vmx.c 236 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv = 1;
  72. module_param(enable_apicv, bool, S_IRUGO);
  73. static bool __read_mostly enable_shadow_vmcs = 1;
  74. module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  75. /*
  76. * If nested=1, nested virtualization is supported, i.e., guests may use
  77. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  78. * use VMX instructions.
  79. */
  80. static bool __read_mostly nested = 0;
  81. module_param(nested, bool, S_IRUGO);
  82. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  83. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  84. #define KVM_VM_CR0_ALWAYS_ON \
  85. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  86. #define KVM_CR4_GUEST_OWNED_BITS \
  87. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT)
  89. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  90. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  91. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  92. /*
  93. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  94. * ple_gap: upper bound on the amount of time between two successive
  95. * executions of PAUSE in a loop. Also indicate if ple enabled.
  96. * According to test, this time is usually smaller than 128 cycles.
  97. * ple_window: upper bound on the amount of time a guest is allowed to execute
  98. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  99. * less than 2^12 cycles
  100. * Time is measured based on a counter that runs at the same rate as the TSC,
  101. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  102. */
  103. #define KVM_VMX_DEFAULT_PLE_GAP 128
  104. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  105. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  106. module_param(ple_gap, int, S_IRUGO);
  107. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  108. module_param(ple_window, int, S_IRUGO);
  109. extern const ulong vmx_return;
  110. #define NR_AUTOLOAD_MSRS 8
  111. #define VMCS02_POOL_SIZE 1
  112. struct vmcs {
  113. u32 revision_id;
  114. u32 abort;
  115. char data[0];
  116. };
  117. /*
  118. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  119. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  120. * loaded on this CPU (so we can clear them if the CPU goes down).
  121. */
  122. struct loaded_vmcs {
  123. struct vmcs *vmcs;
  124. int cpu;
  125. int launched;
  126. struct list_head loaded_vmcss_on_cpu_link;
  127. };
  128. struct shared_msr_entry {
  129. unsigned index;
  130. u64 data;
  131. u64 mask;
  132. };
  133. /*
  134. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  135. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  136. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  137. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  138. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  139. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  140. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  141. * underlying hardware which will be used to run L2.
  142. * This structure is packed to ensure that its layout is identical across
  143. * machines (necessary for live migration).
  144. * If there are changes in this struct, VMCS12_REVISION must be changed.
  145. */
  146. typedef u64 natural_width;
  147. struct __packed vmcs12 {
  148. /* According to the Intel spec, a VMCS region must start with the
  149. * following two fields. Then follow implementation-specific data.
  150. */
  151. u32 revision_id;
  152. u32 abort;
  153. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  154. u32 padding[7]; /* room for future expansion */
  155. u64 io_bitmap_a;
  156. u64 io_bitmap_b;
  157. u64 msr_bitmap;
  158. u64 vm_exit_msr_store_addr;
  159. u64 vm_exit_msr_load_addr;
  160. u64 vm_entry_msr_load_addr;
  161. u64 tsc_offset;
  162. u64 virtual_apic_page_addr;
  163. u64 apic_access_addr;
  164. u64 ept_pointer;
  165. u64 guest_physical_address;
  166. u64 vmcs_link_pointer;
  167. u64 guest_ia32_debugctl;
  168. u64 guest_ia32_pat;
  169. u64 guest_ia32_efer;
  170. u64 guest_ia32_perf_global_ctrl;
  171. u64 guest_pdptr0;
  172. u64 guest_pdptr1;
  173. u64 guest_pdptr2;
  174. u64 guest_pdptr3;
  175. u64 host_ia32_pat;
  176. u64 host_ia32_efer;
  177. u64 host_ia32_perf_global_ctrl;
  178. u64 padding64[8]; /* room for future expansion */
  179. /*
  180. * To allow migration of L1 (complete with its L2 guests) between
  181. * machines of different natural widths (32 or 64 bit), we cannot have
  182. * unsigned long fields with no explict size. We use u64 (aliased
  183. * natural_width) instead. Luckily, x86 is little-endian.
  184. */
  185. natural_width cr0_guest_host_mask;
  186. natural_width cr4_guest_host_mask;
  187. natural_width cr0_read_shadow;
  188. natural_width cr4_read_shadow;
  189. natural_width cr3_target_value0;
  190. natural_width cr3_target_value1;
  191. natural_width cr3_target_value2;
  192. natural_width cr3_target_value3;
  193. natural_width exit_qualification;
  194. natural_width guest_linear_address;
  195. natural_width guest_cr0;
  196. natural_width guest_cr3;
  197. natural_width guest_cr4;
  198. natural_width guest_es_base;
  199. natural_width guest_cs_base;
  200. natural_width guest_ss_base;
  201. natural_width guest_ds_base;
  202. natural_width guest_fs_base;
  203. natural_width guest_gs_base;
  204. natural_width guest_ldtr_base;
  205. natural_width guest_tr_base;
  206. natural_width guest_gdtr_base;
  207. natural_width guest_idtr_base;
  208. natural_width guest_dr7;
  209. natural_width guest_rsp;
  210. natural_width guest_rip;
  211. natural_width guest_rflags;
  212. natural_width guest_pending_dbg_exceptions;
  213. natural_width guest_sysenter_esp;
  214. natural_width guest_sysenter_eip;
  215. natural_width host_cr0;
  216. natural_width host_cr3;
  217. natural_width host_cr4;
  218. natural_width host_fs_base;
  219. natural_width host_gs_base;
  220. natural_width host_tr_base;
  221. natural_width host_gdtr_base;
  222. natural_width host_idtr_base;
  223. natural_width host_ia32_sysenter_esp;
  224. natural_width host_ia32_sysenter_eip;
  225. natural_width host_rsp;
  226. natural_width host_rip;
  227. natural_width paddingl[8]; /* room for future expansion */
  228. u32 pin_based_vm_exec_control;
  229. u32 cpu_based_vm_exec_control;
  230. u32 exception_bitmap;
  231. u32 page_fault_error_code_mask;
  232. u32 page_fault_error_code_match;
  233. u32 cr3_target_count;
  234. u32 vm_exit_controls;
  235. u32 vm_exit_msr_store_count;
  236. u32 vm_exit_msr_load_count;
  237. u32 vm_entry_controls;
  238. u32 vm_entry_msr_load_count;
  239. u32 vm_entry_intr_info_field;
  240. u32 vm_entry_exception_error_code;
  241. u32 vm_entry_instruction_len;
  242. u32 tpr_threshold;
  243. u32 secondary_vm_exec_control;
  244. u32 vm_instruction_error;
  245. u32 vm_exit_reason;
  246. u32 vm_exit_intr_info;
  247. u32 vm_exit_intr_error_code;
  248. u32 idt_vectoring_info_field;
  249. u32 idt_vectoring_error_code;
  250. u32 vm_exit_instruction_len;
  251. u32 vmx_instruction_info;
  252. u32 guest_es_limit;
  253. u32 guest_cs_limit;
  254. u32 guest_ss_limit;
  255. u32 guest_ds_limit;
  256. u32 guest_fs_limit;
  257. u32 guest_gs_limit;
  258. u32 guest_ldtr_limit;
  259. u32 guest_tr_limit;
  260. u32 guest_gdtr_limit;
  261. u32 guest_idtr_limit;
  262. u32 guest_es_ar_bytes;
  263. u32 guest_cs_ar_bytes;
  264. u32 guest_ss_ar_bytes;
  265. u32 guest_ds_ar_bytes;
  266. u32 guest_fs_ar_bytes;
  267. u32 guest_gs_ar_bytes;
  268. u32 guest_ldtr_ar_bytes;
  269. u32 guest_tr_ar_bytes;
  270. u32 guest_interruptibility_info;
  271. u32 guest_activity_state;
  272. u32 guest_sysenter_cs;
  273. u32 host_ia32_sysenter_cs;
  274. u32 vmx_preemption_timer_value;
  275. u32 padding32[7]; /* room for future expansion */
  276. u16 virtual_processor_id;
  277. u16 guest_es_selector;
  278. u16 guest_cs_selector;
  279. u16 guest_ss_selector;
  280. u16 guest_ds_selector;
  281. u16 guest_fs_selector;
  282. u16 guest_gs_selector;
  283. u16 guest_ldtr_selector;
  284. u16 guest_tr_selector;
  285. u16 host_es_selector;
  286. u16 host_cs_selector;
  287. u16 host_ss_selector;
  288. u16 host_ds_selector;
  289. u16 host_fs_selector;
  290. u16 host_gs_selector;
  291. u16 host_tr_selector;
  292. };
  293. /*
  294. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  295. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  296. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  297. */
  298. #define VMCS12_REVISION 0x11e57ed0
  299. /*
  300. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  301. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  302. * current implementation, 4K are reserved to avoid future complications.
  303. */
  304. #define VMCS12_SIZE 0x1000
  305. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  306. struct vmcs02_list {
  307. struct list_head list;
  308. gpa_t vmptr;
  309. struct loaded_vmcs vmcs02;
  310. };
  311. /*
  312. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  313. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  314. */
  315. struct nested_vmx {
  316. /* Has the level1 guest done vmxon? */
  317. bool vmxon;
  318. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  319. gpa_t current_vmptr;
  320. /* The host-usable pointer to the above */
  321. struct page *current_vmcs12_page;
  322. struct vmcs12 *current_vmcs12;
  323. struct vmcs *current_shadow_vmcs;
  324. /*
  325. * Indicates if the shadow vmcs must be updated with the
  326. * data hold by vmcs12
  327. */
  328. bool sync_shadow_vmcs;
  329. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  330. struct list_head vmcs02_pool;
  331. int vmcs02_num;
  332. u64 vmcs01_tsc_offset;
  333. /* L2 must run next, and mustn't decide to exit to L1. */
  334. bool nested_run_pending;
  335. /*
  336. * Guest pages referred to in vmcs02 with host-physical pointers, so
  337. * we must keep them pinned while L2 runs.
  338. */
  339. struct page *apic_access_page;
  340. };
  341. #define POSTED_INTR_ON 0
  342. /* Posted-Interrupt Descriptor */
  343. struct pi_desc {
  344. u32 pir[8]; /* Posted interrupt requested */
  345. u32 control; /* bit 0 of control is outstanding notification bit */
  346. u32 rsvd[7];
  347. } __aligned(64);
  348. static bool pi_test_and_set_on(struct pi_desc *pi_desc)
  349. {
  350. return test_and_set_bit(POSTED_INTR_ON,
  351. (unsigned long *)&pi_desc->control);
  352. }
  353. static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
  354. {
  355. return test_and_clear_bit(POSTED_INTR_ON,
  356. (unsigned long *)&pi_desc->control);
  357. }
  358. static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
  359. {
  360. return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
  361. }
  362. struct vcpu_vmx {
  363. struct kvm_vcpu vcpu;
  364. unsigned long host_rsp;
  365. u8 fail;
  366. u8 cpl;
  367. bool nmi_known_unmasked;
  368. u32 exit_intr_info;
  369. u32 idt_vectoring_info;
  370. ulong rflags;
  371. struct shared_msr_entry *guest_msrs;
  372. int nmsrs;
  373. int save_nmsrs;
  374. unsigned long host_idt_base;
  375. #ifdef CONFIG_X86_64
  376. u64 msr_host_kernel_gs_base;
  377. u64 msr_guest_kernel_gs_base;
  378. #endif
  379. /*
  380. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  381. * non-nested (L1) guest, it always points to vmcs01. For a nested
  382. * guest (L2), it points to a different VMCS.
  383. */
  384. struct loaded_vmcs vmcs01;
  385. struct loaded_vmcs *loaded_vmcs;
  386. bool __launched; /* temporary, used in vmx_vcpu_run */
  387. struct msr_autoload {
  388. unsigned nr;
  389. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  390. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  391. } msr_autoload;
  392. struct {
  393. int loaded;
  394. u16 fs_sel, gs_sel, ldt_sel;
  395. #ifdef CONFIG_X86_64
  396. u16 ds_sel, es_sel;
  397. #endif
  398. int gs_ldt_reload_needed;
  399. int fs_reload_needed;
  400. } host_state;
  401. struct {
  402. int vm86_active;
  403. ulong save_rflags;
  404. struct kvm_segment segs[8];
  405. } rmode;
  406. struct {
  407. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  408. struct kvm_save_segment {
  409. u16 selector;
  410. unsigned long base;
  411. u32 limit;
  412. u32 ar;
  413. } seg[8];
  414. } segment_cache;
  415. int vpid;
  416. bool emulation_required;
  417. /* Support for vnmi-less CPUs */
  418. int soft_vnmi_blocked;
  419. ktime_t entry_time;
  420. s64 vnmi_blocked_time;
  421. u32 exit_reason;
  422. bool rdtscp_enabled;
  423. /* Posted interrupt descriptor */
  424. struct pi_desc pi_desc;
  425. /* Support for a guest hypervisor (nested VMX) */
  426. struct nested_vmx nested;
  427. };
  428. enum segment_cache_field {
  429. SEG_FIELD_SEL = 0,
  430. SEG_FIELD_BASE = 1,
  431. SEG_FIELD_LIMIT = 2,
  432. SEG_FIELD_AR = 3,
  433. SEG_FIELD_NR = 4
  434. };
  435. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  436. {
  437. return container_of(vcpu, struct vcpu_vmx, vcpu);
  438. }
  439. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  440. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  441. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  442. [number##_HIGH] = VMCS12_OFFSET(name)+4
  443. static const unsigned long shadow_read_only_fields[] = {
  444. /*
  445. * We do NOT shadow fields that are modified when L0
  446. * traps and emulates any vmx instruction (e.g. VMPTRLD,
  447. * VMXON...) executed by L1.
  448. * For example, VM_INSTRUCTION_ERROR is read
  449. * by L1 if a vmx instruction fails (part of the error path).
  450. * Note the code assumes this logic. If for some reason
  451. * we start shadowing these fields then we need to
  452. * force a shadow sync when L0 emulates vmx instructions
  453. * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
  454. * by nested_vmx_failValid)
  455. */
  456. VM_EXIT_REASON,
  457. VM_EXIT_INTR_INFO,
  458. VM_EXIT_INSTRUCTION_LEN,
  459. IDT_VECTORING_INFO_FIELD,
  460. IDT_VECTORING_ERROR_CODE,
  461. VM_EXIT_INTR_ERROR_CODE,
  462. EXIT_QUALIFICATION,
  463. GUEST_LINEAR_ADDRESS,
  464. GUEST_PHYSICAL_ADDRESS
  465. };
  466. static const int max_shadow_read_only_fields =
  467. ARRAY_SIZE(shadow_read_only_fields);
  468. static const unsigned long shadow_read_write_fields[] = {
  469. GUEST_RIP,
  470. GUEST_RSP,
  471. GUEST_CR0,
  472. GUEST_CR3,
  473. GUEST_CR4,
  474. GUEST_INTERRUPTIBILITY_INFO,
  475. GUEST_RFLAGS,
  476. GUEST_CS_SELECTOR,
  477. GUEST_CS_AR_BYTES,
  478. GUEST_CS_LIMIT,
  479. GUEST_CS_BASE,
  480. GUEST_ES_BASE,
  481. CR0_GUEST_HOST_MASK,
  482. CR0_READ_SHADOW,
  483. CR4_READ_SHADOW,
  484. TSC_OFFSET,
  485. EXCEPTION_BITMAP,
  486. CPU_BASED_VM_EXEC_CONTROL,
  487. VM_ENTRY_EXCEPTION_ERROR_CODE,
  488. VM_ENTRY_INTR_INFO_FIELD,
  489. VM_ENTRY_INSTRUCTION_LEN,
  490. VM_ENTRY_EXCEPTION_ERROR_CODE,
  491. HOST_FS_BASE,
  492. HOST_GS_BASE,
  493. HOST_FS_SELECTOR,
  494. HOST_GS_SELECTOR
  495. };
  496. static const int max_shadow_read_write_fields =
  497. ARRAY_SIZE(shadow_read_write_fields);
  498. static const unsigned short vmcs_field_to_offset_table[] = {
  499. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  500. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  501. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  502. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  503. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  504. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  505. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  506. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  507. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  508. FIELD(HOST_ES_SELECTOR, host_es_selector),
  509. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  510. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  511. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  512. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  513. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  514. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  515. FIELD64(IO_BITMAP_A, io_bitmap_a),
  516. FIELD64(IO_BITMAP_B, io_bitmap_b),
  517. FIELD64(MSR_BITMAP, msr_bitmap),
  518. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  519. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  520. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  521. FIELD64(TSC_OFFSET, tsc_offset),
  522. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  523. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  524. FIELD64(EPT_POINTER, ept_pointer),
  525. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  526. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  527. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  528. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  529. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  530. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  531. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  532. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  533. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  534. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  535. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  536. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  537. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  538. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  539. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  540. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  541. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  542. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  543. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  544. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  545. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  546. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  547. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  548. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  549. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  550. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  551. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  552. FIELD(TPR_THRESHOLD, tpr_threshold),
  553. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  554. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  555. FIELD(VM_EXIT_REASON, vm_exit_reason),
  556. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  557. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  558. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  559. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  560. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  561. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  562. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  563. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  564. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  565. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  566. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  567. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  568. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  569. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  570. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  571. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  572. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  573. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  574. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  575. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  576. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  577. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  578. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  579. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  580. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  581. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  582. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  583. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  584. FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
  585. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  586. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  587. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  588. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  589. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  590. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  591. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  592. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  593. FIELD(EXIT_QUALIFICATION, exit_qualification),
  594. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  595. FIELD(GUEST_CR0, guest_cr0),
  596. FIELD(GUEST_CR3, guest_cr3),
  597. FIELD(GUEST_CR4, guest_cr4),
  598. FIELD(GUEST_ES_BASE, guest_es_base),
  599. FIELD(GUEST_CS_BASE, guest_cs_base),
  600. FIELD(GUEST_SS_BASE, guest_ss_base),
  601. FIELD(GUEST_DS_BASE, guest_ds_base),
  602. FIELD(GUEST_FS_BASE, guest_fs_base),
  603. FIELD(GUEST_GS_BASE, guest_gs_base),
  604. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  605. FIELD(GUEST_TR_BASE, guest_tr_base),
  606. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  607. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  608. FIELD(GUEST_DR7, guest_dr7),
  609. FIELD(GUEST_RSP, guest_rsp),
  610. FIELD(GUEST_RIP, guest_rip),
  611. FIELD(GUEST_RFLAGS, guest_rflags),
  612. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  613. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  614. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  615. FIELD(HOST_CR0, host_cr0),
  616. FIELD(HOST_CR3, host_cr3),
  617. FIELD(HOST_CR4, host_cr4),
  618. FIELD(HOST_FS_BASE, host_fs_base),
  619. FIELD(HOST_GS_BASE, host_gs_base),
  620. FIELD(HOST_TR_BASE, host_tr_base),
  621. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  622. FIELD(HOST_IDTR_BASE, host_idtr_base),
  623. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  624. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  625. FIELD(HOST_RSP, host_rsp),
  626. FIELD(HOST_RIP, host_rip),
  627. };
  628. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  629. static inline short vmcs_field_to_offset(unsigned long field)
  630. {
  631. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  632. return -1;
  633. return vmcs_field_to_offset_table[field];
  634. }
  635. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  636. {
  637. return to_vmx(vcpu)->nested.current_vmcs12;
  638. }
  639. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  640. {
  641. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  642. if (is_error_page(page))
  643. return NULL;
  644. return page;
  645. }
  646. static void nested_release_page(struct page *page)
  647. {
  648. kvm_release_page_dirty(page);
  649. }
  650. static void nested_release_page_clean(struct page *page)
  651. {
  652. kvm_release_page_clean(page);
  653. }
  654. static u64 construct_eptp(unsigned long root_hpa);
  655. static void kvm_cpu_vmxon(u64 addr);
  656. static void kvm_cpu_vmxoff(void);
  657. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  658. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  659. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  660. struct kvm_segment *var, int seg);
  661. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  662. struct kvm_segment *var, int seg);
  663. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  664. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  665. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
  666. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
  667. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
  668. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  669. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  670. /*
  671. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  672. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  673. */
  674. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  675. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  676. static unsigned long *vmx_io_bitmap_a;
  677. static unsigned long *vmx_io_bitmap_b;
  678. static unsigned long *vmx_msr_bitmap_legacy;
  679. static unsigned long *vmx_msr_bitmap_longmode;
  680. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  681. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  682. static unsigned long *vmx_vmread_bitmap;
  683. static unsigned long *vmx_vmwrite_bitmap;
  684. static bool cpu_has_load_ia32_efer;
  685. static bool cpu_has_load_perf_global_ctrl;
  686. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  687. static DEFINE_SPINLOCK(vmx_vpid_lock);
  688. static struct vmcs_config {
  689. int size;
  690. int order;
  691. u32 revision_id;
  692. u32 pin_based_exec_ctrl;
  693. u32 cpu_based_exec_ctrl;
  694. u32 cpu_based_2nd_exec_ctrl;
  695. u32 vmexit_ctrl;
  696. u32 vmentry_ctrl;
  697. } vmcs_config;
  698. static struct vmx_capability {
  699. u32 ept;
  700. u32 vpid;
  701. } vmx_capability;
  702. #define VMX_SEGMENT_FIELD(seg) \
  703. [VCPU_SREG_##seg] = { \
  704. .selector = GUEST_##seg##_SELECTOR, \
  705. .base = GUEST_##seg##_BASE, \
  706. .limit = GUEST_##seg##_LIMIT, \
  707. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  708. }
  709. static const struct kvm_vmx_segment_field {
  710. unsigned selector;
  711. unsigned base;
  712. unsigned limit;
  713. unsigned ar_bytes;
  714. } kvm_vmx_segment_fields[] = {
  715. VMX_SEGMENT_FIELD(CS),
  716. VMX_SEGMENT_FIELD(DS),
  717. VMX_SEGMENT_FIELD(ES),
  718. VMX_SEGMENT_FIELD(FS),
  719. VMX_SEGMENT_FIELD(GS),
  720. VMX_SEGMENT_FIELD(SS),
  721. VMX_SEGMENT_FIELD(TR),
  722. VMX_SEGMENT_FIELD(LDTR),
  723. };
  724. static u64 host_efer;
  725. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  726. /*
  727. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  728. * away by decrementing the array size.
  729. */
  730. static const u32 vmx_msr_index[] = {
  731. #ifdef CONFIG_X86_64
  732. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  733. #endif
  734. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  735. };
  736. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  737. static inline bool is_page_fault(u32 intr_info)
  738. {
  739. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  740. INTR_INFO_VALID_MASK)) ==
  741. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  742. }
  743. static inline bool is_no_device(u32 intr_info)
  744. {
  745. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  746. INTR_INFO_VALID_MASK)) ==
  747. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  748. }
  749. static inline bool is_invalid_opcode(u32 intr_info)
  750. {
  751. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  752. INTR_INFO_VALID_MASK)) ==
  753. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  754. }
  755. static inline bool is_external_interrupt(u32 intr_info)
  756. {
  757. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  758. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  759. }
  760. static inline bool is_machine_check(u32 intr_info)
  761. {
  762. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  763. INTR_INFO_VALID_MASK)) ==
  764. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  765. }
  766. static inline bool cpu_has_vmx_msr_bitmap(void)
  767. {
  768. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  769. }
  770. static inline bool cpu_has_vmx_tpr_shadow(void)
  771. {
  772. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  773. }
  774. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  775. {
  776. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  777. }
  778. static inline bool cpu_has_secondary_exec_ctrls(void)
  779. {
  780. return vmcs_config.cpu_based_exec_ctrl &
  781. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  782. }
  783. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  784. {
  785. return vmcs_config.cpu_based_2nd_exec_ctrl &
  786. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  787. }
  788. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  789. {
  790. return vmcs_config.cpu_based_2nd_exec_ctrl &
  791. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  792. }
  793. static inline bool cpu_has_vmx_apic_register_virt(void)
  794. {
  795. return vmcs_config.cpu_based_2nd_exec_ctrl &
  796. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  797. }
  798. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  799. {
  800. return vmcs_config.cpu_based_2nd_exec_ctrl &
  801. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  802. }
  803. static inline bool cpu_has_vmx_posted_intr(void)
  804. {
  805. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
  806. }
  807. static inline bool cpu_has_vmx_apicv(void)
  808. {
  809. return cpu_has_vmx_apic_register_virt() &&
  810. cpu_has_vmx_virtual_intr_delivery() &&
  811. cpu_has_vmx_posted_intr();
  812. }
  813. static inline bool cpu_has_vmx_flexpriority(void)
  814. {
  815. return cpu_has_vmx_tpr_shadow() &&
  816. cpu_has_vmx_virtualize_apic_accesses();
  817. }
  818. static inline bool cpu_has_vmx_ept_execute_only(void)
  819. {
  820. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  821. }
  822. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  823. {
  824. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  825. }
  826. static inline bool cpu_has_vmx_eptp_writeback(void)
  827. {
  828. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  829. }
  830. static inline bool cpu_has_vmx_ept_2m_page(void)
  831. {
  832. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  833. }
  834. static inline bool cpu_has_vmx_ept_1g_page(void)
  835. {
  836. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  837. }
  838. static inline bool cpu_has_vmx_ept_4levels(void)
  839. {
  840. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  841. }
  842. static inline bool cpu_has_vmx_ept_ad_bits(void)
  843. {
  844. return vmx_capability.ept & VMX_EPT_AD_BIT;
  845. }
  846. static inline bool cpu_has_vmx_invept_context(void)
  847. {
  848. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  849. }
  850. static inline bool cpu_has_vmx_invept_global(void)
  851. {
  852. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  853. }
  854. static inline bool cpu_has_vmx_invvpid_single(void)
  855. {
  856. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  857. }
  858. static inline bool cpu_has_vmx_invvpid_global(void)
  859. {
  860. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  861. }
  862. static inline bool cpu_has_vmx_ept(void)
  863. {
  864. return vmcs_config.cpu_based_2nd_exec_ctrl &
  865. SECONDARY_EXEC_ENABLE_EPT;
  866. }
  867. static inline bool cpu_has_vmx_unrestricted_guest(void)
  868. {
  869. return vmcs_config.cpu_based_2nd_exec_ctrl &
  870. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  871. }
  872. static inline bool cpu_has_vmx_ple(void)
  873. {
  874. return vmcs_config.cpu_based_2nd_exec_ctrl &
  875. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  876. }
  877. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  878. {
  879. return flexpriority_enabled && irqchip_in_kernel(kvm);
  880. }
  881. static inline bool cpu_has_vmx_vpid(void)
  882. {
  883. return vmcs_config.cpu_based_2nd_exec_ctrl &
  884. SECONDARY_EXEC_ENABLE_VPID;
  885. }
  886. static inline bool cpu_has_vmx_rdtscp(void)
  887. {
  888. return vmcs_config.cpu_based_2nd_exec_ctrl &
  889. SECONDARY_EXEC_RDTSCP;
  890. }
  891. static inline bool cpu_has_vmx_invpcid(void)
  892. {
  893. return vmcs_config.cpu_based_2nd_exec_ctrl &
  894. SECONDARY_EXEC_ENABLE_INVPCID;
  895. }
  896. static inline bool cpu_has_virtual_nmis(void)
  897. {
  898. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  899. }
  900. static inline bool cpu_has_vmx_wbinvd_exit(void)
  901. {
  902. return vmcs_config.cpu_based_2nd_exec_ctrl &
  903. SECONDARY_EXEC_WBINVD_EXITING;
  904. }
  905. static inline bool cpu_has_vmx_shadow_vmcs(void)
  906. {
  907. u64 vmx_msr;
  908. rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
  909. /* check if the cpu supports writing r/o exit information fields */
  910. if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
  911. return false;
  912. return vmcs_config.cpu_based_2nd_exec_ctrl &
  913. SECONDARY_EXEC_SHADOW_VMCS;
  914. }
  915. static inline bool report_flexpriority(void)
  916. {
  917. return flexpriority_enabled;
  918. }
  919. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  920. {
  921. return vmcs12->cpu_based_vm_exec_control & bit;
  922. }
  923. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  924. {
  925. return (vmcs12->cpu_based_vm_exec_control &
  926. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  927. (vmcs12->secondary_vm_exec_control & bit);
  928. }
  929. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  930. struct kvm_vcpu *vcpu)
  931. {
  932. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  933. }
  934. static inline bool is_exception(u32 intr_info)
  935. {
  936. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  937. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  938. }
  939. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  940. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  941. struct vmcs12 *vmcs12,
  942. u32 reason, unsigned long qualification);
  943. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  944. {
  945. int i;
  946. for (i = 0; i < vmx->nmsrs; ++i)
  947. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  948. return i;
  949. return -1;
  950. }
  951. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  952. {
  953. struct {
  954. u64 vpid : 16;
  955. u64 rsvd : 48;
  956. u64 gva;
  957. } operand = { vpid, 0, gva };
  958. asm volatile (__ex(ASM_VMX_INVVPID)
  959. /* CF==1 or ZF==1 --> rc = -1 */
  960. "; ja 1f ; ud2 ; 1:"
  961. : : "a"(&operand), "c"(ext) : "cc", "memory");
  962. }
  963. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  964. {
  965. struct {
  966. u64 eptp, gpa;
  967. } operand = {eptp, gpa};
  968. asm volatile (__ex(ASM_VMX_INVEPT)
  969. /* CF==1 or ZF==1 --> rc = -1 */
  970. "; ja 1f ; ud2 ; 1:\n"
  971. : : "a" (&operand), "c" (ext) : "cc", "memory");
  972. }
  973. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  974. {
  975. int i;
  976. i = __find_msr_index(vmx, msr);
  977. if (i >= 0)
  978. return &vmx->guest_msrs[i];
  979. return NULL;
  980. }
  981. static void vmcs_clear(struct vmcs *vmcs)
  982. {
  983. u64 phys_addr = __pa(vmcs);
  984. u8 error;
  985. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  986. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  987. : "cc", "memory");
  988. if (error)
  989. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  990. vmcs, phys_addr);
  991. }
  992. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  993. {
  994. vmcs_clear(loaded_vmcs->vmcs);
  995. loaded_vmcs->cpu = -1;
  996. loaded_vmcs->launched = 0;
  997. }
  998. static void vmcs_load(struct vmcs *vmcs)
  999. {
  1000. u64 phys_addr = __pa(vmcs);
  1001. u8 error;
  1002. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  1003. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  1004. : "cc", "memory");
  1005. if (error)
  1006. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  1007. vmcs, phys_addr);
  1008. }
  1009. #ifdef CONFIG_KEXEC
  1010. /*
  1011. * This bitmap is used to indicate whether the vmclear
  1012. * operation is enabled on all cpus. All disabled by
  1013. * default.
