched_entity **)ptr;
  5835. ptr += nr_cpu_ids * sizeof(void **);
  5836. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5837. ptr += nr_cpu_ids * sizeof(void **);
  5838. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5839. #ifdef CONFIG_RT_GROUP_SCHED
  5840. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5841. ptr += nr_cpu_ids * sizeof(void **);
  5842. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5843. ptr += nr_cpu_ids * sizeof(void **);
  5844. #endif /* CONFIG_RT_GROUP_SCHED */
  5845. #ifdef CONFIG_CPUMASK_OFFSTACK
  5846. for_each_possible_cpu(i) {
  5847. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5848. ptr += cpumask_size();
  5849. }
  5850. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5851. }
  5852. #ifdef CONFIG_SMP
  5853. init_defrootdomain();
  5854. #endif
  5855. init_rt_bandwidth(&def_rt_bandwidth,
  5856. global_rt_period(), global_rt_runtime());
  5857. #ifdef CONFIG_RT_GROUP_SCHED
  5858. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5859. global_rt_period(), global_rt_runtime());
  5860. #endif /* CONFIG_RT_GROUP_SCHED */
  5861. #ifdef CONFIG_CGROUP_SCHED
  5862. list_add(&root_task_group.list, &task_groups);
  5863. INIT_LIST_HEAD(&root_task_group.children);
  5864. INIT_LIST_HEAD(&root_task_group.siblings);
  5865. autogroup_init(&init_task);
  5866. #endif /* CONFIG_CGROUP_SCHED */
  5867. #ifdef CONFIG_CGROUP_CPUACCT
  5868. root_cpuacct.cpustat = &kernel_cpustat;
  5869. root_cpuacct.cpuusage = alloc_percpu(u64);
  5870. /* Too early, not expected to fail */
  5871. BUG_ON(!root_cpuacct.cpuusage);
  5872. #endif
  5873. for_each_possible_cpu(i) {
  5874. struct rq *rq;
  5875. rq = cpu_rq(i);
  5876. raw_spin_lock_init(&rq->lock);
  5877. rq->nr_running = 0;
  5878. rq->calc_load_active = 0;
  5879. rq->calc_load_update = jiffies + LOAD_FREQ;
  5880. init_cfs_rq(&rq->cfs);
  5881. init_rt_rq(&rq->rt, rq);
  5882. #ifdef CONFIG_FAIR_GROUP_SCHED
  5883. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5884. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5885. /*
  5886. * How much cpu bandwidth does root_task_group get?
  5887. *
  5888. * In case of task-groups formed thr' the cgroup filesystem, it
  5889. * gets 100% of the cpu resources in the system. This overall
  5890. * system cpu resource is divided among the tasks of
  5891. * root_task_group and its child task-groups in a fair manner,
  5892. * based on each entity's (task or task-group's) weight
  5893. * (se->load.weight).
  5894. *
  5895. * In other words, if root_task_group has 10 tasks of weight
  5896. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5897. * then A0's share of the cpu resource is:
  5898. *
  5899. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5900. *
  5901. * We achieve this by letting root_task_group's tasks sit
  5902. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5903. */
  5904. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5905. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5906. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5907. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5908. #ifdef CONFIG_RT_GROUP_SCHED
  5909. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5910. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5911. #endif
  5912. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5913. rq->cpu_load[j] = 0;
  5914. rq->last_load_update_tick = jiffies;
  5915. #ifdef CONFIG_SMP
  5916. rq->sd = NULL;
  5917. rq->rd = NULL;
  5918. rq->cpu_power = SCHED_POWER_SCALE;
  5919. rq->post_schedule = 0;
  5920. rq->active_balance = 0;
  5921. rq->next_balance = jiffies;
  5922. rq->push_cpu = 0;
  5923. rq->cpu = i;
  5924. rq->online = 0;
  5925. rq->idle_stamp = 0;
  5926. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5927. INIT_LIST_HEAD(&rq->cfs_tasks);
  5928. rq_attach_root(rq, &def_root_domain);
  5929. #ifdef CONFIG_NO_HZ
  5930. rq->nohz_flags = 0;
  5931. #endif
  5932. #endif
  5933. init_rq_hrtick(rq);
  5934. atomic_set(&rq->nr_iowait, 0);
  5935. }
  5936. set_load_weight(&init_task);
  5937. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5938. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5939. #endif
  5940. #ifdef CONFIG_RT_MUTEXES
  5941. plist_head_init(&init_task.pi_waiters);
  5942. #endif
  5943. /*
  5944. * The boot idle thread does lazy MMU switching as well:
  5945. */
  5946. atomic_inc(&init_mm.mm_count);
  5947. enter_lazy_tlb(&init_mm, current);
  5948. /*
  5949. * Make us the idle thread. Technically, schedule() should not be
  5950. * called from this thread, however somewhere below it might be,
  5951. * but because we are the idle thread, we just pick up running again
  5952. * when this runqueue becomes "idle".
