xfs_sync.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_inode.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_error.h"
  39. #include "xfs_mru_cache.h"
  40. #include "xfs_filestream.h"
  41. #include "xfs_vnodeops.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_inode_item.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_quota.h"
  47. #include <linux/kthread.h>
  48. #include <linux/freezer.h>
  49. STATIC xfs_inode_t *
  50. xfs_inode_ag_lookup(
  51. struct xfs_mount *mp,
  52. struct xfs_perag *pag,
  53. uint32_t *first_index,
  54. int tag)
  55. {
  56. int nr_found;
  57. struct xfs_inode *ip;
  58. /*
  59. * use a gang lookup to find the next inode in the tree
  60. * as the tree is sparse and a gang lookup walks to find
  61. * the number of objects requested.
  62. */
  63. read_lock(&pag->pag_ici_lock);
  64. if (tag == XFS_ICI_NO_TAG) {
  65. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
  66. (void **)&ip, *first_index, 1);
  67. } else {
  68. nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
  69. (void **)&ip, *first_index, 1, tag);
  70. }
  71. if (!nr_found)
  72. goto unlock;
  73. /*
  74. * Update the index for the next lookup. Catch overflows
  75. * into the next AG range which can occur if we have inodes
  76. * in the last block of the AG and we are currently
  77. * pointing to the last inode.
  78. */
  79. *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  80. if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  81. goto unlock;
  82. return ip;
  83. unlock:
  84. read_unlock(&pag->pag_ici_lock);
  85. return NULL;
  86. }
  87. STATIC int
  88. xfs_inode_ag_walk(
  89. struct xfs_mount *mp,
  90. xfs_agnumber_t ag,
  91. int (*execute)(struct xfs_inode *ip,
  92. struct xfs_perag *pag, int flags),
  93. int flags,
  94. int tag)
  95. {
  96. struct xfs_perag *pag = &mp->m_perag[ag];
  97. uint32_t first_index;
  98. int last_error = 0;
  99. int skipped;
  100. restart:
  101. skipped = 0;
  102. first_index = 0;
  103. do {
  104. int error = 0;
  105. xfs_inode_t *ip;
  106. ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
  107. if (!ip)
  108. break;
  109. error = execute(ip, pag, flags);
  110. if (error == EAGAIN) {
  111. skipped++;
  112. continue;
  113. }
  114. if (error)
  115. last_error = error;
  116. /*
  117. * bail out if the filesystem is corrupted.
  118. */
  119. if (error == EFSCORRUPTED)
  120. break;
  121. } while (1);
  122. if (skipped) {
  123. delay(1);
  124. goto restart;
  125. }
  126. xfs_put_perag(mp, pag);
  127. return last_error;
  128. }
  129. int
  130. xfs_inode_ag_iterator(
  131. struct xfs_mount *mp,
  132. int (*execute)(struct xfs_inode *ip,
  133. struct xfs_perag *pag, int flags),
  134. int flags,
  135. int tag)
  136. {
  137. int error = 0;
  138. int last_error = 0;
  139. xfs_agnumber_t ag;
  140. for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
  141. if (!mp->m_perag[ag].pag_ici_init)
  142. continue;
  143. error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
  144. if (error) {
  145. last_error = error;
  146. if (error == EFSCORRUPTED)
  147. break;
  148. }
  149. }
  150. return XFS_ERROR(last_error);
  151. }
  152. /* must be called with pag_ici_lock held and releases it */
  153. int
  154. xfs_sync_inode_valid(
  155. struct xfs_inode *ip,
  156. struct xfs_perag *pag)
  157. {
  158. struct inode *inode = VFS_I(ip);
  159. /* nothing to sync during shutdown */
  160. if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  161. read_unlock(&pag->pag_ici_lock);
  162. return EFSCORRUPTED;
  163. }
  164. /*
  165. * If we can't get a reference on the inode, it must be in reclaim.
  166. * Leave it for the reclaim code to flush. Also avoid inodes that
  167. * haven't been fully initialised.