  1014. */
  1015. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  1016. static inline void crash_enable_local_vmclear(int cpu)
  1017. {
  1018. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1019. }
  1020. static inline void crash_disable_local_vmclear(int cpu)
  1021. {
  1022. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1023. }
  1024. static inline int crash_local_vmclear_enabled(int cpu)
  1025. {
  1026. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  1027. }
  1028. static void crash_vmclear_local_loaded_vmcss(void)
  1029. {
  1030. int cpu = raw_smp_processor_id();
  1031. struct loaded_vmcs *v;
  1032. if (!crash_local_vmclear_enabled(cpu))
  1033. return;
  1034. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1035. loaded_vmcss_on_cpu_link)
  1036. vmcs_clear(v->vmcs);
  1037. }
  1038. #else
  1039. static inline void crash_enable_local_vmclear(int cpu) { }
  1040. static inline void crash_disable_local_vmclear(int cpu) { }
  1041. #endif /* CONFIG_KEXEC */
  1042. static void __loaded_vmcs_clear(void *arg)
  1043. {
  1044. struct loaded_vmcs *loaded_vmcs = arg;
  1045. int cpu = raw_smp_processor_id();
  1046. if (loaded_vmcs->cpu != cpu)
  1047. return; /* vcpu migration can race with cpu offline */
  1048. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  1049. per_cpu(current_vmcs, cpu) = NULL;
  1050. crash_disable_local_vmclear(cpu);
  1051. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  1052. /*
  1053. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  1054. * is before setting loaded_vmcs->vcpu to -1 which is done in
  1055. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  1056. * then adds the vmcs into percpu list before it is deleted.
  1057. */
  1058. smp_wmb();
  1059. loaded_vmcs_init(loaded_vmcs);
  1060. crash_enable_local_vmclear(cpu);
  1061. }
  1062. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  1063. {
  1064. int cpu = loaded_vmcs->cpu;
  1065. if (cpu != -1)
  1066. smp_call_function_single(cpu,
  1067. __loaded_vmcs_clear, loaded_vmcs, 1);
  1068. }
  1069. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  1070. {
  1071. if (vmx->vpid == 0)
  1072. return;
  1073. if (cpu_has_vmx_invvpid_single())
  1074. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  1075. }
  1076. static inline void vpid_sync_vcpu_global(void)
  1077. {
  1078. if (cpu_has_vmx_invvpid_global())
  1079. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  1080. }
  1081. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  1082. {
  1083. if (cpu_has_vmx_invvpid_single())
  1084. vpid_sync_vcpu_single(vmx);
  1085. else
  1086. vpid_sync_vcpu_global();
  1087. }
  1088. static inline void ept_sync_global(void)
  1089. {
  1090. if (cpu_has_vmx_invept_global())
  1091. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  1092. }
  1093. static inline void ept_sync_context(u64 eptp)
  1094. {
  1095. if (enable_ept) {
  1096. if (cpu_has_vmx_invept_context())
  1097. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  1098. else
  1099. ept_sync_global();
  1100. }
  1101. }
  1102. static __always_inline unsigned long vmcs_readl(unsigned long field)
  1103. {
  1104. unsigned long value;
  1105. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  1106. : "=a"(value) : "d"(field) : "cc");
  1107. return value;
  1108. }
  1109. static __always_inline u16 vmcs_read16(unsigned long field)
  1110. {
  1111. return vmcs_readl(field);
  1112. }
  1113. static __always_inline u32 vmcs_read32(unsigned long field)
  1114. {
  1115. return vmcs_readl(field);
  1116. }
  1117. static __always_inline u64 vmcs_read64(unsigned long field)
  1118. {
  1119. #ifdef CONFIG_X86_64
  1120. return vmcs_readl(field);
  1121. #else
  1122. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1123. #endif
  1124. }
  1125. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1126. {
  1127. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1128. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1129. dump_stack();
  1130. }
  1131. static void vmcs_writel(unsigned long field, unsigned long value)
  1132. {
  1133. u8 error;
  1134. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1135. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1136. if (unlikely(error))
  1137. vmwrite_error(field, value);
  1138. }
  1139. static void vmcs_write16(unsigned long field, u16 value)
  1140. {
  1141. vmcs_writel(field, value);
  1142. }
  1143. static void vmcs_write32(unsigned long field, u32 value)
  1144. {
  1145. vmcs_writel(field, value);
  1146. }
  1147. static void vmcs_write64(unsigned long field, u64 value)
  1148. {
  1149. vmcs_writel(field, value);
  1150. #ifndef CONFIG_X86_64
  1151. asm volatile ("");
  1152. vmcs_writel(field+1, value >> 32);
  1153. #endif
  1154. }
  1155. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1156. {
  1157. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1158. }
  1159. static void vmcs_set_bits(unsigned long field, u32 mask)
  1160. {
  1161. vmcs_writel(field, vmcs_readl(field) | mask);
  1162. }
  1163. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1164. {
  1165. vmx->segment_cache.bitmask = 0;
  1166. }
  1167. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1168. unsigned field)
  1169. {
  1170. bool ret;
  1171. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1172. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1173. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1174. vmx->segment_cache.bitmask = 0;
  1175. }
  1176. ret = vmx->segment_cache.bitmask & mask;
  1177. vmx->segment_cache.bitmask |= mask;
  1178. return ret;
  1179. }
  1180. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1181. {
  1182. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1183. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1184. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1185. return *p;
  1186. }
  1187. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1188. {
  1189. ulong *p = &vmx->segment_cache.seg[seg].base;
  1190. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1191. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1192. return *p;
  1193. }
  1194. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1195. {
  1196. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1197. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1198. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1199. return *p;
  1200. }
  1201. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1202. {
  1203. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1204. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1205. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1206. return *p;
  1207. }
  1208. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1209. {
  1210. u32 eb;
  1211. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1212. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1213. if ((vcpu->guest_debug &
  1214. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1215. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1216. eb |= 1u << BP_VECTOR;
  1217. if (to_vmx(vcpu)->rmode.vm86_active)
  1218. eb = ~0;
  1219. if (enable_ept)
  1220. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1221. if (vcpu->fpu_active)
  1222. eb &= ~(1u << NM_VECTOR);
  1223. /* When we are running a nested L2 guest and L1 specified for it a
  1224. * certain exception bitmap, we must trap the same exceptions and pass
  1225. * them to L1. When running L2, we will only handle the exceptions
  1226. * specified above if L1 did not want them.
  1227. */
  1228. if (is_guest_mode(vcpu))
  1229. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1230. vmcs_write32(EXCEPTION_BITMAP, eb);
  1231. }
  1232. static void clear_atomic_switch_msr_special(unsigned long entry,
  1233. unsigned long exit)
  1234. {
  1235. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1236. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1237. }
  1238. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1239. {
  1240. unsigned i;
  1241. struct msr_autoload *m = &vmx->msr_autoload;
  1242. switch (msr) {
  1243. case MSR_EFER:
  1244. if (cpu_has_load_ia32_efer) {
  1245. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1246. VM_EXIT_LOAD_IA32_EFER);
  1247. return;
  1248. }
  1249. break;
  1250. case MSR_CORE_PERF_GLOBAL_CTRL:
  1251. if (cpu_has_load_perf_global_ctrl) {
  1252. clear_atomic_switch_msr_special(
  1253. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1254. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1255. return;
  1256. }
  1257. break;
  1258. }
  1259. for (i = 0; i < m->nr; ++i)
  1260. if (m->guest[i].index == msr)
  1261. break;
  1262. if (i == m->nr)
  1263. return;
  1264. --m->nr;
  1265. m->guest[i] = m->guest[m->nr];
  1266. m->host[i] = m->host[m->nr];
  1267. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1268. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1269. }
  1270. static void add_atomic_switch_msr_special(unsigned long entry,
  1271. unsigned long exit, unsigned long guest_val_vmcs,
  1272. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1273. {
  1274. vmcs_write64(guest_val_vmcs, guest_val);
  1275. vmcs_write64(host_val_vmcs, host_val);
  1276. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1277. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1278. }
  1279. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1280. u64 guest_val, u64 host_val)
  1281. {
  1282. unsigned i;
  1283. struct msr_autoload *m = &vmx->msr_autoload;
  1284. switch (msr) {
  1285. case MSR_EFER:
  1286. if (cpu_has_load_ia32_efer) {
  1287. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1288. VM_EXIT_LOAD_IA32_EFER,
  1289. GUEST_IA32_EFER,
  1290. HOST_IA32_EFER,
  1291. guest_val, host_val);
  1292. return;
  1293. }
  1294. break;
  1295. case MSR_CORE_PERF_GLOBAL_CTRL:
  1296. if (cpu_has_load_perf_global_ctrl) {
  1297. add_atomic_switch_msr_special(
  1298. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1299. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1300. GUEST_IA32_PERF_GLOBAL_CTRL,
  1301. HOST_IA32_PERF_GLOBAL_CTRL,
  1302. guest_val, host_val);
  1303. return;
  1304. }
  1305. break;
  1306. }
  1307. for (i = 0; i < m->nr; ++i)
  1308. if (m->guest[i].index == msr)
  1309. break;
  1310. if (i == NR_AUTOLOAD_MSRS) {
  1311. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1312. "Can't add msr %x\n", msr);
  1313. return;
  1314. } else if (i == m->nr) {
  1315. ++m->nr;
  1316. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1317. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1318. }
  1319. m->guest[i].index = msr;
  1320. m->guest[i].value = guest_val;
  1321. m->host[i].index = msr;
  1322. m->host[i].value = host_val;
  1323. }
  1324. static void reload_tss(void)
  1325. {
  1326. /*
  1327. * VT restores TR but not its size. Useless.
  1328. */
  1329. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1330. struct desc_struct *descs;
  1331. descs = (void *)gdt->address;
  1332. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1333. load_TR_desc();
  1334. }
  1335. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1336. {
  1337. u64 guest_efer;
  1338. u64 ignore_bits;
  1339. guest_efer = vmx->vcpu.arch.efer;
  1340. /*
  1341. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1342. * outside long mode
  1343. */
  1344. ignore_bits = EFER_NX | EFER_SCE;
  1345. #ifdef CONFIG_X86_64
  1346. ignore_bits |= EFER_LMA | EFER_LME;
  1347. /* SCE is meaningful only in long mode on Intel */
  1348. if (guest_efer & EFER_LMA)
  1349. ignore_bits &= ~(u64)EFER_SCE;
  1350. #endif
  1351. guest_efer &= ~ignore_bits;
  1352. guest_efer |= host_efer & ignore_bits;
  1353. vmx->guest_msrs[efer_offset].data = guest_efer;
  1354. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1355. clear_atomic_switch_msr(vmx, MSR_EFER);
  1356. /* On ept, can't emulate nx, and must switch nx atomically */
  1357. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1358. guest_efer = vmx->vcpu.arch.efer;
  1359. if (!(guest_efer & EFER_LMA))
  1360. guest_efer &= ~EFER_LME;
  1361. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1362. return false;
  1363. }
  1364. return true;
  1365. }
  1366. static unsigned long segment_base(u16 selector)
  1367. {
  1368. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1369. struct desc_struct *d;
  1370. unsigned long table_base;
  1371. unsigned long v;
  1372. if (!(selector & ~3))
  1373. return 0;
  1374. table_base = gdt->address;
  1375. if (selector & 4) { /* from ldt */
  1376. u16 ldt_selector = kvm_read_ldt();
  1377. if (!(ldt_selector & ~3))
  1378. return 0;
  1379. table_base = segment_base(ldt_selector);
  1380. }
  1381. d = (struct desc_struct *)(table_base + (selector & ~7));
  1382. v = get_desc_base(d);
  1383. #ifdef CONFIG_X86_64
  1384. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1385. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1386. #endif
  1387. return v;
  1388. }
  1389. static inline unsigned long kvm_read_tr_base(void)
  1390. {
  1391. u16 tr;
  1392. asm("str %0" : "=g"(tr));
  1393. return segment_base(tr);
  1394. }
  1395. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1396. {
  1397. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1398. int i;
  1399. if (vmx->host_state.loaded)
  1400. return;
  1401. vmx->host_state.loaded = 1;
  1402. /*
  1403. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1404. * allow segment selectors with cpl > 0 or ti == 1.
  1405. */
  1406. vmx->host_state.ldt_sel = kvm_read_ldt();
  1407. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1408. savesegment(fs, vmx->host_state.fs_sel);
  1409. if (!(vmx->host_state.fs_sel & 7)) {
  1410. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1411. vmx->host_state.fs_reload_needed = 0;
  1412. } else {
  1413. vmcs_write16(HOST_FS_SELECTOR, 0);
  1414. vmx->host_state.fs_reload_needed = 1;
  1415. }
  1416. savesegment(gs, vmx->host_state.gs_sel);
  1417. if (!(vmx->host_state.gs_sel & 7))
  1418. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1419. else {
  1420. vmcs_write16(HOST_GS_SELECTOR, 0);
  1421. vmx->host_state.gs_ldt_reload_needed = 1;
  1422. }
  1423. #ifdef CONFIG_X86_64
  1424. savesegment(ds, vmx->host_state.ds_sel);
  1425. savesegment(es, vmx->host_state.es_sel);
  1426. #endif
  1427. #ifdef CONFIG_X86_64
  1428. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1429. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1430. #else
  1431. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1432. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1433. #endif
  1434. #ifdef CONFIG_X86_64
  1435. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1436. if (is_long_mode(&vmx->vcpu))
  1437. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1438. #endif
  1439. for (i = 0; i < vmx->save_nmsrs; ++i)
  1440. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1441. vmx->guest_msrs[i].data,
  1442. vmx->guest_msrs[i].mask);
  1443. }
  1444. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1445. {
  1446. if (!vmx->host_state.loaded)
  1447. return;
  1448. ++vmx->vcpu.stat.host_state_reload;
  1449. vmx->host_state.loaded = 0;
  1450. #ifdef CONFIG_X86_64
  1451. if (is_long_mode(&vmx->vcpu))
  1452. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1453. #endif
  1454. if (vmx->host_state.gs_ldt_reload_needed) {
  1455. kvm_load_ldt(vmx->host_state.ldt_sel);
  1456. #ifdef CONFIG_X86_64
  1457. load_gs_index(vmx->host_state.gs_sel);
  1458. #else
  1459. loadsegment(gs, vmx->host_state.gs_sel);
  1460. #endif
  1461. }
  1462. if (vmx->host_state.fs_reload_needed)
  1463. loadsegment(fs, vmx->host_state.fs_sel);
  1464. #ifdef CONFIG_X86_64
  1465. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1466. loadsegment(ds, vmx->host_state.ds_sel);
  1467. loadsegment(es, vmx->host_state.es_sel);
  1468. }
  1469. #endif
  1470. reload_tss();
  1471. #ifdef CONFIG_X86_64
  1472. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1473. #endif
  1474. /*
  1475. * If the FPU is not active (through the host task or
  1476. * the guest vcpu), then restore the cr0.TS bit.
  1477. */
  1478. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1479. stts();
  1480. load_gdt(&__get_cpu_var(host_gdt));
  1481. }
  1482. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1483. {
  1484. preempt_disable();
  1485. __vmx_load_host_state(vmx);
  1486. preempt_enable();
  1487. }
  1488. /*
  1489. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1490. * vcpu mutex is already taken.
  1491. */
  1492. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1493. {
  1494. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1495. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1496. if (!vmm_exclusive)
  1497. kvm_cpu_vmxon(phys_addr);
  1498. else if (vmx->loaded_vmcs->cpu != cpu)
  1499. loaded_vmcs_clear(vmx->loaded_vmcs);
  1500. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1501. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1502. vmcs_load(vmx->loaded_vmcs->vmcs);
  1503. }
  1504. if (vmx->loaded_vmcs->cpu != cpu) {
  1505. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1506. unsigned long sysenter_esp;
  1507. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1508. local_irq_disable();
  1509. crash_disable_local_vmclear(cpu);
  1510. /*
  1511. * Read loaded_vmcs->cpu should be before fetching
  1512. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1513. * See the comments in __loaded_vmcs_clear().
  1514. */
  1515. smp_rmb();
  1516. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1517. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1518. crash_enable_local_vmclear(cpu);
  1519. local_irq_enable();
  1520. /*
  1521. * Linux uses per-cpu TSS and GDT, so set these when switching
  1522. * processors.
  1523. */
  1524. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1525. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1526. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1527. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1528. vmx->loaded_vmcs->cpu = cpu;
  1529. }
  1530. }
  1531. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1532. {
  1533. __vmx_load_host_state(to_vmx(vcpu));
  1534. if (!vmm_exclusive) {
  1535. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1536. vcpu->cpu = -1;
  1537. kvm_cpu_vmxoff();
  1538. }
  1539. }
  1540. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1541. {
  1542. ulong cr0;
  1543. if (vcpu->fpu_active)
  1544. return;
  1545. vcpu->fpu_active = 1;
  1546. cr0 = vmcs_readl(GUEST_CR0);
  1547. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1548. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1549. vmcs_writel(GUEST_CR0, cr0);
  1550. update_exception_bitmap(vcpu);
  1551. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1552. if (is_guest_mode(vcpu))
  1553. vcpu->arch.cr0_guest_owned_bits &=
  1554. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1555. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1556. }
  1557. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1558. /*
  1559. * Return the cr0 value that a nested guest would read. This is a combination
  1560. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1561. * its hypervisor (cr0_read_shadow).
  1562. */
  1563. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1564. {
  1565. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1566. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1567. }
  1568. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1569. {
  1570. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1571. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1572. }
  1573. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1574. {
  1575. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1576. * set this *before* calling this function.
  1577. */
  1578. vmx_decache_cr0_guest_bits(vcpu);
  1579. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1580. update_exception_bitmap(vcpu);
  1581. vcpu->arch.cr0_guest_owned_bits = 0;
  1582. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1583. if (is_guest_mode(vcpu)) {
  1584. /*
  1585. * L1's specified read shadow might not contain the TS bit,
  1586. * so now that we turned on shadowing of this bit, we need to
  1587. * set this bit of the shadow. Like in nested_vmx_run we need
  1588. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1589. * up-to-date here because we just decached cr0.TS (and we'll
  1590. * only update vmcs12->guest_cr0 on nested exit).
  1591. */
  1592. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1593. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1594. (vcpu->arch.cr0 & X86_CR0_TS);
  1595. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1596. } else
  1597. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1598. }
  1599. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1600. {
  1601. unsigned long rflags, save_rflags;
  1602. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1603. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1604. rflags = vmcs_readl(GUEST_RFLAGS);
  1605. if (to_vmx(vcpu)->rmode.vm86_active) {
  1606. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1607. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1608. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1609. }
  1610. to_vmx(vcpu)->rflags = rflags;
  1611. }
  1612. return to_vmx(vcpu)->rflags;
  1613. }
  1614. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1615. {
  1616. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1617. to_vmx(vcpu)->rflags = rflags;
  1618. if (to_vmx(vcpu)->rmode.vm86_active) {
  1619. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1620. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1621. }
  1622. vmcs_writel(GUEST_RFLAGS, rflags);
  1623. }
  1624. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1625. {
  1626. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1627. int ret = 0;
  1628. if (interruptibility & GUEST_INTR_STATE_STI)
  1629. ret |= KVM_X86_SHADOW_INT_STI;
  1630. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1631. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1632. return ret & mask;
  1633. }
  1634. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1635. {
  1636. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1637. u32 interruptibility = interruptibility_old;
  1638. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1639. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1640. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1641. else if (mask & KVM_X86_SHADOW_INT_STI)
  1642. interruptibility |= GUEST_INTR_STATE_STI;
  1643. if ((interruptibility != interruptibility_old))
  1644. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1645. }
  1646. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1647. {
  1648. unsigned long rip;
  1649. rip = kvm_rip_read(vcpu);
  1650. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1651. kvm_rip_write(vcpu, rip);
  1652. /* skipping an emulated instruction also counts */
  1653. vmx_set_interrupt_shadow(vcpu, 0);
  1654. }
  1655. /*
  1656. * KVM wants to inject page-faults which it got to the guest. This function
  1657. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1658. * This function assumes it is called with the exit reason in vmcs02 being
  1659. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1660. * is running).
  1661. */
  1662. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1663. {
  1664. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1665. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1666. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1667. return 0;
  1668. nested_vmx_vmexit(vcpu);
  1669. return 1;
  1670. }
  1671. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1672. bool has_error_code, u32 error_code,
  1673. bool reinject)
  1674. {
  1675. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1676. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1677. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1678. !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
  1679. return;
  1680. if (has_error_code) {
  1681. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1682. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1683. }
  1684. if (vmx->rmode.vm86_active) {
  1685. int inc_eip = 0;
  1686. if (kvm_exception_is_soft(nr))
  1687. inc_eip = vcpu->arch.event_exit_inst_len;
  1688. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1689. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1690. return;
  1691. }
  1692. if (kvm_exception_is_soft(nr)) {
  1693. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1694. vmx->vcpu.arch.event_exit_inst_len);
  1695. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1696. } else
  1697. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1698. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1699. }
  1700. static bool vmx_rdtscp_supported(void)
  1701. {
  1702. return cpu_has_vmx_rdtscp();
  1703. }
  1704. static bool vmx_invpcid_supported(void)
  1705. {
  1706. return cpu_has_vmx_invpcid() && enable_ept;
  1707. }
  1708. /*
  1709. * Swap MSR entry in host/guest MSR entry array.
  1710. */
  1711. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1712. {
  1713. struct shared_msr_entry tmp;
  1714. tmp = vmx->guest_msrs[to];
  1715. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1716. vmx->guest_msrs[from] = tmp;
  1717. }
  1718. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1719. {
  1720. unsigned long *msr_bitmap;
  1721. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1722. if (is_long_mode(vcpu))
  1723. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1724. else
  1725. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1726. } else {
  1727. if (is_long_mode(vcpu))
  1728. msr_bitmap = vmx_msr_bitmap_longmode;
  1729. else
  1730. msr_bitmap = vmx_msr_bitmap_legacy;
  1731. }
  1732. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1733. }
  1734. /*
  1735. * Set up the vmcs to automatically save and restore system
  1736. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1737. * mode, as fiddling with msrs is very expensive.
  1738. */
  1739. static void setup_msrs(struct vcpu_vmx *vmx)
  1740. {
  1741. int save_nmsrs, index;
  1742. save_nmsrs = 0;
  1743. #ifdef CONFIG_X86_64
  1744. if (is_long_mode(&vmx->vcpu)) {
  1745. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1746. if (index >= 0)
  1747. move_msr_up(vmx, index, save_nmsrs++);
  1748. index = __find_msr_index(vmx, MSR_LSTAR);
  1749. if (index >= 0)
  1750. move_msr_up(vmx, index, save_nmsrs++);
  1751. index = __find_msr_index(vmx, MSR_CSTAR);
  1752. if (index >= 0)
  1753. move_msr_up(vmx, index, save_nmsrs++);
  1754. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1755. if (index >= 0 && vmx->rdtscp_enabled)
  1756. move_msr_up(vmx, index, save_nmsrs++);
  1757. /*
  1758. * MSR_STAR is only needed on long mode guests, and only
  1759. * if efer.sce is enabled.
  1760. */
  1761. index = __find_msr_index(vmx, MSR_STAR);
  1762. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1763. move_msr_up(vmx, index, save_nmsrs++);
  1764. }
  1765. #endif
  1766. index = __find_msr_index(vmx, MSR_EFER);
  1767. if (index >= 0 && update_transition_efer(vmx, index))
  1768. move_msr_up(vmx, index, save_nmsrs++);
  1769. vmx->save_nmsrs = save_nmsrs;
  1770. if (cpu_has_vmx_msr_bitmap())
  1771. vmx_set_msr_bitmap(&vmx->vcpu);
  1772. }
  1773. /*
  1774. * reads and returns guest's timestamp counter "register"
  1775. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1776. */
  1777. static u64 guest_read_tsc(void)
  1778. {
  1779. u64 host_tsc, tsc_offset;
  1780. rdtscll(host_tsc);
  1781. tsc_offset = vmcs_read64(TSC_OFFSET);
  1782. return host_tsc + tsc_offset;
  1783. }
  1784. /*
  1785. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1786. * counter, even if a nested guest (L2) is currently running.
  1787. */
  1788. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1789. {
  1790. u64 tsc_offset;
  1791. tsc_offset = is_guest_mode(vcpu) ?
  1792. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1793. vmcs_read64(TSC_OFFSET);
  1794. return host_tsc + tsc_offset;
  1795. }
  1796. /*
  1797. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1798. * software catchup for faster rates on slower CPUs.
  1799. */
  1800. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1801. {
  1802. if (!scale)
  1803. return;
  1804. if (user_tsc_khz > tsc_khz) {
  1805. vcpu->arch.tsc_catchup = 1;
  1806. vcpu->arch.tsc_always_catchup = 1;
  1807. } else
  1808. WARN(1, "user requested TSC rate below hardware speed\n");
  1809. }
  1810. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1811. {
  1812. return vmcs_read64(TSC_OFFSET);
  1813. }
  1814. /*
  1815. * writes 'offset' into guest's timestamp counter offset register
  1816. */
  1817. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1818. {
  1819. if (is_guest_mode(vcpu)) {
  1820. /*
  1821. * We're here if L1 chose not to trap WRMSR to TSC. According
  1822. * to the spec, this should set L1's TSC; The offset that L1
  1823. * set for L2 remains unchanged, and still needs to be added
  1824. * to the newly set TSC to get L2's TSC.
  1825. */
  1826. struct vmcs12 *vmcs12;
  1827. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1828. /* recalculate vmcs02.TSC_OFFSET: */
  1829. vmcs12 = get_vmcs12(vcpu);
  1830. vmcs_write64(TSC_OFFSET, offset +
  1831. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1832. vmcs12->tsc_offset : 0));
  1833. } else {
  1834. trace_kvm_write_tsc_offset(vcpu->vcpu_id,
  1835. vmcs_read64(TSC_OFFSET), offset);
  1836. vmcs_write64(TSC_OFFSET, offset);
  1837. }
  1838. }
  1839. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1840. {
  1841. u64 offset = vmcs_read64(TSC_OFFSET);
  1842. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1843. if (is_guest_mode(vcpu)) {
  1844. /* Even when running L2, the adjustment needs to apply to L1 */
  1845. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1846. } else
  1847. trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
  1848. offset + adjustment);
  1849. }
  1850. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1851. {
  1852. return target_tsc - native_read_tsc();
  1853. }
  1854. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1855. {
  1856. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1857. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1858. }
  1859. /*
  1860. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1861. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1862. * all guests if the "nested" module option is off, and can also be disabled
  1863. * for a single guest by disabling its VMX cpuid bit.