  5953. */
  5954. init_idle(current, smp_processor_id());
  5955. calc_load_update = jiffies + LOAD_FREQ;
  5956. /*
  5957. * During early bootup we pretend to be a normal task:
  5958. */
  5959. current->sched_class = &fair_sched_class;
  5960. #ifdef CONFIG_SMP
  5961. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5962. /* May be allocated at isolcpus cmdline parse time */
  5963. if (cpu_isolated_map == NULL)
  5964. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5965. idle_thread_set_boot_cpu();
  5966. #endif
  5967. init_sched_fair_class();
  5968. scheduler_running = 1;
  5969. }
  5970. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5971. static inline int preempt_count_equals(int preempt_offset)
  5972. {
  5973. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5974. return (nested == preempt_offset);
  5975. }
  5976. void __might_sleep(const char *file, int line, int preempt_offset)
  5977. {
  5978. static unsigned long prev_jiffy; /* ratelimiting */
  5979. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5980. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5981. system_state != SYSTEM_RUNNING || oops_in_progress)
  5982. return;
  5983. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5984. return;
  5985. prev_jiffy = jiffies;
  5986. printk(KERN_ERR
  5987. "BUG: sleeping function called from invalid context at %s:%d\n",
  5988. file, line);
  5989. printk(KERN_ERR
  5990. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5991. in_atomic(), irqs_disabled(),
  5992. current->pid, current->comm);
  5993. debug_show_held_locks(current);
  5994. if (irqs_disabled())
  5995. print_irqtrace_events(current);
  5996. dump_stack();
  5997. }
  5998. EXPORT_SYMBOL(__might_sleep);
  5999. #endif
  6000. #ifdef CONFIG_MAGIC_SYSRQ
  6001. static void normalize_task(struct rq *rq, struct task_struct *p)
  6002. {
  6003. const struct sched_class *prev_class = p->sched_class;
  6004. int old_prio = p->prio;
  6005. int on_rq;
  6006. on_rq = p->on_rq;
  6007. if (on_rq)
  6008. dequeue_task(rq, p, 0);
  6009. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6010. if (on_rq) {
  6011. enqueue_task(rq, p, 0);
  6012. resched_task(rq->curr);
  6013. }
  6014. check_class_changed(rq, p, prev_class, old_prio);
  6015. }
  6016. void normalize_rt_tasks(void)
  6017. {
  6018. struct task_struct *g, *p;
  6019. unsigned long flags;
  6020. struct rq *rq;
  6021. read_lock_irqsave(&tasklist_lock, flags);
  6022. do_each_thread(g, p) {
  6023. /*
  6024. * Only normalize user tasks:
  6025. */
  6026. if (!p->mm)
  6027. continue;
  6028. p->se.exec_start = 0;
  6029. #ifdef CONFIG_SCHEDSTATS
  6030. p->se.statistics.wait_start = 0;
  6031. p->se.statistics.sleep_start = 0;
  6032. p->se.statistics.block_start = 0;
  6033. #endif
  6034. if (!rt_task(p)) {
  6035. /*
  6036. * Renice negative nice level userspace
  6037. * tasks back to 0:
  6038. */
  6039. if (TASK_NICE(p) < 0 && p->mm)
  6040. set_user_nice(p, 0);
  6041. continue;
  6042. }
  6043. raw_spin_lock(&p->pi_lock);
  6044. rq = __task_rq_lock(p);
  6045. normalize_task(rq, p);
  6046. __task_rq_unlock(rq);
  6047. raw_spin_unlock(&p->pi_lock);
  6048. } while_each_thread(g, p);
  6049. read_unlock_irqrestore(&tasklist_lock, flags);
  6050. }
  6051. #endif /* CONFIG_MAGIC_SYSRQ */
  6052. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6053. /*
  6054. * These functions are only useful for the IA64 MCA handling, or kdb.
  6055. *
  6056. * They can only be called when the whole system has been
  6057. * stopped - every CPU needs to be quiescent, and no scheduling
  6058. * activity can take place. Using them for anything else would
  6059. * be a serious bug, and as a result, they aren't even visible
  6060. * under any other configuration.
  6061. */
  6062. /**
  6063. * curr_task - return the current task for a given cpu.
  6064. * @cpu: the processor in question.
  6065. *
  6066. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6067. */
  6068. struct task_struct *curr_task(int cpu)
  6069. {
  6070. return cpu_curr(cpu);
  6071. }
  6072. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6073. #ifdef CONFIG_IA64
  6074. /**
  6075. * set_curr_task - set the current task for a given cpu.
  6076. * @cpu: the processor in question.
  6077. * @p: the task pointer to set.
  6078. *
  6079. * Description: This function must only be used when non-maskable interrupts
  6080. * are serviced on a separate stack. It allows the architecture to switch the
  6081. * notion of the current task on a cpu in a non-blocking manner. This function
  6082. * must be called with all CPU's synchronized, and interrupts disabled, the
  6083. * and caller must save the original value of the current task (see
  6084. * curr_task() above) and restore that value before reenabling interrupts and
  6085. * re-starting the system.
