mmu.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <asm/page.h>
  27. #include <asm/cmpxchg.h>
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  79. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  83. #define PT64_LEVEL_MASK(level) \
  84. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  85. #define PT64_INDEX(address, level)\
  86. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  87. #define PT32_LEVEL_BITS 10
  88. #define PT32_LEVEL_SHIFT(level) \
  89. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  90. #define PT32_LEVEL_MASK(level) \
  91. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT32_BASE_ADDR_MASK PAGE_MASK
  98. #define PT32_DIR_BASE_ADDR_MASK \
  99. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  100. #define PFERR_PRESENT_MASK (1U << 0)
  101. #define PFERR_WRITE_MASK (1U << 1)
  102. #define PFERR_USER_MASK (1U << 2)
  103. #define PFERR_FETCH_MASK (1U << 4)
  104. #define PT64_ROOT_LEVEL 4
  105. #define PT32_ROOT_LEVEL 2
  106. #define PT32E_ROOT_LEVEL 3
  107. #define PT_DIRECTORY_LEVEL 2
  108. #define PT_PAGE_TABLE_LEVEL 1
  109. #define RMAP_EXT 4
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static int is_write_protection(struct kvm_vcpu *vcpu)
  118. {
  119. return vcpu->cr0 & X86_CR0_WP;
  120. }
  121. static int is_cpuid_PSE36(void)
  122. {
  123. return 1;
  124. }
  125. static int is_nx(struct kvm_vcpu *vcpu)
  126. {
  127. return vcpu->shadow_efer & EFER_NX;
  128. }
  129. static int is_present_pte(unsigned long pte)
  130. {
  131. return pte & PT_PRESENT_MASK;
  132. }
  133. static int is_writeble_pte(unsigned long pte)
  134. {
  135. return pte & PT_WRITABLE_MASK;
  136. }
  137. static int is_io_pte(unsigned long pte)
  138. {
  139. return pte & PT_SHADOW_IO_MARK;
  140. }
  141. static int is_rmap_pte(u64 pte)
  142. {
  143. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  144. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  145. }
  146. static void set_shadow_pte(u64 *sptep, u64 spte)
  147. {
  148. #ifdef CONFIG_X86_64
  149. set_64bit((unsigned long *)sptep, spte);
  150. #else
  151. set_64bit((unsigned long long *)sptep, spte);
  152. #endif
  153. }
  154. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  155. struct kmem_cache *base_cache, int min,
  156. gfp_t gfp_flags)
  157. {
  158. void *obj;
  159. if (cache->nobjs >= min)
  160. return 0;
  161. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  162. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  163. if (!obj)
  164. return -ENOMEM;
  165. cache->objects[cache->nobjs++] = obj;
  166. }
  167. return 0;
  168. }
  169. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  170. {
  171. while (mc->nobjs)
  172. kfree(mc->objects[--mc->nobjs]);
  173. }
  174. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  175. int min, gfp_t gfp_flags)
  176. {
  177. struct page *page;
  178. if (cache->nobjs >= min)
  179. return 0;
  180. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  181. page = alloc_page(gfp_flags);
  182. if (!page)
  183. return -ENOMEM;
  184. set_page_private(page, 0);
  185. cache->objects[cache->nobjs++] = page_address(page);
  186. }
  187. return 0;
  188. }
  189. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  190. {
  191. while (mc->nobjs)
  192. free_page((unsigned long)mc->objects[--mc->nobjs]);
  193. }
  194. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  195. {
  196. int r;
  197. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  198. pte_chain_cache, 4, gfp_flags);
  199. if (r)
  200. goto out;
  201. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  202. rmap_desc_cache, 1, gfp_flags);
  203. if (r)
  204. goto out;
  205. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4, gfp_flags);
  206. if (r)
  207. goto out;
  208. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  209. mmu_page_header_cache, 4, gfp_flags);
  210. out:
  211. return r;
  212. }
  213. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  214. {
  215. int r;
  216. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  217. kvm_mmu_free_some_pages(vcpu);
  218. if (r < 0) {
  219. spin_unlock(&vcpu->kvm->lock);
  220. kvm_arch_ops->vcpu_put(vcpu);
  221. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  222. kvm_arch_ops->vcpu_load(vcpu);
  223. spin_lock(&vcpu->kvm->lock);
  224. kvm_mmu_free_some_pages(vcpu);
  225. }
  226. return r;
  227. }
  228. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  229. {
  230. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  231. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  232. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  233. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  234. }
  235. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  236. size_t size)
  237. {
  238. void *p;
  239. BUG_ON(!mc->nobjs);
  240. p = mc->objects[--mc->nobjs];
  241. memset(p, 0, size);
  242. return p;
  243. }
  244. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  245. {
  246. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  247. sizeof(struct kvm_pte_chain));
  248. }
  249. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  250. {
  251. kfree(pc);
  252. }
  253. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  254. {
  255. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  256. sizeof(struct kvm_rmap_desc));
  257. }
  258. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  259. {
  260. kfree(rd);
  261. }
  262. /*
  263. * Reverse mapping data structures:
  264. *
  265. * If page->private bit zero is zero, then page->private points to the
  266. * shadow page table entry that points to page_address(page).