  168. */
  169. if (!igrab(inode)) {
  170. read_unlock(&pag->pag_ici_lock);
  171. return ENOENT;
  172. }
  173. read_unlock(&pag->pag_ici_lock);
  174. if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
  175. IRELE(ip);
  176. return ENOENT;
  177. }
  178. return 0;
  179. }
  180. STATIC int
  181. xfs_sync_inode_data(
  182. struct xfs_inode *ip,
  183. struct xfs_perag *pag,
  184. int flags)
  185. {
  186. struct inode *inode = VFS_I(ip);
  187. struct address_space *mapping = inode->i_mapping;
  188. int error = 0;
  189. error = xfs_sync_inode_valid(ip, pag);
  190. if (error)
  191. return error;
  192. if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  193. goto out_wait;
  194. if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
  195. if (flags & SYNC_TRYLOCK)
  196. goto out_wait;
  197. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  198. }
  199. error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
  200. 0 : XFS_B_ASYNC, FI_NONE);
  201. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  202. out_wait:
  203. if (flags & SYNC_IOWAIT)
  204. xfs_ioend_wait(ip);
  205. IRELE(ip);
  206. return error;
  207. }
  208. STATIC int
  209. xfs_sync_inode_attr(
  210. struct xfs_inode *ip,
  211. struct xfs_perag *pag,
  212. int flags)
  213. {
  214. int error = 0;
  215. error = xfs_sync_inode_valid(ip, pag);
  216. if (error)
  217. return error;
  218. xfs_ilock(ip, XFS_ILOCK_SHARED);
  219. if (xfs_inode_clean(ip))
  220. goto out_unlock;
  221. if (!xfs_iflock_nowait(ip)) {
  222. if (!(flags & SYNC_WAIT))
  223. goto out_unlock;
  224. xfs_iflock(ip);
  225. }
  226. if (xfs_inode_clean(ip)) {
  227. xfs_ifunlock(ip);
  228. goto out_unlock;
  229. }
  230. error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
  231. XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
  232. out_unlock:
  233. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  234. IRELE(ip);
  235. return error;
  236. }
  237. int
  238. xfs_sync_inodes(
  239. xfs_mount_t *mp,
  240. int flags)
  241. {
  242. int error = 0;
  243. int lflags = XFS_LOG_FORCE;
  244. if (mp->m_flags & XFS_MOUNT_RDONLY)
  245. return 0;
  246. if (flags & SYNC_WAIT)
  247. lflags |= XFS_LOG_SYNC;
  248. if (flags & SYNC_DELWRI)
  249. error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags, XFS_ICI_NO_TAG);
  250. if (flags & SYNC_ATTR)
  251. error = xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags, XFS_ICI_NO_TAG);
  252. if (!error && (flags & SYNC_DELWRI))
  253. xfs_log_force(mp, 0, lflags);
  254. return XFS_ERROR(error);
  255. }
  256. STATIC int
  257. xfs_commit_dummy_trans(
  258. struct xfs_mount *mp,
  259. uint log_flags)
  260. {
  261. struct xfs_inode *ip = mp->m_rootip;
  262. struct xfs_trans *tp;
  263. int error;
  264. /*
  265. * Put a dummy transaction in the log to tell recovery
  266. * that all others are OK.
  267. */
  268. tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
  269. error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
  270. if (error) {
  271. xfs_trans_cancel(tp, 0);
  272. return error;
  273. }
  274. xfs_ilock(ip, XFS_ILOCK_EXCL);
  275. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  276. xfs_trans_ihold(tp, ip);
  277. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  278. /* XXX(hch): ignoring the error here.. */
  279. error = xfs_trans_commit(tp, 0);
  280. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  281. xfs_log_force(mp, 0, log_flags);
  282. return 0;
  283. }
  284. int
  285. xfs_sync_fsdata(
  286. struct xfs_mount *mp,
  287. int flags)
  288. {
  289. struct xfs_buf *bp;
  290. struct xfs_buf_log_item *bip;
  291. int error = 0;
  292. /*
  293. * If this is xfssyncd() then only sync the superblock if we can
  294. * lock it without sleeping and it is not pinned.
  295. */
  296. if (flags & SYNC_BDFLUSH) {
  297. ASSERT(!(flags & SYNC_WAIT));
  298. bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
  299. if (!bp)
  300. goto out;
  301. bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
  302. if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
  303. goto out_brelse;
  304. } else {
  305. bp = xfs_getsb(mp, 0);
  306. /*
  307. * If the buffer is pinned then push on the log so we won't
  308. * get stuck waiting in the write for someone, maybe
  309. * ourselves, to flush the log.
  310. *
  311. * Even though we just pushed the log above, we did not have
  312. * the superblock buffer locked at that point so it can
  313. * become pinned in between there and here.