  1864. */
  1865. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1866. {
  1867. return nested && guest_cpuid_has_vmx(vcpu);
  1868. }
  1869. /*
  1870. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1871. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1872. * The same values should also be used to verify that vmcs12 control fields are
  1873. * valid during nested entry from L1 to L2.
  1874. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1875. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1876. * bit in the high half is on if the corresponding bit in the control field
  1877. * may be on. See also vmx_control_verify().
  1878. * TODO: allow these variables to be modified (downgraded) by module options
  1879. * or other means.
  1880. */
  1881. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1882. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1883. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1884. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1885. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1886. static u32 nested_vmx_misc_low, nested_vmx_misc_high;
  1887. static __init void nested_vmx_setup_ctls_msrs(void)
  1888. {
  1889. /*
  1890. * Note that as a general rule, the high half of the MSRs (bits in
  1891. * the control fields which may be 1) should be initialized by the
  1892. * intersection of the underlying hardware's MSR (i.e., features which
  1893. * can be supported) and the list of features we want to expose -
  1894. * because they are known to be properly supported in our code.
  1895. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1896. * be set to 0, meaning that L1 may turn off any of these bits. The
  1897. * reason is that if one of these bits is necessary, it will appear
  1898. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1899. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1900. * nested_vmx_exit_handled() will not pass related exits to L1.
  1901. * These rules have exceptions below.
  1902. */
  1903. /* pin-based controls */
  1904. rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
  1905. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
  1906. /*
  1907. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1908. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1909. */
  1910. nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1911. nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
  1912. PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
  1913. PIN_BASED_VMX_PREEMPTION_TIMER;
  1914. nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1915. /*
  1916. * Exit controls
  1917. * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
  1918. * 17 must be 1.
  1919. */
  1920. nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1921. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1922. #ifdef CONFIG_X86_64
  1923. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1924. #else
  1925. nested_vmx_exit_ctls_high = 0;
  1926. #endif
  1927. nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1928. /* entry controls */
  1929. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1930. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1931. /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
  1932. nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1933. nested_vmx_entry_ctls_high &=
  1934. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1935. nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1936. /* cpu-based controls */
  1937. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1938. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1939. nested_vmx_procbased_ctls_low = 0;
  1940. nested_vmx_procbased_ctls_high &=
  1941. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1942. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1943. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1944. CPU_BASED_CR3_STORE_EXITING |
  1945. #ifdef CONFIG_X86_64
  1946. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1947. #endif
  1948. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1949. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1950. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1951. CPU_BASED_PAUSE_EXITING |
  1952. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1953. /*
  1954. * We can allow some features even when not supported by the
  1955. * hardware. For example, L1 can specify an MSR bitmap - and we
  1956. * can use it to avoid exits to L1 - even when L0 runs L2
  1957. * without MSR bitmaps.
  1958. */
  1959. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1960. /* secondary cpu-based controls */
  1961. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1962. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1963. nested_vmx_secondary_ctls_low = 0;
  1964. nested_vmx_secondary_ctls_high &=
  1965. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1966. SECONDARY_EXEC_WBINVD_EXITING;
  1967. /* miscellaneous data */
  1968. rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
  1969. nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
  1970. VMX_MISC_SAVE_EFER_LMA;
  1971. nested_vmx_misc_high = 0;
  1972. }
  1973. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1974. {
  1975. /*
  1976. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1977. */
  1978. return ((control & high) | low) == control;
  1979. }
  1980. static inline u64 vmx_control_msr(u32 low, u32 high)
  1981. {
  1982. return low | ((u64)high << 32);
  1983. }
  1984. /*
  1985. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1986. * also let it use VMX-specific MSRs.
  1987. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1988. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1989. * like all other MSRs).
  1990. */
  1991. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1992. {
  1993. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1994. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1995. /*
  1996. * According to the spec, processors which do not support VMX
  1997. * should throw a #GP(0) when VMX capability MSRs are read.
  1998. */
  1999. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2000. return 1;
  2001. }
  2002. switch (msr_index) {
  2003. case MSR_IA32_FEATURE_CONTROL:
  2004. *pdata = 0;
  2005. break;
  2006. case MSR_IA32_VMX_BASIC:
  2007. /*
  2008. * This MSR reports some information about VMX support. We
  2009. * should return information about the VMX we emulate for the
  2010. * guest, and the VMCS structure we give it - not about the
  2011. * VMX support of the underlying hardware.
  2012. */
  2013. *pdata = VMCS12_REVISION |
  2014. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  2015. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  2016. break;
  2017. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  2018. case MSR_IA32_VMX_PINBASED_CTLS:
  2019. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  2020. nested_vmx_pinbased_ctls_high);
  2021. break;
  2022. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  2023. case MSR_IA32_VMX_PROCBASED_CTLS:
  2024. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  2025. nested_vmx_procbased_ctls_high);
  2026. break;
  2027. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  2028. case MSR_IA32_VMX_EXIT_CTLS:
  2029. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  2030. nested_vmx_exit_ctls_high);
  2031. break;
  2032. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  2033. case MSR_IA32_VMX_ENTRY_CTLS:
  2034. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  2035. nested_vmx_entry_ctls_high);
  2036. break;
  2037. case MSR_IA32_VMX_MISC:
  2038. *pdata = vmx_control_msr(nested_vmx_misc_low,
  2039. nested_vmx_misc_high);
  2040. break;
  2041. /*
  2042. * These MSRs specify bits which the guest must keep fixed (on or off)
  2043. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  2044. * We picked the standard core2 setting.
  2045. */
  2046. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  2047. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  2048. case MSR_IA32_VMX_CR0_FIXED0:
  2049. *pdata = VMXON_CR0_ALWAYSON;
  2050. break;
  2051. case MSR_IA32_VMX_CR0_FIXED1:
  2052. *pdata = -1ULL;
  2053. break;
  2054. case MSR_IA32_VMX_CR4_FIXED0:
  2055. *pdata = VMXON_CR4_ALWAYSON;
  2056. break;
  2057. case MSR_IA32_VMX_CR4_FIXED1:
  2058. *pdata = -1ULL;
  2059. break;
  2060. case MSR_IA32_VMX_VMCS_ENUM:
  2061. *pdata = 0x1f;
  2062. break;
  2063. case MSR_IA32_VMX_PROCBASED_CTLS2:
  2064. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  2065. nested_vmx_secondary_ctls_high);
  2066. break;
  2067. case MSR_IA32_VMX_EPT_VPID_CAP:
  2068. /* Currently, no nested ept or nested vpid */
  2069. *pdata = 0;
  2070. break;
  2071. default:
  2072. return 0;
  2073. }
  2074. return 1;
  2075. }
  2076. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  2077. {
  2078. if (!nested_vmx_allowed(vcpu))
  2079. return 0;
  2080. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  2081. /* TODO: the right thing. */
  2082. return 1;
  2083. /*
  2084. * No need to treat VMX capability MSRs specially: If we don't handle
  2085. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  2086. */
  2087. return 0;
  2088. }
  2089. /*
  2090. * Reads an msr value (of 'msr_index') into 'pdata'.
  2091. * Returns 0 on success, non-0 otherwise.
  2092. * Assumes vcpu_load() was already called.
  2093. */
  2094. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  2095. {
  2096. u64 data;
  2097. struct shared_msr_entry *msr;
  2098. if (!pdata) {
  2099. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  2100. return -EINVAL;
  2101. }
  2102. switch (msr_index) {
  2103. #ifdef CONFIG_X86_64
  2104. case MSR_FS_BASE:
  2105. data = vmcs_readl(GUEST_FS_BASE);
  2106. break;
  2107. case MSR_GS_BASE:
  2108. data = vmcs_readl(GUEST_GS_BASE);
  2109. break;
  2110. case MSR_KERNEL_GS_BASE:
  2111. vmx_load_host_state(to_vmx(vcpu));
  2112. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  2113. break;
  2114. #endif
  2115. case MSR_EFER:
  2116. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2117. case MSR_IA32_TSC:
  2118. data = guest_read_tsc();
  2119. break;
  2120. case MSR_IA32_SYSENTER_CS:
  2121. data = vmcs_read32(GUEST_SYSENTER_CS);
  2122. break;
  2123. case MSR_IA32_SYSENTER_EIP:
  2124. data = vmcs_readl(GUEST_SYSENTER_EIP);
  2125. break;
  2126. case MSR_IA32_SYSENTER_ESP:
  2127. data = vmcs_readl(GUEST_SYSENTER_ESP);
  2128. break;
  2129. case MSR_TSC_AUX:
  2130. if (!to_vmx(vcpu)->rdtscp_enabled)
  2131. return 1;
  2132. /* Otherwise falls through */
  2133. default:
  2134. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  2135. return 0;
  2136. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2137. if (msr) {
  2138. data = msr->data;
  2139. break;
  2140. }
  2141. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2142. }
  2143. *pdata = data;
  2144. return 0;
  2145. }
  2146. /*
  2147. * Writes msr value into into the appropriate "register".
  2148. * Returns 0 on success, non-0 otherwise.
  2149. * Assumes vcpu_load() was already called.
  2150. */
  2151. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2152. {
  2153. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2154. struct shared_msr_entry *msr;
  2155. int ret = 0;
  2156. u32 msr_index = msr_info->index;
  2157. u64 data = msr_info->data;
  2158. switch (msr_index) {
  2159. case MSR_EFER:
  2160. ret = kvm_set_msr_common(vcpu, msr_info);
  2161. break;
  2162. #ifdef CONFIG_X86_64
  2163. case MSR_FS_BASE:
  2164. vmx_segment_cache_clear(vmx);
  2165. vmcs_writel(GUEST_FS_BASE, data);
  2166. break;
  2167. case MSR_GS_BASE:
  2168. vmx_segment_cache_clear(vmx);
  2169. vmcs_writel(GUEST_GS_BASE, data);
  2170. break;
  2171. case MSR_KERNEL_GS_BASE:
  2172. vmx_load_host_state(vmx);
  2173. vmx->msr_guest_kernel_gs_base = data;
  2174. break;
  2175. #endif
  2176. case MSR_IA32_SYSENTER_CS:
  2177. vmcs_write32(GUEST_SYSENTER_CS, data);
  2178. break;
  2179. case MSR_IA32_SYSENTER_EIP:
  2180. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2181. break;
  2182. case MSR_IA32_SYSENTER_ESP:
  2183. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2184. break;
  2185. case MSR_IA32_TSC:
  2186. kvm_write_tsc(vcpu, msr_info);
  2187. break;
  2188. case MSR_IA32_CR_PAT:
  2189. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2190. vmcs_write64(GUEST_IA32_PAT, data);
  2191. vcpu->arch.pat = data;
  2192. break;
  2193. }
  2194. ret = kvm_set_msr_common(vcpu, msr_info);
  2195. break;
  2196. case MSR_IA32_TSC_ADJUST:
  2197. ret = kvm_set_msr_common(vcpu, msr_info);
  2198. break;
  2199. case MSR_TSC_AUX:
  2200. if (!vmx->rdtscp_enabled)
  2201. return 1;
  2202. /* Check reserved bit, higher 32 bits should be zero */
  2203. if ((data >> 32) != 0)
  2204. return 1;
  2205. /* Otherwise falls through */
  2206. default:
  2207. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2208. break;
  2209. msr = find_msr_entry(vmx, msr_index);
  2210. if (msr) {
  2211. msr->data = data;
  2212. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2213. preempt_disable();
  2214. kvm_set_shared_msr(msr->index, msr->data,
  2215. msr->mask);
  2216. preempt_enable();
  2217. }
  2218. break;
  2219. }
  2220. ret = kvm_set_msr_common(vcpu, msr_info);
  2221. }
  2222. return ret;
  2223. }
  2224. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2225. {
  2226. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2227. switch (reg) {
  2228. case VCPU_REGS_RSP:
  2229. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2230. break;
  2231. case VCPU_REGS_RIP:
  2232. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2233. break;
  2234. case VCPU_EXREG_PDPTR:
  2235. if (enable_ept)
  2236. ept_save_pdptrs(vcpu);
  2237. break;
  2238. default:
  2239. break;
  2240. }
  2241. }
  2242. static __init int cpu_has_kvm_support(void)
  2243. {
  2244. return cpu_has_vmx();
  2245. }
  2246. static __init int vmx_disabled_by_bios(void)
  2247. {
  2248. u64 msr;
  2249. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2250. if (msr & FEATURE_CONTROL_LOCKED) {
  2251. /* launched w/ TXT and VMX disabled */
  2252. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2253. && tboot_enabled())
  2254. return 1;
  2255. /* launched w/o TXT and VMX only enabled w/ TXT */
  2256. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2257. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2258. && !tboot_enabled()) {
  2259. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2260. "activate TXT before enabling KVM\n");
  2261. return 1;
  2262. }
  2263. /* launched w/o TXT and VMX disabled */
  2264. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2265. && !tboot_enabled())
  2266. return 1;
  2267. }
  2268. return 0;
  2269. }
  2270. static void kvm_cpu_vmxon(u64 addr)
  2271. {
  2272. asm volatile (ASM_VMX_VMXON_RAX
  2273. : : "a"(&addr), "m"(addr)
  2274. : "memory", "cc");
  2275. }
  2276. static int hardware_enable(void *garbage)
  2277. {
  2278. int cpu = raw_smp_processor_id();
  2279. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2280. u64 old, test_bits;
  2281. if (read_cr4() & X86_CR4_VMXE)
  2282. return -EBUSY;
  2283. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2284. /*
  2285. * Now we can enable the vmclear operation in kdump
  2286. * since the loaded_vmcss_on_cpu list on this cpu
  2287. * has been initialized.
  2288. *
  2289. * Though the cpu is not in VMX operation now, there
  2290. * is no problem to enable the vmclear operation
  2291. * for the loaded_vmcss_on_cpu list is empty!
  2292. */
  2293. crash_enable_local_vmclear(cpu);
  2294. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2295. test_bits = FEATURE_CONTROL_LOCKED;
  2296. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2297. if (tboot_enabled())
  2298. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2299. if ((old & test_bits) != test_bits) {
  2300. /* enable and lock */
  2301. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2302. }
  2303. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2304. if (vmm_exclusive) {
  2305. kvm_cpu_vmxon(phys_addr);
  2306. ept_sync_global();
  2307. }
  2308. native_store_gdt(&__get_cpu_var(host_gdt));
  2309. return 0;
  2310. }
  2311. static void vmclear_local_loaded_vmcss(void)
  2312. {
  2313. int cpu = raw_smp_processor_id();
  2314. struct loaded_vmcs *v, *n;
  2315. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2316. loaded_vmcss_on_cpu_link)
  2317. __loaded_vmcs_clear(v);
  2318. }
  2319. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2320. * tricks.
  2321. */
  2322. static void kvm_cpu_vmxoff(void)
  2323. {
  2324. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2325. }
  2326. static void hardware_disable(void *garbage)
  2327. {
  2328. if (vmm_exclusive) {
  2329. vmclear_local_loaded_vmcss();
  2330. kvm_cpu_vmxoff();
  2331. }
  2332. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2333. }
  2334. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2335. u32 msr, u32 *result)
  2336. {
  2337. u32 vmx_msr_low, vmx_msr_high;
  2338. u32 ctl = ctl_min | ctl_opt;
  2339. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2340. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2341. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2342. /* Ensure minimum (required) set of control bits are supported. */
  2343. if (ctl_min & ~ctl)
  2344. return -EIO;
  2345. *result = ctl;
  2346. return 0;
  2347. }
  2348. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2349. {
  2350. u32 vmx_msr_low, vmx_msr_high;
  2351. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2352. return vmx_msr_high & ctl;
  2353. }
  2354. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2355. {
  2356. u32 vmx_msr_low, vmx_msr_high;
  2357. u32 min, opt, min2, opt2;
  2358. u32 _pin_based_exec_control = 0;
  2359. u32 _cpu_based_exec_control = 0;
  2360. u32 _cpu_based_2nd_exec_control = 0;
  2361. u32 _vmexit_control = 0;
  2362. u32 _vmentry_control = 0;
  2363. min = CPU_BASED_HLT_EXITING |
  2364. #ifdef CONFIG_X86_64
  2365. CPU_BASED_CR8_LOAD_EXITING |
  2366. CPU_BASED_CR8_STORE_EXITING |
  2367. #endif
  2368. CPU_BASED_CR3_LOAD_EXITING |
  2369. CPU_BASED_CR3_STORE_EXITING |
  2370. CPU_BASED_USE_IO_BITMAPS |
  2371. CPU_BASED_MOV_DR_EXITING |
  2372. CPU_BASED_USE_TSC_OFFSETING |
  2373. CPU_BASED_MWAIT_EXITING |
  2374. CPU_BASED_MONITOR_EXITING |
  2375. CPU_BASED_INVLPG_EXITING |
  2376. CPU_BASED_RDPMC_EXITING;
  2377. opt = CPU_BASED_TPR_SHADOW |
  2378. CPU_BASED_USE_MSR_BITMAPS |
  2379. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2380. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2381. &_cpu_based_exec_control) < 0)
  2382. return -EIO;
  2383. #ifdef CONFIG_X86_64
  2384. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2385. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2386. ~CPU_BASED_CR8_STORE_EXITING;
  2387. #endif
  2388. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2389. min2 = 0;
  2390. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2391. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2392. SECONDARY_EXEC_WBINVD_EXITING |
  2393. SECONDARY_EXEC_ENABLE_VPID |
  2394. SECONDARY_EXEC_ENABLE_EPT |
  2395. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2396. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2397. SECONDARY_EXEC_RDTSCP |
  2398. SECONDARY_EXEC_ENABLE_INVPCID |
  2399. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2400. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
  2401. SECONDARY_EXEC_SHADOW_VMCS;
  2402. if (adjust_vmx_controls(min2, opt2,
  2403. MSR_IA32_VMX_PROCBASED_CTLS2,
  2404. &_cpu_based_2nd_exec_control) < 0)
  2405. return -EIO;
  2406. }
  2407. #ifndef CONFIG_X86_64
  2408. if (!(_cpu_based_2nd_exec_control &
  2409. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2410. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2411. #endif
  2412. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2413. _cpu_based_2nd_exec_control &= ~(
  2414. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2415. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2416. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2417. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2418. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2419. enabled */
  2420. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2421. CPU_BASED_CR3_STORE_EXITING |
  2422. CPU_BASED_INVLPG_EXITING);
  2423. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2424. vmx_capability.ept, vmx_capability.vpid);
  2425. }
  2426. min = 0;
  2427. #ifdef CONFIG_X86_64
  2428. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2429. #endif
  2430. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
  2431. VM_EXIT_ACK_INTR_ON_EXIT;
  2432. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2433. &_vmexit_control) < 0)
  2434. return -EIO;
  2435. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2436. opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
  2437. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2438. &_pin_based_exec_control) < 0)
  2439. return -EIO;
  2440. if (!(_cpu_based_2nd_exec_control &
  2441. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
  2442. !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
  2443. _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
  2444. min = 0;
  2445. opt = VM_ENTRY_LOAD_IA32_PAT;
  2446. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2447. &_vmentry_control) < 0)
  2448. return -EIO;
  2449. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2450. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2451. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2452. return -EIO;
  2453. #ifdef CONFIG_X86_64
  2454. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2455. if (vmx_msr_high & (1u<<16))
  2456. return -EIO;
  2457. #endif
  2458. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2459. if (((vmx_msr_high >> 18) & 15) != 6)
  2460. return -EIO;
  2461. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2462. vmcs_conf->order = get_order(vmcs_config.size);
  2463. vmcs_conf->revision_id = vmx_msr_low;
  2464. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2465. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2466. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2467. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2468. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2469. cpu_has_load_ia32_efer =
  2470. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2471. VM_ENTRY_LOAD_IA32_EFER)
  2472. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2473. VM_EXIT_LOAD_IA32_EFER);
  2474. cpu_has_load_perf_global_ctrl =
  2475. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2476. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2477. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2478. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2479. /*
  2480. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2481. * but due to arrata below it can't be used. Workaround is to use
  2482. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2483. *
  2484. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2485. *
  2486. * AAK155 (model 26)
  2487. * AAP115 (model 30)
  2488. * AAT100 (model 37)
  2489. * BC86,AAY89,BD102 (model 44)
  2490. * BA97 (model 46)
  2491. *
  2492. */
  2493. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2494. switch (boot_cpu_data.x86_model) {
  2495. case 26:
  2496. case 30:
  2497. case 37:
  2498. case 44:
  2499. case 46:
  2500. cpu_has_load_perf_global_ctrl = false;
  2501. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2502. "does not work properly. Using workaround\n");
  2503. break;
  2504. default:
  2505. break;
  2506. }
  2507. }
  2508. return 0;
  2509. }
  2510. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2511. {
  2512. int node = cpu_to_node(cpu);
  2513. struct page *pages;
  2514. struct vmcs *vmcs;
  2515. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2516. if (!pages)
  2517. return NULL;
  2518. vmcs = page_address(pages);
  2519. memset(vmcs, 0, vmcs_config.size);
  2520. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2521. return vmcs;
  2522. }
  2523. static struct vmcs *alloc_vmcs(void)
  2524. {
  2525. return alloc_vmcs_cpu(raw_smp_processor_id());
  2526. }
  2527. static void free_vmcs(struct vmcs *vmcs)
  2528. {
  2529. free_pages((unsigned long)vmcs, vmcs_config.order);
  2530. }
  2531. /*
  2532. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2533. */
  2534. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2535. {
  2536. if (!loaded_vmcs->vmcs)
  2537. return;
  2538. loaded_vmcs_clear(loaded_vmcs);
  2539. free_vmcs(loaded_vmcs->vmcs);
  2540. loaded_vmcs->vmcs = NULL;
  2541. }
  2542. static void free_kvm_area(void)
  2543. {
  2544. int cpu;
  2545. for_each_possible_cpu(cpu) {
  2546. free_vmcs(per_cpu(vmxarea, cpu));
  2547. per_cpu(vmxarea, cpu) = NULL;
  2548. }
  2549. }
  2550. static __init int alloc_kvm_area(void)
  2551. {
  2552. int cpu;
  2553. for_each_possible_cpu(cpu) {
  2554. struct vmcs *vmcs;
  2555. vmcs = alloc_vmcs_cpu(cpu);
  2556. if (!vmcs) {
  2557. free_kvm_area();
  2558. return -ENOMEM;
  2559. }
  2560. per_cpu(vmxarea, cpu) = vmcs;
  2561. }
  2562. return 0;
  2563. }
  2564. static __init int hardware_setup(void)
  2565. {
  2566. if (setup_vmcs_config(&vmcs_config) < 0)
  2567. return -EIO;
  2568. if (boot_cpu_has(X86_FEATURE_NX))
  2569. kvm_enable_efer_bits(EFER_NX);
  2570. if (!cpu_has_vmx_vpid())
  2571. enable_vpid = 0;
  2572. if (!cpu_has_vmx_shadow_vmcs())
  2573. enable_shadow_vmcs = 0;
  2574. if (!cpu_has_vmx_ept() ||
  2575. !cpu_has_vmx_ept_4levels()) {
  2576. enable_ept = 0;
  2577. enable_unrestricted_guest = 0;
  2578. enable_ept_ad_bits = 0;
  2579. }
  2580. if (!cpu_has_vmx_ept_ad_bits())
  2581. enable_ept_ad_bits = 0;
  2582. if (!cpu_has_vmx_unrestricted_guest())
  2583. enable_unrestricted_guest = 0;
  2584. if (!cpu_has_vmx_flexpriority())
  2585. flexpriority_enabled = 0;
  2586. if (!cpu_has_vmx_tpr_shadow())
  2587. kvm_x86_ops->update_cr8_intercept = NULL;
  2588. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2589. kvm_disable_largepages();
  2590. if (!cpu_has_vmx_ple())
  2591. ple_gap = 0;
  2592. if (!cpu_has_vmx_apicv())
  2593. enable_apicv = 0;
  2594. if (enable_apicv)
  2595. kvm_x86_ops->update_cr8_intercept = NULL;
  2596. else {
  2597. kvm_x86_ops->hwapic_irr_update = NULL;
  2598. kvm_x86_ops->deliver_posted_interrupt = NULL;
  2599. kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
  2600. }
  2601. if (nested)
  2602. nested_vmx_setup_ctls_msrs();
  2603. return alloc_kvm_area();
  2604. }
  2605. static __exit void hardware_unsetup(void)
  2606. {
  2607. free_kvm_area();
  2608. }
  2609. static bool emulation_required(struct kvm_vcpu *vcpu)
  2610. {
  2611. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2612. }
  2613. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2614. struct kvm_segment *save)
  2615. {
  2616. if (!emulate_invalid_guest_state) {
  2617. /*
  2618. * CS and SS RPL should be equal during guest entry according
  2619. * to VMX spec, but in reality it is not always so. Since vcpu
  2620. * is in the middle of the transition from real mode to
  2621. * protected mode it is safe to assume that RPL 0 is a good
  2622. * default value.
  2623. */
  2624. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2625. save->selector &= ~SELECTOR_RPL_MASK;
  2626. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2627. save->s = 1;
  2628. }
  2629. vmx_set_segment(vcpu, save, seg);
  2630. }
  2631. static void enter_pmode(struct kvm_vcpu *vcpu)
  2632. {
  2633. unsigned long flags;
  2634. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2635. /*
  2636. * Update real mode segment cache. It may be not up-to-date if sement
  2637. * register was written while vcpu was in a guest mode.
  2638. */
  2639. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2640. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2641. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2642. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2643. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2644. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2645. vmx->rmode.vm86_active = 0;
  2646. vmx_segment_cache_clear(vmx);
  2647. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2648. flags = vmcs_readl(GUEST_RFLAGS);
  2649. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2650. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2651. vmcs_writel(GUEST_RFLAGS, flags);
  2652. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2653. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2654. update_exception_bitmap(vcpu);
  2655. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2656. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2657. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2658. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2659. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2660. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2661. /* CPL is always 0 when CPU enters protected mode */
  2662. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2663. vmx->cpl = 0;
  2664. }
  2665. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2666. {
  2667. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2668. struct kvm_segment var = *save;
  2669. var.dpl = 0x3;
  2670. if (seg == VCPU_SREG_CS)
  2671. var.type = 0x3;
  2672. if (!emulate_invalid_guest_state) {
  2673. var.selector = var.base >> 4;
  2674. var.base = var.base & 0xffff0;
  2675. var.limit = 0xffff;
  2676. var.g = 0;
  2677. var.db = 0;
  2678. var.present = 1;
  2679. var.s = 1;
  2680. var.l = 0;
  2681. var.unusable = 0;
  2682. var.type = 0x3;
  2683. var.avl = 0;
  2684. if (save->base & 0xf)
  2685. printk_once(KERN_WARNING "kvm: segment base is not "
  2686. "paragraph aligned when entering "
  2687. "protected mode (seg=%d)", seg);
  2688. }
  2689. vmcs_write16(sf->selector, var.selector);
  2690. vmcs_write32(sf->base, var.base);
  2691. vmcs_write32(sf->limit, var.limit);
  2692. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2693. }
  2694. static void enter_rmode(struct kvm_vcpu *vcpu)
  2695. {
  2696. unsigned long flags;
  2697. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2698. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2699. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2700. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2701. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2702. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2703. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2704. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2705. vmx->rmode.vm86_active = 1;
  2706. /*
  2707. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2708. * vcpu. Warn the user that an update is overdue.
  2709. */
  2710. if (!vcpu->kvm->arch.tss_addr)
  2711. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2712. "called before entering vcpu\n");
  2713. vmx_segment_cache_clear(vmx);
  2714. vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
  2715. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2716. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2717. flags = vmcs_readl(GUEST_RFLAGS);
  2718. vmx->rmode.save_rflags = flags;
  2719. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2720. vmcs_writel(GUEST_RFLAGS, flags);
  2721. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2722. update_exception_bitmap(vcpu);
  2723. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2724. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2725. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2726. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2727. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2728. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2729. kvm_mmu_reset_context(vcpu);
  2730. }
  2731. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2732. {
  2733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2734. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2735. if (!msr)
  2736. return;
  2737. /*
  2738. * Force kernel_gs_base reloading before EFER changes, as control
  2739. * of this msr depends on is_long_mode().