  267. *
  268. * If page->private bit zero is one, (then page->private & ~1) points
  269. * to a struct kvm_rmap_desc containing more mappings.
  270. */
  271. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  272. {
  273. struct page *page;
  274. struct kvm_rmap_desc *desc;
  275. int i;
  276. if (!is_rmap_pte(*spte))
  277. return;
  278. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  279. if (!page_private(page)) {
  280. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  281. set_page_private(page,(unsigned long)spte);
  282. } else if (!(page_private(page) & 1)) {
  283. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  284. desc = mmu_alloc_rmap_desc(vcpu);
  285. desc->shadow_ptes[0] = (u64 *)page_private(page);
  286. desc->shadow_ptes[1] = spte;
  287. set_page_private(page,(unsigned long)desc | 1);
  288. } else {
  289. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  290. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  291. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  292. desc = desc->more;
  293. if (desc->shadow_ptes[RMAP_EXT-1]) {
  294. desc->more = mmu_alloc_rmap_desc(vcpu);
  295. desc = desc->more;
  296. }
  297. for (i = 0; desc->shadow_ptes[i]; ++i)
  298. ;
  299. desc->shadow_ptes[i] = spte;
  300. }
  301. }
  302. static void rmap_desc_remove_entry(struct page *page,
  303. struct kvm_rmap_desc *desc,
  304. int i,
  305. struct kvm_rmap_desc *prev_desc)
  306. {
  307. int j;
  308. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  309. ;
  310. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  311. desc->shadow_ptes[j] = NULL;
  312. if (j != 0)
  313. return;
  314. if (!prev_desc && !desc->more)
  315. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  316. else
  317. if (prev_desc)
  318. prev_desc->more = desc->more;
  319. else
  320. set_page_private(page,(unsigned long)desc->more | 1);
  321. mmu_free_rmap_desc(desc);
  322. }
  323. static void rmap_remove(u64 *spte)
  324. {
  325. struct page *page;
  326. struct kvm_rmap_desc *desc;
  327. struct kvm_rmap_desc *prev_desc;
  328. int i;
  329. if (!is_rmap_pte(*spte))
  330. return;
  331. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  332. if (!page_private(page)) {
  333. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  334. BUG();
  335. } else if (!(page_private(page) & 1)) {
  336. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  337. if ((u64 *)page_private(page) != spte) {
  338. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  339. spte, *spte);
  340. BUG();
  341. }
  342. set_page_private(page,0);
  343. } else {
  344. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  345. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  346. prev_desc = NULL;
  347. while (desc) {
  348. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  349. if (desc->shadow_ptes[i] == spte) {
  350. rmap_desc_remove_entry(page,
  351. desc, i,
  352. prev_desc);
  353. return;
  354. }
  355. prev_desc = desc;
  356. desc = desc->more;
  357. }
  358. BUG();
  359. }
  360. }
  361. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  362. {
  363. struct kvm *kvm = vcpu->kvm;
  364. struct page *page;
  365. struct kvm_rmap_desc *desc;
  366. u64 *spte;
  367. page = gfn_to_page(kvm, gfn);
  368. BUG_ON(!page);
  369. while (page_private(page)) {
  370. if (!(page_private(page) & 1))
  371. spte = (u64 *)page_private(page);
  372. else {
  373. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  374. spte = desc->shadow_ptes[0];
  375. }
  376. BUG_ON(!spte);
  377. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  378. != page_to_pfn(page));
  379. BUG_ON(!(*spte & PT_PRESENT_MASK));
  380. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  381. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  382. rmap_remove(spte);
  383. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  384. kvm_flush_remote_tlbs(vcpu->kvm);
  385. }
  386. }
  387. #ifdef MMU_DEBUG
  388. static int is_empty_shadow_page(u64 *spt)
  389. {
  390. u64 *pos;
  391. u64 *end;
  392. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  393. if (*pos != 0) {
  394. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  395. pos, *pos);
  396. return 0;
  397. }
  398. return 1;
  399. }
  400. #endif
  401. static void kvm_mmu_free_page(struct kvm *kvm,
  402. struct kvm_mmu_page *page_head)
  403. {
  404. ASSERT(is_empty_shadow_page(page_head->spt));
  405. list_del(&page_head->link);
  406. __free_page(virt_to_page(page_head->spt));
  407. kfree(page_head);
  408. ++kvm->n_free_mmu_pages;
  409. }
  410. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  411. {
  412. return gfn;
  413. }
  414. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  415. u64 *parent_pte)