  314. */
  315. if (XFS_BUF_ISPINNED(bp))
  316. xfs_log_force(mp, 0, XFS_LOG_FORCE);
  317. }
  318. if (flags & SYNC_WAIT)
  319. XFS_BUF_UNASYNC(bp);
  320. else
  321. XFS_BUF_ASYNC(bp);
  322. return xfs_bwrite(mp, bp);
  323. out_brelse:
  324. xfs_buf_relse(bp);
  325. out:
  326. return error;
  327. }
  328. /*
  329. * When remounting a filesystem read-only or freezing the filesystem, we have
  330. * two phases to execute. This first phase is syncing the data before we
  331. * quiesce the filesystem, and the second is flushing all the inodes out after
  332. * we've waited for all the transactions created by the first phase to
  333. * complete. The second phase ensures that the inodes are written to their
  334. * location on disk rather than just existing in transactions in the log. This
  335. * means after a quiesce there is no log replay required to write the inodes to
  336. * disk (this is the main difference between a sync and a quiesce).
  337. */
  338. /*
  339. * First stage of freeze - no writers will make progress now we are here,
  340. * so we flush delwri and delalloc buffers here, then wait for all I/O to
  341. * complete. Data is frozen at that point. Metadata is not frozen,
  342. * transactions can still occur here so don't bother flushing the buftarg
  343. * because it'll just get dirty again.
  344. */
  345. int
  346. xfs_quiesce_data(
  347. struct xfs_mount *mp)
  348. {
  349. int error;
  350. /* push non-blocking */
  351. xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
  352. xfs_qm_sync(mp, SYNC_BDFLUSH);
  353. xfs_filestream_flush(mp);
  354. /* push and block */
  355. xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
  356. xfs_qm_sync(mp, SYNC_WAIT);
  357. /* write superblock and hoover up shutdown errors */
  358. error = xfs_sync_fsdata(mp, 0);
  359. /* flush data-only devices */
  360. if (mp->m_rtdev_targp)
  361. XFS_bflush(mp->m_rtdev_targp);
  362. return error;
  363. }
  364. STATIC void
  365. xfs_quiesce_fs(
  366. struct xfs_mount *mp)
  367. {
  368. int count = 0, pincount;
  369. xfs_flush_buftarg(mp->m_ddev_targp, 0);
  370. xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
  371. /*
  372. * This loop must run at least twice. The first instance of the loop
  373. * will flush most meta data but that will generate more meta data
  374. * (typically directory updates). Which then must be flushed and
  375. * logged before we can write the unmount record.
  376. */
  377. do {
  378. xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
  379. pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
  380. if (!pincount) {
  381. delay(50);
  382. count++;
  383. }
  384. } while (count < 2);
  385. }
  386. /*
  387. * Second stage of a quiesce. The data is already synced, now we have to take
  388. * care of the metadata. New transactions are already blocked, so we need to
  389. * wait for any remaining transactions to drain out before proceding.
  390. */
  391. void
  392. xfs_quiesce_attr(
  393. struct xfs_mount *mp)
  394. {
  395. int error = 0;
  396. /* wait for all modifications to complete */
  397. while (atomic_read(&mp->m_active_trans) > 0)
  398. delay(100);
  399. /* flush inodes and push all remaining buffers out to disk */
  400. xfs_quiesce_fs(mp);
  401. /*
  402. * Just warn here till VFS can correctly support
  403. * read-only remount without racing.
  404. */
  405. WARN_ON(atomic_read(&mp->m_active_trans) != 0);
  406. /* Push the superblock and write an unmount record */
  407. error = xfs_log_sbcount(mp, 1);
  408. if (error)
  409. xfs_fs_cmn_err(CE_WARN, mp,
  410. "xfs_attr_quiesce: failed to log sb changes. "
  411. "Frozen image may not be consistent.");
  412. xfs_log_unmount_write(mp);
  413. xfs_unmountfs_writesb(mp);
  414. }
  415. /*
  416. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  417. * Doing this has two advantages:
  418. * - It saves on stack space, which is tight in certain situations
  419. * - It can be used (with care) as a mechanism to avoid deadlocks.
  420. * Flushing while allocating in a full filesystem requires both.