  2740. */
  2741. vmx_load_host_state(to_vmx(vcpu));
  2742. vcpu->arch.efer = efer;
  2743. if (efer & EFER_LMA) {
  2744. vmcs_write32(VM_ENTRY_CONTROLS,
  2745. vmcs_read32(VM_ENTRY_CONTROLS) |
  2746. VM_ENTRY_IA32E_MODE);
  2747. msr->data = efer;
  2748. } else {
  2749. vmcs_write32(VM_ENTRY_CONTROLS,
  2750. vmcs_read32(VM_ENTRY_CONTROLS) &
  2751. ~VM_ENTRY_IA32E_MODE);
  2752. msr->data = efer & ~EFER_LME;
  2753. }
  2754. setup_msrs(vmx);
  2755. }
  2756. #ifdef CONFIG_X86_64
  2757. static void enter_lmode(struct kvm_vcpu *vcpu)
  2758. {
  2759. u32 guest_tr_ar;
  2760. vmx_segment_cache_clear(to_vmx(vcpu));
  2761. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2762. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2763. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2764. __func__);
  2765. vmcs_write32(GUEST_TR_AR_BYTES,
  2766. (guest_tr_ar & ~AR_TYPE_MASK)
  2767. | AR_TYPE_BUSY_64_TSS);
  2768. }
  2769. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2770. }
  2771. static void exit_lmode(struct kvm_vcpu *vcpu)
  2772. {
  2773. vmcs_write32(VM_ENTRY_CONTROLS,
  2774. vmcs_read32(VM_ENTRY_CONTROLS)
  2775. & ~VM_ENTRY_IA32E_MODE);
  2776. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2777. }
  2778. #endif
  2779. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2780. {
  2781. vpid_sync_context(to_vmx(vcpu));
  2782. if (enable_ept) {
  2783. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2784. return;
  2785. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2786. }
  2787. }
  2788. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2789. {
  2790. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2791. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2792. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2793. }
  2794. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2795. {
  2796. if (enable_ept && is_paging(vcpu))
  2797. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2798. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2799. }
  2800. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2801. {
  2802. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2803. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2804. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2805. }
  2806. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2807. {
  2808. if (!test_bit(VCPU_EXREG_PDPTR,
  2809. (unsigned long *)&vcpu->arch.regs_dirty))
  2810. return;
  2811. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2812. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2813. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2814. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2815. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2816. }
  2817. }
  2818. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2819. {
  2820. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2821. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2822. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2823. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2824. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2825. }
  2826. __set_bit(VCPU_EXREG_PDPTR,
  2827. (unsigned long *)&vcpu->arch.regs_avail);
  2828. __set_bit(VCPU_EXREG_PDPTR,
  2829. (unsigned long *)&vcpu->arch.regs_dirty);
  2830. }
  2831. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2832. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2833. unsigned long cr0,
  2834. struct kvm_vcpu *vcpu)
  2835. {
  2836. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2837. vmx_decache_cr3(vcpu);
  2838. if (!(cr0 & X86_CR0_PG)) {
  2839. /* From paging/starting to nonpaging */
  2840. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2841. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2842. (CPU_BASED_CR3_LOAD_EXITING |
  2843. CPU_BASED_CR3_STORE_EXITING));
  2844. vcpu->arch.cr0 = cr0;
  2845. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2846. } else if (!is_paging(vcpu)) {
  2847. /* From nonpaging to paging */
  2848. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2849. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2850. ~(CPU_BASED_CR3_LOAD_EXITING |
  2851. CPU_BASED_CR3_STORE_EXITING));
  2852. vcpu->arch.cr0 = cr0;
  2853. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2854. }
  2855. if (!(cr0 & X86_CR0_WP))
  2856. *hw_cr0 &= ~X86_CR0_WP;
  2857. }
  2858. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2859. {
  2860. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2861. unsigned long hw_cr0;
  2862. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2863. if (enable_unrestricted_guest)
  2864. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2865. else {
  2866. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2867. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2868. enter_pmode(vcpu);
  2869. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2870. enter_rmode(vcpu);
  2871. }
  2872. #ifdef CONFIG_X86_64
  2873. if (vcpu->arch.efer & EFER_LME) {
  2874. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2875. enter_lmode(vcpu);
  2876. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2877. exit_lmode(vcpu);
  2878. }
  2879. #endif
  2880. if (enable_ept)
  2881. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2882. if (!vcpu->fpu_active)
  2883. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2884. vmcs_writel(CR0_READ_SHADOW, cr0);
  2885. vmcs_writel(GUEST_CR0, hw_cr0);
  2886. vcpu->arch.cr0 = cr0;
  2887. /* depends on vcpu->arch.cr0 to be set to a new value */
  2888. vmx->emulation_required = emulation_required(vcpu);
  2889. }
  2890. static u64 construct_eptp(unsigned long root_hpa)
  2891. {
  2892. u64 eptp;
  2893. /* TODO write the value reading from MSR */
  2894. eptp = VMX_EPT_DEFAULT_MT |
  2895. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2896. if (enable_ept_ad_bits)
  2897. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2898. eptp |= (root_hpa & PAGE_MASK);
  2899. return eptp;
  2900. }
  2901. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2902. {
  2903. unsigned long guest_cr3;
  2904. u64 eptp;
  2905. guest_cr3 = cr3;
  2906. if (enable_ept) {
  2907. eptp = construct_eptp(cr3);
  2908. vmcs_write64(EPT_POINTER, eptp);
  2909. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2910. vcpu->kvm->arch.ept_identity_map_addr;
  2911. ept_load_pdptrs(vcpu);
  2912. }
  2913. vmx_flush_tlb(vcpu);
  2914. vmcs_writel(GUEST_CR3, guest_cr3);
  2915. }
  2916. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2917. {
  2918. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2919. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2920. if (cr4 & X86_CR4_VMXE) {
  2921. /*
  2922. * To use VMXON (and later other VMX instructions), a guest
  2923. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2924. * So basically the check on whether to allow nested VMX
  2925. * is here.
  2926. */
  2927. if (!nested_vmx_allowed(vcpu))
  2928. return 1;
  2929. }
  2930. if (to_vmx(vcpu)->nested.vmxon &&
  2931. ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
  2932. return 1;
  2933. vcpu->arch.cr4 = cr4;
  2934. if (enable_ept) {
  2935. if (!is_paging(vcpu)) {
  2936. hw_cr4 &= ~X86_CR4_PAE;
  2937. hw_cr4 |= X86_CR4_PSE;
  2938. /*
  2939. * SMEP is disabled if CPU is in non-paging mode in
  2940. * hardware. However KVM always uses paging mode to
  2941. * emulate guest non-paging mode with TDP.
  2942. * To emulate this behavior, SMEP needs to be manually
  2943. * disabled when guest switches to non-paging mode.
  2944. */
  2945. hw_cr4 &= ~X86_CR4_SMEP;
  2946. } else if (!(cr4 & X86_CR4_PAE)) {
  2947. hw_cr4 &= ~X86_CR4_PAE;
  2948. }
  2949. }
  2950. vmcs_writel(CR4_READ_SHADOW, cr4);
  2951. vmcs_writel(GUEST_CR4, hw_cr4);
  2952. return 0;
  2953. }
  2954. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2955. struct kvm_segment *var, int seg)
  2956. {
  2957. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2958. u32 ar;
  2959. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2960. *var = vmx->rmode.segs[seg];
  2961. if (seg == VCPU_SREG_TR
  2962. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2963. return;
  2964. var->base = vmx_read_guest_seg_base(vmx, seg);
  2965. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2966. return;
  2967. }
  2968. var->base = vmx_read_guest_seg_base(vmx, seg);
  2969. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2970. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2971. ar = vmx_read_guest_seg_ar(vmx, seg);
  2972. var->type = ar & 15;
  2973. var->s = (ar >> 4) & 1;
  2974. var->dpl = (ar >> 5) & 3;
  2975. var->present = (ar >> 7) & 1;
  2976. var->avl = (ar >> 12) & 1;
  2977. var->l = (ar >> 13) & 1;
  2978. var->db = (ar >> 14) & 1;
  2979. var->g = (ar >> 15) & 1;
  2980. var->unusable = (ar >> 16) & 1;
  2981. }
  2982. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2983. {
  2984. struct kvm_segment s;
  2985. if (to_vmx(vcpu)->rmode.vm86_active) {
  2986. vmx_get_segment(vcpu, &s, seg);
  2987. return s.base;
  2988. }
  2989. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2990. }
  2991. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2992. {
  2993. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2994. if (!is_protmode(vcpu))
  2995. return 0;
  2996. if (!is_long_mode(vcpu)
  2997. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2998. return 3;
  2999. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  3000. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3001. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  3002. }
  3003. return vmx->cpl;
  3004. }
  3005. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  3006. {
  3007. u32 ar;
  3008. if (var->unusable || !var->present)
  3009. ar = 1 << 16;
  3010. else {
  3011. ar = var->type & 15;
  3012. ar |= (var->s & 1) << 4;
  3013. ar |= (var->dpl & 3) << 5;
  3014. ar |= (var->present & 1) << 7;
  3015. ar |= (var->avl & 1) << 12;
  3016. ar |= (var->l & 1) << 13;
  3017. ar |= (var->db & 1) << 14;
  3018. ar |= (var->g & 1) << 15;
  3019. }
  3020. return ar;
  3021. }
  3022. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  3023. struct kvm_segment *var, int seg)
  3024. {
  3025. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3026. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3027. vmx_segment_cache_clear(vmx);
  3028. if (seg == VCPU_SREG_CS)
  3029. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  3030. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  3031. vmx->rmode.segs[seg] = *var;
  3032. if (seg == VCPU_SREG_TR)
  3033. vmcs_write16(sf->selector, var->selector);
  3034. else if (var->s)
  3035. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  3036. goto out;
  3037. }
  3038. vmcs_writel(sf->base, var->base);
  3039. vmcs_write32(sf->limit, var->limit);
  3040. vmcs_write16(sf->selector, var->selector);
  3041. /*
  3042. * Fix the "Accessed" bit in AR field of segment registers for older
  3043. * qemu binaries.
  3044. * IA32 arch specifies that at the time of processor reset the
  3045. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  3046. * is setting it to 0 in the userland code. This causes invalid guest
  3047. * state vmexit when "unrestricted guest" mode is turned on.
  3048. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  3049. * tree. Newer qemu binaries with that qemu fix would not need this
  3050. * kvm hack.
  3051. */
  3052. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  3053. var->type |= 0x1; /* Accessed */
  3054. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  3055. out:
  3056. vmx->emulation_required |= emulation_required(vcpu);
  3057. }
  3058. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3059. {
  3060. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  3061. *db = (ar >> 14) & 1;
  3062. *l = (ar >> 13) & 1;
  3063. }
  3064. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3065. {
  3066. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  3067. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  3068. }
  3069. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3070. {
  3071. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  3072. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  3073. }
  3074. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3075. {
  3076. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  3077. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  3078. }
  3079. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  3080. {
  3081. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  3082. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  3083. }
  3084. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3085. {
  3086. struct kvm_segment var;
  3087. u32 ar;
  3088. vmx_get_segment(vcpu, &var, seg);
  3089. var.dpl = 0x3;
  3090. if (seg == VCPU_SREG_CS)
  3091. var.type = 0x3;
  3092. ar = vmx_segment_access_rights(&var);
  3093. if (var.base != (var.selector << 4))
  3094. return false;
  3095. if (var.limit != 0xffff)
  3096. return false;
  3097. if (ar != 0xf3)
  3098. return false;
  3099. return true;
  3100. }
  3101. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  3102. {
  3103. struct kvm_segment cs;
  3104. unsigned int cs_rpl;
  3105. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3106. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  3107. if (cs.unusable)
  3108. return false;
  3109. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  3110. return false;
  3111. if (!cs.s)
  3112. return false;
  3113. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  3114. if (cs.dpl > cs_rpl)
  3115. return false;
  3116. } else {
  3117. if (cs.dpl != cs_rpl)
  3118. return false;
  3119. }
  3120. if (!cs.present)
  3121. return false;
  3122. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  3123. return true;
  3124. }
  3125. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  3126. {
  3127. struct kvm_segment ss;
  3128. unsigned int ss_rpl;
  3129. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3130. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3131. if (ss.unusable)
  3132. return true;
  3133. if (ss.type != 3 && ss.type != 7)
  3134. return false;
  3135. if (!ss.s)
  3136. return false;
  3137. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3138. return false;
  3139. if (!ss.present)
  3140. return false;
  3141. return true;
  3142. }
  3143. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3144. {
  3145. struct kvm_segment var;
  3146. unsigned int rpl;
  3147. vmx_get_segment(vcpu, &var, seg);
  3148. rpl = var.selector & SELECTOR_RPL_MASK;
  3149. if (var.unusable)
  3150. return true;
  3151. if (!var.s)
  3152. return false;
  3153. if (!var.present)
  3154. return false;
  3155. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3156. if (var.dpl < rpl) /* DPL < RPL */
  3157. return false;
  3158. }
  3159. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3160. * rights flags
  3161. */
  3162. return true;
  3163. }
  3164. static bool tr_valid(struct kvm_vcpu *vcpu)
  3165. {
  3166. struct kvm_segment tr;
  3167. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3168. if (tr.unusable)
  3169. return false;
  3170. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3171. return false;
  3172. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3173. return false;
  3174. if (!tr.present)
  3175. return false;
  3176. return true;
  3177. }
  3178. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3179. {
  3180. struct kvm_segment ldtr;
  3181. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3182. if (ldtr.unusable)
  3183. return true;
  3184. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3185. return false;
  3186. if (ldtr.type != 2)
  3187. return false;
  3188. if (!ldtr.present)
  3189. return false;
  3190. return true;
  3191. }
  3192. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3193. {
  3194. struct kvm_segment cs, ss;
  3195. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3196. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3197. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3198. (ss.selector & SELECTOR_RPL_MASK));
  3199. }
  3200. /*
  3201. * Check if guest state is valid. Returns true if valid, false if
  3202. * not.
  3203. * We assume that registers are always usable
  3204. */
  3205. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3206. {
  3207. if (enable_unrestricted_guest)
  3208. return true;
  3209. /* real mode guest state checks */
  3210. if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  3211. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3212. return false;
  3213. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3214. return false;
  3215. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3216. return false;
  3217. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3218. return false;
  3219. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3220. return false;
  3221. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3222. return false;
  3223. } else {
  3224. /* protected mode guest state checks */
  3225. if (!cs_ss_rpl_check(vcpu))
  3226. return false;
  3227. if (!code_segment_valid(vcpu))
  3228. return false;
  3229. if (!stack_segment_valid(vcpu))
  3230. return false;
  3231. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3232. return false;
  3233. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3234. return false;
  3235. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3236. return false;
  3237. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3238. return false;
  3239. if (!tr_valid(vcpu))
  3240. return false;
  3241. if (!ldtr_valid(vcpu))
  3242. return false;
  3243. }
  3244. /* TODO:
  3245. * - Add checks on RIP
  3246. * - Add checks on RFLAGS
  3247. */
  3248. return true;
  3249. }
  3250. static int init_rmode_tss(struct kvm *kvm)
  3251. {
  3252. gfn_t fn;
  3253. u16 data = 0;
  3254. int r, idx, ret = 0;
  3255. idx = srcu_read_lock(&kvm->srcu);
  3256. fn = kvm->arch.tss_addr >> PAGE_SHIFT;
  3257. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3258. if (r < 0)
  3259. goto out;
  3260. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3261. r = kvm_write_guest_page(kvm, fn++, &data,
  3262. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3263. if (r < 0)
  3264. goto out;
  3265. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3266. if (r < 0)
  3267. goto out;
  3268. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3269. if (r < 0)
  3270. goto out;
  3271. data = ~0;
  3272. r = kvm_write_guest_page(kvm, fn, &data,
  3273. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3274. sizeof(u8));
  3275. if (r < 0)
  3276. goto out;
  3277. ret = 1;
  3278. out:
  3279. srcu_read_unlock(&kvm->srcu, idx);
  3280. return ret;
  3281. }
  3282. static int init_rmode_identity_map(struct kvm *kvm)
  3283. {
  3284. int i, idx, r, ret;
  3285. pfn_t identity_map_pfn;
  3286. u32 tmp;
  3287. if (!enable_ept)
  3288. return 1;
  3289. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3290. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3291. "haven't been allocated!\n");
  3292. return 0;
  3293. }
  3294. if (likely(kvm->arch.ept_identity_pagetable_done))
  3295. return 1;
  3296. ret = 0;
  3297. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3298. idx = srcu_read_lock(&kvm->srcu);
  3299. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3300. if (r < 0)
  3301. goto out;
  3302. /* Set up identity-mapping pagetable for EPT in real mode */
  3303. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3304. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3305. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3306. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3307. &tmp, i * sizeof(tmp), sizeof(tmp));
  3308. if (r < 0)
  3309. goto out;
  3310. }
  3311. kvm->arch.ept_identity_pagetable_done = true;
  3312. ret = 1;
  3313. out:
  3314. srcu_read_unlock(&kvm->srcu, idx);
  3315. return ret;
  3316. }
  3317. static void seg_setup(int seg)
  3318. {
  3319. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3320. unsigned int ar;
  3321. vmcs_write16(sf->selector, 0);
  3322. vmcs_writel(sf->base, 0);
  3323. vmcs_write32(sf->limit, 0xffff);
  3324. ar = 0x93;
  3325. if (seg == VCPU_SREG_CS)
  3326. ar |= 0x08; /* code segment */
  3327. vmcs_write32(sf->ar_bytes, ar);
  3328. }
  3329. static int alloc_apic_access_page(struct kvm *kvm)
  3330. {
  3331. struct page *page;
  3332. struct kvm_userspace_memory_region kvm_userspace_mem;
  3333. int r = 0;
  3334. mutex_lock(&kvm->slots_lock);
  3335. if (kvm->arch.apic_access_page)
  3336. goto out;
  3337. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3338. kvm_userspace_mem.flags = 0;
  3339. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3340. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3341. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3342. if (r)
  3343. goto out;
  3344. page = gfn_to_page(kvm, 0xfee00);
  3345. if (is_error_page(page)) {
  3346. r = -EFAULT;
  3347. goto out;
  3348. }
  3349. kvm->arch.apic_access_page = page;
  3350. out:
  3351. mutex_unlock(&kvm->slots_lock);
  3352. return r;
  3353. }
  3354. static int alloc_identity_pagetable(struct kvm *kvm)
  3355. {
  3356. struct page *page;
  3357. struct kvm_userspace_memory_region kvm_userspace_mem;
  3358. int r = 0;
  3359. mutex_lock(&kvm->slots_lock);
  3360. if (kvm->arch.ept_identity_pagetable)
  3361. goto out;
  3362. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3363. kvm_userspace_mem.flags = 0;
  3364. kvm_userspace_mem.guest_phys_addr =
  3365. kvm->arch.ept_identity_map_addr;
  3366. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3367. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3368. if (r)
  3369. goto out;
  3370. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3371. if (is_error_page(page)) {
  3372. r = -EFAULT;
  3373. goto out;
  3374. }
  3375. kvm->arch.ept_identity_pagetable = page;
  3376. out:
  3377. mutex_unlock(&kvm->slots_lock);
  3378. return r;
  3379. }
  3380. static void allocate_vpid(struct vcpu_vmx *vmx)
  3381. {
  3382. int vpid;
  3383. vmx->vpid = 0;
  3384. if (!enable_vpid)
  3385. return;
  3386. spin_lock(&vmx_vpid_lock);
  3387. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3388. if (vpid < VMX_NR_VPIDS) {
  3389. vmx->vpid = vpid;
  3390. __set_bit(vpid, vmx_vpid_bitmap);
  3391. }
  3392. spin_unlock(&vmx_vpid_lock);
  3393. }
  3394. static void free_vpid(struct vcpu_vmx *vmx)
  3395. {
  3396. if (!enable_vpid)
  3397. return;
  3398. spin_lock(&vmx_vpid_lock);
  3399. if (vmx->vpid != 0)
  3400. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3401. spin_unlock(&vmx_vpid_lock);
  3402. }
  3403. #define MSR_TYPE_R 1
  3404. #define MSR_TYPE_W 2
  3405. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3406. u32 msr, int type)
  3407. {
  3408. int f = sizeof(unsigned long);
  3409. if (!cpu_has_vmx_msr_bitmap())
  3410. return;
  3411. /*
  3412. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3413. * have the write-low and read-high bitmap offsets the wrong way round.
  3414. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3415. */
  3416. if (msr <= 0x1fff) {
  3417. if (type & MSR_TYPE_R)
  3418. /* read-low */
  3419. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3420. if (type & MSR_TYPE_W)
  3421. /* write-low */
  3422. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3423. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3424. msr &= 0x1fff;
  3425. if (type & MSR_TYPE_R)
  3426. /* read-high */
  3427. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3428. if (type & MSR_TYPE_W)
  3429. /* write-high */
  3430. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3431. }
  3432. }
  3433. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3434. u32 msr, int type)
  3435. {
  3436. int f = sizeof(unsigned long);
  3437. if (!cpu_has_vmx_msr_bitmap())
  3438. return;
  3439. /*
  3440. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3441. * have the write-low and read-high bitmap offsets the wrong way round.
  3442. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3443. */
  3444. if (msr <= 0x1fff) {
  3445. if (type & MSR_TYPE_R)
  3446. /* read-low */
  3447. __set_bit(msr, msr_bitmap + 0x000 / f);
  3448. if (type & MSR_TYPE_W)
  3449. /* write-low */
  3450. __set_bit(msr, msr_bitmap + 0x800 / f);
  3451. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3452. msr &= 0x1fff;
  3453. if (type & MSR_TYPE_R)
  3454. /* read-high */
  3455. __set_bit(msr, msr_bitmap + 0x400 / f);
  3456. if (type & MSR_TYPE_W)
  3457. /* write-high */
  3458. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3459. }
  3460. }
  3461. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3462. {
  3463. if (!longmode_only)
  3464. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3465. msr, MSR_TYPE_R | MSR_TYPE_W);
  3466. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3467. msr, MSR_TYPE_R | MSR_TYPE_W);
  3468. }
  3469. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3470. {
  3471. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3472. msr, MSR_TYPE_R);
  3473. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3474. msr, MSR_TYPE_R);
  3475. }
  3476. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3477. {
  3478. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3479. msr, MSR_TYPE_R);
  3480. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3481. msr, MSR_TYPE_R);
  3482. }
  3483. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3484. {
  3485. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3486. msr, MSR_TYPE_W);
  3487. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3488. msr, MSR_TYPE_W);
  3489. }
  3490. static int vmx_vm_has_apicv(struct kvm *kvm)
  3491. {
  3492. return enable_apicv && irqchip_in_kernel(kvm);
  3493. }
  3494. /*
  3495. * Send interrupt to vcpu via posted interrupt way.
  3496. * 1. If target vcpu is running(non-root mode), send posted interrupt
  3497. * notification to vcpu and hardware will sync PIR to vIRR atomically.
  3498. * 2. If target vcpu isn't running(root mode), kick it to pick up the
  3499. * interrupt from PIR in next vmentry.
  3500. */
  3501. static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
  3502. {
  3503. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3504. int r;
  3505. if (pi_test_and_set_pir(vector, &vmx->pi_desc))
  3506. return;
  3507. r = pi_test_and_set_on(&vmx->pi_desc);
  3508. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3509. #ifdef CONFIG_SMP
  3510. if (!r && (vcpu->mode == IN_GUEST_MODE))
  3511. apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
  3512. POSTED_INTR_VECTOR);
  3513. else
  3514. #endif
  3515. kvm_vcpu_kick(vcpu);
  3516. }
  3517. static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
  3518. {
  3519. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3520. if (!pi_test_and_clear_on(&vmx->pi_desc))
  3521. return;
  3522. kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
  3523. }
  3524. static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
  3525. {
  3526. return;
  3527. }
  3528. /*
  3529. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3530. * will not change in the lifetime of the guest.
  3531. * Note that host-state that does change is set elsewhere. E.g., host-state
  3532. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3533. */
  3534. static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
  3535. {
  3536. u32 low32, high32;
  3537. unsigned long tmpl;
  3538. struct desc_ptr dt;
  3539. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3540. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3541. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3542. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3543. #ifdef CONFIG_X86_64
  3544. /*
  3545. * Load null selectors, so we can avoid reloading them in
  3546. * __vmx_load_host_state(), in case userspace uses the null selectors
  3547. * too (the expected case).
  3548. */
  3549. vmcs_write16(HOST_DS_SELECTOR, 0);
  3550. vmcs_write16(HOST_ES_SELECTOR, 0);
  3551. #else
  3552. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3553. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3554. #endif
  3555. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3556. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3557. native_store_idt(&dt);
  3558. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3559. vmx->host_idt_base = dt.address;
  3560. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3561. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3562. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3563. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3564. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3565. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3566. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3567. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3568. }
  3569. }
  3570. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3571. {
  3572. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3573. if (enable_ept)
  3574. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3575. if (is_guest_mode(&vmx->vcpu))
  3576. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3577. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3578. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3579. }
  3580. static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
  3581. {
  3582. u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
  3583. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3584. pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
  3585. return pin_based_exec_ctrl;
  3586. }
  3587. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3588. {
  3589. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3590. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3591. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3592. #ifdef CONFIG_X86_64
  3593. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3594. CPU_BASED_CR8_LOAD_EXITING;
  3595. #endif
  3596. }
  3597. if (!enable_ept)
  3598. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3599. CPU_BASED_CR3_LOAD_EXITING |
  3600. CPU_BASED_INVLPG_EXITING;
  3601. return exec_control;
  3602. }
  3603. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3604. {
  3605. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3606. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3607. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3608. if (vmx->vpid == 0)
  3609. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3610. if (!enable_ept) {
  3611. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3612. enable_unrestricted_guest = 0;
  3613. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3614. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3615. }
  3616. if (!enable_unrestricted_guest)
  3617. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3618. if (!ple_gap)
  3619. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3620. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3621. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3622. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3623. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3624. /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
  3625. (handle_vmptrld).
  3626. We can NOT enable shadow_vmcs here because we don't have yet
  3627. a current VMCS12
  3628. */
  3629. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  3630. return exec_control;
  3631. }
  3632. static void ept_set_mmio_spte_mask(void)
  3633. {
  3634. /*
  3635. * EPT Misconfigurations can be generated if the value of bits 2:0
  3636. * of an EPT paging-structure entry is 110b (write/execute).
  3637. * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
  3638. * spte.
  3639. */
  3640. kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
  3641. }
  3642. /*
  3643. * Sets up the vmcs for emulated real mode.
