vmx.c 173 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly bypass_guest_pf = 1;
  46. module_param(bypass_guest_pf, bool, S_IRUGO);
  47. static int __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static int __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static int __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static int __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static int __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static int __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static int __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. #define VMCS02_POOL_SIZE 1
  102. struct vmcs {
  103. u32 revision_id;
  104. u32 abort;
  105. char data[0];
  106. };
  107. /*
  108. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  109. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  110. * loaded on this CPU (so we can clear them if the CPU goes down).
  111. */
  112. struct loaded_vmcs {
  113. struct vmcs *vmcs;
  114. int cpu;
  115. int launched;
  116. struct list_head loaded_vmcss_on_cpu_link;
  117. };
  118. struct shared_msr_entry {
  119. unsigned index;
  120. u64 data;
  121. u64 mask;
  122. };
  123. /*
  124. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  125. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  126. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  127. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  128. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  129. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  130. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  131. * underlying hardware which will be used to run L2.
  132. * This structure is packed to ensure that its layout is identical across
  133. * machines (necessary for live migration).
  134. * If there are changes in this struct, VMCS12_REVISION must be changed.
  135. */
  136. typedef u64 natural_width;
  137. struct __packed vmcs12 {
  138. /* According to the Intel spec, a VMCS region must start with the
  139. * following two fields. Then follow implementation-specific data.
  140. */
  141. u32 revision_id;
  142. u32 abort;
  143. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  144. u32 padding[7]; /* room for future expansion */
  145. u64 io_bitmap_a;
  146. u64 io_bitmap_b;
  147. u64 msr_bitmap;
  148. u64 vm_exit_msr_store_addr;
  149. u64 vm_exit_msr_load_addr;
  150. u64 vm_entry_msr_load_addr;
  151. u64 tsc_offset;
  152. u64 virtual_apic_page_addr;
  153. u64 apic_access_addr;
  154. u64 ept_pointer;
  155. u64 guest_physical_address;
  156. u64 vmcs_link_pointer;
  157. u64 guest_ia32_debugctl;
  158. u64 guest_ia32_pat;
  159. u64 guest_ia32_efer;
  160. u64 guest_ia32_perf_global_ctrl;
  161. u64 guest_pdptr0;
  162. u64 guest_pdptr1;
  163. u64 guest_pdptr2;
  164. u64 guest_pdptr3;
  165. u64 host_ia32_pat;
  166. u64 host_ia32_efer;
  167. u64 host_ia32_perf_global_ctrl;
  168. u64 padding64[8]; /* room for future expansion */
  169. /*
  170. * To allow migration of L1 (complete with its L2 guests) between
  171. * machines of different natural widths (32 or 64 bit), we cannot have
  172. * unsigned long fields with no explict size. We use u64 (aliased
  173. * natural_width) instead. Luckily, x86 is little-endian.
  174. */
  175. natural_width cr0_guest_host_mask;
  176. natural_width cr4_guest_host_mask;
  177. natural_width cr0_read_shadow;
  178. natural_width cr4_read_shadow;
  179. natural_width cr3_target_value0;
  180. natural_width cr3_target_value1;
  181. natural_width cr3_target_value2;
  182. natural_width cr3_target_value3;
  183. natural_width exit_qualification;
  184. natural_width guest_linear_address;
  185. natural_width guest_cr0;
  186. natural_width guest_cr3;
  187. natural_width guest_cr4;
  188. natural_width guest_es_base;
  189. natural_width guest_cs_base;
  190. natural_width guest_ss_base;
  191. natural_width guest_ds_base;
  192. natural_width guest_fs_base;
  193. natural_width guest_gs_base;
  194. natural_width guest_ldtr_base;
  195. natural_width guest_tr_base;
  196. natural_width guest_gdtr_base;
  197. natural_width guest_idtr_base;
  198. natural_width guest_dr7;
  199. natural_width guest_rsp;
  200. natural_width guest_rip;
  201. natural_width guest_rflags;
  202. natural_width guest_pending_dbg_exceptions;
  203. natural_width guest_sysenter_esp;
  204. natural_width guest_sysenter_eip;
  205. natural_width host_cr0;
  206. natural_width host_cr3;
  207. natural_width host_cr4;