  416. {
  417. struct kvm_mmu_page *page;
  418. if (!vcpu->kvm->n_free_mmu_pages)
  419. return NULL;
  420. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  421. sizeof *page);
  422. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  423. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  424. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  425. ASSERT(is_empty_shadow_page(page->spt));
  426. page->slot_bitmap = 0;
  427. page->multimapped = 0;
  428. page->parent_pte = parent_pte;
  429. --vcpu->kvm->n_free_mmu_pages;
  430. return page;
  431. }
  432. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  433. struct kvm_mmu_page *page, u64 *parent_pte)
  434. {
  435. struct kvm_pte_chain *pte_chain;
  436. struct hlist_node *node;
  437. int i;
  438. if (!parent_pte)
  439. return;
  440. if (!page->multimapped) {
  441. u64 *old = page->parent_pte;
  442. if (!old) {
  443. page->parent_pte = parent_pte;
  444. return;
  445. }
  446. page->multimapped = 1;
  447. pte_chain = mmu_alloc_pte_chain(vcpu);
  448. INIT_HLIST_HEAD(&page->parent_ptes);
  449. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  450. pte_chain->parent_ptes[0] = old;
  451. }
  452. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  453. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  454. continue;
  455. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  456. if (!pte_chain->parent_ptes[i]) {
  457. pte_chain->parent_ptes[i] = parent_pte;
  458. return;
  459. }
  460. }
  461. pte_chain = mmu_alloc_pte_chain(vcpu);
  462. BUG_ON(!pte_chain);
  463. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  464. pte_chain->parent_ptes[0] = parent_pte;
  465. }
  466. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  467. u64 *parent_pte)
  468. {
  469. struct kvm_pte_chain *pte_chain;
  470. struct hlist_node *node;
  471. int i;
  472. if (!page->multimapped) {
  473. BUG_ON(page->parent_pte != parent_pte);
  474. page->parent_pte = NULL;
  475. return;
  476. }
  477. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  478. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  479. if (!pte_chain->parent_ptes[i])
  480. break;
  481. if (pte_chain->parent_ptes[i] != parent_pte)
  482. continue;
  483. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  484. && pte_chain->parent_ptes[i + 1]) {
  485. pte_chain->parent_ptes[i]
  486. = pte_chain->parent_ptes[i + 1];
  487. ++i;
  488. }
  489. pte_chain->parent_ptes[i] = NULL;
  490. if (i == 0) {
  491. hlist_del(&pte_chain->link);
  492. mmu_free_pte_chain(pte_chain);
  493. if (hlist_empty(&page->parent_ptes)) {
  494. page->multimapped = 0;
  495. page->parent_pte = NULL;
  496. }
  497. }
  498. return;
  499. }
  500. BUG();
  501. }
  502. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  503. gfn_t gfn)
  504. {
  505. unsigned index;
  506. struct hlist_head *bucket;
  507. struct kvm_mmu_page *page;
  508. struct hlist_node *node;
  509. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  510. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  511. bucket = &vcpu->kvm->mmu_page_hash[index];
  512. hlist_for_each_entry(page, node, bucket, hash_link)
  513. if (page->gfn == gfn && !page->role.metaphysical) {
  514. pgprintk("%s: found role %x\n",
  515. __FUNCTION__, page->role.word);
  516. return page;
  517. }
  518. return NULL;
  519. }
  520. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  521. gfn_t gfn,
  522. gva_t gaddr,
  523. unsigned level,
  524. int metaphysical,
  525. unsigned hugepage_access,
  526. u64 *parent_pte)
  527. {
  528. union kvm_mmu_page_role role;
  529. unsigned index;
  530. unsigned quadrant;
  531. struct hlist_head *bucket;
  532. struct kvm_mmu_page *page;
  533. struct hlist_node *node;
  534. role.word = 0;
  535. role.glevels = vcpu->mmu.root_level;
  536. role.level = level;
  537. role.metaphysical = metaphysical;
  538. role.hugepage_access = hugepage_access;
  539. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  540. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  541. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  542. role.quadrant = quadrant;
  543. }
  544. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  545. gfn, role.word);
  546. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  547. bucket = &vcpu->kvm->mmu_page_hash[index];
  548. hlist_for_each_entry(page, node, bucket, hash_link)
  549. if (page->gfn == gfn && page->role.word == role.word) {
  550. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  551. pgprintk("%s: found\n", __FUNCTION__);
  552. return page;
  553. }
  554. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  555. if (!page)
  556. return page;