  3644. */
  3645. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3646. {
  3647. #ifdef CONFIG_X86_64
  3648. unsigned long a;
  3649. #endif
  3650. int i;
  3651. /* I/O */
  3652. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3653. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3654. if (enable_shadow_vmcs) {
  3655. vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
  3656. vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
  3657. }
  3658. if (cpu_has_vmx_msr_bitmap())
  3659. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3660. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3661. /* Control */
  3662. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
  3663. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3664. if (cpu_has_secondary_exec_ctrls()) {
  3665. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3666. vmx_secondary_exec_control(vmx));
  3667. }
  3668. if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
  3669. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3670. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3671. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3672. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3673. vmcs_write16(GUEST_INTR_STATUS, 0);
  3674. vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
  3675. vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
  3676. }
  3677. if (ple_gap) {
  3678. vmcs_write32(PLE_GAP, ple_gap);
  3679. vmcs_write32(PLE_WINDOW, ple_window);
  3680. }
  3681. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3682. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3683. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3684. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3685. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3686. vmx_set_constant_host_state(vmx);
  3687. #ifdef CONFIG_X86_64
  3688. rdmsrl(MSR_FS_BASE, a);
  3689. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3690. rdmsrl(MSR_GS_BASE, a);
  3691. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3692. #else
  3693. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3694. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3695. #endif
  3696. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3697. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3698. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3699. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3700. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3701. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3702. u32 msr_low, msr_high;
  3703. u64 host_pat;
  3704. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3705. host_pat = msr_low | ((u64) msr_high << 32);
  3706. /* Write the default value follow host pat */
  3707. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3708. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3709. vmx->vcpu.arch.pat = host_pat;
  3710. }
  3711. for (i = 0; i < NR_VMX_MSR; ++i) {
  3712. u32 index = vmx_msr_index[i];
  3713. u32 data_low, data_high;
  3714. int j = vmx->nmsrs;
  3715. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3716. continue;
  3717. if (wrmsr_safe(index, data_low, data_high) < 0)
  3718. continue;
  3719. vmx->guest_msrs[j].index = i;
  3720. vmx->guest_msrs[j].data = 0;
  3721. vmx->guest_msrs[j].mask = -1ull;
  3722. ++vmx->nmsrs;
  3723. }
  3724. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3725. /* 22.2.1, 20.8.1 */
  3726. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3727. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3728. set_cr4_guest_host_mask(vmx);
  3729. return 0;
  3730. }
  3731. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3732. {
  3733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3734. u64 msr;
  3735. vmx->rmode.vm86_active = 0;
  3736. vmx->soft_vnmi_blocked = 0;
  3737. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3738. kvm_set_cr8(&vmx->vcpu, 0);
  3739. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3740. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3741. msr |= MSR_IA32_APICBASE_BSP;
  3742. kvm_set_apic_base(&vmx->vcpu, msr);
  3743. vmx_segment_cache_clear(vmx);
  3744. seg_setup(VCPU_SREG_CS);
  3745. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3746. vmcs_write32(GUEST_CS_BASE, 0xffff0000);
  3747. seg_setup(VCPU_SREG_DS);
  3748. seg_setup(VCPU_SREG_ES);
  3749. seg_setup(VCPU_SREG_FS);
  3750. seg_setup(VCPU_SREG_GS);
  3751. seg_setup(VCPU_SREG_SS);
  3752. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3753. vmcs_writel(GUEST_TR_BASE, 0);
  3754. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3755. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3756. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3757. vmcs_writel(GUEST_LDTR_BASE, 0);
  3758. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3759. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3760. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3761. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3762. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3763. vmcs_writel(GUEST_RFLAGS, 0x02);
  3764. kvm_rip_write(vcpu, 0xfff0);
  3765. vmcs_writel(GUEST_GDTR_BASE, 0);
  3766. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3767. vmcs_writel(GUEST_IDTR_BASE, 0);
  3768. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3769. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3770. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3771. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3772. /* Special registers */
  3773. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3774. setup_msrs(vmx);
  3775. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3776. if (cpu_has_vmx_tpr_shadow()) {
  3777. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3778. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3779. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3780. __pa(vmx->vcpu.arch.apic->regs));
  3781. vmcs_write32(TPR_THRESHOLD, 0);
  3782. }
  3783. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3784. vmcs_write64(APIC_ACCESS_ADDR,
  3785. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3786. if (vmx_vm_has_apicv(vcpu->kvm))
  3787. memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
  3788. if (vmx->vpid != 0)
  3789. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3790. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3791. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3792. vmx_set_cr4(&vmx->vcpu, 0);
  3793. vmx_set_efer(&vmx->vcpu, 0);
  3794. vmx_fpu_activate(&vmx->vcpu);
  3795. update_exception_bitmap(&vmx->vcpu);
  3796. vpid_sync_context(vmx);
  3797. }
  3798. /*
  3799. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3800. * For most existing hypervisors, this will always return true.
  3801. */
  3802. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3803. {
  3804. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3805. PIN_BASED_EXT_INTR_MASK;
  3806. }
  3807. static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
  3808. {
  3809. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3810. PIN_BASED_NMI_EXITING;
  3811. }
  3812. static int enable_irq_window(struct kvm_vcpu *vcpu)
  3813. {
  3814. u32 cpu_based_vm_exec_control;
  3815. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3816. /*
  3817. * We get here if vmx_interrupt_allowed() said we can't
  3818. * inject to L1 now because L2 must run. The caller will have
  3819. * to make L2 exit right after entry, so we can inject to L1
  3820. * more promptly.
  3821. */
  3822. return -EBUSY;
  3823. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3824. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3825. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3826. return 0;
  3827. }
  3828. static int enable_nmi_window(struct kvm_vcpu *vcpu)
  3829. {
  3830. u32 cpu_based_vm_exec_control;
  3831. if (!cpu_has_virtual_nmis())
  3832. return enable_irq_window(vcpu);
  3833. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
  3834. return enable_irq_window(vcpu);
  3835. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3836. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3837. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3838. return 0;
  3839. }
  3840. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3841. {
  3842. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3843. uint32_t intr;
  3844. int irq = vcpu->arch.interrupt.nr;
  3845. trace_kvm_inj_virq(irq);
  3846. ++vcpu->stat.irq_injections;
  3847. if (vmx->rmode.vm86_active) {
  3848. int inc_eip = 0;
  3849. if (vcpu->arch.interrupt.soft)
  3850. inc_eip = vcpu->arch.event_exit_inst_len;
  3851. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3852. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3853. return;
  3854. }
  3855. intr = irq | INTR_INFO_VALID_MASK;
  3856. if (vcpu->arch.interrupt.soft) {
  3857. intr |= INTR_TYPE_SOFT_INTR;
  3858. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3859. vmx->vcpu.arch.event_exit_inst_len);
  3860. } else
  3861. intr |= INTR_TYPE_EXT_INTR;
  3862. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3863. }
  3864. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3865. {
  3866. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3867. if (is_guest_mode(vcpu))
  3868. return;
  3869. if (!cpu_has_virtual_nmis()) {
  3870. /*
  3871. * Tracking the NMI-blocked state in software is built upon
  3872. * finding the next open IRQ window. This, in turn, depends on
  3873. * well-behaving guests: They have to keep IRQs disabled at
  3874. * least as long as the NMI handler runs. Otherwise we may
  3875. * cause NMI nesting, maybe breaking the guest. But as this is
  3876. * highly unlikely, we can live with the residual risk.
  3877. */
  3878. vmx->soft_vnmi_blocked = 1;
  3879. vmx->vnmi_blocked_time = 0;
  3880. }
  3881. ++vcpu->stat.nmi_injections;
  3882. vmx->nmi_known_unmasked = false;
  3883. if (vmx->rmode.vm86_active) {
  3884. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3885. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3886. return;
  3887. }
  3888. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3889. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3890. }
  3891. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3892. {
  3893. if (!cpu_has_virtual_nmis())
  3894. return to_vmx(vcpu)->soft_vnmi_blocked;
  3895. if (to_vmx(vcpu)->nmi_known_unmasked)
  3896. return false;
  3897. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3898. }
  3899. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3900. {
  3901. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3902. if (!cpu_has_virtual_nmis()) {
  3903. if (vmx->soft_vnmi_blocked != masked) {
  3904. vmx->soft_vnmi_blocked = masked;
  3905. vmx->vnmi_blocked_time = 0;
  3906. }
  3907. } else {
  3908. vmx->nmi_known_unmasked = !masked;
  3909. if (masked)
  3910. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3911. GUEST_INTR_STATE_NMI);
  3912. else
  3913. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3914. GUEST_INTR_STATE_NMI);
  3915. }
  3916. }
  3917. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3918. {
  3919. if (is_guest_mode(vcpu)) {
  3920. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3921. if (to_vmx(vcpu)->nested.nested_run_pending)
  3922. return 0;
  3923. if (nested_exit_on_nmi(vcpu)) {
  3924. nested_vmx_vmexit(vcpu);
  3925. vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
  3926. vmcs12->vm_exit_intr_info = NMI_VECTOR |
  3927. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
  3928. /*
  3929. * The NMI-triggered VM exit counts as injection:
  3930. * clear this one and block further NMIs.
  3931. */
  3932. vcpu->arch.nmi_pending = 0;
  3933. vmx_set_nmi_mask(vcpu, true);
  3934. return 0;
  3935. }
  3936. }
  3937. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3938. return 0;
  3939. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3940. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3941. | GUEST_INTR_STATE_NMI));
  3942. }
  3943. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3944. {
  3945. if (is_guest_mode(vcpu)) {
  3946. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3947. if (to_vmx(vcpu)->nested.nested_run_pending)
  3948. return 0;
  3949. if (nested_exit_on_intr(vcpu)) {
  3950. nested_vmx_vmexit(vcpu);
  3951. vmcs12->vm_exit_reason =
  3952. EXIT_REASON_EXTERNAL_INTERRUPT;
  3953. vmcs12->vm_exit_intr_info = 0;
  3954. /*
  3955. * fall through to normal code, but now in L1, not L2
  3956. */
  3957. }
  3958. }
  3959. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3960. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3961. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3962. }
  3963. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3964. {
  3965. int ret;
  3966. struct kvm_userspace_memory_region tss_mem = {
  3967. .slot = TSS_PRIVATE_MEMSLOT,
  3968. .guest_phys_addr = addr,
  3969. .memory_size = PAGE_SIZE * 3,
  3970. .flags = 0,
  3971. };
  3972. ret = kvm_set_memory_region(kvm, &tss_mem);
  3973. if (ret)
  3974. return ret;
  3975. kvm->arch.tss_addr = addr;
  3976. if (!init_rmode_tss(kvm))
  3977. return -ENOMEM;
  3978. return 0;
  3979. }
  3980. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3981. {
  3982. switch (vec) {
  3983. case BP_VECTOR:
  3984. /*
  3985. * Update instruction length as we may reinject the exception
  3986. * from user space while in guest debugging mode.
  3987. */
  3988. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3989. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3990. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3991. return false;
  3992. /* fall through */
  3993. case DB_VECTOR:
  3994. if (vcpu->guest_debug &
  3995. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3996. return false;
  3997. /* fall through */
  3998. case DE_VECTOR:
  3999. case OF_VECTOR:
  4000. case BR_VECTOR:
  4001. case UD_VECTOR:
  4002. case DF_VECTOR:
  4003. case SS_VECTOR:
  4004. case GP_VECTOR:
  4005. case MF_VECTOR:
  4006. return true;
  4007. break;
  4008. }
  4009. return false;
  4010. }
  4011. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  4012. int vec, u32 err_code)
  4013. {
  4014. /*
  4015. * Instruction with address size override prefix opcode 0x67
  4016. * Cause the #SS fault with 0 error code in VM86 mode.
  4017. */
  4018. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  4019. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  4020. if (vcpu->arch.halt_request) {
  4021. vcpu->arch.halt_request = 0;
  4022. return kvm_emulate_halt(vcpu);
  4023. }
  4024. return 1;
  4025. }
  4026. return 0;
  4027. }
  4028. /*
  4029. * Forward all other exceptions that are valid in real mode.
  4030. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  4031. * the required debugging infrastructure rework.
  4032. */
  4033. kvm_queue_exception(vcpu, vec);
  4034. return 1;
  4035. }
  4036. /*
  4037. * Trigger machine check on the host. We assume all the MSRs are already set up
  4038. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  4039. * We pass a fake environment to the machine check handler because we want
  4040. * the guest to be always treated like user space, no matter what context
  4041. * it used internally.
  4042. */
  4043. static void kvm_machine_check(void)
  4044. {
  4045. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  4046. struct pt_regs regs = {
  4047. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  4048. .flags = X86_EFLAGS_IF,
  4049. };
  4050. do_machine_check(&regs, 0);
  4051. #endif
  4052. }
  4053. static int handle_machine_check(struct kvm_vcpu *vcpu)
  4054. {
  4055. /* already handled by vcpu_run */
  4056. return 1;
  4057. }
  4058. static int handle_exception(struct kvm_vcpu *vcpu)
  4059. {
  4060. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4061. struct kvm_run *kvm_run = vcpu->run;
  4062. u32 intr_info, ex_no, error_code;
  4063. unsigned long cr2, rip, dr6;
  4064. u32 vect_info;
  4065. enum emulation_result er;
  4066. vect_info = vmx->idt_vectoring_info;
  4067. intr_info = vmx->exit_intr_info;
  4068. if (is_machine_check(intr_info))
  4069. return handle_machine_check(vcpu);
  4070. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  4071. return 1; /* already handled by vmx_vcpu_run() */
  4072. if (is_no_device(intr_info)) {
  4073. vmx_fpu_activate(vcpu);
  4074. return 1;
  4075. }
  4076. if (is_invalid_opcode(intr_info)) {
  4077. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  4078. if (er != EMULATE_DONE)
  4079. kvm_queue_exception(vcpu, UD_VECTOR);
  4080. return 1;
  4081. }
  4082. error_code = 0;
  4083. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  4084. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  4085. /*
  4086. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  4087. * MMIO, it is better to report an internal error.
  4088. * See the comments in vmx_handle_exit.
  4089. */
  4090. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  4091. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  4092. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4093. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  4094. vcpu->run->internal.ndata = 2;
  4095. vcpu->run->internal.data[0] = vect_info;
  4096. vcpu->run->internal.data[1] = intr_info;
  4097. return 0;
  4098. }
  4099. if (is_page_fault(intr_info)) {
  4100. /* EPT won't cause page fault directly */
  4101. BUG_ON(enable_ept);
  4102. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  4103. trace_kvm_page_fault(cr2, error_code);
  4104. if (kvm_event_needs_reinjection(vcpu))
  4105. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  4106. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  4107. }
  4108. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  4109. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  4110. return handle_rmode_exception(vcpu, ex_no, error_code);
  4111. switch (ex_no) {
  4112. case DB_VECTOR:
  4113. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  4114. if (!(vcpu->guest_debug &
  4115. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  4116. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  4117. kvm_queue_exception(vcpu, DB_VECTOR);
  4118. return 1;
  4119. }
  4120. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  4121. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  4122. /* fall through */
  4123. case BP_VECTOR:
  4124. /*
  4125. * Update instruction length as we may reinject #BP from
  4126. * user space while in guest debugging mode. Reading it for
  4127. * #DB as well causes no harm, it is not used in that case.
  4128. */
  4129. vmx->vcpu.arch.event_exit_inst_len =
  4130. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  4131. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  4132. rip = kvm_rip_read(vcpu);
  4133. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  4134. kvm_run->debug.arch.exception = ex_no;
  4135. break;
  4136. default:
  4137. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  4138. kvm_run->ex.exception = ex_no;
  4139. kvm_run->ex.error_code = error_code;
  4140. break;
  4141. }
  4142. return 0;
  4143. }
  4144. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  4145. {
  4146. ++vcpu->stat.irq_exits;
  4147. return 1;
  4148. }
  4149. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  4150. {
  4151. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4152. return 0;
  4153. }
  4154. static int handle_io(struct kvm_vcpu *vcpu)
  4155. {
  4156. unsigned long exit_qualification;
  4157. int size, in, string;
  4158. unsigned port;
  4159. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4160. string = (exit_qualification & 16) != 0;
  4161. in = (exit_qualification & 8) != 0;
  4162. ++vcpu->stat.io_exits;
  4163. if (string || in)
  4164. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4165. port = exit_qualification >> 16;
  4166. size = (exit_qualification & 7) + 1;
  4167. skip_emulated_instruction(vcpu);
  4168. return kvm_fast_pio_out(vcpu, size, port);
  4169. }
  4170. static void
  4171. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  4172. {
  4173. /*
  4174. * Patch in the VMCALL instruction:
  4175. */
  4176. hypercall[0] = 0x0f;
  4177. hypercall[1] = 0x01;
  4178. hypercall[2] = 0xc1;
  4179. }
  4180. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  4181. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  4182. {
  4183. if (is_guest_mode(vcpu)) {
  4184. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4185. unsigned long orig_val = val;
  4186. /*
  4187. * We get here when L2 changed cr0 in a way that did not change
  4188. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  4189. * but did change L0 shadowed bits. So we first calculate the
  4190. * effective cr0 value that L1 would like to write into the
  4191. * hardware. It consists of the L2-owned bits from the new
  4192. * value combined with the L1-owned bits from L1's guest_cr0.
  4193. */
  4194. val = (val & ~vmcs12->cr0_guest_host_mask) |
  4195. (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
  4196. /* TODO: will have to take unrestricted guest mode into
  4197. * account */
  4198. if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
  4199. return 1;
  4200. if (kvm_set_cr0(vcpu, val))
  4201. return 1;
  4202. vmcs_writel(CR0_READ_SHADOW, orig_val);
  4203. return 0;
  4204. } else {
  4205. if (to_vmx(vcpu)->nested.vmxon &&
  4206. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  4207. return 1;
  4208. return kvm_set_cr0(vcpu, val);
  4209. }
  4210. }
  4211. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4212. {
  4213. if (is_guest_mode(vcpu)) {
  4214. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4215. unsigned long orig_val = val;
  4216. /* analogously to handle_set_cr0 */
  4217. val = (val & ~vmcs12->cr4_guest_host_mask) |
  4218. (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
  4219. if (kvm_set_cr4(vcpu, val))
  4220. return 1;
  4221. vmcs_writel(CR4_READ_SHADOW, orig_val);
  4222. return 0;
  4223. } else
  4224. return kvm_set_cr4(vcpu, val);
  4225. }
  4226. /* called to set cr0 as approriate for clts instruction exit. */
  4227. static void handle_clts(struct kvm_vcpu *vcpu)
  4228. {
  4229. if (is_guest_mode(vcpu)) {
  4230. /*
  4231. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4232. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4233. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4234. */
  4235. vmcs_writel(CR0_READ_SHADOW,
  4236. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4237. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4238. } else
  4239. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4240. }
  4241. static int handle_cr(struct kvm_vcpu *vcpu)
  4242. {
  4243. unsigned long exit_qualification, val;
  4244. int cr;
  4245. int reg;
  4246. int err;
  4247. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4248. cr = exit_qualification & 15;
  4249. reg = (exit_qualification >> 8) & 15;
  4250. switch ((exit_qualification >> 4) & 3) {
  4251. case 0: /* mov to cr */
  4252. val = kvm_register_read(vcpu, reg);
  4253. trace_kvm_cr_write(cr, val);
  4254. switch (cr) {
  4255. case 0:
  4256. err = handle_set_cr0(vcpu, val);
  4257. kvm_complete_insn_gp(vcpu, err);
  4258. return 1;
  4259. case 3:
  4260. err = kvm_set_cr3(vcpu, val);
  4261. kvm_complete_insn_gp(vcpu, err);
  4262. return 1;
  4263. case 4:
  4264. err = handle_set_cr4(vcpu, val);
  4265. kvm_complete_insn_gp(vcpu, err);
  4266. return 1;
  4267. case 8: {
  4268. u8 cr8_prev = kvm_get_cr8(vcpu);
  4269. u8 cr8 = kvm_register_read(vcpu, reg);
  4270. err = kvm_set_cr8(vcpu, cr8);
  4271. kvm_complete_insn_gp(vcpu, err);
  4272. if (irqchip_in_kernel(vcpu->kvm))
  4273. return 1;
  4274. if (cr8_prev <= cr8)
  4275. return 1;
  4276. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4277. return 0;
  4278. }
  4279. }
  4280. break;
  4281. case 2: /* clts */
  4282. handle_clts(vcpu);
  4283. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4284. skip_emulated_instruction(vcpu);
  4285. vmx_fpu_activate(vcpu);
  4286. return 1;
  4287. case 1: /*mov from cr*/
  4288. switch (cr) {
  4289. case 3:
  4290. val = kvm_read_cr3(vcpu);
  4291. kvm_register_write(vcpu, reg, val);
  4292. trace_kvm_cr_read(cr, val);
  4293. skip_emulated_instruction(vcpu);
  4294. return 1;
  4295. case 8:
  4296. val = kvm_get_cr8(vcpu);
  4297. kvm_register_write(vcpu, reg, val);
  4298. trace_kvm_cr_read(cr, val);
  4299. skip_emulated_instruction(vcpu);
  4300. return 1;
  4301. }
  4302. break;
  4303. case 3: /* lmsw */
  4304. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4305. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4306. kvm_lmsw(vcpu, val);
  4307. skip_emulated_instruction(vcpu);
  4308. return 1;
  4309. default:
  4310. break;
  4311. }
  4312. vcpu->run->exit_reason = 0;
  4313. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4314. (int)(exit_qualification >> 4) & 3, cr);
  4315. return 0;
  4316. }
  4317. static int handle_dr(struct kvm_vcpu *vcpu)
  4318. {
  4319. unsigned long exit_qualification;
  4320. int dr, reg;
  4321. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4322. if (!kvm_require_cpl(vcpu, 0))
  4323. return 1;
  4324. dr = vmcs_readl(GUEST_DR7);
  4325. if (dr & DR7_GD) {
  4326. /*
  4327. * As the vm-exit takes precedence over the debug trap, we
  4328. * need to emulate the latter, either for the host or the
  4329. * guest debugging itself.
  4330. */
  4331. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4332. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4333. vcpu->run->debug.arch.dr7 = dr;
  4334. vcpu->run->debug.arch.pc =
  4335. vmcs_readl(GUEST_CS_BASE) +
  4336. vmcs_readl(GUEST_RIP);
  4337. vcpu->run->debug.arch.exception = DB_VECTOR;
  4338. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4339. return 0;
  4340. } else {
  4341. vcpu->arch.dr7 &= ~DR7_GD;
  4342. vcpu->arch.dr6 |= DR6_BD;
  4343. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4344. kvm_queue_exception(vcpu, DB_VECTOR);
  4345. return 1;
  4346. }
  4347. }
  4348. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4349. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4350. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4351. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4352. unsigned long val;
  4353. if (!kvm_get_dr(vcpu, dr, &val))
  4354. kvm_register_write(vcpu, reg, val);
  4355. } else
  4356. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4357. skip_emulated_instruction(vcpu);
  4358. return 1;
  4359. }
  4360. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4361. {
  4362. vmcs_writel(GUEST_DR7, val);
  4363. }
  4364. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4365. {
  4366. kvm_emulate_cpuid(vcpu);
  4367. return 1;
  4368. }
  4369. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4370. {
  4371. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4372. u64 data;
  4373. if (vmx_get_msr(vcpu, ecx, &data)) {
  4374. trace_kvm_msr_read_ex(ecx);
  4375. kvm_inject_gp(vcpu, 0);
  4376. return 1;
  4377. }
  4378. trace_kvm_msr_read(ecx, data);
  4379. /* FIXME: handling of bits 32:63 of rax, rdx */
  4380. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4381. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4382. skip_emulated_instruction(vcpu);
  4383. return 1;
  4384. }
  4385. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4386. {
  4387. struct msr_data msr;
  4388. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4389. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4390. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4391. msr.data = data;
  4392. msr.index = ecx;
  4393. msr.host_initiated = false;
  4394. if (vmx_set_msr(vcpu, &msr) != 0) {
  4395. trace_kvm_msr_write_ex(ecx, data);
  4396. kvm_inject_gp(vcpu, 0);
  4397. return 1;
  4398. }
  4399. trace_kvm_msr_write(ecx, data);
  4400. skip_emulated_instruction(vcpu);
  4401. return 1;
  4402. }
  4403. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4404. {
  4405. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4406. return 1;
  4407. }
  4408. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4409. {
  4410. u32 cpu_based_vm_exec_control;
  4411. /* clear pending irq */
  4412. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4413. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4414. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4415. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4416. ++vcpu->stat.irq_window_exits;
  4417. /*
  4418. * If the user space waits to inject interrupts, exit as soon as
  4419. * possible
  4420. */
  4421. if (!irqchip_in_kernel(vcpu->kvm) &&
  4422. vcpu->run->request_interrupt_window &&
  4423. !kvm_cpu_has_interrupt(vcpu)) {
  4424. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4425. return 0;
  4426. }
  4427. return 1;
  4428. }
  4429. static int handle_halt(struct kvm_vcpu *vcpu)
  4430. {
  4431. skip_emulated_instruction(vcpu);
  4432. return kvm_emulate_halt(vcpu);
  4433. }
  4434. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4435. {
  4436. skip_emulated_instruction(vcpu);
  4437. kvm_emulate_hypercall(vcpu);
  4438. return 1;
  4439. }
  4440. static int handle_invd(struct kvm_vcpu *vcpu)
  4441. {
  4442. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4443. }
  4444. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4445. {
  4446. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4447. kvm_mmu_invlpg(vcpu, exit_qualification);
  4448. skip_emulated_instruction(vcpu);
  4449. return 1;
  4450. }
  4451. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4452. {
  4453. int err;
  4454. err = kvm_rdpmc(vcpu);
  4455. kvm_complete_insn_gp(vcpu, err);
  4456. return 1;
  4457. }
  4458. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4459. {
  4460. skip_emulated_instruction(vcpu);
  4461. kvm_emulate_wbinvd(vcpu);
  4462. return 1;
  4463. }
  4464. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4465. {
  4466. u64 new_bv = kvm_read_edx_eax(vcpu);
  4467. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4468. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4469. skip_emulated_instruction(vcpu);
  4470. return 1;
  4471. }
  4472. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4473. {
  4474. if (likely(fasteoi)) {
  4475. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4476. int access_type, offset;
  4477. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4478. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4479. /*
  4480. * Sane guest uses MOV to write EOI, with written value
  4481. * not cared. So make a short-circuit here by avoiding
  4482. * heavy instruction emulation.
  4483. */
  4484. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4485. (offset == APIC_EOI)) {
  4486. kvm_lapic_set_eoi(vcpu);
  4487. skip_emulated_instruction(vcpu);
  4488. return 1;
  4489. }
  4490. }
  4491. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4492. }
  4493. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4494. {
  4495. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4496. int vector = exit_qualification & 0xff;
  4497. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4498. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4499. return 1;
  4500. }
  4501. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4502. {
  4503. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4504. u32 offset = exit_qualification & 0xfff;
  4505. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4506. kvm_apic_write_nodecode(vcpu, offset);
  4507. return 1;
  4508. }
  4509. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4510. {
  4511. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4512. unsigned long exit_qualification;
  4513. bool has_error_code = false;
  4514. u32 error_code = 0;
  4515. u16 tss_selector;
  4516. int reason, type, idt_v, idt_index;
  4517. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4518. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4519. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4520. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4521. reason = (u32)exit_qualification >> 30;
  4522. if (reason == TASK_SWITCH_GATE && idt_v) {
  4523. switch (type) {
  4524. case INTR_TYPE_NMI_INTR:
  4525. vcpu->arch.nmi_injected = false;
  4526. vmx_set_nmi_mask(vcpu, true);
  4527. break;
  4528. case INTR_TYPE_EXT_INTR:
  4529. case INTR_TYPE_SOFT_INTR:
  4530. kvm_clear_interrupt_queue(vcpu);
  4531. break;
  4532. case INTR_TYPE_HARD_EXCEPTION:
  4533. if (vmx->idt_vectoring_info &
  4534. VECTORING_INFO_DELIVER_CODE_MASK) {
  4535. has_error_code = true;
  4536. error_code =
  4537. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4538. }
  4539. /* fall through */
  4540. case INTR_TYPE_SOFT_EXCEPTION:
  4541. kvm_clear_exception_queue(vcpu);
  4542. break;
  4543. default:
  4544. break;
  4545. }
  4546. }
  4547. tss_selector = exit_qualification;
  4548. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4549. type != INTR_TYPE_EXT_INTR &&
  4550. type != INTR_TYPE_NMI_INTR))
  4551. skip_emulated_instruction(vcpu);
  4552. if (kvm_task_switch(vcpu, tss_selector,
  4553. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4554. has_error_code, error_code) == EMULATE_FAIL) {
  4555. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4556. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4557. vcpu->run->internal.ndata = 0;
  4558. return 0;
  4559. }
  4560. /* clear all local breakpoint enable flags */
  4561. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4562. /*
  4563. * TODO: What about debug traps on tss switch?
  4564. * Are we supposed to inject them and update dr6?