  208. natural_width host_fs_base;
  209. natural_width host_gs_base;
  210. natural_width host_tr_base;
  211. natural_width host_gdtr_base;
  212. natural_width host_idtr_base;
  213. natural_width host_ia32_sysenter_esp;
  214. natural_width host_ia32_sysenter_eip;
  215. natural_width host_rsp;
  216. natural_width host_rip;
  217. natural_width paddingl[8]; /* room for future expansion */
  218. u32 pin_based_vm_exec_control;
  219. u32 cpu_based_vm_exec_control;
  220. u32 exception_bitmap;
  221. u32 page_fault_error_code_mask;
  222. u32 page_fault_error_code_match;
  223. u32 cr3_target_count;
  224. u32 vm_exit_controls;
  225. u32 vm_exit_msr_store_count;
  226. u32 vm_exit_msr_load_count;
  227. u32 vm_entry_controls;
  228. u32 vm_entry_msr_load_count;
  229. u32 vm_entry_intr_info_field;
  230. u32 vm_entry_exception_error_code;
  231. u32 vm_entry_instruction_len;
  232. u32 tpr_threshold;
  233. u32 secondary_vm_exec_control;
  234. u32 vm_instruction_error;
  235. u32 vm_exit_reason;
  236. u32 vm_exit_intr_info;
  237. u32 vm_exit_intr_error_code;
  238. u32 idt_vectoring_info_field;
  239. u32 idt_vectoring_error_code;
  240. u32 vm_exit_instruction_len;
  241. u32 vmx_instruction_info;
  242. u32 guest_es_limit;
  243. u32 guest_cs_limit;
  244. u32 guest_ss_limit;
  245. u32 guest_ds_limit;
  246. u32 guest_fs_limit;
  247. u32 guest_gs_limit;
  248. u32 guest_ldtr_limit;
  249. u32 guest_tr_limit;
  250. u32 guest_gdtr_limit;
  251. u32 guest_idtr_limit;
  252. u32 guest_es_ar_bytes;
  253. u32 guest_cs_ar_bytes;
  254. u32 guest_ss_ar_bytes;
  255. u32 guest_ds_ar_bytes;
  256. u32 guest_fs_ar_bytes;
  257. u32 guest_gs_ar_bytes;
  258. u32 guest_ldtr_ar_bytes;
  259. u32 guest_tr_ar_bytes;
  260. u32 guest_interruptibility_info;
  261. u32 guest_activity_state;
  262. u32 guest_sysenter_cs;
  263. u32 host_ia32_sysenter_cs;
  264. u32 padding32[8]; /* room for future expansion */
  265. u16 virtual_processor_id;
  266. u16 guest_es_selector;
  267. u16 guest_cs_selector;
  268. u16 guest_ss_selector;
  269. u16 guest_ds_selector;
  270. u16 guest_fs_selector;
  271. u16 guest_gs_selector;
  272. u16 guest_ldtr_selector;
  273. u16 guest_tr_selector;
  274. u16 host_es_selector;
  275. u16 host_cs_selector;
  276. u16 host_ss_selector;
  277. u16 host_ds_selector;
  278. u16 host_fs_selector;
  279. u16 host_gs_selector;
  280. u16 host_tr_selector;
  281. };
  282. /*
  283. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  284. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  285. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  286. */
  287. #define VMCS12_REVISION 0x11e57ed0
  288. /*
  289. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  290. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  291. * current implementation, 4K are reserved to avoid future complications.
  292. */
  293. #define VMCS12_SIZE 0x1000
  294. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  295. struct vmcs02_list {
  296. struct list_head list;
  297. gpa_t vmptr;
  298. struct loaded_vmcs vmcs02;
  299. };
  300. /*
  301. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  302. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  303. */
  304. struct nested_vmx {
  305. /* Has the level1 guest done vmxon? */
  306. bool vmxon;
  307. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  308. gpa_t current_vmptr;
  309. /* The host-usable pointer to the above */
  310. struct page *current_vmcs12_page;
  311. struct vmcs12 *current_vmcs12;
  312. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  313. struct list_head vmcs02_pool;
  314. int vmcs02_num;
  315. u64 vmcs01_tsc_offset;
  316. /*
  317. * Guest pages referred to in vmcs02 with host-physical pointers, so
  318. * we must keep them pinned while L2 runs.
  319. */
  320. struct page *apic_access_page;
  321. };
  322. struct vcpu_vmx {
  323. struct kvm_vcpu vcpu;
  324. unsigned long host_rsp;
  325. u8 fail;
  326. u8 cpl;
  327. bool nmi_known_unmasked;
  328. u32 exit_intr_info;
  329. u32 idt_vectoring_info;
  330. ulong rflags;
  331. struct shared_msr_entry *guest_msrs;
  332. int nmsrs;
  333. int save_nmsrs;
  334. #ifdef CONFIG_X86_64
  335. u64 msr_host_kernel_gs_base;
  336. u64 msr_guest_kernel_gs_base;
  337. #endif
  338. /*
  339. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  340. * non-nested (L1) guest, it always points to vmcs01. For a nested
  341. * guest (L2), it points to a different VMCS.