  557. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  558. page->gfn = gfn;
  559. page->role = role;
  560. hlist_add_head(&page->hash_link, bucket);
  561. if (!metaphysical)
  562. rmap_write_protect(vcpu, gfn);
  563. return page;
  564. }
  565. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  566. struct kvm_mmu_page *page)
  567. {
  568. unsigned i;
  569. u64 *pt;
  570. u64 ent;
  571. pt = page->spt;
  572. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  573. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  574. if (pt[i] & PT_PRESENT_MASK)
  575. rmap_remove(&pt[i]);
  576. pt[i] = 0;
  577. }
  578. kvm_flush_remote_tlbs(kvm);
  579. return;
  580. }
  581. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  582. ent = pt[i];
  583. pt[i] = 0;
  584. if (!(ent & PT_PRESENT_MASK))
  585. continue;
  586. ent &= PT64_BASE_ADDR_MASK;
  587. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  588. }
  589. kvm_flush_remote_tlbs(kvm);
  590. }
  591. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  592. u64 *parent_pte)
  593. {
  594. mmu_page_remove_parent_pte(page, parent_pte);
  595. }
  596. static void kvm_mmu_zap_page(struct kvm *kvm,
  597. struct kvm_mmu_page *page)
  598. {
  599. u64 *parent_pte;
  600. while (page->multimapped || page->parent_pte) {
  601. if (!page->multimapped)
  602. parent_pte = page->parent_pte;
  603. else {
  604. struct kvm_pte_chain *chain;
  605. chain = container_of(page->parent_ptes.first,
  606. struct kvm_pte_chain, link);
  607. parent_pte = chain->parent_ptes[0];
  608. }
  609. BUG_ON(!parent_pte);
  610. kvm_mmu_put_page(page, parent_pte);
  611. set_shadow_pte(parent_pte, 0);
  612. }
  613. kvm_mmu_page_unlink_children(kvm, page);
  614. if (!page->root_count) {
  615. hlist_del(&page->hash_link);
  616. kvm_mmu_free_page(kvm, page);
  617. } else
  618. list_move(&page->link, &kvm->active_mmu_pages);
  619. }
  620. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  621. {
  622. unsigned index;
  623. struct hlist_head *bucket;
  624. struct kvm_mmu_page *page;
  625. struct hlist_node *node, *n;
  626. int r;
  627. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  628. r = 0;
  629. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  630. bucket = &vcpu->kvm->mmu_page_hash[index];
  631. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  632. if (page->gfn == gfn && !page->role.metaphysical) {
  633. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  634. page->role.word);
  635. kvm_mmu_zap_page(vcpu->kvm, page);
  636. r = 1;
  637. }
  638. return r;
  639. }
  640. static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
  641. {
  642. struct kvm_mmu_page *page;
  643. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  644. pgprintk("%s: zap %lx %x\n",
  645. __FUNCTION__, gfn, page->role.word);
  646. kvm_mmu_zap_page(vcpu->kvm, page);
  647. }
  648. }
  649. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  650. {
  651. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  652. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  653. __set_bit(slot, &page_head->slot_bitmap);
  654. }
  655. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  656. {
  657. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  658. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  659. }
  660. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  661. {
  662. struct page *page;
  663. ASSERT((gpa & HPA_ERR_MASK) == 0);
  664. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  665. if (!page)
  666. return gpa | HPA_ERR_MASK;
  667. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  668. | (gpa & (PAGE_SIZE-1));
  669. }
  670. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  671. {
  672. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  673. if (gpa == UNMAPPED_GVA)
  674. return UNMAPPED_GVA;
  675. return gpa_to_hpa(vcpu, gpa);
  676. }
  677. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  678. {
  679. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  680. if (gpa == UNMAPPED_GVA)
  681. return NULL;
  682. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  683. }
  684. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  685. {
  686. }
  687. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  688. {
  689. int level = PT32E_ROOT_LEVEL;
  690. hpa_t table_addr = vcpu->mmu.root_hpa;
  691. for (; ; level--) {
  692. u32 index = PT64_INDEX(v, level);
  693. u64 *table;
  694. u64 pte;
  695. ASSERT(VALID_PAGE(table_addr));
  696. table = __va(table_addr);
  697. if (level == 1) {
  698. pte = table[index];
  699. if (is_present_pte(pte) && is_writeble_pte(pte))
  700. return 0;
  701. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  702. page_header_update_slot(vcpu->kvm, table, v);