  4565. */
  4566. return 1;
  4567. }
  4568. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4569. {
  4570. unsigned long exit_qualification;
  4571. gpa_t gpa;
  4572. u32 error_code;
  4573. int gla_validity;
  4574. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4575. gla_validity = (exit_qualification >> 7) & 0x3;
  4576. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4577. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4578. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4579. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4580. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4581. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4582. (long unsigned int)exit_qualification);
  4583. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4584. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4585. return 0;
  4586. }
  4587. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4588. trace_kvm_page_fault(gpa, exit_qualification);
  4589. /* It is a write fault? */
  4590. error_code = exit_qualification & (1U << 1);
  4591. /* ept page table is present? */
  4592. error_code |= (exit_qualification >> 3) & 0x1;
  4593. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4594. }
  4595. static u64 ept_rsvd_mask(u64 spte, int level)
  4596. {
  4597. int i;
  4598. u64 mask = 0;
  4599. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4600. mask |= (1ULL << i);
  4601. if (level > 2)
  4602. /* bits 7:3 reserved */
  4603. mask |= 0xf8;
  4604. else if (level == 2) {
  4605. if (spte & (1ULL << 7))
  4606. /* 2MB ref, bits 20:12 reserved */
  4607. mask |= 0x1ff000;
  4608. else
  4609. /* bits 6:3 reserved */
  4610. mask |= 0x78;
  4611. }
  4612. return mask;
  4613. }
  4614. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4615. int level)
  4616. {
  4617. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4618. /* 010b (write-only) */
  4619. WARN_ON((spte & 0x7) == 0x2);
  4620. /* 110b (write/execute) */
  4621. WARN_ON((spte & 0x7) == 0x6);
  4622. /* 100b (execute-only) and value not supported by logical processor */
  4623. if (!cpu_has_vmx_ept_execute_only())
  4624. WARN_ON((spte & 0x7) == 0x4);
  4625. /* not 000b */
  4626. if ((spte & 0x7)) {
  4627. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4628. if (rsvd_bits != 0) {
  4629. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4630. __func__, rsvd_bits);
  4631. WARN_ON(1);
  4632. }
  4633. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4634. u64 ept_mem_type = (spte & 0x38) >> 3;
  4635. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4636. ept_mem_type == 7) {
  4637. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4638. __func__, ept_mem_type);
  4639. WARN_ON(1);
  4640. }
  4641. }
  4642. }
  4643. }
  4644. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4645. {
  4646. u64 sptes[4];
  4647. int nr_sptes, i, ret;
  4648. gpa_t gpa;
  4649. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4650. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4651. if (likely(ret == RET_MMIO_PF_EMULATE))
  4652. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4653. EMULATE_DONE;
  4654. if (unlikely(ret == RET_MMIO_PF_INVALID))
  4655. return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
  4656. if (unlikely(ret == RET_MMIO_PF_RETRY))
  4657. return 1;
  4658. /* It is the real ept misconfig */
  4659. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4660. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4661. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4662. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4663. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4664. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4665. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4666. return 0;
  4667. }
  4668. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4669. {
  4670. u32 cpu_based_vm_exec_control;
  4671. /* clear pending NMI */
  4672. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4673. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4674. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4675. ++vcpu->stat.nmi_window_exits;
  4676. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4677. return 1;
  4678. }
  4679. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4680. {
  4681. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4682. enum emulation_result err = EMULATE_DONE;
  4683. int ret = 1;
  4684. u32 cpu_exec_ctrl;
  4685. bool intr_window_requested;
  4686. unsigned count = 130;
  4687. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4688. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4689. while (!guest_state_valid(vcpu) && count-- != 0) {
  4690. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4691. return handle_interrupt_window(&vmx->vcpu);
  4692. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4693. return 1;
  4694. err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
  4695. if (err == EMULATE_DO_MMIO) {
  4696. ret = 0;
  4697. goto out;
  4698. }
  4699. if (err != EMULATE_DONE) {
  4700. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4701. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4702. vcpu->run->internal.ndata = 0;
  4703. return 0;
  4704. }
  4705. if (vcpu->arch.halt_request) {
  4706. vcpu->arch.halt_request = 0;
  4707. ret = kvm_emulate_halt(vcpu);
  4708. goto out;
  4709. }
  4710. if (signal_pending(current))
  4711. goto out;
  4712. if (need_resched())
  4713. schedule();
  4714. }
  4715. vmx->emulation_required = emulation_required(vcpu);
  4716. out:
  4717. return ret;
  4718. }
  4719. /*
  4720. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4721. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4722. */
  4723. static int handle_pause(struct kvm_vcpu *vcpu)
  4724. {
  4725. skip_emulated_instruction(vcpu);
  4726. kvm_vcpu_on_spin(vcpu);
  4727. return 1;
  4728. }
  4729. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4730. {
  4731. kvm_queue_exception(vcpu, UD_VECTOR);
  4732. return 1;
  4733. }
  4734. /*
  4735. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4736. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4737. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4738. * allows keeping them loaded on the processor, and in the future will allow
  4739. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4740. * every entry if they never change.
  4741. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4742. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4743. *
  4744. * The following functions allocate and free a vmcs02 in this pool.
  4745. */
  4746. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4747. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4748. {
  4749. struct vmcs02_list *item;
  4750. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4751. if (item->vmptr == vmx->nested.current_vmptr) {
  4752. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4753. return &item->vmcs02;
  4754. }
  4755. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4756. /* Recycle the least recently used VMCS. */
  4757. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4758. struct vmcs02_list, list);
  4759. item->vmptr = vmx->nested.current_vmptr;
  4760. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4761. return &item->vmcs02;
  4762. }
  4763. /* Create a new VMCS */
  4764. item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4765. if (!item)
  4766. return NULL;
  4767. item->vmcs02.vmcs = alloc_vmcs();
  4768. if (!item->vmcs02.vmcs) {
  4769. kfree(item);
  4770. return NULL;
  4771. }
  4772. loaded_vmcs_init(&item->vmcs02);
  4773. item->vmptr = vmx->nested.current_vmptr;
  4774. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4775. vmx->nested.vmcs02_num++;
  4776. return &item->vmcs02;
  4777. }
  4778. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4779. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4780. {
  4781. struct vmcs02_list *item;
  4782. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4783. if (item->vmptr == vmptr) {
  4784. free_loaded_vmcs(&item->vmcs02);
  4785. list_del(&item->list);
  4786. kfree(item);
  4787. vmx->nested.vmcs02_num--;
  4788. return;
  4789. }
  4790. }
  4791. /*
  4792. * Free all VMCSs saved for this vcpu, except the one pointed by
  4793. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4794. * currently used, if running L2), and vmcs01 when running L2.
  4795. */
  4796. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4797. {
  4798. struct vmcs02_list *item, *n;
  4799. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4800. if (vmx->loaded_vmcs != &item->vmcs02)
  4801. free_loaded_vmcs(&item->vmcs02);
  4802. list_del(&item->list);
  4803. kfree(item);
  4804. }
  4805. vmx->nested.vmcs02_num = 0;
  4806. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4807. free_loaded_vmcs(&vmx->vmcs01);
  4808. }
  4809. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4810. u32 vm_instruction_error);
  4811. /*
  4812. * Emulate the VMXON instruction.
  4813. * Currently, we just remember that VMX is active, and do not save or even
  4814. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4815. * do not currently need to store anything in that guest-allocated memory
  4816. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4817. * argument is different from the VMXON pointer (which the spec says they do).
  4818. */
  4819. static int handle_vmon(struct kvm_vcpu *vcpu)
  4820. {
  4821. struct kvm_segment cs;
  4822. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4823. struct vmcs *shadow_vmcs;
  4824. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4825. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4826. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4827. * Otherwise, we should fail with #UD. We test these now:
  4828. */
  4829. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4830. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4831. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4832. kvm_queue_exception(vcpu, UD_VECTOR);
  4833. return 1;
  4834. }
  4835. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4836. if (is_long_mode(vcpu) && !cs.l) {
  4837. kvm_queue_exception(vcpu, UD_VECTOR);
  4838. return 1;
  4839. }
  4840. if (vmx_get_cpl(vcpu)) {
  4841. kvm_inject_gp(vcpu, 0);
  4842. return 1;
  4843. }
  4844. if (vmx->nested.vmxon) {
  4845. nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
  4846. skip_emulated_instruction(vcpu);
  4847. return 1;
  4848. }
  4849. if (enable_shadow_vmcs) {
  4850. shadow_vmcs = alloc_vmcs();
  4851. if (!shadow_vmcs)
  4852. return -ENOMEM;
  4853. /* mark vmcs as shadow */
  4854. shadow_vmcs->revision_id |= (1u << 31);
  4855. /* init shadow vmcs */
  4856. vmcs_clear(shadow_vmcs);
  4857. vmx->nested.current_shadow_vmcs = shadow_vmcs;
  4858. }
  4859. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4860. vmx->nested.vmcs02_num = 0;
  4861. vmx->nested.vmxon = true;
  4862. skip_emulated_instruction(vcpu);
  4863. return 1;
  4864. }
  4865. /*
  4866. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4867. * for running VMX instructions (except VMXON, whose prerequisites are
  4868. * slightly different). It also specifies what exception to inject otherwise.
  4869. */
  4870. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4871. {
  4872. struct kvm_segment cs;
  4873. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4874. if (!vmx->nested.vmxon) {
  4875. kvm_queue_exception(vcpu, UD_VECTOR);
  4876. return 0;
  4877. }
  4878. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4879. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4880. (is_long_mode(vcpu) && !cs.l)) {
  4881. kvm_queue_exception(vcpu, UD_VECTOR);
  4882. return 0;
  4883. }
  4884. if (vmx_get_cpl(vcpu)) {
  4885. kvm_inject_gp(vcpu, 0);
  4886. return 0;
  4887. }
  4888. return 1;
  4889. }
  4890. static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
  4891. {
  4892. u32 exec_control;
  4893. if (enable_shadow_vmcs) {
  4894. if (vmx->nested.current_vmcs12 != NULL) {
  4895. /* copy to memory all shadowed fields in case
  4896. they were modified */
  4897. copy_shadow_to_vmcs12(vmx);
  4898. vmx->nested.sync_shadow_vmcs = false;
  4899. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  4900. exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
  4901. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  4902. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  4903. }
  4904. }
  4905. kunmap(vmx->nested.current_vmcs12_page);
  4906. nested_release_page(vmx->nested.current_vmcs12_page);
  4907. }
  4908. /*
  4909. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4910. * just stops using VMX.
  4911. */
  4912. static void free_nested(struct vcpu_vmx *vmx)
  4913. {
  4914. if (!vmx->nested.vmxon)
  4915. return;
  4916. vmx->nested.vmxon = false;
  4917. if (vmx->nested.current_vmptr != -1ull) {
  4918. nested_release_vmcs12(vmx);
  4919. vmx->nested.current_vmptr = -1ull;
  4920. vmx->nested.current_vmcs12 = NULL;
  4921. }
  4922. if (enable_shadow_vmcs)
  4923. free_vmcs(vmx->nested.current_shadow_vmcs);
  4924. /* Unpin physical memory we referred to in current vmcs02 */
  4925. if (vmx->nested.apic_access_page) {
  4926. nested_release_page(vmx->nested.apic_access_page);
  4927. vmx->nested.apic_access_page = 0;
  4928. }
  4929. nested_free_all_saved_vmcss(vmx);
  4930. }
  4931. /* Emulate the VMXOFF instruction */
  4932. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4933. {
  4934. if (!nested_vmx_check_permission(vcpu))
  4935. return 1;
  4936. free_nested(to_vmx(vcpu));
  4937. skip_emulated_instruction(vcpu);
  4938. return 1;
  4939. }
  4940. /*
  4941. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4942. * exit caused by such an instruction (run by a guest hypervisor).
  4943. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4944. * #UD or #GP.
  4945. */
  4946. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4947. unsigned long exit_qualification,
  4948. u32 vmx_instruction_info, gva_t *ret)
  4949. {
  4950. /*
  4951. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4952. * Execution", on an exit, vmx_instruction_info holds most of the
  4953. * addressing components of the operand. Only the displacement part
  4954. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4955. * For how an actual address is calculated from all these components,
  4956. * refer to Vol. 1, "Operand Addressing".
  4957. */
  4958. int scaling = vmx_instruction_info & 3;
  4959. int addr_size = (vmx_instruction_info >> 7) & 7;
  4960. bool is_reg = vmx_instruction_info & (1u << 10);
  4961. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4962. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4963. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4964. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4965. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4966. if (is_reg) {
  4967. kvm_queue_exception(vcpu, UD_VECTOR);
  4968. return 1;
  4969. }
  4970. /* Addr = segment_base + offset */
  4971. /* offset = base + [index * scale] + displacement */
  4972. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4973. if (base_is_valid)
  4974. *ret += kvm_register_read(vcpu, base_reg);
  4975. if (index_is_valid)
  4976. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4977. *ret += exit_qualification; /* holds the displacement */
  4978. if (addr_size == 1) /* 32 bit */
  4979. *ret &= 0xffffffff;
  4980. /*
  4981. * TODO: throw #GP (and return 1) in various cases that the VM*
  4982. * instructions require it - e.g., offset beyond segment limit,
  4983. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4984. * address, and so on. Currently these are not checked.
  4985. */
  4986. return 0;
  4987. }
  4988. /*
  4989. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4990. * set the success or error code of an emulated VMX instruction, as specified
  4991. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4992. */
  4993. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4994. {
  4995. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4996. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4997. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4998. }
  4999. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  5000. {
  5001. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  5002. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  5003. X86_EFLAGS_SF | X86_EFLAGS_OF))
  5004. | X86_EFLAGS_CF);
  5005. }
  5006. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  5007. u32 vm_instruction_error)
  5008. {
  5009. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  5010. /*
  5011. * failValid writes the error number to the current VMCS, which
  5012. * can't be done there isn't a current VMCS.
  5013. */
  5014. nested_vmx_failInvalid(vcpu);
  5015. return;
  5016. }
  5017. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  5018. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  5019. X86_EFLAGS_SF | X86_EFLAGS_OF))
  5020. | X86_EFLAGS_ZF);
  5021. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  5022. /*
  5023. * We don't need to force a shadow sync because
  5024. * VM_INSTRUCTION_ERROR is not shadowed
  5025. */
  5026. }
  5027. /* Emulate the VMCLEAR instruction */
  5028. static int handle_vmclear(struct kvm_vcpu *vcpu)
  5029. {
  5030. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5031. gva_t gva;
  5032. gpa_t vmptr;
  5033. struct vmcs12 *vmcs12;
  5034. struct page *page;
  5035. struct x86_exception e;
  5036. if (!nested_vmx_check_permission(vcpu))
  5037. return 1;
  5038. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5039. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5040. return 1;
  5041. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5042. sizeof(vmptr), &e)) {
  5043. kvm_inject_page_fault(vcpu, &e);
  5044. return 1;
  5045. }
  5046. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5047. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  5048. skip_emulated_instruction(vcpu);
  5049. return 1;
  5050. }
  5051. if (vmptr == vmx->nested.current_vmptr) {
  5052. nested_release_vmcs12(vmx);
  5053. vmx->nested.current_vmptr = -1ull;
  5054. vmx->nested.current_vmcs12 = NULL;
  5055. }
  5056. page = nested_get_page(vcpu, vmptr);
  5057. if (page == NULL) {
  5058. /*
  5059. * For accurate processor emulation, VMCLEAR beyond available
  5060. * physical memory should do nothing at all. However, it is
  5061. * possible that a nested vmx bug, not a guest hypervisor bug,
  5062. * resulted in this case, so let's shut down before doing any
  5063. * more damage:
  5064. */
  5065. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  5066. return 1;
  5067. }
  5068. vmcs12 = kmap(page);
  5069. vmcs12->launch_state = 0;
  5070. kunmap(page);
  5071. nested_release_page(page);
  5072. nested_free_vmcs02(vmx, vmptr);
  5073. skip_emulated_instruction(vcpu);
  5074. nested_vmx_succeed(vcpu);
  5075. return 1;
  5076. }
  5077. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  5078. /* Emulate the VMLAUNCH instruction */
  5079. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  5080. {
  5081. return nested_vmx_run(vcpu, true);
  5082. }
  5083. /* Emulate the VMRESUME instruction */
  5084. static int handle_vmresume(struct kvm_vcpu *vcpu)
  5085. {
  5086. return nested_vmx_run(vcpu, false);
  5087. }
  5088. enum vmcs_field_type {
  5089. VMCS_FIELD_TYPE_U16 = 0,
  5090. VMCS_FIELD_TYPE_U64 = 1,
  5091. VMCS_FIELD_TYPE_U32 = 2,
  5092. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  5093. };
  5094. static inline int vmcs_field_type(unsigned long field)
  5095. {
  5096. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  5097. return VMCS_FIELD_TYPE_U32;
  5098. return (field >> 13) & 0x3 ;
  5099. }
  5100. static inline int vmcs_field_readonly(unsigned long field)
  5101. {
  5102. return (((field >> 10) & 0x3) == 1);
  5103. }
  5104. /*
  5105. * Read a vmcs12 field. Since these can have varying lengths and we return
  5106. * one type, we chose the biggest type (u64) and zero-extend the return value
  5107. * to that size. Note that the caller, handle_vmread, might need to use only
  5108. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  5109. * 64-bit fields are to be returned).
  5110. */
  5111. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  5112. unsigned long field, u64 *ret)
  5113. {
  5114. short offset = vmcs_field_to_offset(field);
  5115. char *p;
  5116. if (offset < 0)
  5117. return 0;
  5118. p = ((char *)(get_vmcs12(vcpu))) + offset;
  5119. switch (vmcs_field_type(field)) {
  5120. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5121. *ret = *((natural_width *)p);
  5122. return 1;
  5123. case VMCS_FIELD_TYPE_U16:
  5124. *ret = *((u16 *)p);
  5125. return 1;
  5126. case VMCS_FIELD_TYPE_U32:
  5127. *ret = *((u32 *)p);
  5128. return 1;
  5129. case VMCS_FIELD_TYPE_U64:
  5130. *ret = *((u64 *)p);
  5131. return 1;
  5132. default:
  5133. return 0; /* can never happen. */
  5134. }
  5135. }
  5136. static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
  5137. unsigned long field, u64 field_value){
  5138. short offset = vmcs_field_to_offset(field);
  5139. char *p = ((char *) get_vmcs12(vcpu)) + offset;
  5140. if (offset < 0)
  5141. return false;
  5142. switch (vmcs_field_type(field)) {
  5143. case VMCS_FIELD_TYPE_U16:
  5144. *(u16 *)p = field_value;
  5145. return true;
  5146. case VMCS_FIELD_TYPE_U32:
  5147. *(u32 *)p = field_value;
  5148. return true;
  5149. case VMCS_FIELD_TYPE_U64:
  5150. *(u64 *)p = field_value;
  5151. return true;
  5152. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5153. *(natural_width *)p = field_value;
  5154. return true;
  5155. default:
  5156. return false; /* can never happen. */
  5157. }
  5158. }
  5159. static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
  5160. {
  5161. int i;
  5162. unsigned long field;
  5163. u64 field_value;
  5164. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5165. unsigned long *fields = (unsigned long *)shadow_read_write_fields;
  5166. int num_fields = max_shadow_read_write_fields;
  5167. vmcs_load(shadow_vmcs);
  5168. for (i = 0; i < num_fields; i++) {
  5169. field = fields[i];
  5170. switch (vmcs_field_type(field)) {
  5171. case VMCS_FIELD_TYPE_U16:
  5172. field_value = vmcs_read16(field);
  5173. break;
  5174. case VMCS_FIELD_TYPE_U32:
  5175. field_value = vmcs_read32(field);
  5176. break;
  5177. case VMCS_FIELD_TYPE_U64:
  5178. field_value = vmcs_read64(field);
  5179. break;
  5180. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5181. field_value = vmcs_readl(field);
  5182. break;
  5183. }
  5184. vmcs12_write_any(&vmx->vcpu, field, field_value);
  5185. }
  5186. vmcs_clear(shadow_vmcs);
  5187. vmcs_load(vmx->loaded_vmcs->vmcs);
  5188. }
  5189. static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
  5190. {
  5191. unsigned long *fields[] = {
  5192. (unsigned long *)shadow_read_write_fields,
  5193. (unsigned long *)shadow_read_only_fields
  5194. };
  5195. int num_lists = ARRAY_SIZE(fields);
  5196. int max_fields[] = {
  5197. max_shadow_read_write_fields,
  5198. max_shadow_read_only_fields
  5199. };
  5200. int i, q;
  5201. unsigned long field;
  5202. u64 field_value = 0;
  5203. struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
  5204. vmcs_load(shadow_vmcs);
  5205. for (q = 0; q < num_lists; q++) {
  5206. for (i = 0; i < max_fields[q]; i++) {
  5207. field = fields[q][i];
  5208. vmcs12_read_any(&vmx->vcpu, field, &field_value);
  5209. switch (vmcs_field_type(field)) {
  5210. case VMCS_FIELD_TYPE_U16:
  5211. vmcs_write16(field, (u16)field_value);
  5212. break;
  5213. case VMCS_FIELD_TYPE_U32:
  5214. vmcs_write32(field, (u32)field_value);
  5215. break;
  5216. case VMCS_FIELD_TYPE_U64:
  5217. vmcs_write64(field, (u64)field_value);
  5218. break;
  5219. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  5220. vmcs_writel(field, (long)field_value);
  5221. break;
  5222. }
  5223. }
  5224. }
  5225. vmcs_clear(shadow_vmcs);
  5226. vmcs_load(vmx->loaded_vmcs->vmcs);
  5227. }
  5228. /*
  5229. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  5230. * used before) all generate the same failure when it is missing.
  5231. */
  5232. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  5233. {
  5234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5235. if (vmx->nested.current_vmptr == -1ull) {
  5236. nested_vmx_failInvalid(vcpu);
  5237. skip_emulated_instruction(vcpu);
  5238. return 0;
  5239. }
  5240. return 1;
  5241. }
  5242. static int handle_vmread(struct kvm_vcpu *vcpu)
  5243. {
  5244. unsigned long field;
  5245. u64 field_value;
  5246. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5247. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5248. gva_t gva = 0;
  5249. if (!nested_vmx_check_permission(vcpu) ||
  5250. !nested_vmx_check_vmcs12(vcpu))
  5251. return 1;
  5252. /* Decode instruction info and find the field to read */
  5253. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5254. /* Read the field, zero-extended to a u64 field_value */
  5255. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  5256. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5257. skip_emulated_instruction(vcpu);
  5258. return 1;
  5259. }
  5260. /*
  5261. * Now copy part of this value to register or memory, as requested.
  5262. * Note that the number of bits actually copied is 32 or 64 depending
  5263. * on the guest's mode (32 or 64 bit), not on the given field's length.
  5264. */
  5265. if (vmx_instruction_info & (1u << 10)) {
  5266. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  5267. field_value);
  5268. } else {
  5269. if (get_vmx_mem_address(vcpu, exit_qualification,
  5270. vmx_instruction_info, &gva))
  5271. return 1;
  5272. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  5273. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  5274. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  5275. }
  5276. nested_vmx_succeed(vcpu);
  5277. skip_emulated_instruction(vcpu);
  5278. return 1;
  5279. }
  5280. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  5281. {
  5282. unsigned long field;
  5283. gva_t gva;
  5284. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5285. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5286. /* The value to write might be 32 or 64 bits, depending on L1's long
  5287. * mode, and eventually we need to write that into a field of several
  5288. * possible lengths. The code below first zero-extends the value to 64
  5289. * bit (field_value), and then copies only the approriate number of
  5290. * bits into the vmcs12 field.
  5291. */
  5292. u64 field_value = 0;
  5293. struct x86_exception e;
  5294. if (!nested_vmx_check_permission(vcpu) ||
  5295. !nested_vmx_check_vmcs12(vcpu))
  5296. return 1;
  5297. if (vmx_instruction_info & (1u << 10))
  5298. field_value = kvm_register_read(vcpu,
  5299. (((vmx_instruction_info) >> 3) & 0xf));
  5300. else {
  5301. if (get_vmx_mem_address(vcpu, exit_qualification,
  5302. vmx_instruction_info, &gva))
  5303. return 1;
  5304. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  5305. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  5306. kvm_inject_page_fault(vcpu, &e);
  5307. return 1;
  5308. }
  5309. }
  5310. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  5311. if (vmcs_field_readonly(field)) {
  5312. nested_vmx_failValid(vcpu,
  5313. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  5314. skip_emulated_instruction(vcpu);
  5315. return 1;
  5316. }
  5317. if (!vmcs12_write_any(vcpu, field, field_value)) {
  5318. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  5319. skip_emulated_instruction(vcpu);
  5320. return 1;
  5321. }
  5322. nested_vmx_succeed(vcpu);
  5323. skip_emulated_instruction(vcpu);
  5324. return 1;
  5325. }
  5326. /* Emulate the VMPTRLD instruction */
  5327. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5328. {
  5329. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5330. gva_t gva;
  5331. gpa_t vmptr;
  5332. struct x86_exception e;
  5333. u32 exec_control;
  5334. if (!nested_vmx_check_permission(vcpu))
  5335. return 1;
  5336. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5337. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5338. return 1;
  5339. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5340. sizeof(vmptr), &e)) {
  5341. kvm_inject_page_fault(vcpu, &e);
  5342. return 1;
  5343. }
  5344. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5345. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5346. skip_emulated_instruction(vcpu);
  5347. return 1;
  5348. }
  5349. if (vmx->nested.current_vmptr != vmptr) {
  5350. struct vmcs12 *new_vmcs12;
  5351. struct page *page;
  5352. page = nested_get_page(vcpu, vmptr);
  5353. if (page == NULL) {
  5354. nested_vmx_failInvalid(vcpu);
  5355. skip_emulated_instruction(vcpu);
  5356. return 1;
  5357. }
  5358. new_vmcs12 = kmap(page);
  5359. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5360. kunmap(page);
  5361. nested_release_page_clean(page);
  5362. nested_vmx_failValid(vcpu,
  5363. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5364. skip_emulated_instruction(vcpu);
  5365. return 1;
  5366. }
  5367. if (vmx->nested.current_vmptr != -1ull)
  5368. nested_release_vmcs12(vmx);
  5369. vmx->nested.current_vmptr = vmptr;
  5370. vmx->nested.current_vmcs12 = new_vmcs12;
  5371. vmx->nested.current_vmcs12_page = page;
  5372. if (enable_shadow_vmcs) {
  5373. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5374. exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
  5375. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5376. vmcs_write64(VMCS_LINK_POINTER,
  5377. __pa(vmx->nested.current_shadow_vmcs));
  5378. vmx->nested.sync_shadow_vmcs = true;
  5379. }
  5380. }
  5381. nested_vmx_succeed(vcpu);
  5382. skip_emulated_instruction(vcpu);
  5383. return 1;
  5384. }
  5385. /* Emulate the VMPTRST instruction */
  5386. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5387. {
  5388. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5389. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5390. gva_t vmcs_gva;
  5391. struct x86_exception e;
  5392. if (!nested_vmx_check_permission(vcpu))
  5393. return 1;
  5394. if (get_vmx_mem_address(vcpu, exit_qualification,
  5395. vmx_instruction_info, &vmcs_gva))
  5396. return 1;
  5397. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5398. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5399. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5400. sizeof(u64), &e)) {
  5401. kvm_inject_page_fault(vcpu, &e);
  5402. return 1;
  5403. }
  5404. nested_vmx_succeed(vcpu);
  5405. skip_emulated_instruction(vcpu);
  5406. return 1;
  5407. }
  5408. /*
  5409. * The exit handlers return 1 if the exit was handled fully and guest execution
  5410. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5411. * to be done to userspace and return 0.
  5412. */
  5413. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5414. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5415. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5416. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5417. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5418. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5419. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5420. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5421. [EXIT_REASON_CPUID] = handle_cpuid,
  5422. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5423. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5424. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5425. [EXIT_REASON_HLT] = handle_halt,
  5426. [EXIT_REASON_INVD] = handle_invd,
  5427. [EXIT_REASON_INVLPG] = handle_invlpg,
  5428. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5429. [EXIT_REASON_VMCALL] = handle_vmcall,
  5430. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5431. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5432. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5433. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5434. [EXIT_REASON_VMREAD] = handle_vmread,
  5435. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5436. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5437. [EXIT_REASON_VMOFF] = handle_vmoff,
  5438. [EXIT_REASON_VMON] = handle_vmon,
  5439. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5440. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5441. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5442. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5443. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5444. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5445. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5446. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5447. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5448. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5449. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5450. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5451. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5452. };
  5453. static const int kvm_vmx_max_exit_handlers =
  5454. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5455. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5456. struct vmcs12 *vmcs12)
  5457. {
  5458. unsigned long exit_qualification;
  5459. gpa_t bitmap, last_bitmap;
  5460. unsigned int port;
  5461. int size;
  5462. u8 b;
  5463. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5464. return 1;
  5465. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5466. return 0;
  5467. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5468. port = exit_qualification >> 16;
  5469. size = (exit_qualification & 7) + 1;
  5470. last_bitmap = (gpa_t)-1;
  5471. b = -1;
  5472. while (size > 0) {
  5473. if (port < 0x8000)
  5474. bitmap = vmcs12->io_bitmap_a;
  5475. else if (port < 0x10000)
  5476. bitmap = vmcs12->io_bitmap_b;
  5477. else
  5478. return 1;
  5479. bitmap += (port & 0x7fff) / 8;
  5480. if (last_bitmap != bitmap)
  5481. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5482. return 1;
  5483. if (b & (1 << (port & 7)))
  5484. return 1;
  5485. port++;
  5486. size--;
  5487. last_bitmap = bitmap;
  5488. }
  5489. return 0;
  5490. }
  5491. /*
  5492. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5493. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5494. * disinterest in the current event (read or write a specific MSR) by using an
  5495. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5496. */
  5497. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5498. struct vmcs12 *vmcs12, u32 exit_reason)
  5499. {
  5500. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5501. gpa_t bitmap;
  5502. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5503. return 1;
  5504. /*
  5505. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5506. * for the four combinations of read/write and low/high MSR numbers.