  6086. *
  6087. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6088. */
  6089. void set_curr_task(int cpu, struct task_struct *p)
  6090. {
  6091. cpu_curr(cpu) = p;
  6092. }
  6093. #endif
  6094. #ifdef CONFIG_CGROUP_SCHED
  6095. /* task_group_lock serializes the addition/removal of task groups */
  6096. static DEFINE_SPINLOCK(task_group_lock);
  6097. static void free_sched_group(struct task_group *tg)
  6098. {
  6099. free_fair_sched_group(tg);
  6100. free_rt_sched_group(tg);
  6101. autogroup_free(tg);
  6102. kfree(tg);
  6103. }
  6104. /* allocate runqueue etc for a new task group */
  6105. struct task_group *sched_create_group(struct task_group *parent)
  6106. {
  6107. struct task_group *tg;
  6108. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6109. if (!tg)
  6110. return ERR_PTR(-ENOMEM);
  6111. if (!alloc_fair_sched_group(tg, parent))
  6112. goto err;
  6113. if (!alloc_rt_sched_group(tg, parent))
  6114. goto err;
  6115. return tg;
  6116. err:
  6117. free_sched_group(tg);
  6118. return ERR_PTR(-ENOMEM);
  6119. }
  6120. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6121. {
  6122. unsigned long flags;
  6123. spin_lock_irqsave(&task_group_lock, flags);
  6124. list_add_rcu(&tg->list, &task_groups);
  6125. WARN_ON(!parent); /* root should already exist */
  6126. tg->parent = parent;
  6127. INIT_LIST_HEAD(&tg->children);
  6128. list_add_rcu(&tg->siblings, &parent->children);
  6129. spin_unlock_irqrestore(&task_group_lock, flags);
  6130. }
  6131. /* rcu callback to free various structures associated with a task group */
  6132. static void free_sched_group_rcu(struct rcu_head *rhp)
  6133. {
  6134. /* now it should be safe to free those cfs_rqs */
  6135. free_sched_group(container_of(rhp, struct task_group, rcu));
  6136. }
  6137. /* Destroy runqueue etc associated with a task group */
  6138. void sched_destroy_group(struct task_group *tg)
  6139. {
  6140. /* wait for possible concurrent references to cfs_rqs complete */
  6141. call_rcu(&tg->rcu, free_sched_group_rcu);
  6142. }
  6143. void sched_offline_group(struct task_group *tg)
  6144. {
  6145. unsigned long flags;
  6146. int i;
  6147. /* end participation in shares distribution */
  6148. for_each_possible_cpu(i)
  6149. unregister_fair_sched_group(tg, i);
  6150. spin_lock_irqsave(&task_group_lock, flags);
  6151. list_del_rcu(&tg->list);
  6152. list_del_rcu(&tg->siblings);
  6153. spin_unlock_irqrestore(&task_group_lock, flags);
  6154. }
  6155. /* change task's runqueue when it moves between groups.
  6156. * The caller of this function should have put the task in its new group
  6157. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6158. * reflect its new group.
  6159. */
  6160. void sched_move_task(struct task_struct *tsk)
  6161. {
  6162. struct task_group *tg;
  6163. int on_rq, running;
  6164. unsigned long flags;
  6165. struct rq *rq;
  6166. rq = task_rq_lock(tsk, &flags);
  6167. running = task_current(rq, tsk);
  6168. on_rq = tsk->on_rq;
  6169. if (on_rq)
  6170. dequeue_task(rq, tsk, 0);
  6171. if (unlikely(running))
  6172. tsk->sched_class->put_prev_task(rq, tsk);
  6173. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6174. lockdep_is_held(&tsk->sighand->siglock)),
  6175. struct task_group, css);
  6176. tg = autogroup_task_group(tsk, tg);
  6177. tsk->sched_task_group = tg;
  6178. #ifdef CONFIG_FAIR_GROUP_SCHED
  6179. if (tsk->sched_class->task_move_group)
  6180. tsk->sched_class->task_move_group(tsk, on_rq);
  6181. else
  6182. #endif
  6183. set_task_rq(tsk, task_cpu(tsk));
  6184. if (unlikely(running))
  6185. tsk->sched_class->set_curr_task(rq);
  6186. if (on_rq)
  6187. enqueue_task(rq, tsk, 0);
  6188. task_rq_unlock(rq, tsk, &flags);
  6189. }
  6190. #endif /* CONFIG_CGROUP_SCHED */
  6191. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6192. static unsigned long to_ratio(u64 period, u64 runtime)
  6193. {
  6194. if (runtime == RUNTIME_INF)
  6195. return 1ULL << 20;
  6196. return div64_u64(runtime << 20, period);
  6197. }
  6198. #endif
  6199. #ifdef CONFIG_RT_GROUP_SCHED
  6200. /*
  6201. * Ensure that the real time constraints are schedulable.