  703. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  704. PT_USER_MASK;
  705. rmap_add(vcpu, &table[index]);
  706. return 0;
  707. }
  708. if (table[index] == 0) {
  709. struct kvm_mmu_page *new_table;
  710. gfn_t pseudo_gfn;
  711. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  712. >> PAGE_SHIFT;
  713. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  714. v, level - 1,
  715. 1, 0, &table[index]);
  716. if (!new_table) {
  717. pgprintk("nonpaging_map: ENOMEM\n");
  718. return -ENOMEM;
  719. }
  720. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  721. | PT_WRITABLE_MASK | PT_USER_MASK;
  722. }
  723. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  724. }
  725. }
  726. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  727. {
  728. int i;
  729. struct kvm_mmu_page *page;
  730. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  731. return;
  732. #ifdef CONFIG_X86_64
  733. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  734. hpa_t root = vcpu->mmu.root_hpa;
  735. page = page_header(root);
  736. --page->root_count;
  737. vcpu->mmu.root_hpa = INVALID_PAGE;
  738. return;
  739. }
  740. #endif
  741. for (i = 0; i < 4; ++i) {
  742. hpa_t root = vcpu->mmu.pae_root[i];
  743. if (root) {
  744. root &= PT64_BASE_ADDR_MASK;
  745. page = page_header(root);
  746. --page->root_count;
  747. }
  748. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  749. }
  750. vcpu->mmu.root_hpa = INVALID_PAGE;
  751. }
  752. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  753. {
  754. int i;
  755. gfn_t root_gfn;
  756. struct kvm_mmu_page *page;
  757. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  758. #ifdef CONFIG_X86_64
  759. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  760. hpa_t root = vcpu->mmu.root_hpa;
  761. ASSERT(!VALID_PAGE(root));
  762. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  763. PT64_ROOT_LEVEL, 0, 0, NULL);
  764. root = __pa(page->spt);
  765. ++page->root_count;
  766. vcpu->mmu.root_hpa = root;
  767. return;
  768. }
  769. #endif
  770. for (i = 0; i < 4; ++i) {
  771. hpa_t root = vcpu->mmu.pae_root[i];
  772. ASSERT(!VALID_PAGE(root));
  773. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  774. if (!is_present_pte(vcpu->pdptrs[i])) {
  775. vcpu->mmu.pae_root[i] = 0;
  776. continue;
  777. }
  778. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  779. } else if (vcpu->mmu.root_level == 0)
  780. root_gfn = 0;
  781. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  782. PT32_ROOT_LEVEL, !is_paging(vcpu),
  783. 0, NULL);
  784. root = __pa(page->spt);
  785. ++page->root_count;
  786. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  787. }
  788. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  789. }
  790. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  791. {
  792. return vaddr;
  793. }
  794. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  795. u32 error_code)
  796. {
  797. gpa_t addr = gva;
  798. hpa_t paddr;
  799. int r;
  800. r = mmu_topup_memory_caches(vcpu);
  801. if (r)
  802. return r;
  803. ASSERT(vcpu);
  804. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  805. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  806. if (is_error_hpa(paddr))
  807. return 1;
  808. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  809. }
  810. static void nonpaging_free(struct kvm_vcpu *vcpu)
  811. {
  812. mmu_free_roots(vcpu);
  813. }
  814. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  815. {
  816. struct kvm_mmu *context = &vcpu->mmu;
  817. context->new_cr3 = nonpaging_new_cr3;
  818. context->page_fault = nonpaging_page_fault;
  819. context->gva_to_gpa = nonpaging_gva_to_gpa;
  820. context->free = nonpaging_free;
  821. context->root_level = 0;
  822. context->shadow_root_level = PT32E_ROOT_LEVEL;
  823. context->root_hpa = INVALID_PAGE;
  824. return 0;
  825. }
  826. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  827. {
  828. ++vcpu->stat.tlb_flush;
  829. kvm_arch_ops->tlb_flush(vcpu);
  830. }
  831. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  832. {
  833. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  834. mmu_free_roots(vcpu);
  835. }
  836. static void inject_page_fault(struct kvm_vcpu *vcpu,
  837. u64 addr,
  838. u32 err_code)
  839. {
  840. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  841. }
  842. static void paging_free(struct kvm_vcpu *vcpu)
  843. {
  844. nonpaging_free(vcpu);
  845. }
  846. #define PTTYPE 64
  847. #include "paging_tmpl.h"
  848. #undef PTTYPE
  849. #define PTTYPE 32
  850. #include "paging_tmpl.h"
  851. #undef PTTYPE
  852. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  853. {
  854. struct kvm_mmu *context = &vcpu->mmu;