  421. */
  422. STATIC void
  423. xfs_syncd_queue_work(
  424. struct xfs_mount *mp,
  425. void *data,
  426. void (*syncer)(struct xfs_mount *, void *),
  427. struct completion *completion)
  428. {
  429. struct xfs_sync_work *work;
  430. work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
  431. INIT_LIST_HEAD(&work->w_list);
  432. work->w_syncer = syncer;
  433. work->w_data = data;
  434. work->w_mount = mp;
  435. work->w_completion = completion;
  436. spin_lock(&mp->m_sync_lock);
  437. list_add_tail(&work->w_list, &mp->m_sync_list);
  438. spin_unlock(&mp->m_sync_lock);
  439. wake_up_process(mp->m_sync_task);
  440. }
  441. /*
  442. * Flush delayed allocate data, attempting to free up reserved space
  443. * from existing allocations. At this point a new allocation attempt
  444. * has failed with ENOSPC and we are in the process of scratching our
  445. * heads, looking about for more room...
  446. */
  447. STATIC void
  448. xfs_flush_inodes_work(
  449. struct xfs_mount *mp,
  450. void *arg)
  451. {
  452. struct inode *inode = arg;
  453. xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
  454. xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
  455. iput(inode);
  456. }
  457. void
  458. xfs_flush_inodes(
  459. xfs_inode_t *ip)
  460. {
  461. struct inode *inode = VFS_I(ip);
  462. DECLARE_COMPLETION_ONSTACK(completion);
  463. igrab(inode);
  464. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
  465. wait_for_completion(&completion);
  466. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  467. }
  468. /*
  469. * Every sync period we need to unpin all items, reclaim inodes, sync
  470. * quota and write out the superblock. We might need to cover the log
  471. * to indicate it is idle.
  472. */
  473. STATIC void
  474. xfs_sync_worker(
  475. struct xfs_mount *mp,
  476. void *unused)
  477. {
  478. int error;
  479. if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
  480. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  481. xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
  482. /* dgc: errors ignored here */
  483. error = xfs_qm_sync(mp, SYNC_BDFLUSH);
  484. error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
  485. if (xfs_log_need_covered(mp))
  486. error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
  487. }
  488. mp->m_sync_seq++;
  489. wake_up(&mp->m_wait_single_sync_task);
  490. }
  491. STATIC int
  492. xfssyncd(
  493. void *arg)
  494. {
  495. struct xfs_mount *mp = arg;
  496. long timeleft;
  497. xfs_sync_work_t *work, *n;
  498. LIST_HEAD (tmp);
  499. set_freezable();
  500. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  501. for (;;) {
  502. timeleft = schedule_timeout_interruptible(timeleft);
  503. /* swsusp */
  504. try_to_freeze();
  505. if (kthread_should_stop() && list_empty(&mp->m_sync_list))
  506. break;
  507. spin_lock(&mp->m_sync_lock);
  508. /*
  509. * We can get woken by laptop mode, to do a sync -
  510. * that's the (only!) case where the list would be
  511. * empty with time remaining.
  512. */
  513. if (!timeleft || list_empty(&mp->m_sync_list)) {
  514. if (!timeleft)
  515. timeleft = xfs_syncd_centisecs *
  516. msecs_to_jiffies(10);
  517. INIT_LIST_HEAD(&mp->m_sync_work.w_list);
  518. list_add_tail(&mp->m_sync_work.w_list,
  519. &mp->m_sync_list);
  520. }
  521. list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
  522. list_move(&work->w_list, &tmp);
  523. spin_unlock(&mp->m_sync_lock);
  524. list_for_each_entry_safe(work, n, &tmp, w_list) {
  525. (*work->w_syncer)(mp, work->w_data);
  526. list_del(&work->w_list);
  527. if (work == &mp->m_sync_work)
  528. continue;
  529. if (work->w_completion)
  530. complete(work->w_completion);
  531. kmem_free(work);
  532. }
  533. }
  534. return 0;
  535. }
  536. int
  537. xfs_syncd_init(
  538. struct xfs_mount *mp)
  539. {
  540. mp->m_sync_work.w_syncer = xfs_sync_worker;
  541. mp->m_sync_work.w_mount = mp;
  542. mp->m_sync_work.w_completion = NULL;
  543. mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
  544. if (IS_ERR(mp->m_sync_task))
  545. return -PTR_ERR(mp->m_sync_task);
  546. return 0;
  547. }
  548. void
  549. xfs_syncd_stop(
  550. struct xfs_mount *mp)
  551. {
  552. kthread_stop(mp->m_sync_task);
  553. }
  554. int
  555. xfs_reclaim_inode(
  556. xfs_inode_t *ip,
  557. int locked,
  558. int sync_mode)
  559. {
  560. xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
  561. /* The hash lock here protects a thread in xfs_iget_core from
  562. * racing with us on linking the inode back with a vnode.