  6202. */
  6203. static DEFINE_MUTEX(rt_constraints_mutex);
  6204. /* Must be called with tasklist_lock held */
  6205. static inline int tg_has_rt_tasks(struct task_group *tg)
  6206. {
  6207. struct task_struct *g, *p;
  6208. do_each_thread(g, p) {
  6209. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6210. return 1;
  6211. } while_each_thread(g, p);
  6212. return 0;
  6213. }
  6214. struct rt_schedulable_data {
  6215. struct task_group *tg;
  6216. u64 rt_period;
  6217. u64 rt_runtime;
  6218. };
  6219. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6220. {
  6221. struct rt_schedulable_data *d = data;
  6222. struct task_group *child;
  6223. unsigned long total, sum = 0;
  6224. u64 period, runtime;
  6225. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6226. runtime = tg->rt_bandwidth.rt_runtime;
  6227. if (tg == d->tg) {
  6228. period = d->rt_period;
  6229. runtime = d->rt_runtime;
  6230. }
  6231. /*
  6232. * Cannot have more runtime than the period.
  6233. */
  6234. if (runtime > period && runtime != RUNTIME_INF)
  6235. return -EINVAL;
  6236. /*
  6237. * Ensure we don't starve existing RT tasks.
  6238. */
  6239. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6240. return -EBUSY;
  6241. total = to_ratio(period, runtime);
  6242. /*
  6243. * Nobody can have more than the global setting allows.
  6244. */
  6245. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6246. return -EINVAL;
  6247. /*
  6248. * The sum of our children's runtime should not exceed our own.
  6249. */
  6250. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6251. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6252. runtime = child->rt_bandwidth.rt_runtime;
  6253. if (child == d->tg) {
  6254. period = d->rt_period;
  6255. runtime = d->rt_runtime;
  6256. }
  6257. sum += to_ratio(period, runtime);
  6258. }
  6259. if (sum > total)
  6260. return -EINVAL;
  6261. return 0;
  6262. }
  6263. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6264. {
  6265. int ret;
  6266. struct rt_schedulable_data data = {
  6267. .tg = tg,
  6268. .rt_period = period,
  6269. .rt_runtime = runtime,
  6270. };
  6271. rcu_read_lock();
  6272. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6273. rcu_read_unlock();
  6274. return ret;
  6275. }
  6276. static int tg_set_rt_bandwidth(struct task_group *tg,
  6277. u64 rt_period, u64 rt_runtime)
  6278. {
  6279. int i, err = 0;
  6280. mutex_lock(&rt_constraints_mutex);
  6281. read_lock(&tasklist_lock);
  6282. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6283. if (err)
  6284. goto unlock;
  6285. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6286. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6287. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6288. for_each_possible_cpu(i) {
  6289. struct rt_rq *rt_rq = tg->rt_rq[i];
  6290. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6291. rt_rq->rt_runtime = rt_runtime;
  6292. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6293. }
  6294. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6295. unlock:
  6296. read_unlock(&tasklist_lock);
  6297. mutex_unlock(&rt_constraints_mutex);
  6298. return err;
  6299. }
  6300. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6301. {
  6302. u64 rt_runtime, rt_period;
  6303. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6304. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6305. if (rt_runtime_us < 0)
  6306. rt_runtime = RUNTIME_INF;
  6307. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6308. }
  6309. long sched_group_rt_runtime(struct task_group *tg)
  6310. {
  6311. u64 rt_runtime_us;
  6312. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6313. return -1;
  6314. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6315. do_div(rt_runtime_us, NSEC_PER_USEC);
  6316. return rt_runtime_us;
  6317. }
  6318. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6319. {
  6320. u64 rt_runtime, rt_period;
  6321. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6322. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6323. if (rt_period == 0)
  6324. return -EINVAL;
  6325. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6326. }
  6327. long sched_group_rt_period(struct task_group *tg)
  6328. {
  6329. u64 rt_period_us;
  6330. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6331. do_div(rt_period_us, NSEC_PER_USEC);
  6332. return rt_period_us;
  6333. }
  6334. static int sched_rt_global_constraints(void)
  6335. {
  6336. u64 runtime, period;
  6337. int ret = 0;
  6338. if (sysctl_sched_rt_period <= 0)
  6339. return -EINVAL;
  6340. runtime = global_rt_runtime();
  6341. period = global_rt_period();
  6342. /*
  6343. * Sanity check on the sysctl variables.
  6344. */
  6345. if (runtime > period && runtime != RUNTIME_INF)
  6346. return -EINVAL;
  6347. mutex_lock(&rt_constraints_mutex);
  6348. read_lock(&tasklist_lock);
  6349. ret = __rt_schedulable(NULL, 0, 0);
  6350. read_unlock(&tasklist_lock);
  6351. mutex_unlock(&rt_constraints_mutex);
  6352. return ret;
  6353. }
  6354. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6355. {
  6356. /* Don't accept realtime tasks when there is no way for them to run */
  6357. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6358. return 0;
  6359. return 1;
  6360. }
  6361. #else /* !CONFIG_RT_GROUP_SCHED */
  6362. static int sched_rt_global_constraints(void)
  6363. {
  6364. unsigned long flags;
  6365. int i;
  6366. if (sysctl_sched_rt_period <= 0)
  6367. return -EINVAL;
  6368. /*
  6369. * There's always some RT tasks in the root group
  6370. * -- migration, kstopmachine etc..