  855. ASSERT(is_pae(vcpu));
  856. context->new_cr3 = paging_new_cr3;
  857. context->page_fault = paging64_page_fault;
  858. context->gva_to_gpa = paging64_gva_to_gpa;
  859. context->free = paging_free;
  860. context->root_level = level;
  861. context->shadow_root_level = level;
  862. context->root_hpa = INVALID_PAGE;
  863. return 0;
  864. }
  865. static int paging64_init_context(struct kvm_vcpu *vcpu)
  866. {
  867. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  868. }
  869. static int paging32_init_context(struct kvm_vcpu *vcpu)
  870. {
  871. struct kvm_mmu *context = &vcpu->mmu;
  872. context->new_cr3 = paging_new_cr3;
  873. context->page_fault = paging32_page_fault;
  874. context->gva_to_gpa = paging32_gva_to_gpa;
  875. context->free = paging_free;
  876. context->root_level = PT32_ROOT_LEVEL;
  877. context->shadow_root_level = PT32E_ROOT_LEVEL;
  878. context->root_hpa = INVALID_PAGE;
  879. return 0;
  880. }
  881. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  882. {
  883. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  884. }
  885. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  886. {
  887. ASSERT(vcpu);
  888. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  889. if (!is_paging(vcpu))
  890. return nonpaging_init_context(vcpu);
  891. else if (is_long_mode(vcpu))
  892. return paging64_init_context(vcpu);
  893. else if (is_pae(vcpu))
  894. return paging32E_init_context(vcpu);
  895. else
  896. return paging32_init_context(vcpu);
  897. }
  898. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  899. {
  900. ASSERT(vcpu);
  901. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  902. vcpu->mmu.free(vcpu);
  903. vcpu->mmu.root_hpa = INVALID_PAGE;
  904. }
  905. }
  906. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  907. {
  908. destroy_kvm_mmu(vcpu);
  909. return init_kvm_mmu(vcpu);
  910. }
  911. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  912. {
  913. int r;
  914. spin_lock(&vcpu->kvm->lock);
  915. r = mmu_topup_memory_caches(vcpu);
  916. if (r)
  917. goto out;
  918. mmu_alloc_roots(vcpu);
  919. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  920. kvm_mmu_flush_tlb(vcpu);
  921. out:
  922. spin_unlock(&vcpu->kvm->lock);
  923. return r;
  924. }
  925. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  926. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  927. {
  928. mmu_free_roots(vcpu);
  929. }
  930. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  931. struct kvm_mmu_page *page,
  932. u64 *spte)
  933. {
  934. u64 pte;
  935. struct kvm_mmu_page *child;
  936. pte = *spte;
  937. if (is_present_pte(pte)) {
  938. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  939. rmap_remove(spte);
  940. else {
  941. child = page_header(pte & PT64_BASE_ADDR_MASK);
  942. mmu_page_remove_parent_pte(child, spte);
  943. }
  944. }
  945. *spte = 0;
  946. kvm_flush_remote_tlbs(vcpu->kvm);
  947. }
  948. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  949. struct kvm_mmu_page *page,
  950. u64 *spte,
  951. const void *new, int bytes)
  952. {
  953. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  954. return;
  955. if (page->role.glevels == PT32_ROOT_LEVEL)
  956. paging32_update_pte(vcpu, page, spte, new, bytes);
  957. else
  958. paging64_update_pte(vcpu, page, spte, new, bytes);
  959. }
  960. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  961. const u8 *new, int bytes)
  962. {
  963. gfn_t gfn = gpa >> PAGE_SHIFT;
  964. struct kvm_mmu_page *page;
  965. struct hlist_node *node, *n;
  966. struct hlist_head *bucket;
  967. unsigned index;
  968. u64 *spte;
  969. unsigned offset = offset_in_page(gpa);
  970. unsigned pte_size;
  971. unsigned page_offset;
  972. unsigned misaligned;
  973. unsigned quadrant;
  974. int level;
  975. int flooded = 0;
  976. int npte;
  977. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  978. if (gfn == vcpu->last_pt_write_gfn) {
  979. ++vcpu->last_pt_write_count;
  980. if (vcpu->last_pt_write_count >= 3)
  981. flooded = 1;
  982. } else {
  983. vcpu->last_pt_write_gfn = gfn;
  984. vcpu->last_pt_write_count = 1;
  985. }
  986. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  987. bucket = &vcpu->kvm->mmu_page_hash[index];
  988. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  989. if (page->gfn != gfn || page->role.metaphysical)
  990. continue;
  991. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  992. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  993. misaligned |= bytes < 4;
  994. if (misaligned || flooded) {
  995. /*
  996. * Misaligned accesses are too much trouble to fix
  997. * up; also, they usually indicate a page is not used
  998. * as a page table.