  342. */
  343. struct loaded_vmcs vmcs01;
  344. struct loaded_vmcs *loaded_vmcs;
  345. bool __launched; /* temporary, used in vmx_vcpu_run */
  346. struct msr_autoload {
  347. unsigned nr;
  348. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  349. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  350. } msr_autoload;
  351. struct {
  352. int loaded;
  353. u16 fs_sel, gs_sel, ldt_sel;
  354. int gs_ldt_reload_needed;
  355. int fs_reload_needed;
  356. } host_state;
  357. struct {
  358. int vm86_active;
  359. ulong save_rflags;
  360. struct kvm_save_segment {
  361. u16 selector;
  362. unsigned long base;
  363. u32 limit;
  364. u32 ar;
  365. } tr, es, ds, fs, gs;
  366. } rmode;
  367. struct {
  368. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  369. struct kvm_save_segment seg[8];
  370. } segment_cache;
  371. int vpid;
  372. bool emulation_required;
  373. /* Support for vnmi-less CPUs */
  374. int soft_vnmi_blocked;
  375. ktime_t entry_time;
  376. s64 vnmi_blocked_time;
  377. u32 exit_reason;
  378. bool rdtscp_enabled;
  379. /* Support for a guest hypervisor (nested VMX) */
  380. struct nested_vmx nested;
  381. };
  382. enum segment_cache_field {
  383. SEG_FIELD_SEL = 0,
  384. SEG_FIELD_BASE = 1,
  385. SEG_FIELD_LIMIT = 2,
  386. SEG_FIELD_AR = 3,
  387. SEG_FIELD_NR = 4
  388. };
  389. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  390. {
  391. return container_of(vcpu, struct vcpu_vmx, vcpu);
  392. }
  393. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  394. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  395. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  396. [number##_HIGH] = VMCS12_OFFSET(name)+4
  397. static unsigned short vmcs_field_to_offset_table[] = {
  398. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  399. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  400. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  401. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  402. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  403. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  404. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  405. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  406. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  407. FIELD(HOST_ES_SELECTOR, host_es_selector),
  408. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  409. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  410. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  411. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  412. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  413. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  414. FIELD64(IO_BITMAP_A, io_bitmap_a),
  415. FIELD64(IO_BITMAP_B, io_bitmap_b),
  416. FIELD64(MSR_BITMAP, msr_bitmap),
  417. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  418. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  419. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  420. FIELD64(TSC_OFFSET, tsc_offset),
  421. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  422. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  423. FIELD64(EPT_POINTER, ept_pointer),
  424. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  425. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  426. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  427. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  428. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  429. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  430. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  431. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  432. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  433. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  434. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  435. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  436. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  437. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  438. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  439. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  440. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  441. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  442. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  443. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  444. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  445. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  446. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  447. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  448. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  449. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  450. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  451. FIELD(TPR_THRESHOLD, tpr_threshold),
  452. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  453. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  454. FIELD(VM_EXIT_REASON, vm_exit_reason),
  455. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  456. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  457. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  458. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  459. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  460. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  461. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  462. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  463. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  464. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  465. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  466. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  467. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  468. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  469. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  470. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  471. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  472. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  473. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  474. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  475. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  476. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  477. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  478. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  479. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  480. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  481. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  482. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  483. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  484. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  485. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  486. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  487. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  488. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  489. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  490. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  491. FIELD(EXIT_QUALIFICATION, exit_qualification),
  492. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  493. FIELD(GUEST_CR0, guest_cr0),
  494. FIELD(GUEST_CR3, guest_cr3),
  495. FIELD(GUEST_CR4, guest_cr4),
  496. FIELD(GUEST_ES_BASE, guest_es_base),
  497. FIELD(GUEST_CS_BASE, guest_cs_base),
  498. FIELD(GUEST_SS_BASE, guest_ss_base),
  499. FIELD(GUEST_DS_BASE, guest_ds_base),
  500. FIELD(GUEST_FS_BASE, guest_fs_base),
  501. FIELD(GUEST_GS_BASE, guest_gs_base),
  502. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  503. FIELD(GUEST_TR_BASE, guest_tr_base),
  504. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  505. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  506. FIELD(GUEST_DR7, guest_dr7),
  507. FIELD(GUEST_RSP, guest_rsp),
  508. FIELD(GUEST_RIP, guest_rip),
  509. FIELD(GUEST_RFLAGS, guest_rflags),
  510. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  511. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  512. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  513. FIELD(HOST_CR0, host_cr0),
  514. FIELD(HOST_CR3, host_cr3),
  515. FIELD(HOST_CR4, host_cr4),
  516. FIELD(HOST_FS_BASE, host_fs_base),
  517. FIELD(HOST_GS_BASE, host_gs_base),
  518. FIELD(HOST_TR_BASE, host_tr_base),
  519. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  520. FIELD(HOST_IDTR_BASE, host_idtr_base),
  521. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  522. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  523. FIELD(HOST_RSP, host_rsp),
  524. FIELD(HOST_RIP, host_rip),
  525. };
  526. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  527. static inline short vmcs_field_to_offset(unsigned long field)
  528. {
  529. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  530. return -1;
  531. return vmcs_field_to_offset_table[field];
  532. }
  533. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  534. {
  535. return to_vmx(vcpu)->nested.current_vmcs12;
  536. }
  537. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  538. {
  539. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  540. if (is_error_page(page)) {
  541. kvm_release_page_clean(page);
  542. return NULL;
  543. }
  544. return page;
  545. }
  546. static void nested_release_page(struct page *page)
  547. {
  548. kvm_release_page_dirty(page);
  549. }
  550. static void nested_release_page_clean(struct page *page)
  551. {
  552. kvm_release_page_clean(page);
  553. }
  554. static u64 construct_eptp(unsigned long root_hpa);
  555. static void kvm_cpu_vmxon(u64 addr);
  556. static void kvm_cpu_vmxoff(void);
  557. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  558. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  559. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  560. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  561. /*
  562. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  563. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  564. */
  565. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  566. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  567. static unsigned long *vmx_io_bitmap_a;
  568. static unsigned long *vmx_io_bitmap_b;
  569. static unsigned long *vmx_msr_bitmap_legacy;
  570. static unsigned long *vmx_msr_bitmap_longmode;
  571. static bool cpu_has_load_ia32_efer;
  572. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  573. static DEFINE_SPINLOCK(vmx_vpid_lock);
  574. static struct vmcs_config {
  575. int size;
  576. int order;
  577. u32 revision_id;
  578. u32 pin_based_exec_ctrl;
  579. u32 cpu_based_exec_ctrl;
  580. u32 cpu_based_2nd_exec_ctrl;
  581. u32 vmexit_ctrl;
  582. u32 vmentry_ctrl;
  583. } vmcs_config;
  584. static struct vmx_capability {
  585. u32 ept;
  586. u32 vpid;
  587. } vmx_capability;
  588. #define VMX_SEGMENT_FIELD(seg) \
  589. [VCPU_SREG_##seg] = { \
  590. .selector = GUEST_##seg##_SELECTOR, \
  591. .base = GUEST_##seg##_BASE, \
  592. .limit = GUEST_##seg##_LIMIT, \
  593. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  594. }
  595. static struct kvm_vmx_segment_field {
  596. unsigned selector;
  597. unsigned base;
  598. unsigned limit;
  599. unsigned ar_bytes;
  600. } kvm_vmx_segment_fields[] = {
  601. VMX_SEGMENT_FIELD(CS),
  602. VMX_SEGMENT_FIELD(DS),
  603. VMX_SEGMENT_FIELD(ES),
  604. VMX_SEGMENT_FIELD(FS),
  605. VMX_SEGMENT_FIELD(GS),
  606. VMX_SEGMENT_FIELD(SS),
  607. VMX_SEGMENT_FIELD(TR),
  608. VMX_SEGMENT_FIELD(LDTR),
  609. };
  610. static u64 host_efer;
  611. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  612. /*
  613. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  614. * away by decrementing the array size.