  6371. */
  6372. if (sysctl_sched_rt_runtime == 0)
  6373. return -EBUSY;
  6374. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6375. for_each_possible_cpu(i) {
  6376. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6377. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6378. rt_rq->rt_runtime = global_rt_runtime();
  6379. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6380. }
  6381. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6382. return 0;
  6383. }
  6384. #endif /* CONFIG_RT_GROUP_SCHED */
  6385. int sched_rr_handler(struct ctl_table *table, int write,
  6386. void __user *buffer, size_t *lenp,
  6387. loff_t *ppos)
  6388. {
  6389. int ret;
  6390. static DEFINE_MUTEX(mutex);
  6391. mutex_lock(&mutex);
  6392. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6393. /* make sure that internally we keep jiffies */
  6394. /* also, writing zero resets timeslice to default */
  6395. if (!ret && write) {
  6396. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6397. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6398. }
  6399. mutex_unlock(&mutex);
  6400. return ret;
  6401. }
  6402. int sched_rt_handler(struct ctl_table *table, int write,
  6403. void __user *buffer, size_t *lenp,
  6404. loff_t *ppos)
  6405. {
  6406. int ret;
  6407. int old_period, old_runtime;
  6408. static DEFINE_MUTEX(mutex);
  6409. mutex_lock(&mutex);
  6410. old_period = sysctl_sched_rt_period;
  6411. old_runtime = sysctl_sched_rt_runtime;
  6412. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6413. if (!ret && write) {
  6414. ret = sched_rt_global_constraints();
  6415. if (ret) {
  6416. sysctl_sched_rt_period = old_period;
  6417. sysctl_sched_rt_runtime = old_runtime;
  6418. } else {
  6419. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6420. def_rt_bandwidth.rt_period =
  6421. ns_to_ktime(global_rt_period());
  6422. }
  6423. }
  6424. mutex_unlock(&mutex);
  6425. return ret;
  6426. }
  6427. #ifdef CONFIG_CGROUP_SCHED
  6428. /* return corresponding task_group object of a cgroup */
  6429. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6430. {
  6431. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6432. struct task_group, css);
  6433. }
  6434. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6435. {
  6436. struct task_group *tg, *parent;
  6437. if (!cgrp->parent) {
  6438. /* This is early initialization for the top cgroup */
  6439. return &root_task_group.css;
  6440. }
  6441. parent = cgroup_tg(cgrp->parent);
  6442. tg = sched_create_group(parent);
  6443. if (IS_ERR(tg))
  6444. return ERR_PTR(-ENOMEM);
  6445. return &tg->css;
  6446. }
  6447. static int cpu_cgroup_css_online(struct cgroup *cgrp)
  6448. {
  6449. struct task_group *tg = cgroup_tg(cgrp);
  6450. struct task_group *parent;
  6451. if (!cgrp->parent)
  6452. return 0;
  6453. parent = cgroup_tg(cgrp->parent);
  6454. sched_online_group(tg, parent);
  6455. return 0;
  6456. }
  6457. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6458. {
  6459. struct task_group *tg = cgroup_tg(cgrp);
  6460. sched_destroy_group(tg);
  6461. }
  6462. static void cpu_cgroup_css_offline(struct cgroup *cgrp)
  6463. {
  6464. struct task_group *tg = cgroup_tg(cgrp);
  6465. sched_offline_group(tg);
  6466. }
  6467. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6468. struct cgroup_taskset *tset)
  6469. {
  6470. struct task_struct *task;
  6471. cgroup_taskset_for_each(task, cgrp, tset) {
  6472. #ifdef CONFIG_RT_GROUP_SCHED
  6473. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6474. return -EINVAL;
  6475. #else
  6476. /* We don't support RT-tasks being in separate groups */
  6477. if (task->sched_class != &fair_sched_class)
  6478. return -EINVAL;
  6479. #endif
  6480. }
  6481. return 0;
  6482. }
  6483. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6484. struct cgroup_taskset *tset)
  6485. {
  6486. struct task_struct *task;
  6487. cgroup_taskset_for_each(task, cgrp, tset)
  6488. sched_move_task(task);
  6489. }
  6490. static void
  6491. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6492. struct task_struct *task)
  6493. {
  6494. /*
  6495. * cgroup_exit() is called in the copy_process() failure path.
  6496. * Ignore this case since the task hasn't ran yet, this avoids
  6497. * trying to poke a half freed task state from generic code.