  999. *
  1000. * If we're seeing too many writes to a page,
  1001. * it may no longer be a page table, or we may be
  1002. * forking, in which case it is better to unmap the
  1003. * page.
  1004. */
  1005. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1006. gpa, bytes, page->role.word);
  1007. kvm_mmu_zap_page(vcpu->kvm, page);
  1008. continue;
  1009. }
  1010. page_offset = offset;
  1011. level = page->role.level;
  1012. npte = 1;
  1013. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1014. page_offset <<= 1; /* 32->64 */
  1015. /*
  1016. * A 32-bit pde maps 4MB while the shadow pdes map
  1017. * only 2MB. So we need to double the offset again
  1018. * and zap two pdes instead of one.
  1019. */
  1020. if (level == PT32_ROOT_LEVEL) {
  1021. page_offset &= ~7; /* kill rounding error */
  1022. page_offset <<= 1;
  1023. npte = 2;
  1024. }
  1025. quadrant = page_offset >> PAGE_SHIFT;
  1026. page_offset &= ~PAGE_MASK;
  1027. if (quadrant != page->role.quadrant)
  1028. continue;
  1029. }
  1030. spte = &page->spt[page_offset / sizeof(*spte)];
  1031. while (npte--) {
  1032. mmu_pte_write_zap_pte(vcpu, page, spte);
  1033. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
  1034. ++spte;
  1035. }
  1036. }
  1037. }
  1038. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1039. {
  1040. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1041. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1042. }
  1043. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1044. {
  1045. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1046. struct kvm_mmu_page *page;
  1047. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1048. struct kvm_mmu_page, link);
  1049. kvm_mmu_zap_page(vcpu->kvm, page);
  1050. }
  1051. }
  1052. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1053. {
  1054. struct kvm_mmu_page *page;
  1055. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1056. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1057. struct kvm_mmu_page, link);
  1058. kvm_mmu_zap_page(vcpu->kvm, page);
  1059. }
  1060. free_page((unsigned long)vcpu->mmu.pae_root);
  1061. }
  1062. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1063. {
  1064. struct page *page;
  1065. int i;
  1066. ASSERT(vcpu);
  1067. vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
  1068. /*
  1069. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1070. * Therefore we need to allocate shadow page tables in the first
  1071. * 4GB of memory, which happens to fit the DMA32 zone.
  1072. */
  1073. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1074. if (!page)
  1075. goto error_1;
  1076. vcpu->mmu.pae_root = page_address(page);
  1077. for (i = 0; i < 4; ++i)
  1078. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1079. return 0;
  1080. error_1:
  1081. free_mmu_pages(vcpu);
  1082. return -ENOMEM;
  1083. }
  1084. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1085. {
  1086. ASSERT(vcpu);
  1087. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1088. return alloc_mmu_pages(vcpu);
  1089. }
  1090. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1091. {
  1092. ASSERT(vcpu);
  1093. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1094. return init_kvm_mmu(vcpu);
  1095. }
  1096. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1097. {
  1098. ASSERT(vcpu);
  1099. destroy_kvm_mmu(vcpu);
  1100. free_mmu_pages(vcpu);
  1101. mmu_free_memory_caches(vcpu);
  1102. }
  1103. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1104. {
  1105. struct kvm_mmu_page *page;
  1106. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1107. int i;
  1108. u64 *pt;
  1109. if (!test_bit(slot, &page->slot_bitmap))
  1110. continue;
  1111. pt = page->spt;
  1112. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1113. /* avoid RMW */
  1114. if (pt[i] & PT_WRITABLE_MASK) {
  1115. rmap_remove(&pt[i]);
  1116. pt[i] &= ~PT_WRITABLE_MASK;
  1117. }
  1118. }
  1119. }
  1120. void kvm_mmu_zap_all(struct kvm *kvm)
  1121. {
  1122. struct kvm_mmu_page *page, *node;
  1123. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1124. kvm_mmu_zap_page(kvm, page);
  1125. kvm_flush_remote_tlbs(kvm);
  1126. }
  1127. void kvm_mmu_module_exit(void)
  1128. {
  1129. if (pte_chain_cache)
  1130. kmem_cache_destroy(pte_chain_cache);
  1131. if (rmap_desc_cache)
  1132. kmem_cache_destroy(rmap_desc_cache);
  1133. if (mmu_page_header_cache)
  1134. kmem_cache_destroy(mmu_page_header_cache);
  1135. }
  1136. int kvm_mmu_module_init(void)
  1137. {