  615. */
  616. static const u32 vmx_msr_index[] = {
  617. #ifdef CONFIG_X86_64
  618. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  619. #endif
  620. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  621. };
  622. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  623. static inline bool is_page_fault(u32 intr_info)
  624. {
  625. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  626. INTR_INFO_VALID_MASK)) ==
  627. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  628. }
  629. static inline bool is_no_device(u32 intr_info)
  630. {
  631. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  632. INTR_INFO_VALID_MASK)) ==
  633. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  634. }
  635. static inline bool is_invalid_opcode(u32 intr_info)
  636. {
  637. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  638. INTR_INFO_VALID_MASK)) ==
  639. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  640. }
  641. static inline bool is_external_interrupt(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  644. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  645. }
  646. static inline bool is_machine_check(u32 intr_info)
  647. {
  648. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  649. INTR_INFO_VALID_MASK)) ==
  650. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  651. }
  652. static inline bool cpu_has_vmx_msr_bitmap(void)
  653. {
  654. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  655. }
  656. static inline bool cpu_has_vmx_tpr_shadow(void)
  657. {
  658. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  659. }
  660. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  661. {
  662. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  663. }
  664. static inline bool cpu_has_secondary_exec_ctrls(void)
  665. {
  666. return vmcs_config.cpu_based_exec_ctrl &
  667. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  668. }
  669. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  670. {
  671. return vmcs_config.cpu_based_2nd_exec_ctrl &
  672. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  673. }
  674. static inline bool cpu_has_vmx_flexpriority(void)
  675. {
  676. return cpu_has_vmx_tpr_shadow() &&
  677. cpu_has_vmx_virtualize_apic_accesses();
  678. }
  679. static inline bool cpu_has_vmx_ept_execute_only(void)
  680. {
  681. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  682. }
  683. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  684. {
  685. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  686. }
  687. static inline bool cpu_has_vmx_eptp_writeback(void)
  688. {
  689. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  690. }
  691. static inline bool cpu_has_vmx_ept_2m_page(void)
  692. {
  693. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  694. }
  695. static inline bool cpu_has_vmx_ept_1g_page(void)
  696. {
  697. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  698. }
  699. static inline bool cpu_has_vmx_ept_4levels(void)
  700. {
  701. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  702. }
  703. static inline bool cpu_has_vmx_invept_individual_addr(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  706. }
  707. static inline bool cpu_has_vmx_invept_context(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  710. }
  711. static inline bool cpu_has_vmx_invept_global(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invvpid_single(void)
  716. {
  717. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invvpid_global(void)
  720. {
  721. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_ept(void)
  724. {
  725. return vmcs_config.cpu_based_2nd_exec_ctrl &
  726. SECONDARY_EXEC_ENABLE_EPT;
  727. }
  728. static inline bool cpu_has_vmx_unrestricted_guest(void)
  729. {
  730. return vmcs_config.cpu_based_2nd_exec_ctrl &
  731. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  732. }
  733. static inline bool cpu_has_vmx_ple(void)
  734. {
  735. return vmcs_config.cpu_based_2nd_exec_ctrl &
  736. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  737. }
  738. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  739. {
  740. return flexpriority_enabled && irqchip_in_kernel(kvm);
  741. }
  742. static inline bool cpu_has_vmx_vpid(void)
  743. {
  744. return vmcs_config.cpu_based_2nd_exec_ctrl &
  745. SECONDARY_EXEC_ENABLE_VPID;
  746. }
  747. static inline bool cpu_has_vmx_rdtscp(void)
  748. {
  749. return vmcs_config.cpu_based_2nd_exec_ctrl &
  750. SECONDARY_EXEC_RDTSCP;
  751. }
  752. static inline bool cpu_has_virtual_nmis(void)
  753. {
  754. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  755. }
  756. static inline bool cpu_has_vmx_wbinvd_exit(void)
  757. {
  758. return vmcs_config.cpu_based_2nd_exec_ctrl &
  759. SECONDARY_EXEC_WBINVD_EXITING;
  760. }
  761. static inline bool report_flexpriority(void)
  762. {
  763. return flexpriority_enabled;
  764. }
  765. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  766. {
  767. return vmcs12->cpu_based_vm_exec_control & bit;
  768. }
  769. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  770. {
  771. return (vmcs12->cpu_based_vm_exec_control &
  772. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  773. (vmcs12->secondary_vm_exec_control & bit);
  774. }
  775. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  776. {
  777. int i;
  778. for (i = 0; i < vmx->nmsrs; ++i)
  779. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  780. return i;
  781. return -1;
  782. }
  783. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  784. {
  785. struct {
  786. u64 vpid : 16;
  787. u64 rsvd : 48;
  788. u64 gva;
  789. } operand = { vpid, 0, gva };
  790. asm volatile (__ex(ASM_VMX_INVVPID)
  791. /* CF==1 or ZF==1 --> rc = -1 */
  792. "; ja 1f ; ud2 ; 1:"
  793. : : "a"(&operand), "c"(ext) : "cc", "memory");
  794. }
  795. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  796. {