  6498. */
  6499. if (!(task->flags & PF_EXITING))
  6500. return;
  6501. sched_move_task(task);
  6502. }
  6503. #ifdef CONFIG_FAIR_GROUP_SCHED
  6504. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6505. u64 shareval)
  6506. {
  6507. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6508. }
  6509. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6510. {
  6511. struct task_group *tg = cgroup_tg(cgrp);
  6512. return (u64) scale_load_down(tg->shares);
  6513. }
  6514. #ifdef CONFIG_CFS_BANDWIDTH
  6515. static DEFINE_MUTEX(cfs_constraints_mutex);
  6516. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6517. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6518. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6519. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6520. {
  6521. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6522. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6523. if (tg == &root_task_group)
  6524. return -EINVAL;
  6525. /*
  6526. * Ensure we have at some amount of bandwidth every period. This is
  6527. * to prevent reaching a state of large arrears when throttled via
  6528. * entity_tick() resulting in prolonged exit starvation.
  6529. */
  6530. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6531. return -EINVAL;
  6532. /*
  6533. * Likewise, bound things on the otherside by preventing insane quota
  6534. * periods. This also allows us to normalize in computing quota
  6535. * feasibility.
  6536. */
  6537. if (period > max_cfs_quota_period)
  6538. return -EINVAL;
  6539. mutex_lock(&cfs_constraints_mutex);
  6540. ret = __cfs_schedulable(tg, period, quota);
  6541. if (ret)
  6542. goto out_unlock;
  6543. runtime_enabled = quota != RUNTIME_INF;
  6544. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6545. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6546. raw_spin_lock_irq(&cfs_b->lock);
  6547. cfs_b->period = ns_to_ktime(period);
  6548. cfs_b->quota = quota;
  6549. __refill_cfs_bandwidth_runtime(cfs_b);
  6550. /* restart the period timer (if active) to handle new period expiry */
  6551. if (runtime_enabled && cfs_b->timer_active) {
  6552. /* force a reprogram */
  6553. cfs_b->timer_active = 0;
  6554. __start_cfs_bandwidth(cfs_b);
  6555. }
  6556. raw_spin_unlock_irq(&cfs_b->lock);
  6557. for_each_possible_cpu(i) {
  6558. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6559. struct rq *rq = cfs_rq->rq;
  6560. raw_spin_lock_irq(&rq->lock);
  6561. cfs_rq->runtime_enabled = runtime_enabled;
  6562. cfs_rq->runtime_remaining = 0;
  6563. if (cfs_rq->throttled)
  6564. unthrottle_cfs_rq(cfs_rq);
  6565. raw_spin_unlock_irq(&rq->lock);
  6566. }
  6567. out_unlock:
  6568. mutex_unlock(&cfs_constraints_mutex);
  6569. return ret;
  6570. }
  6571. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6572. {
  6573. u64 quota, period;
  6574. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6575. if (cfs_quota_us < 0)
  6576. quota = RUNTIME_INF;
  6577. else
  6578. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6579. return tg_set_cfs_bandwidth(tg, period, quota);
  6580. }
  6581. long tg_get_cfs_quota(struct task_group *tg)
  6582. {
  6583. u64 quota_us;
  6584. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6585. return -1;
  6586. quota_us = tg->cfs_bandwidth.quota;
  6587. do_div(quota_us, NSEC_PER_USEC);
  6588. return quota_us;
  6589. }
  6590. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6591. {
  6592. u64 quota, period;
  6593. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6594. quota = tg->cfs_bandwidth.quota;
  6595. return tg_set_cfs_bandwidth(tg, period, quota);
  6596. }
  6597. long tg_get_cfs_period(struct task_group *tg)
  6598. {
  6599. u64 cfs_period_us;
  6600. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6601. do_div(cfs_period_us, NSEC_PER_USEC);
  6602. return cfs_period_us;
  6603. }
  6604. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6605. {
  6606. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6607. }
  6608. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6609. s64 cfs_quota_us)
  6610. {
  6611. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6612. }
  6613. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6614. {
  6615. return tg_get_cfs_period(cgroup_tg(cgrp));
  6616. }
  6617. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6618. u64 cfs_period_us)
  6619. {
  6620. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6621. }
  6622. struct cfs_schedulable_data {
  6623. struct task_group *tg;
  6624. u64 period, quota;
  6625. };
  6626. /*
  6627. * normalize group quota/period to be quota/max_period
  6628. * note: units are usecs