  563. * Once we have the XFS_IRECLAIM flag set it will not touch
  564. * us.
  565. */
  566. write_lock(&pag->pag_ici_lock);
  567. spin_lock(&ip->i_flags_lock);
  568. if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
  569. !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
  570. spin_unlock(&ip->i_flags_lock);
  571. write_unlock(&pag->pag_ici_lock);
  572. if (locked) {
  573. xfs_ifunlock(ip);
  574. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  575. }
  576. return -EAGAIN;
  577. }
  578. __xfs_iflags_set(ip, XFS_IRECLAIM);
  579. spin_unlock(&ip->i_flags_lock);
  580. write_unlock(&pag->pag_ici_lock);
  581. xfs_put_perag(ip->i_mount, pag);
  582. /*
  583. * If the inode is still dirty, then flush it out. If the inode
  584. * is not in the AIL, then it will be OK to flush it delwri as
  585. * long as xfs_iflush() does not keep any references to the inode.
  586. * We leave that decision up to xfs_iflush() since it has the
  587. * knowledge of whether it's OK to simply do a delwri flush of
  588. * the inode or whether we need to wait until the inode is
  589. * pulled from the AIL.
  590. * We get the flush lock regardless, though, just to make sure
  591. * we don't free it while it is being flushed.
  592. */
  593. if (!locked) {
  594. xfs_ilock(ip, XFS_ILOCK_EXCL);
  595. xfs_iflock(ip);
  596. }
  597. /*
  598. * In the case of a forced shutdown we rely on xfs_iflush() to
  599. * wait for the inode to be unpinned before returning an error.
  600. */
  601. if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
  602. /* synchronize with xfs_iflush_done */
  603. xfs_iflock(ip);
  604. xfs_ifunlock(ip);
  605. }
  606. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  607. xfs_ireclaim(ip);
  608. return 0;
  609. }
  610. /*
  611. * We set the inode flag atomically with the radix tree tag.
  612. * Once we get tag lookups on the radix tree, this inode flag
  613. * can go away.
  614. */
  615. void
  616. xfs_inode_set_reclaim_tag(
  617. xfs_inode_t *ip)
  618. {
  619. xfs_mount_t *mp = ip->i_mount;
  620. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  621. read_lock(&pag->pag_ici_lock);
  622. spin_lock(&ip->i_flags_lock);
  623. radix_tree_tag_set(&pag->pag_ici_root,
  624. XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
  625. __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
  626. spin_unlock(&ip->i_flags_lock);
  627. read_unlock(&pag->pag_ici_lock);
  628. xfs_put_perag(mp, pag);
  629. }
  630. void
  631. __xfs_inode_clear_reclaim_tag(
  632. xfs_mount_t *mp,
  633. xfs_perag_t *pag,
  634. xfs_inode_t *ip)
  635. {
  636. radix_tree_tag_clear(&pag->pag_ici_root,
  637. XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
  638. }
  639. void
  640. xfs_inode_clear_reclaim_tag(
  641. xfs_inode_t *ip)
  642. {
  643. xfs_mount_t *mp = ip->i_mount;
  644. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  645. read_lock(&pag->pag_ici_lock);
  646. spin_lock(&ip->i_flags_lock);
  647. __xfs_inode_clear_reclaim_tag(mp, pag, ip);
  648. spin_unlock(&ip->i_flags_lock);
  649. read_unlock(&pag->pag_ici_lock);
  650. xfs_put_perag(mp, pag);
  651. }
  652. STATIC int
  653. xfs_reclaim_inode_now(
  654. struct xfs_inode *ip,
  655. struct xfs_perag *pag,
  656. int flags)
  657. {
  658. /* ignore if already under reclaim */
  659. if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
  660. read_unlock(&pag->pag_ici_lock);
  661. return 0;
  662. }
  663. read_unlock(&pag->pag_ici_lock);
  664. return xfs_reclaim_inode(ip, 0, flags);
  665. }
  666. int
  667. xfs_reclaim_inodes(
  668. xfs_mount_t *mp,
  669. int mode)
  670. {
  671. return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
  672. XFS_ICI_RECLAIM_TAG);
  673. }