  797. struct {
  798. u64 eptp, gpa;
  799. } operand = {eptp, gpa};
  800. asm volatile (__ex(ASM_VMX_INVEPT)
  801. /* CF==1 or ZF==1 --> rc = -1 */
  802. "; ja 1f ; ud2 ; 1:\n"
  803. : : "a" (&operand), "c" (ext) : "cc", "memory");
  804. }
  805. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  806. {
  807. int i;
  808. i = __find_msr_index(vmx, msr);
  809. if (i >= 0)
  810. return &vmx->guest_msrs[i];
  811. return NULL;
  812. }
  813. static void vmcs_clear(struct vmcs *vmcs)
  814. {
  815. u64 phys_addr = __pa(vmcs);
  816. u8 error;
  817. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  818. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  819. : "cc", "memory");
  820. if (error)
  821. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  822. vmcs, phys_addr);
  823. }
  824. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  825. {
  826. vmcs_clear(loaded_vmcs->vmcs);
  827. loaded_vmcs->cpu = -1;
  828. loaded_vmcs->launched = 0;
  829. }
  830. static void vmcs_load(struct vmcs *vmcs)
  831. {
  832. u64 phys_addr = __pa(vmcs);
  833. u8 error;
  834. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  835. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  836. : "cc", "memory");
  837. if (error)
  838. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  839. vmcs, phys_addr);
  840. }
  841. static void __loaded_vmcs_clear(void *arg)
  842. {
  843. struct loaded_vmcs *loaded_vmcs = arg;
  844. int cpu = raw_smp_processor_id();
  845. if (loaded_vmcs->cpu != cpu)
  846. return; /* vcpu migration can race with cpu offline */
  847. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  848. per_cpu(current_vmcs, cpu) = NULL;
  849. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  850. loaded_vmcs_init(loaded_vmcs);
  851. }
  852. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  853. {
  854. if (loaded_vmcs->cpu != -1)
  855. smp_call_function_single(
  856. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  857. }
  858. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  859. {
  860. if (vmx->vpid == 0)
  861. return;
  862. if (cpu_has_vmx_invvpid_single())
  863. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  864. }
  865. static inline void vpid_sync_vcpu_global(void)
  866. {
  867. if (cpu_has_vmx_invvpid_global())
  868. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  869. }
  870. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  871. {
  872. if (cpu_has_vmx_invvpid_single())
  873. vpid_sync_vcpu_single(vmx);
  874. else
  875. vpid_sync_vcpu_global();
  876. }
  877. static inline void ept_sync_global(void)
  878. {
  879. if (cpu_has_vmx_invept_global())
  880. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  881. }
  882. static inline void ept_sync_context(u64 eptp)
  883. {
  884. if (enable_ept) {
  885. if (cpu_has_vmx_invept_context())
  886. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  887. else
  888. ept_sync_global();
  889. }
  890. }
  891. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  892. {
  893. if (enable_ept) {
  894. if (cpu_has_vmx_invept_individual_addr())
  895. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  896. eptp, gpa);
  897. else
  898. ept_sync_context(eptp);
  899. }
  900. }
  901. static __always_inline unsigned long vmcs_readl(unsigned long field)
  902. {
  903. unsigned long value;
  904. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  905. : "=a"(value) : "d"(field) : "cc");
  906. return value;
  907. }
  908. static __always_inline u16 vmcs_read16(unsigned long field)
  909. {
  910. return vmcs_readl(field);
  911. }
  912. static __always_inline u32 vmcs_read32(unsigned long field)
  913. {
  914. return vmcs_readl(field);
  915. }
  916. static __always_inline u64 vmcs_read64(unsigned long field)
  917. {
  918. #ifdef CONFIG_X86_64
  919. return vmcs_readl(field);
  920. #else
  921. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  922. #endif
  923. }
  924. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  925. {
  926. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  927. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  928. dump_stack();
  929. }
  930. static void vmcs_writel(unsigned long field, unsigned long value)
  931. {
  932. u8 error;
  933. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  934. : "=q"(error) : "a"(value), "d"(field) : "cc");
  935. if (unlikely(error))
  936. vmwrite_error(field, value);
  937. }
  938. static void vmcs_write16(unsigned long field, u16 value)
  939. {
  940. vmcs_writel(field, value);
  941. }
  942. static void vmcs_write32(unsigned long field, u32 value)
  943. {
  944. vmcs_writel(field, value);
  945. }
  946. static void vmcs_write64(unsigned long field, u64 value)
  947. {
  948. vmcs_writel(field, value);
  949. #ifndef CONFIG_X86_64
  950. asm volatile ("");
  951. vmcs_writel(field+1, value >> 32);
  952. #endif
  953. }
  954. static void vmcs_clear_bits(unsigned long field, u32 mask)
  955. {
  956. vmcs_writel(field, vmcs_readl(field) & ~mask);
  957. }
  958. static void vmcs_set_bits(unsigned long field, u32 mask)
  959. {
  960. vmcs_writel(field, vmcs_readl(field) | mask);
  961. }
  962. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  963. {
  964. vmx->segment_cache.bitmask = 0;
  965. }
  966. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  967. unsigned field)
  968. {
  969. bool ret;
  970. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  971. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  972. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  973. vmx->segment_cache.bitmask = 0;
  974. }
  975. ret = vmx->segment_cache.bitmask & mask;
  976. vmx->segment_cache.bitmask |= mask;
  977. return ret;
  978. }
  979. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  980. {
  981. u16 *p = &vmx->segment_cache.seg[seg].selector;