  1138. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1139. sizeof(struct kvm_pte_chain),
  1140. 0, 0, NULL);
  1141. if (!pte_chain_cache)
  1142. goto nomem;
  1143. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1144. sizeof(struct kvm_rmap_desc),
  1145. 0, 0, NULL);
  1146. if (!rmap_desc_cache)
  1147. goto nomem;
  1148. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1149. sizeof(struct kvm_mmu_page),
  1150. 0, 0, NULL);
  1151. if (!mmu_page_header_cache)
  1152. goto nomem;
  1153. return 0;
  1154. nomem:
  1155. kvm_mmu_module_exit();
  1156. return -ENOMEM;
  1157. }
  1158. #ifdef AUDIT
  1159. static const char *audit_msg;
  1160. static gva_t canonicalize(gva_t gva)
  1161. {
  1162. #ifdef CONFIG_X86_64
  1163. gva = (long long)(gva << 16) >> 16;
  1164. #endif
  1165. return gva;
  1166. }
  1167. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1168. gva_t va, int level)
  1169. {
  1170. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1171. int i;
  1172. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1173. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1174. u64 ent = pt[i];
  1175. if (!(ent & PT_PRESENT_MASK))
  1176. continue;
  1177. va = canonicalize(va);
  1178. if (level > 1)
  1179. audit_mappings_page(vcpu, ent, va, level - 1);
  1180. else {
  1181. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1182. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1183. if ((ent & PT_PRESENT_MASK)
  1184. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1185. printk(KERN_ERR "audit error: (%s) levels %d"
  1186. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1187. audit_msg, vcpu->mmu.root_level,
  1188. va, gpa, hpa, ent);
  1189. }
  1190. }
  1191. }
  1192. static void audit_mappings(struct kvm_vcpu *vcpu)
  1193. {
  1194. unsigned i;
  1195. if (vcpu->mmu.root_level == 4)
  1196. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1197. else
  1198. for (i = 0; i < 4; ++i)
  1199. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1200. audit_mappings_page(vcpu,
  1201. vcpu->mmu.pae_root[i],
  1202. i << 30,
  1203. 2);
  1204. }
  1205. static int count_rmaps(struct kvm_vcpu *vcpu)
  1206. {
  1207. int nmaps = 0;
  1208. int i, j, k;
  1209. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1210. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1211. struct kvm_rmap_desc *d;
  1212. for (j = 0; j < m->npages; ++j) {
  1213. struct page *page = m->phys_mem[j];
  1214. if (!page->private)
  1215. continue;
  1216. if (!(page->private & 1)) {
  1217. ++nmaps;
  1218. continue;
  1219. }
  1220. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1221. while (d) {
  1222. for (k = 0; k < RMAP_EXT; ++k)
  1223. if (d->shadow_ptes[k])
  1224. ++nmaps;
  1225. else
  1226. break;
  1227. d = d->more;
  1228. }
  1229. }
  1230. }
  1231. return nmaps;
  1232. }
  1233. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1234. {
  1235. int nmaps = 0;
  1236. struct kvm_mmu_page *page;
  1237. int i;
  1238. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1239. u64 *pt = page->spt;
  1240. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1241. continue;
  1242. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1243. u64 ent = pt[i];
  1244. if (!(ent & PT_PRESENT_MASK))
  1245. continue;
  1246. if (!(ent & PT_WRITABLE_MASK))
  1247. continue;
  1248. ++nmaps;
  1249. }
  1250. }
  1251. return nmaps;
  1252. }
  1253. static void audit_rmap(struct kvm_vcpu *vcpu)
  1254. {
  1255. int n_rmap = count_rmaps(vcpu);
  1256. int n_actual = count_writable_mappings(vcpu);
  1257. if (n_rmap != n_actual)
  1258. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1259. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1260. }
  1261. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1262. {
  1263. struct kvm_mmu_page *page;
  1264. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1265. hfn_t hfn;
  1266. struct page *pg;
  1267. if (page->role.metaphysical)
  1268. continue;
  1269. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1270. >> PAGE_SHIFT;
  1271. pg = pfn_to_page(hfn);
  1272. if (pg->private)
  1273. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1274. " mappings: gfn %lx role %x\n",
  1275. __FUNCTION__, audit_msg, page->gfn,
  1276. page->role.word);
  1277. }
  1278. }
  1279. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1280. {
  1281. int olddbg = dbg;
  1282. dbg = 0;
  1283. audit_msg = msg;
  1284. audit_rmap(vcpu);
  1285. audit_write_protection(vcpu);
  1286. audit_mappings(vcpu);
  1287. dbg = olddbg;
  1288. }
  1289. #endif