  5507. * First we need to figure out which of the four to use:
  5508. */
  5509. bitmap = vmcs12->msr_bitmap;
  5510. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5511. bitmap += 2048;
  5512. if (msr_index >= 0xc0000000) {
  5513. msr_index -= 0xc0000000;
  5514. bitmap += 1024;
  5515. }
  5516. /* Then read the msr_index'th bit from this bitmap: */
  5517. if (msr_index < 1024*8) {
  5518. unsigned char b;
  5519. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5520. return 1;
  5521. return 1 & (b >> (msr_index & 7));
  5522. } else
  5523. return 1; /* let L1 handle the wrong parameter */
  5524. }
  5525. /*
  5526. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5527. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5528. * intercept (via guest_host_mask etc.) the current event.
  5529. */
  5530. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5531. struct vmcs12 *vmcs12)
  5532. {
  5533. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5534. int cr = exit_qualification & 15;
  5535. int reg = (exit_qualification >> 8) & 15;
  5536. unsigned long val = kvm_register_read(vcpu, reg);
  5537. switch ((exit_qualification >> 4) & 3) {
  5538. case 0: /* mov to cr */
  5539. switch (cr) {
  5540. case 0:
  5541. if (vmcs12->cr0_guest_host_mask &
  5542. (val ^ vmcs12->cr0_read_shadow))
  5543. return 1;
  5544. break;
  5545. case 3:
  5546. if ((vmcs12->cr3_target_count >= 1 &&
  5547. vmcs12->cr3_target_value0 == val) ||
  5548. (vmcs12->cr3_target_count >= 2 &&
  5549. vmcs12->cr3_target_value1 == val) ||
  5550. (vmcs12->cr3_target_count >= 3 &&
  5551. vmcs12->cr3_target_value2 == val) ||
  5552. (vmcs12->cr3_target_count >= 4 &&
  5553. vmcs12->cr3_target_value3 == val))
  5554. return 0;
  5555. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5556. return 1;
  5557. break;
  5558. case 4:
  5559. if (vmcs12->cr4_guest_host_mask &
  5560. (vmcs12->cr4_read_shadow ^ val))
  5561. return 1;
  5562. break;
  5563. case 8:
  5564. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5565. return 1;
  5566. break;
  5567. }
  5568. break;
  5569. case 2: /* clts */
  5570. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5571. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5572. return 1;
  5573. break;
  5574. case 1: /* mov from cr */
  5575. switch (cr) {
  5576. case 3:
  5577. if (vmcs12->cpu_based_vm_exec_control &
  5578. CPU_BASED_CR3_STORE_EXITING)
  5579. return 1;
  5580. break;
  5581. case 8:
  5582. if (vmcs12->cpu_based_vm_exec_control &
  5583. CPU_BASED_CR8_STORE_EXITING)
  5584. return 1;
  5585. break;
  5586. }
  5587. break;
  5588. case 3: /* lmsw */
  5589. /*
  5590. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5591. * cr0. Other attempted changes are ignored, with no exit.
  5592. */
  5593. if (vmcs12->cr0_guest_host_mask & 0xe &
  5594. (val ^ vmcs12->cr0_read_shadow))
  5595. return 1;
  5596. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5597. !(vmcs12->cr0_read_shadow & 0x1) &&
  5598. (val & 0x1))
  5599. return 1;
  5600. break;
  5601. }
  5602. return 0;
  5603. }
  5604. /*
  5605. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5606. * should handle it ourselves in L0 (and then continue L2). Only call this
  5607. * when in is_guest_mode (L2).
  5608. */
  5609. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5610. {
  5611. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5612. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5613. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5614. u32 exit_reason = vmx->exit_reason;
  5615. if (vmx->nested.nested_run_pending)
  5616. return 0;
  5617. if (unlikely(vmx->fail)) {
  5618. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5619. vmcs_read32(VM_INSTRUCTION_ERROR));
  5620. return 1;
  5621. }
  5622. switch (exit_reason) {
  5623. case EXIT_REASON_EXCEPTION_NMI:
  5624. if (!is_exception(intr_info))
  5625. return 0;
  5626. else if (is_page_fault(intr_info))
  5627. return enable_ept;
  5628. return vmcs12->exception_bitmap &
  5629. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5630. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5631. return 0;
  5632. case EXIT_REASON_TRIPLE_FAULT:
  5633. return 1;
  5634. case EXIT_REASON_PENDING_INTERRUPT:
  5635. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
  5636. case EXIT_REASON_NMI_WINDOW:
  5637. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
  5638. case EXIT_REASON_TASK_SWITCH:
  5639. return 1;
  5640. case EXIT_REASON_CPUID:
  5641. return 1;
  5642. case EXIT_REASON_HLT:
  5643. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5644. case EXIT_REASON_INVD:
  5645. return 1;
  5646. case EXIT_REASON_INVLPG:
  5647. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5648. case EXIT_REASON_RDPMC:
  5649. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5650. case EXIT_REASON_RDTSC:
  5651. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5652. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5653. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5654. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5655. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5656. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5657. /*
  5658. * VMX instructions trap unconditionally. This allows L1 to
  5659. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5660. */
  5661. return 1;
  5662. case EXIT_REASON_CR_ACCESS:
  5663. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5664. case EXIT_REASON_DR_ACCESS:
  5665. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5666. case EXIT_REASON_IO_INSTRUCTION:
  5667. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5668. case EXIT_REASON_MSR_READ:
  5669. case EXIT_REASON_MSR_WRITE:
  5670. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5671. case EXIT_REASON_INVALID_STATE:
  5672. return 1;
  5673. case EXIT_REASON_MWAIT_INSTRUCTION:
  5674. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5675. case EXIT_REASON_MONITOR_INSTRUCTION:
  5676. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5677. case EXIT_REASON_PAUSE_INSTRUCTION:
  5678. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5679. nested_cpu_has2(vmcs12,
  5680. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5681. case EXIT_REASON_MCE_DURING_VMENTRY:
  5682. return 0;
  5683. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5684. return 1;
  5685. case EXIT_REASON_APIC_ACCESS:
  5686. return nested_cpu_has2(vmcs12,
  5687. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5688. case EXIT_REASON_EPT_VIOLATION:
  5689. case EXIT_REASON_EPT_MISCONFIG:
  5690. return 0;
  5691. case EXIT_REASON_PREEMPTION_TIMER:
  5692. return vmcs12->pin_based_vm_exec_control &
  5693. PIN_BASED_VMX_PREEMPTION_TIMER;
  5694. case EXIT_REASON_WBINVD:
  5695. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5696. case EXIT_REASON_XSETBV:
  5697. return 1;
  5698. default:
  5699. return 1;
  5700. }
  5701. }
  5702. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5703. {
  5704. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5705. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5706. }
  5707. /*
  5708. * The guest has exited. See if we can fix it or if we need userspace
  5709. * assistance.
  5710. */
  5711. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5712. {
  5713. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5714. u32 exit_reason = vmx->exit_reason;
  5715. u32 vectoring_info = vmx->idt_vectoring_info;
  5716. /* If guest state is invalid, start emulating */
  5717. if (vmx->emulation_required)
  5718. return handle_invalid_guest_state(vcpu);
  5719. /*
  5720. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5721. * we did not inject a still-pending event to L1 now because of
  5722. * nested_run_pending, we need to re-enable this bit.
  5723. */
  5724. if (vmx->nested.nested_run_pending)
  5725. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5726. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5727. exit_reason == EXIT_REASON_VMRESUME))
  5728. vmx->nested.nested_run_pending = 1;
  5729. else
  5730. vmx->nested.nested_run_pending = 0;
  5731. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5732. nested_vmx_vmexit(vcpu);
  5733. return 1;
  5734. }
  5735. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5736. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5737. vcpu->run->fail_entry.hardware_entry_failure_reason
  5738. = exit_reason;
  5739. return 0;
  5740. }
  5741. if (unlikely(vmx->fail)) {
  5742. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5743. vcpu->run->fail_entry.hardware_entry_failure_reason
  5744. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5745. return 0;
  5746. }
  5747. /*
  5748. * Note:
  5749. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5750. * delivery event since it indicates guest is accessing MMIO.
  5751. * The vm-exit can be triggered again after return to guest that
  5752. * will cause infinite loop.
  5753. */
  5754. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5755. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5756. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5757. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5758. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5759. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5760. vcpu->run->internal.ndata = 2;
  5761. vcpu->run->internal.data[0] = vectoring_info;
  5762. vcpu->run->internal.data[1] = exit_reason;
  5763. return 0;
  5764. }
  5765. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5766. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5767. get_vmcs12(vcpu), vcpu)))) {
  5768. if (vmx_interrupt_allowed(vcpu)) {
  5769. vmx->soft_vnmi_blocked = 0;
  5770. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5771. vcpu->arch.nmi_pending) {
  5772. /*
  5773. * This CPU don't support us in finding the end of an
  5774. * NMI-blocked window if the guest runs with IRQs
  5775. * disabled. So we pull the trigger after 1 s of
  5776. * futile waiting, but inform the user about this.
  5777. */
  5778. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5779. "state on VCPU %d after 1 s timeout\n",
  5780. __func__, vcpu->vcpu_id);
  5781. vmx->soft_vnmi_blocked = 0;
  5782. }
  5783. }
  5784. if (exit_reason < kvm_vmx_max_exit_handlers
  5785. && kvm_vmx_exit_handlers[exit_reason])
  5786. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5787. else {
  5788. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5789. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5790. }
  5791. return 0;
  5792. }
  5793. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5794. {
  5795. if (irr == -1 || tpr < irr) {
  5796. vmcs_write32(TPR_THRESHOLD, 0);
  5797. return;
  5798. }
  5799. vmcs_write32(TPR_THRESHOLD, irr);
  5800. }
  5801. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5802. {
  5803. u32 sec_exec_control;
  5804. /*
  5805. * There is not point to enable virtualize x2apic without enable
  5806. * apicv
  5807. */
  5808. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5809. !vmx_vm_has_apicv(vcpu->kvm))
  5810. return;
  5811. if (!vm_need_tpr_shadow(vcpu->kvm))
  5812. return;
  5813. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5814. if (set) {
  5815. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5816. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5817. } else {
  5818. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5819. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5820. }
  5821. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5822. vmx_set_msr_bitmap(vcpu);
  5823. }
  5824. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5825. {
  5826. u16 status;
  5827. u8 old;
  5828. if (!vmx_vm_has_apicv(kvm))
  5829. return;
  5830. if (isr == -1)
  5831. isr = 0;
  5832. status = vmcs_read16(GUEST_INTR_STATUS);
  5833. old = status >> 8;
  5834. if (isr != old) {
  5835. status &= 0xff;
  5836. status |= isr << 8;
  5837. vmcs_write16(GUEST_INTR_STATUS, status);
  5838. }
  5839. }
  5840. static void vmx_set_rvi(int vector)
  5841. {
  5842. u16 status;
  5843. u8 old;
  5844. status = vmcs_read16(GUEST_INTR_STATUS);
  5845. old = (u8)status & 0xff;
  5846. if ((u8)vector != old) {
  5847. status &= ~0xff;
  5848. status |= (u8)vector;
  5849. vmcs_write16(GUEST_INTR_STATUS, status);
  5850. }
  5851. }
  5852. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5853. {
  5854. if (max_irr == -1)
  5855. return;
  5856. vmx_set_rvi(max_irr);
  5857. }
  5858. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5859. {
  5860. if (!vmx_vm_has_apicv(vcpu->kvm))
  5861. return;
  5862. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5863. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5864. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5865. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5866. }
  5867. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5868. {
  5869. u32 exit_intr_info;
  5870. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5871. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5872. return;
  5873. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5874. exit_intr_info = vmx->exit_intr_info;
  5875. /* Handle machine checks before interrupts are enabled */
  5876. if (is_machine_check(exit_intr_info))
  5877. kvm_machine_check();
  5878. /* We need to handle NMIs before interrupts are enabled */
  5879. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5880. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5881. kvm_before_handle_nmi(&vmx->vcpu);
  5882. asm("int $2");
  5883. kvm_after_handle_nmi(&vmx->vcpu);
  5884. }
  5885. }
  5886. static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
  5887. {
  5888. u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5889. /*
  5890. * If external interrupt exists, IF bit is set in rflags/eflags on the
  5891. * interrupt stack frame, and interrupt will be enabled on a return
  5892. * from interrupt handler.
  5893. */
  5894. if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
  5895. == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
  5896. unsigned int vector;
  5897. unsigned long entry;
  5898. gate_desc *desc;
  5899. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5900. #ifdef CONFIG_X86_64
  5901. unsigned long tmp;
  5902. #endif
  5903. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5904. desc = (gate_desc *)vmx->host_idt_base + vector;
  5905. entry = gate_offset(*desc);
  5906. asm volatile(
  5907. #ifdef CONFIG_X86_64
  5908. "mov %%" _ASM_SP ", %[sp]\n\t"
  5909. "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
  5910. "push $%c[ss]\n\t"
  5911. "push %[sp]\n\t"
  5912. #endif
  5913. "pushf\n\t"
  5914. "orl $0x200, (%%" _ASM_SP ")\n\t"
  5915. __ASM_SIZE(push) " $%c[cs]\n\t"
  5916. "call *%[entry]\n\t"
  5917. :
  5918. #ifdef CONFIG_X86_64
  5919. [sp]"=&r"(tmp)
  5920. #endif
  5921. :
  5922. [entry]"r"(entry),
  5923. [ss]"i"(__KERNEL_DS),
  5924. [cs]"i"(__KERNEL_CS)
  5925. );
  5926. } else
  5927. local_irq_enable();
  5928. }
  5929. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5930. {
  5931. u32 exit_intr_info;
  5932. bool unblock_nmi;
  5933. u8 vector;
  5934. bool idtv_info_valid;
  5935. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5936. if (cpu_has_virtual_nmis()) {
  5937. if (vmx->nmi_known_unmasked)
  5938. return;
  5939. /*
  5940. * Can't use vmx->exit_intr_info since we're not sure what
  5941. * the exit reason is.
  5942. */
  5943. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5944. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5945. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5946. /*
  5947. * SDM 3: 27.7.1.2 (September 2008)
  5948. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5949. * a guest IRET fault.
  5950. * SDM 3: 23.2.2 (September 2008)
  5951. * Bit 12 is undefined in any of the following cases:
  5952. * If the VM exit sets the valid bit in the IDT-vectoring
  5953. * information field.
  5954. * If the VM exit is due to a double fault.
  5955. */
  5956. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5957. vector != DF_VECTOR && !idtv_info_valid)
  5958. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5959. GUEST_INTR_STATE_NMI);
  5960. else
  5961. vmx->nmi_known_unmasked =
  5962. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5963. & GUEST_INTR_STATE_NMI);
  5964. } else if (unlikely(vmx->soft_vnmi_blocked))
  5965. vmx->vnmi_blocked_time +=
  5966. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5967. }
  5968. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  5969. u32 idt_vectoring_info,
  5970. int instr_len_field,
  5971. int error_code_field)
  5972. {
  5973. u8 vector;
  5974. int type;
  5975. bool idtv_info_valid;
  5976. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5977. vcpu->arch.nmi_injected = false;
  5978. kvm_clear_exception_queue(vcpu);
  5979. kvm_clear_interrupt_queue(vcpu);
  5980. if (!idtv_info_valid)
  5981. return;
  5982. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5983. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5984. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5985. switch (type) {
  5986. case INTR_TYPE_NMI_INTR:
  5987. vcpu->arch.nmi_injected = true;
  5988. /*
  5989. * SDM 3: 27.7.1.2 (September 2008)
  5990. * Clear bit "block by NMI" before VM entry if a NMI
  5991. * delivery faulted.
  5992. */
  5993. vmx_set_nmi_mask(vcpu, false);
  5994. break;
  5995. case INTR_TYPE_SOFT_EXCEPTION:
  5996. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5997. /* fall through */
  5998. case INTR_TYPE_HARD_EXCEPTION:
  5999. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  6000. u32 err = vmcs_read32(error_code_field);
  6001. kvm_queue_exception_e(vcpu, vector, err);
  6002. } else
  6003. kvm_queue_exception(vcpu, vector);
  6004. break;
  6005. case INTR_TYPE_SOFT_INTR:
  6006. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  6007. /* fall through */
  6008. case INTR_TYPE_EXT_INTR:
  6009. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  6010. break;
  6011. default:
  6012. break;
  6013. }
  6014. }
  6015. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  6016. {
  6017. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  6018. VM_EXIT_INSTRUCTION_LEN,
  6019. IDT_VECTORING_ERROR_CODE);
  6020. }
  6021. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  6022. {
  6023. __vmx_complete_interrupts(vcpu,
  6024. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  6025. VM_ENTRY_INSTRUCTION_LEN,
  6026. VM_ENTRY_EXCEPTION_ERROR_CODE);
  6027. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  6028. }
  6029. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  6030. {
  6031. int i, nr_msrs;
  6032. struct perf_guest_switch_msr *msrs;
  6033. msrs = perf_guest_get_msrs(&nr_msrs);
  6034. if (!msrs)
  6035. return;
  6036. for (i = 0; i < nr_msrs; i++)
  6037. if (msrs[i].host == msrs[i].guest)
  6038. clear_atomic_switch_msr(vmx, msrs[i].msr);
  6039. else
  6040. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  6041. msrs[i].host);
  6042. }
  6043. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  6044. {
  6045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6046. unsigned long debugctlmsr;
  6047. /* Record the guest's net vcpu time for enforced NMI injections. */
  6048. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  6049. vmx->entry_time = ktime_get();
  6050. /* Don't enter VMX if guest state is invalid, let the exit handler
  6051. start emulation until we arrive back to a valid state */
  6052. if (vmx->emulation_required)
  6053. return;
  6054. if (vmx->nested.sync_shadow_vmcs) {
  6055. copy_vmcs12_to_shadow(vmx);
  6056. vmx->nested.sync_shadow_vmcs = false;
  6057. }
  6058. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  6059. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  6060. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  6061. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  6062. /* When single-stepping over STI and MOV SS, we must clear the
  6063. * corresponding interruptibility bits in the guest state. Otherwise
  6064. * vmentry fails as it then expects bit 14 (BS) in pending debug
  6065. * exceptions being set, but that's not correct for the guest debugging
  6066. * case. */
  6067. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  6068. vmx_set_interrupt_shadow(vcpu, 0);
  6069. atomic_switch_perf_msrs(vmx);
  6070. debugctlmsr = get_debugctlmsr();
  6071. vmx->__launched = vmx->loaded_vmcs->launched;
  6072. asm(
  6073. /* Store host registers */
  6074. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  6075. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  6076. "push %%" _ASM_CX " \n\t"
  6077. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6078. "je 1f \n\t"
  6079. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  6080. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  6081. "1: \n\t"
  6082. /* Reload cr2 if changed */
  6083. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  6084. "mov %%cr2, %%" _ASM_DX " \n\t"
  6085. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  6086. "je 2f \n\t"
  6087. "mov %%" _ASM_AX", %%cr2 \n\t"
  6088. "2: \n\t"
  6089. /* Check if vmlaunch of vmresume is needed */
  6090. "cmpl $0, %c[launched](%0) \n\t"
  6091. /* Load guest registers. Don't clobber flags. */
  6092. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  6093. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  6094. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  6095. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  6096. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  6097. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  6098. #ifdef CONFIG_X86_64
  6099. "mov %c[r8](%0), %%r8 \n\t"
  6100. "mov %c[r9](%0), %%r9 \n\t"
  6101. "mov %c[r10](%0), %%r10 \n\t"
  6102. "mov %c[r11](%0), %%r11 \n\t"
  6103. "mov %c[r12](%0), %%r12 \n\t"
  6104. "mov %c[r13](%0), %%r13 \n\t"
  6105. "mov %c[r14](%0), %%r14 \n\t"
  6106. "mov %c[r15](%0), %%r15 \n\t"
  6107. #endif
  6108. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  6109. /* Enter guest mode */
  6110. "jne 1f \n\t"
  6111. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  6112. "jmp 2f \n\t"
  6113. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  6114. "2: "
  6115. /* Save guest registers, load host registers, keep flags */
  6116. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  6117. "pop %0 \n\t"
  6118. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  6119. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  6120. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  6121. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  6122. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  6123. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  6124. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  6125. #ifdef CONFIG_X86_64
  6126. "mov %%r8, %c[r8](%0) \n\t"
  6127. "mov %%r9, %c[r9](%0) \n\t"
  6128. "mov %%r10, %c[r10](%0) \n\t"
  6129. "mov %%r11, %c[r11](%0) \n\t"
  6130. "mov %%r12, %c[r12](%0) \n\t"
  6131. "mov %%r13, %c[r13](%0) \n\t"
  6132. "mov %%r14, %c[r14](%0) \n\t"
  6133. "mov %%r15, %c[r15](%0) \n\t"
  6134. #endif
  6135. "mov %%cr2, %%" _ASM_AX " \n\t"
  6136. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  6137. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  6138. "setbe %c[fail](%0) \n\t"
  6139. ".pushsection .rodata \n\t"
  6140. ".global vmx_return \n\t"
  6141. "vmx_return: " _ASM_PTR " 2b \n\t"
  6142. ".popsection"
  6143. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  6144. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  6145. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  6146. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  6147. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  6148. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  6149. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  6150. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  6151. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  6152. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  6153. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  6154. #ifdef CONFIG_X86_64
  6155. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  6156. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  6157. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  6158. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  6159. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  6160. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  6161. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  6162. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  6163. #endif
  6164. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  6165. [wordsize]"i"(sizeof(ulong))
  6166. : "cc", "memory"
  6167. #ifdef CONFIG_X86_64
  6168. , "rax", "rbx", "rdi", "rsi"
  6169. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  6170. #else
  6171. , "eax", "ebx", "edi", "esi"
  6172. #endif
  6173. );
  6174. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  6175. if (debugctlmsr)
  6176. update_debugctlmsr(debugctlmsr);
  6177. #ifndef CONFIG_X86_64
  6178. /*
  6179. * The sysexit path does not restore ds/es, so we must set them to
  6180. * a reasonable value ourselves.
  6181. *
  6182. * We can't defer this to vmx_load_host_state() since that function
  6183. * may be executed in interrupt context, which saves and restore segments
  6184. * around it, nullifying its effect.
  6185. */
  6186. loadsegment(ds, __USER_DS);
  6187. loadsegment(es, __USER_DS);
  6188. #endif
  6189. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  6190. | (1 << VCPU_EXREG_RFLAGS)
  6191. | (1 << VCPU_EXREG_CPL)
  6192. | (1 << VCPU_EXREG_PDPTR)
  6193. | (1 << VCPU_EXREG_SEGMENTS)
  6194. | (1 << VCPU_EXREG_CR3));
  6195. vcpu->arch.regs_dirty = 0;
  6196. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6197. vmx->loaded_vmcs->launched = 1;
  6198. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  6199. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  6200. vmx_complete_atomic_exit(vmx);
  6201. vmx_recover_nmi_blocking(vmx);
  6202. vmx_complete_interrupts(vmx);
  6203. }
  6204. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  6205. {
  6206. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6207. free_vpid(vmx);
  6208. free_nested(vmx);
  6209. free_loaded_vmcs(vmx->loaded_vmcs);
  6210. kfree(vmx->guest_msrs);
  6211. kvm_vcpu_uninit(vcpu);
  6212. kmem_cache_free(kvm_vcpu_cache, vmx);
  6213. }
  6214. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  6215. {
  6216. int err;
  6217. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  6218. int cpu;
  6219. if (!vmx)
  6220. return ERR_PTR(-ENOMEM);
  6221. allocate_vpid(vmx);
  6222. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  6223. if (err)
  6224. goto free_vcpu;
  6225. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  6226. err = -ENOMEM;
  6227. if (!vmx->guest_msrs) {
  6228. goto uninit_vcpu;
  6229. }
  6230. vmx->loaded_vmcs = &vmx->vmcs01;
  6231. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  6232. if (!vmx->loaded_vmcs->vmcs)
  6233. goto free_msrs;
  6234. if (!vmm_exclusive)
  6235. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  6236. loaded_vmcs_init(vmx->loaded_vmcs);
  6237. if (!vmm_exclusive)
  6238. kvm_cpu_vmxoff();
  6239. cpu = get_cpu();
  6240. vmx_vcpu_load(&vmx->vcpu, cpu);
  6241. vmx->vcpu.cpu = cpu;
  6242. err = vmx_vcpu_setup(vmx);
  6243. vmx_vcpu_put(&vmx->vcpu);
  6244. put_cpu();
  6245. if (err)
  6246. goto free_vmcs;
  6247. if (vm_need_virtualize_apic_accesses(kvm)) {
  6248. err = alloc_apic_access_page(kvm);
  6249. if (err)
  6250. goto free_vmcs;
  6251. }
  6252. if (enable_ept) {
  6253. if (!kvm->arch.ept_identity_map_addr)
  6254. kvm->arch.ept_identity_map_addr =
  6255. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  6256. err = -ENOMEM;
  6257. if (alloc_identity_pagetable(kvm) != 0)
  6258. goto free_vmcs;
  6259. if (!init_rmode_identity_map(kvm))
  6260. goto free_vmcs;
  6261. }
  6262. vmx->nested.current_vmptr = -1ull;
  6263. vmx->nested.current_vmcs12 = NULL;
  6264. return &vmx->vcpu;
  6265. free_vmcs:
  6266. free_loaded_vmcs(vmx->loaded_vmcs);
  6267. free_msrs:
  6268. kfree(vmx->guest_msrs);
  6269. uninit_vcpu:
  6270. kvm_vcpu_uninit(&vmx->vcpu);
  6271. free_vcpu:
  6272. free_vpid(vmx);
  6273. kmem_cache_free(kvm_vcpu_cache, vmx);
  6274. return ERR_PTR(err);
  6275. }
  6276. static void __init vmx_check_processor_compat(void *rtn)
  6277. {
  6278. struct vmcs_config vmcs_conf;
  6279. *(int *)rtn = 0;
  6280. if (setup_vmcs_config(&vmcs_conf) < 0)
  6281. *(int *)rtn = -EIO;
  6282. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  6283. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  6284. smp_processor_id());
  6285. *(int *)rtn = -EIO;
  6286. }
  6287. }
  6288. static int get_ept_level(void)
  6289. {
  6290. return VMX_EPT_DEFAULT_GAW + 1;
  6291. }
  6292. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  6293. {
  6294. u64 ret;
  6295. /* For VT-d and EPT combination
  6296. * 1. MMIO: always map as UC
  6297. * 2. EPT with VT-d:
  6298. * a. VT-d without snooping control feature: can't guarantee the
  6299. * result, try to trust guest.
  6300. * b. VT-d with snooping control feature: snooping control feature of
  6301. * VT-d engine can guarantee the cache correctness. Just set it
  6302. * to WB to keep consistent with host. So the same as item 3.
  6303. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  6304. * consistent with host MTRR
  6305. */
  6306. if (is_mmio)
  6307. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  6308. else if (vcpu->kvm->arch.iommu_domain &&
  6309. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  6310. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  6311. VMX_EPT_MT_EPTE_SHIFT;
  6312. else
  6313. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  6314. | VMX_EPT_IPAT_BIT;
  6315. return ret;
  6316. }
  6317. static int vmx_get_lpage_level(void)
  6318. {
  6319. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  6320. return PT_DIRECTORY_LEVEL;
  6321. else
  6322. /* For shadow and EPT supported 1GB page */
  6323. return PT_PDPE_LEVEL;
  6324. }
  6325. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  6326. {
  6327. struct kvm_cpuid_entry2 *best;
  6328. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6329. u32 exec_control;
  6330. vmx->rdtscp_enabled = false;
  6331. if (vmx_rdtscp_supported()) {
  6332. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6333. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  6334. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  6335. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  6336. vmx->rdtscp_enabled = true;
  6337. else {
  6338. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6339. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6340. exec_control);
  6341. }
  6342. }
  6343. }
  6344. /* Exposing INVPCID only when PCID is exposed */
  6345. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  6346. if (vmx_invpcid_supported() &&
  6347. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  6348. guest_cpuid_has_pcid(vcpu)) {
  6349. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6350. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  6351. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6352. exec_control);
  6353. } else {
  6354. if (cpu_has_secondary_exec_ctrls()) {
  6355. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6356. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6357. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6358. exec_control);
  6359. }
  6360. if (best)
  6361. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6362. }
  6363. }
  6364. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6365. {
  6366. if (func == 1 && nested)
  6367. entry->ecx |= bit(X86_FEATURE_VMX);
  6368. }
  6369. /*
  6370. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6371. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6372. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6373. * guest in a way that will both be appropriate to L1's requests, and our
  6374. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6375. * function also has additional necessary side-effects, like setting various
  6376. * vcpu->arch fields.