  982. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  983. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  984. return *p;
  985. }
  986. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  987. {
  988. ulong *p = &vmx->segment_cache.seg[seg].base;
  989. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  990. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  991. return *p;
  992. }
  993. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  994. {
  995. u32 *p = &vmx->segment_cache.seg[seg].limit;
  996. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  997. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  998. return *p;
  999. }
  1000. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1001. {
  1002. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1003. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1004. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1005. return *p;
  1006. }
  1007. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1008. {
  1009. u32 eb;
  1010. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1011. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1012. if ((vcpu->guest_debug &
  1013. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1014. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1015. eb |= 1u << BP_VECTOR;
  1016. if (to_vmx(vcpu)->rmode.vm86_active)
  1017. eb = ~0;
  1018. if (enable_ept)
  1019. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1020. if (vcpu->fpu_active)
  1021. eb &= ~(1u << NM_VECTOR);
  1022. vmcs_write32(EXCEPTION_BITMAP, eb);
  1023. }
  1024. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1025. {
  1026. unsigned i;
  1027. struct msr_autoload *m = &vmx->msr_autoload;
  1028. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1029. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1030. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1031. return;
  1032. }
  1033. for (i = 0; i < m->nr; ++i)
  1034. if (m->guest[i].index == msr)
  1035. break;
  1036. if (i == m->nr)
  1037. return;
  1038. --m->nr;
  1039. m->guest[i] = m->guest[m->nr];
  1040. m->host[i] = m->host[m->nr];
  1041. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1042. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1043. }
  1044. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1045. u64 guest_val, u64 host_val)
  1046. {
  1047. unsigned i;
  1048. struct msr_autoload *m = &vmx->msr_autoload;
  1049. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1050. vmcs_write64(GUEST_IA32_EFER, guest_val);
  1051. vmcs_write64(HOST_IA32_EFER, host_val);
  1052. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1053. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1054. return;
  1055. }
  1056. for (i = 0; i < m->nr; ++i)
  1057. if (m->guest[i].index == msr)
  1058. break;
  1059. if (i == m->nr) {
  1060. ++m->nr;
  1061. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1062. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1063. }
  1064. m->guest[i].index = msr;
  1065. m->guest[i].value = guest_val;
  1066. m->host[i].index = msr;
  1067. m->host[i].value = host_val;
  1068. }
  1069. static void reload_tss(void)
  1070. {
  1071. /*
  1072. * VT restores TR but not its size. Useless.
  1073. */
  1074. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1075. struct desc_struct *descs;
  1076. descs = (void *)gdt->address;
  1077. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1078. load_TR_desc();
  1079. }
  1080. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1081. {
  1082. u64 guest_efer;
  1083. u64 ignore_bits;
  1084. guest_efer = vmx->vcpu.arch.efer;
  1085. /*
  1086. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1087. * outside long mode
  1088. */
  1089. ignore_bits = EFER_NX | EFER_SCE;
  1090. #ifdef CONFIG_X86_64
  1091. ignore_bits |= EFER_LMA | EFER_LME;
  1092. /* SCE is meaningful only in long mode on Intel */
  1093. if (guest_efer & EFER_LMA)
  1094. ignore_bits &= ~(u64)EFER_SCE;
  1095. #endif
  1096. guest_efer &= ~ignore_bits;
  1097. guest_efer |= host_efer & ignore_bits;
  1098. vmx->guest_msrs[efer_offset].data = guest_efer;
  1099. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1100. clear_atomic_switch_msr(vmx, MSR_EFER);
  1101. /* On ept, can't emulate nx, and must switch nx atomically */
  1102. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1103. guest_efer = vmx->vcpu.arch.efer;
  1104. if (!(guest_efer & EFER_LMA))
  1105. guest_efer &= ~EFER_LME;
  1106. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1107. return false;
  1108. }
  1109. return true;
  1110. }
  1111. static unsigned long segment_base(u16 selector)
  1112. {
  1113. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1114. struct desc_struct *d;
  1115. unsigned long table_base;
  1116. unsigned long v;
  1117. if (!(selector & ~3))
  1118. return 0;
  1119. table_base = gdt->address;
  1120. if (selector & 4) { /* from ldt */
  1121. u16 ldt_selector = kvm_read_ldt();
  1122. if (!(ldt_selector & ~3))
  1123. return 0;
  1124. table_base = segment_base(ldt_selector);
  1125. }
  1126. d = (struct desc_struct *)(table_base + (selector & ~7));
  1127. v = get_desc_base(d);
  1128. #ifdef CONFIG_X86_64
  1129. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1130. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1131. #endif
  1132. return v;
  1133. }
  1134. static inline unsigned long kvm_read_tr_base(void)
  1135. {
  1136. u16 tr;
  1137. asm("str %0" : "=g"(tr));
  1138. return segment_base(tr);
  1139. }
  1140. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1141. {
  1142. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1143. int i;
  1144. if (vmx->host_state.loaded)
  1145. return;
  1146. vmx->host_state.loaded = 1;
  1147. /*
  1148. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1149. * allow segment selectors with cpl > 0 or ti == 1.