  6629. */
  6630. static u64 normalize_cfs_quota(struct task_group *tg,
  6631. struct cfs_schedulable_data *d)
  6632. {
  6633. u64 quota, period;
  6634. if (tg == d->tg) {
  6635. period = d->period;
  6636. quota = d->quota;
  6637. } else {
  6638. period = tg_get_cfs_period(tg);
  6639. quota = tg_get_cfs_quota(tg);
  6640. }
  6641. /* note: these should typically be equivalent */
  6642. if (quota == RUNTIME_INF || quota == -1)
  6643. return RUNTIME_INF;
  6644. return to_ratio(period, quota);
  6645. }
  6646. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6647. {
  6648. struct cfs_schedulable_data *d = data;
  6649. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6650. s64 quota = 0, parent_quota = -1;
  6651. if (!tg->parent) {
  6652. quota = RUNTIME_INF;
  6653. } else {
  6654. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6655. quota = normalize_cfs_quota(tg, d);
  6656. parent_quota = parent_b->hierarchal_quota;
  6657. /*
  6658. * ensure max(child_quota) <= parent_quota, inherit when no
  6659. * limit is set
  6660. */
  6661. if (quota == RUNTIME_INF)
  6662. quota = parent_quota;
  6663. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6664. return -EINVAL;
  6665. }
  6666. cfs_b->hierarchal_quota = quota;
  6667. return 0;
  6668. }
  6669. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6670. {
  6671. int ret;
  6672. struct cfs_schedulable_data data = {
  6673. .tg = tg,
  6674. .period = period,
  6675. .quota = quota,
  6676. };
  6677. if (quota != RUNTIME_INF) {
  6678. do_div(data.period, NSEC_PER_USEC);
  6679. do_div(data.quota, NSEC_PER_USEC);
  6680. }
  6681. rcu_read_lock();
  6682. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6683. rcu_read_unlock();
  6684. return ret;
  6685. }
  6686. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6687. struct cgroup_map_cb *cb)
  6688. {
  6689. struct task_group *tg = cgroup_tg(cgrp);
  6690. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6691. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6692. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6693. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6694. return 0;
  6695. }
  6696. #endif /* CONFIG_CFS_BANDWIDTH */
  6697. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6698. #ifdef CONFIG_RT_GROUP_SCHED
  6699. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6700. s64 val)
  6701. {
  6702. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6703. }
  6704. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6705. {
  6706. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6707. }
  6708. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6709. u64 rt_period_us)
  6710. {
  6711. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6712. }
  6713. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6714. {
  6715. return sched_group_rt_period(cgroup_tg(cgrp));
  6716. }
  6717. #endif /* CONFIG_RT_GROUP_SCHED */
  6718. static struct cftype cpu_files[] = {
  6719. #ifdef CONFIG_FAIR_GROUP_SCHED
  6720. {
  6721. .name = "shares",
  6722. .read_u64 = cpu_shares_read_u64,
  6723. .write_u64 = cpu_shares_write_u64,
  6724. },
  6725. #endif
  6726. #ifdef CONFIG_CFS_BANDWIDTH
  6727. {
  6728. .name = "cfs_quota_us",
  6729. .read_s64 = cpu_cfs_quota_read_s64,
  6730. .write_s64 = cpu_cfs_quota_write_s64,
  6731. },
  6732. {
  6733. .name = "cfs_period_us",
  6734. .read_u64 = cpu_cfs_period_read_u64,
  6735. .write_u64 = cpu_cfs_period_write_u64,
  6736. },
  6737. {
  6738. .name = "stat",
  6739. .read_map = cpu_stats_show,
  6740. },
  6741. #endif
  6742. #ifdef CONFIG_RT_GROUP_SCHED
  6743. {
  6744. .name = "rt_runtime_us",
  6745. .read_s64 = cpu_rt_runtime_read,
  6746. .write_s64 = cpu_rt_runtime_write,
  6747. },
  6748. {
  6749. .name = "rt_period_us",
  6750. .read_u64 = cpu_rt_period_read_uint,
  6751. .write_u64 = cpu_rt_period_write_uint,
  6752. },
  6753. #endif
  6754. { } /* terminate */
  6755. };
  6756. struct cgroup_subsys cpu_cgroup_subsys = {
  6757. .name = "cpu",
  6758. .css_alloc = cpu_cgroup_css_alloc,
  6759. .css_free = cpu_cgroup_css_free,
  6760. .css_online = cpu_cgroup_css_online,
  6761. .css_offline = cpu_cgroup_css_offline,
  6762. .can_attach = cpu_cgroup_can_attach,
  6763. .attach = cpu_cgroup_attach,
  6764. .exit = cpu_cgroup_exit,
  6765. .subsys_id = cpu_cgroup_subsys_id,
  6766. .base_cftypes = cpu_files,
  6767. .early_init = 1,
  6768. };
  6769. #endif /* CONFIG_CGROUP_SCHED */
  6770. #ifdef CONFIG_CGROUP_CPUACCT
  6771. /*
  6772. * CPU accounting code for task groups.
  6773. *
  6774. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6775. * (balbir@in.ibm.com).