  6377. */
  6378. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6379. {
  6380. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6381. u32 exec_control;
  6382. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6383. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6384. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6385. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6386. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6387. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6388. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6389. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6390. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6391. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6392. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6393. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6394. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6395. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6396. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6397. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6398. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6399. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6400. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6401. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6402. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6403. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6404. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6405. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6406. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6407. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6408. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6409. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6410. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6411. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6412. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6413. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6414. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6415. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6416. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6417. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6418. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6419. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6420. vmcs12->vm_entry_intr_info_field);
  6421. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6422. vmcs12->vm_entry_exception_error_code);
  6423. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6424. vmcs12->vm_entry_instruction_len);
  6425. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6426. vmcs12->guest_interruptibility_info);
  6427. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6428. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6429. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6430. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6431. vmcs12->guest_pending_dbg_exceptions);
  6432. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6433. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6434. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6435. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6436. (vmcs_config.pin_based_exec_ctrl |
  6437. vmcs12->pin_based_vm_exec_control));
  6438. if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
  6439. vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
  6440. vmcs12->vmx_preemption_timer_value);
  6441. /*
  6442. * Whether page-faults are trapped is determined by a combination of
  6443. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6444. * If enable_ept, L0 doesn't care about page faults and we should
  6445. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6446. * care about (at least some) page faults, and because it is not easy
  6447. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6448. * to exit on each and every L2 page fault. This is done by setting
  6449. * MASK=MATCH=0 and (see below) EB.PF=1.
  6450. * Note that below we don't need special code to set EB.PF beyond the
  6451. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6452. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6453. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6454. *
  6455. * A problem with this approach (when !enable_ept) is that L1 may be
  6456. * injected with more page faults than it asked for. This could have
  6457. * caused problems, but in practice existing hypervisors don't care.
  6458. * To fix this, we will need to emulate the PFEC checking (on the L1
  6459. * page tables), using walk_addr(), when injecting PFs to L1.
  6460. */
  6461. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6462. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6463. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6464. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6465. if (cpu_has_secondary_exec_ctrls()) {
  6466. u32 exec_control = vmx_secondary_exec_control(vmx);
  6467. if (!vmx->rdtscp_enabled)
  6468. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6469. /* Take the following fields only from vmcs12 */
  6470. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6471. if (nested_cpu_has(vmcs12,
  6472. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6473. exec_control |= vmcs12->secondary_vm_exec_control;
  6474. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6475. /*
  6476. * Translate L1 physical address to host physical
  6477. * address for vmcs02. Keep the page pinned, so this
  6478. * physical address remains valid. We keep a reference
  6479. * to it so we can release it later.
  6480. */
  6481. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6482. nested_release_page(vmx->nested.apic_access_page);
  6483. vmx->nested.apic_access_page =
  6484. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6485. /*
  6486. * If translation failed, no matter: This feature asks
  6487. * to exit when accessing the given address, and if it
  6488. * can never be accessed, this feature won't do
  6489. * anything anyway.
  6490. */
  6491. if (!vmx->nested.apic_access_page)
  6492. exec_control &=
  6493. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6494. else
  6495. vmcs_write64(APIC_ACCESS_ADDR,
  6496. page_to_phys(vmx->nested.apic_access_page));
  6497. }
  6498. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6499. }
  6500. /*
  6501. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6502. * Some constant fields are set here by vmx_set_constant_host_state().
  6503. * Other fields are different per CPU, and will be set later when
  6504. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6505. */
  6506. vmx_set_constant_host_state(vmx);
  6507. /*
  6508. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6509. * entry, but only if the current (host) sp changed from the value
  6510. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6511. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6512. * here we just force the write to happen on entry.
  6513. */
  6514. vmx->host_rsp = 0;
  6515. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6516. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6517. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6518. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6519. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6520. /*
  6521. * Merging of IO and MSR bitmaps not currently supported.
  6522. * Rather, exit every time.
  6523. */
  6524. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6525. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6526. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6527. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6528. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6529. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6530. * trap. Note that CR0.TS also needs updating - we do this later.
  6531. */
  6532. update_exception_bitmap(vcpu);
  6533. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6534. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6535. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6536. vmcs_write32(VM_EXIT_CONTROLS,
  6537. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6538. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6539. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6540. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6541. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6542. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6543. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6544. set_cr4_guest_host_mask(vmx);
  6545. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6546. vmcs_write64(TSC_OFFSET,
  6547. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6548. else
  6549. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6550. if (enable_vpid) {
  6551. /*
  6552. * Trivially support vpid by letting L2s share their parent
  6553. * L1's vpid. TODO: move to a more elaborate solution, giving
  6554. * each L2 its own vpid and exposing the vpid feature to L1.
  6555. */
  6556. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6557. vmx_flush_tlb(vcpu);
  6558. }
  6559. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6560. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6561. else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6562. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6563. else
  6564. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6565. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6566. vmx_set_efer(vcpu, vcpu->arch.efer);
  6567. /*
  6568. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6569. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6570. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6571. * the specifications by L1; It's not enough to take
  6572. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6573. * have more bits than L1 expected.
  6574. */
  6575. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6576. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6577. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6578. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6579. /* shadow page tables on either EPT or shadow page tables */
  6580. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6581. kvm_mmu_reset_context(vcpu);
  6582. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6583. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6584. }
  6585. /*
  6586. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6587. * for running an L2 nested guest.
  6588. */
  6589. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6590. {
  6591. struct vmcs12 *vmcs12;
  6592. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6593. int cpu;
  6594. struct loaded_vmcs *vmcs02;
  6595. bool ia32e;
  6596. if (!nested_vmx_check_permission(vcpu) ||
  6597. !nested_vmx_check_vmcs12(vcpu))
  6598. return 1;
  6599. skip_emulated_instruction(vcpu);
  6600. vmcs12 = get_vmcs12(vcpu);
  6601. if (enable_shadow_vmcs)
  6602. copy_shadow_to_vmcs12(vmx);
  6603. /*
  6604. * The nested entry process starts with enforcing various prerequisites
  6605. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6606. * they fail: As the SDM explains, some conditions should cause the
  6607. * instruction to fail, while others will cause the instruction to seem
  6608. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6609. * To speed up the normal (success) code path, we should avoid checking
  6610. * for misconfigurations which will anyway be caught by the processor
  6611. * when using the merged vmcs02.
  6612. */
  6613. if (vmcs12->launch_state == launch) {
  6614. nested_vmx_failValid(vcpu,
  6615. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6616. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6617. return 1;
  6618. }
  6619. if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
  6620. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6621. return 1;
  6622. }
  6623. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6624. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6625. /*TODO: Also verify bits beyond physical address width are 0*/
  6626. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6627. return 1;
  6628. }
  6629. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6630. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6631. /*TODO: Also verify bits beyond physical address width are 0*/
  6632. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6633. return 1;
  6634. }
  6635. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6636. vmcs12->vm_exit_msr_load_count > 0 ||
  6637. vmcs12->vm_exit_msr_store_count > 0) {
  6638. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6639. __func__);
  6640. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6641. return 1;
  6642. }
  6643. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6644. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6645. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6646. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6647. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6648. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6649. !vmx_control_verify(vmcs12->vm_exit_controls,
  6650. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6651. !vmx_control_verify(vmcs12->vm_entry_controls,
  6652. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6653. {
  6654. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6655. return 1;
  6656. }
  6657. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6658. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6659. nested_vmx_failValid(vcpu,
  6660. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6661. return 1;
  6662. }
  6663. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6664. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6665. nested_vmx_entry_failure(vcpu, vmcs12,
  6666. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6667. return 1;
  6668. }
  6669. if (vmcs12->vmcs_link_pointer != -1ull) {
  6670. nested_vmx_entry_failure(vcpu, vmcs12,
  6671. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6672. return 1;
  6673. }
  6674. /*
  6675. * If the load IA32_EFER VM-entry control is 1, the following checks
  6676. * are performed on the field for the IA32_EFER MSR:
  6677. * - Bits reserved in the IA32_EFER MSR must be 0.
  6678. * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
  6679. * the IA-32e mode guest VM-exit control. It must also be identical
  6680. * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
  6681. * CR0.PG) is 1.
  6682. */
  6683. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
  6684. ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
  6685. if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
  6686. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
  6687. ((vmcs12->guest_cr0 & X86_CR0_PG) &&
  6688. ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
  6689. nested_vmx_entry_failure(vcpu, vmcs12,
  6690. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6691. return 1;
  6692. }
  6693. }
  6694. /*
  6695. * If the load IA32_EFER VM-exit control is 1, bits reserved in the
  6696. * IA32_EFER MSR must be 0 in the field for that register. In addition,
  6697. * the values of the LMA and LME bits in the field must each be that of
  6698. * the host address-space size VM-exit control.
  6699. */
  6700. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
  6701. ia32e = (vmcs12->vm_exit_controls &
  6702. VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
  6703. if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
  6704. ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
  6705. ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
  6706. nested_vmx_entry_failure(vcpu, vmcs12,
  6707. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6708. return 1;
  6709. }
  6710. }
  6711. /*
  6712. * We're finally done with prerequisite checking, and can start with
  6713. * the nested entry.
  6714. */
  6715. vmcs02 = nested_get_current_vmcs02(vmx);
  6716. if (!vmcs02)
  6717. return -ENOMEM;
  6718. enter_guest_mode(vcpu);
  6719. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6720. cpu = get_cpu();
  6721. vmx->loaded_vmcs = vmcs02;
  6722. vmx_vcpu_put(vcpu);
  6723. vmx_vcpu_load(vcpu, cpu);
  6724. vcpu->cpu = cpu;
  6725. put_cpu();
  6726. vmx_segment_cache_clear(vmx);
  6727. vmcs12->launch_state = 1;
  6728. prepare_vmcs02(vcpu, vmcs12);
  6729. /*
  6730. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6731. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6732. * returned as far as L1 is concerned. It will only return (and set
  6733. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6734. */
  6735. return 1;
  6736. }
  6737. /*
  6738. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6739. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6740. * This function returns the new value we should put in vmcs12.guest_cr0.
  6741. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6742. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6743. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6744. * didn't trap the bit, because if L1 did, so would L0).
  6745. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6746. * been modified by L2, and L1 knows it. So just leave the old value of
  6747. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6748. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6749. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6750. * changed these bits, and therefore they need to be updated, but L0
  6751. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6752. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6753. */
  6754. static inline unsigned long
  6755. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6756. {
  6757. return
  6758. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6759. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6760. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6761. vcpu->arch.cr0_guest_owned_bits));
  6762. }
  6763. static inline unsigned long
  6764. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6765. {
  6766. return
  6767. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6768. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6769. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6770. vcpu->arch.cr4_guest_owned_bits));
  6771. }
  6772. static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
  6773. struct vmcs12 *vmcs12)
  6774. {
  6775. u32 idt_vectoring;
  6776. unsigned int nr;
  6777. if (vcpu->arch.exception.pending) {
  6778. nr = vcpu->arch.exception.nr;
  6779. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6780. if (kvm_exception_is_soft(nr)) {
  6781. vmcs12->vm_exit_instruction_len =
  6782. vcpu->arch.event_exit_inst_len;
  6783. idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
  6784. } else
  6785. idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
  6786. if (vcpu->arch.exception.has_error_code) {
  6787. idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
  6788. vmcs12->idt_vectoring_error_code =
  6789. vcpu->arch.exception.error_code;
  6790. }
  6791. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6792. } else if (vcpu->arch.nmi_pending) {
  6793. vmcs12->idt_vectoring_info_field =
  6794. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
  6795. } else if (vcpu->arch.interrupt.pending) {
  6796. nr = vcpu->arch.interrupt.nr;
  6797. idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
  6798. if (vcpu->arch.interrupt.soft) {
  6799. idt_vectoring |= INTR_TYPE_SOFT_INTR;
  6800. vmcs12->vm_entry_instruction_len =
  6801. vcpu->arch.event_exit_inst_len;
  6802. } else
  6803. idt_vectoring |= INTR_TYPE_EXT_INTR;
  6804. vmcs12->idt_vectoring_info_field = idt_vectoring;
  6805. }
  6806. }
  6807. /*
  6808. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6809. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6810. * and this function updates it to reflect the changes to the guest state while
  6811. * L2 was running (and perhaps made some exits which were handled directly by L0
  6812. * without going back to L1), and to reflect the exit reason.
  6813. * Note that we do not have to copy here all VMCS fields, just those that
  6814. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6815. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6816. * which already writes to vmcs12 directly.
  6817. */
  6818. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6819. {
  6820. /* update guest state fields: */
  6821. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6822. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6823. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6824. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6825. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6826. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6827. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6828. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6829. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6830. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6831. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6832. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6833. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6834. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6835. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6836. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6837. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6838. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6839. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6840. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6841. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6842. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6843. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6844. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6845. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6846. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6847. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6848. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6849. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6850. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6851. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6852. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6853. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6854. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6855. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6856. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6857. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6858. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6859. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6860. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6861. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6862. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6863. vmcs12->guest_interruptibility_info =
  6864. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6865. vmcs12->guest_pending_dbg_exceptions =
  6866. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6867. vmcs12->vm_entry_controls =
  6868. (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
  6869. (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
  6870. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6871. * the relevant bit asks not to trap the change */
  6872. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6873. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
  6874. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6875. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6876. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6877. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6878. /* update exit information fields: */
  6879. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  6880. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6881. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6882. if ((vmcs12->vm_exit_intr_info &
  6883. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
  6884. (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
  6885. vmcs12->vm_exit_intr_error_code =
  6886. vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6887. vmcs12->idt_vectoring_info_field = 0;
  6888. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6889. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6890. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
  6891. /* vm_entry_intr_info_field is cleared on exit. Emulate this
  6892. * instead of reading the real value. */
  6893. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6894. /*
  6895. * Transfer the event that L0 or L1 may wanted to inject into
  6896. * L2 to IDT_VECTORING_INFO_FIELD.
  6897. */
  6898. vmcs12_save_pending_event(vcpu, vmcs12);
  6899. }
  6900. /*
  6901. * Drop what we picked up for L2 via vmx_complete_interrupts. It is
  6902. * preserved above and would only end up incorrectly in L1.
  6903. */
  6904. vcpu->arch.nmi_injected = false;
  6905. kvm_clear_exception_queue(vcpu);
  6906. kvm_clear_interrupt_queue(vcpu);
  6907. }
  6908. /*
  6909. * A part of what we need to when the nested L2 guest exits and we want to
  6910. * run its L1 parent, is to reset L1's guest state to the host state specified
  6911. * in vmcs12.
  6912. * This function is to be called not only on normal nested exit, but also on
  6913. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6914. * Failures During or After Loading Guest State").
  6915. * This function should be called when the active VMCS is L1's (vmcs01).
  6916. */
  6917. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  6918. struct vmcs12 *vmcs12)
  6919. {
  6920. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6921. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6922. else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6923. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6924. else
  6925. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6926. vmx_set_efer(vcpu, vcpu->arch.efer);
  6927. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6928. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6929. vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
  6930. /*
  6931. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6932. * actually changed, because it depends on the current state of
  6933. * fpu_active (which may have changed).
  6934. * Note that vmx_set_cr0 refers to efer set above.
  6935. */
  6936. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6937. /*
  6938. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6939. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6940. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6941. */
  6942. update_exception_bitmap(vcpu);
  6943. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6944. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6945. /*
  6946. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6947. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6948. */
  6949. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6950. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6951. /* shadow page tables on either EPT or shadow page tables */
  6952. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6953. kvm_mmu_reset_context(vcpu);
  6954. if (enable_vpid) {
  6955. /*
  6956. * Trivially support vpid by letting L2s share their parent
  6957. * L1's vpid. TODO: move to a more elaborate solution, giving
  6958. * each L2 its own vpid and exposing the vpid feature to L1.
  6959. */
  6960. vmx_flush_tlb(vcpu);
  6961. }
  6962. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6963. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6964. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6965. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6966. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6967. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6968. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6969. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6970. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6971. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6972. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6973. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6974. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6975. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6976. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6977. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6978. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6979. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6980. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6981. vmcs12->host_ia32_perf_global_ctrl);
  6982. kvm_set_dr(vcpu, 7, 0x400);
  6983. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  6984. }
  6985. /*
  6986. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6987. * and modify vmcs12 to make it see what it would expect to see there if
  6988. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6989. */
  6990. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6991. {
  6992. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6993. int cpu;
  6994. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6995. /* trying to cancel vmlaunch/vmresume is a bug */
  6996. WARN_ON_ONCE(vmx->nested.nested_run_pending);
  6997. leave_guest_mode(vcpu);
  6998. prepare_vmcs12(vcpu, vmcs12);
  6999. cpu = get_cpu();
  7000. vmx->loaded_vmcs = &vmx->vmcs01;
  7001. vmx_vcpu_put(vcpu);
  7002. vmx_vcpu_load(vcpu, cpu);
  7003. vcpu->cpu = cpu;
  7004. put_cpu();
  7005. vmx_segment_cache_clear(vmx);
  7006. /* if no vmcs02 cache requested, remove the one we used */
  7007. if (VMCS02_POOL_SIZE == 0)
  7008. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  7009. load_vmcs12_host_state(vcpu, vmcs12);
  7010. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  7011. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  7012. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  7013. vmx->host_rsp = 0;
  7014. /* Unpin physical memory we referred to in vmcs02 */
  7015. if (vmx->nested.apic_access_page) {
  7016. nested_release_page(vmx->nested.apic_access_page);
  7017. vmx->nested.apic_access_page = 0;
  7018. }
  7019. /*
  7020. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  7021. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  7022. * success or failure flag accordingly.
  7023. */
  7024. if (unlikely(vmx->fail)) {
  7025. vmx->fail = 0;
  7026. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  7027. } else
  7028. nested_vmx_succeed(vcpu);
  7029. if (enable_shadow_vmcs)
  7030. vmx->nested.sync_shadow_vmcs = true;
  7031. }
  7032. /*
  7033. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  7034. * 23.7 "VM-entry failures during or after loading guest state" (this also
  7035. * lists the acceptable exit-reason and exit-qualification parameters).
  7036. * It should only be called before L2 actually succeeded to run, and when
  7037. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  7038. */
  7039. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  7040. struct vmcs12 *vmcs12,
  7041. u32 reason, unsigned long qualification)
  7042. {
  7043. load_vmcs12_host_state(vcpu, vmcs12);
  7044. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  7045. vmcs12->exit_qualification = qualification;
  7046. nested_vmx_succeed(vcpu);
  7047. if (enable_shadow_vmcs)
  7048. to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
  7049. }
  7050. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  7051. struct x86_instruction_info *info,
  7052. enum x86_intercept_stage stage)
  7053. {
  7054. return X86EMUL_CONTINUE;
  7055. }
  7056. static struct kvm_x86_ops vmx_x86_ops = {
  7057. .cpu_has_kvm_support = cpu_has_kvm_support,
  7058. .disabled_by_bios = vmx_disabled_by_bios,
  7059. .hardware_setup = hardware_setup,
  7060. .hardware_unsetup = hardware_unsetup,
  7061. .check_processor_compatibility = vmx_check_processor_compat,
  7062. .hardware_enable = hardware_enable,
  7063. .hardware_disable = hardware_disable,
  7064. .cpu_has_accelerated_tpr = report_flexpriority,
  7065. .vcpu_create = vmx_create_vcpu,
  7066. .vcpu_free = vmx_free_vcpu,
  7067. .vcpu_reset = vmx_vcpu_reset,
  7068. .prepare_guest_switch = vmx_save_host_state,
  7069. .vcpu_load = vmx_vcpu_load,
  7070. .vcpu_put = vmx_vcpu_put,
  7071. .update_db_bp_intercept = update_exception_bitmap,
  7072. .get_msr = vmx_get_msr,
  7073. .set_msr = vmx_set_msr,
  7074. .get_segment_base = vmx_get_segment_base,
  7075. .get_segment = vmx_get_segment,
  7076. .set_segment = vmx_set_segment,
  7077. .get_cpl = vmx_get_cpl,
  7078. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  7079. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  7080. .decache_cr3 = vmx_decache_cr3,
  7081. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  7082. .set_cr0 = vmx_set_cr0,
  7083. .set_cr3 = vmx_set_cr3,
  7084. .set_cr4 = vmx_set_cr4,
  7085. .set_efer = vmx_set_efer,
  7086. .get_idt = vmx_get_idt,
  7087. .set_idt = vmx_set_idt,
  7088. .get_gdt = vmx_get_gdt,
  7089. .set_gdt = vmx_set_gdt,
  7090. .set_dr7 = vmx_set_dr7,
  7091. .cache_reg = vmx_cache_reg,
  7092. .get_rflags = vmx_get_rflags,
  7093. .set_rflags = vmx_set_rflags,
  7094. .fpu_activate = vmx_fpu_activate,
  7095. .fpu_deactivate = vmx_fpu_deactivate,
  7096. .tlb_flush = vmx_flush_tlb,
  7097. .run = vmx_vcpu_run,
  7098. .handle_exit = vmx_handle_exit,
  7099. .skip_emulated_instruction = skip_emulated_instruction,
  7100. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  7101. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  7102. .patch_hypercall = vmx_patch_hypercall,
  7103. .set_irq = vmx_inject_irq,
  7104. .set_nmi = vmx_inject_nmi,
  7105. .queue_exception = vmx_queue_exception,
  7106. .cancel_injection = vmx_cancel_injection,
  7107. .interrupt_allowed = vmx_interrupt_allowed,
  7108. .nmi_allowed = vmx_nmi_allowed,
  7109. .get_nmi_mask = vmx_get_nmi_mask,
  7110. .set_nmi_mask = vmx_set_nmi_mask,
  7111. .enable_nmi_window = enable_nmi_window,
  7112. .enable_irq_window = enable_irq_window,
  7113. .update_cr8_intercept = update_cr8_intercept,
  7114. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  7115. .vm_has_apicv = vmx_vm_has_apicv,
  7116. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  7117. .hwapic_irr_update = vmx_hwapic_irr_update,
  7118. .hwapic_isr_update = vmx_hwapic_isr_update,
  7119. .sync_pir_to_irr = vmx_sync_pir_to_irr,
  7120. .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
  7121. .set_tss_addr = vmx_set_tss_addr,
  7122. .get_tdp_level = get_ept_level,
  7123. .get_mt_mask = vmx_get_mt_mask,
  7124. .get_exit_info = vmx_get_exit_info,
  7125. .get_lpage_level = vmx_get_lpage_level,
  7126. .cpuid_update = vmx_cpuid_update,
  7127. .rdtscp_supported = vmx_rdtscp_supported,
  7128. .invpcid_supported = vmx_invpcid_supported,
  7129. .set_supported_cpuid = vmx_set_supported_cpuid,
  7130. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  7131. .set_tsc_khz = vmx_set_tsc_khz,
  7132. .read_tsc_offset = vmx_read_tsc_offset,
  7133. .write_tsc_offset = vmx_write_tsc_offset,
  7134. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  7135. .compute_tsc_offset = vmx_compute_tsc_offset,
  7136. .read_l1_tsc = vmx_read_l1_tsc,
  7137. .set_tdp_cr3 = vmx_set_cr3,
  7138. .check_intercept = vmx_check_intercept,
  7139. .handle_external_intr = vmx_handle_external_intr,
  7140. };
  7141. static int __init vmx_init(void)
  7142. {
  7143. int r, i, msr;
  7144. rdmsrl_safe(MSR_EFER, &host_efer);
  7145. for (i = 0; i < NR_VMX_MSR; ++i)
  7146. kvm_define_shared_msr(i, vmx_msr_index[i]);
  7147. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  7148. if (!vmx_io_bitmap_a)
  7149. return -ENOMEM;
  7150. r = -ENOMEM;
  7151. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  7152. if (!vmx_io_bitmap_b)
  7153. goto out;
  7154. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  7155. if (!vmx_msr_bitmap_legacy)
  7156. goto out1;
  7157. vmx_msr_bitmap_legacy_x2apic =
  7158. (unsigned long *)__get_free_page(GFP_KERNEL);
  7159. if (!vmx_msr_bitmap_legacy_x2apic)
  7160. goto out2;
  7161. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  7162. if (!vmx_msr_bitmap_longmode)
  7163. goto out3;
  7164. vmx_msr_bitmap_longmode_x2apic =
  7165. (unsigned long *)__get_free_page(GFP_KERNEL);
  7166. if (!vmx_msr_bitmap_longmode_x2apic)
  7167. goto out4;
  7168. vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7169. if (!vmx_vmread_bitmap)
  7170. goto out5;
  7171. vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
  7172. if (!vmx_vmwrite_bitmap)
  7173. goto out6;
  7174. memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
  7175. memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
  7176. /* shadowed read/write fields */
  7177. for (i = 0; i < max_shadow_read_write_fields; i++) {
  7178. clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
  7179. clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
  7180. }
  7181. /* shadowed read only fields */
  7182. for (i = 0; i < max_shadow_read_only_fields; i++)
  7183. clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
  7184. /*
  7185. * Allow direct access to the PC debug port (it is often used for I/O
  7186. * delays, but the vmexits simply slow things down).
  7187. */
  7188. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  7189. clear_bit(0x80, vmx_io_bitmap_a);
  7190. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  7191. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  7192. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  7193. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  7194. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  7195. __alignof__(struct vcpu_vmx), THIS_MODULE);
  7196. if (r)
  7197. goto out7;
  7198. #ifdef CONFIG_KEXEC
  7199. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  7200. crash_vmclear_local_loaded_vmcss);
  7201. #endif
  7202. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  7203. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  7204. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  7205. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  7206. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  7207. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  7208. memcpy(vmx_msr_bitmap_legacy_x2apic,
  7209. vmx_msr_bitmap_legacy, PAGE_SIZE);
  7210. memcpy(vmx_msr_bitmap_longmode_x2apic,
  7211. vmx_msr_bitmap_longmode, PAGE_SIZE);
  7212. if (enable_apicv) {
  7213. for (msr = 0x800; msr <= 0x8ff; msr++)
  7214. vmx_disable_intercept_msr_read_x2apic(msr);
  7215. /* According SDM, in x2apic mode, the whole id reg is used.
  7216. * But in KVM, it only use the highest eight bits. Need to
  7217. * intercept it */
  7218. vmx_enable_intercept_msr_read_x2apic(0x802);
  7219. /* TMCCT */
  7220. vmx_enable_intercept_msr_read_x2apic(0x839);
  7221. /* TPR */
  7222. vmx_disable_intercept_msr_write_x2apic(0x808);
  7223. /* EOI */
  7224. vmx_disable_intercept_msr_write_x2apic(0x80b);
  7225. /* SELF-IPI */
  7226. vmx_disable_intercept_msr_write_x2apic(0x83f);
  7227. }
  7228. if (enable_ept) {
  7229. kvm_mmu_set_mask_ptes(0ull,
  7230. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  7231. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  7232. 0ull, VMX_EPT_EXECUTABLE_MASK);
  7233. ept_set_mmio_spte_mask();
  7234. kvm_enable_tdp();
  7235. } else
  7236. kvm_disable_tdp();
  7237. return 0;
  7238. out7:
  7239. free_page((unsigned long)vmx_vmwrite_bitmap);
  7240. out6:
  7241. free_page((unsigned long)vmx_vmread_bitmap);
  7242. out5:
  7243. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7244. out4:
  7245. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7246. out3:
  7247. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7248. out2:
  7249. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7250. out1:
  7251. free_page((unsigned long)vmx_io_bitmap_b);
  7252. out:
  7253. free_page((unsigned long)vmx_io_bitmap_a);
  7254. return r;
  7255. }
  7256. static void __exit vmx_exit(void)
  7257. {
  7258. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  7259. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  7260. free_page((unsigned long)vmx_msr_bitmap_legacy);
  7261. free_page((unsigned long)vmx_msr_bitmap_longmode);
  7262. free_page((unsigned long)vmx_io_bitmap_b);
  7263. free_page((unsigned long)vmx_io_bitmap_a);
  7264. free_page((unsigned long)vmx_vmwrite_bitmap);
  7265. free_page((unsigned long)vmx_vmread_bitmap);
  7266. #ifdef CONFIG_KEXEC
  7267. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  7268. synchronize_rcu();
  7269. #endif
  7270. kvm_exit();
  7271. }
  7272. module_init(vmx_init)
  7273. module_exit(vmx_exit)