  6776. */
  6777. struct cpuacct root_cpuacct;
  6778. /* create a new cpu accounting group */
  6779. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6780. {
  6781. struct cpuacct *ca;
  6782. if (!cgrp->parent)
  6783. return &root_cpuacct.css;
  6784. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6785. if (!ca)
  6786. goto out;
  6787. ca->cpuusage = alloc_percpu(u64);
  6788. if (!ca->cpuusage)
  6789. goto out_free_ca;
  6790. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6791. if (!ca->cpustat)
  6792. goto out_free_cpuusage;
  6793. return &ca->css;
  6794. out_free_cpuusage:
  6795. free_percpu(ca->cpuusage);
  6796. out_free_ca:
  6797. kfree(ca);
  6798. out:
  6799. return ERR_PTR(-ENOMEM);
  6800. }
  6801. /* destroy an existing cpu accounting group */
  6802. static void cpuacct_css_free(struct cgroup *cgrp)
  6803. {
  6804. struct cpuacct *ca = cgroup_ca(cgrp);
  6805. free_percpu(ca->cpustat);
  6806. free_percpu(ca->cpuusage);
  6807. kfree(ca);
  6808. }
  6809. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6810. {
  6811. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6812. u64 data;
  6813. #ifndef CONFIG_64BIT
  6814. /*
  6815. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6816. */
  6817. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6818. data = *cpuusage;
  6819. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6820. #else
  6821. data = *cpuusage;
  6822. #endif
  6823. return data;
  6824. }
  6825. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6826. {
  6827. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6828. #ifndef CONFIG_64BIT
  6829. /*
  6830. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6831. */
  6832. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6833. *cpuusage = val;
  6834. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6835. #else
  6836. *cpuusage = val;
  6837. #endif
  6838. }
  6839. /* return total cpu usage (in nanoseconds) of a group */
  6840. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6841. {
  6842. struct cpuacct *ca = cgroup_ca(cgrp);
  6843. u64 totalcpuusage = 0;
  6844. int i;
  6845. for_each_present_cpu(i)
  6846. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6847. return totalcpuusage;
  6848. }
  6849. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6850. u64 reset)
  6851. {
  6852. struct cpuacct *ca = cgroup_ca(cgrp);
  6853. int err = 0;
  6854. int i;
  6855. if (reset) {
  6856. err = -EINVAL;
  6857. goto out;
  6858. }
  6859. for_each_present_cpu(i)
  6860. cpuacct_cpuusage_write(ca, i, 0);
  6861. out:
  6862. return err;
  6863. }
  6864. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6865. struct seq_file *m)
  6866. {
  6867. struct cpuacct *ca = cgroup_ca(cgroup);
  6868. u64 percpu;
  6869. int i;
  6870. for_each_present_cpu(i) {
  6871. percpu = cpuacct_cpuusage_read(ca, i);
  6872. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6873. }
  6874. seq_printf(m, "\n");
  6875. return 0;
  6876. }
  6877. static const char *cpuacct_stat_desc[] = {
  6878. [CPUACCT_STAT_USER] = "user",
  6879. [CPUACCT_STAT_SYSTEM] = "system",
  6880. };
  6881. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6882. struct cgroup_map_cb *cb)
  6883. {
  6884. struct cpuacct *ca = cgroup_ca(cgrp);
  6885. int cpu;
  6886. s64 val = 0;
  6887. for_each_online_cpu(cpu) {
  6888. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6889. val += kcpustat->cpustat[CPUTIME_USER];
  6890. val += kcpustat->cpustat[CPUTIME_NICE];
  6891. }
  6892. val = cputime64_to_clock_t(val);
  6893. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6894. val = 0;
  6895. for_each_online_cpu(cpu) {
  6896. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6897. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6898. val += kcpustat->cpustat[CPUTIME_IRQ];
  6899. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6900. }
  6901. val = cputime64_to_clock_t(val);
  6902. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6903. return 0;
  6904. }
  6905. static struct cftype files[] = {
  6906. {
  6907. .name = "usage",
  6908. .read_u64 = cpuusage_read,
  6909. .write_u64 = cpuusage_write,
  6910. },
  6911. {
  6912. .name = "usage_percpu",
  6913. .read_seq_string = cpuacct_percpu_seq_read,
  6914. },
  6915. {
  6916. .name = "stat",
  6917. .read_map = cpuacct_stats_show,
  6918. },
  6919. { } /* terminate */
  6920. };
  6921. /*
  6922. * charge this task's execution time to its accounting group.
  6923. *
  6924. * called with rq->lock held.
  6925. */
  6926. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6927. {
  6928. struct cpuacct *ca;
  6929. int cpu;
  6930. if (unlikely(!cpuacct_subsys.active))
  6931. return;
  6932. cpu = task_cpu(tsk);
  6933. rcu_read_lock();
  6934. ca = task_ca(tsk);
  6935. for (; ca; ca = parent_ca(ca)) {
  6936. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6937. *cpuusage += cputime;
  6938. }
  6939. rcu_read_unlock();
  6940. }
  6941. struct cgroup_subsys cpuacct_subsys = {
  6942. .name = "cpuacct",
  6943. .css_alloc = cpuacct_css_alloc,
  6944. .css_free = cpuacct_css_free,
  6945. .subsys_id = cpuacct_subsys_id,
  6946. .base_cftypes = files,
  6947. };
  6948. #endif /* CONFIG_CGROUP_CPUACCT */
  6949. void dump_cpu_task(int cpu)
  6950. {
  6951. pr_info("Task dump for CPU %d:\n", cpu);
  6952. sched_show_task(cpu_curr(cpu));
  6953. }