  1150. */
  1151. vmx->host_state.ldt_sel = kvm_read_ldt();
  1152. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1153. savesegment(fs, vmx->host_state.fs_sel);
  1154. if (!(vmx->host_state.fs_sel & 7)) {
  1155. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1156. vmx->host_state.fs_reload_needed = 0;
  1157. } else {
  1158. vmcs_write16(HOST_FS_SELECTOR, 0);
  1159. vmx->host_state.fs_reload_needed = 1;
  1160. }
  1161. savesegment(gs, vmx->host_state.gs_sel);
  1162. if (!(vmx->host_state.gs_sel & 7))
  1163. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1164. else {
  1165. vmcs_write16(HOST_GS_SELECTOR, 0);
  1166. vmx->host_state.gs_ldt_reload_needed = 1;
  1167. }
  1168. #ifdef CONFIG_X86_64
  1169. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1170. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1171. #else
  1172. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1173. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1174. #endif
  1175. #ifdef CONFIG_X86_64
  1176. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1177. if (is_long_mode(&vmx->vcpu))
  1178. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1179. #endif
  1180. for (i = 0; i < vmx->save_nmsrs; ++i)
  1181. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1182. vmx->guest_msrs[i].data,
  1183. vmx->guest_msrs[i].mask);
  1184. }
  1185. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1186. {
  1187. if (!vmx->host_state.loaded)
  1188. return;
  1189. ++vmx->vcpu.stat.host_state_reload;
  1190. vmx->host_state.loaded = 0;
  1191. #ifdef CONFIG_X86_64
  1192. if (is_long_mode(&vmx->vcpu))
  1193. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1194. #endif
  1195. if (vmx->host_state.gs_ldt_reload_needed) {
  1196. kvm_load_ldt(vmx->host_state.ldt_sel);
  1197. #ifdef CONFIG_X86_64
  1198. load_gs_index(vmx->host_state.gs_sel);
  1199. #else
  1200. loadsegment(gs, vmx->host_state.gs_sel);
  1201. #endif
  1202. }
  1203. if (vmx->host_state.fs_reload_needed)
  1204. loadsegment(fs, vmx->host_state.fs_sel);
  1205. reload_tss();
  1206. #ifdef CONFIG_X86_64
  1207. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1208. #endif
  1209. if (current_thread_info()->status & TS_USEDFPU)
  1210. clts();
  1211. load_gdt(&__get_cpu_var(host_gdt));
  1212. }
  1213. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1214. {
  1215. preempt_disable();
  1216. __vmx_load_host_state(vmx);
  1217. preempt_enable();
  1218. }
  1219. /*
  1220. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1221. * vcpu mutex is already taken.
  1222. */
  1223. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1224. {
  1225. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1226. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1227. if (!vmm_exclusive)
  1228. kvm_cpu_vmxon(phys_addr);
  1229. else if (vmx->loaded_vmcs->cpu != cpu)
  1230. loaded_vmcs_clear(vmx->loaded_vmcs);
  1231. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1232. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1233. vmcs_load(vmx->loaded_vmcs->vmcs);
  1234. }
  1235. if (vmx->loaded_vmcs->cpu != cpu) {
  1236. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1237. unsigned long sysenter_esp;
  1238. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1239. local_irq_disable();
  1240. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1241. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1242. local_irq_enable();
  1243. /*
  1244. * Linux uses per-cpu TSS and GDT, so set these when switching
  1245. * processors.
  1246. */
  1247. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1248. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1249. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1250. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1251. vmx->loaded_vmcs->cpu = cpu;
  1252. }
  1253. }
  1254. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1255. {
  1256. __vmx_load_host_state(to_vmx(vcpu));
  1257. if (!vmm_exclusive) {
  1258. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1259. vcpu->cpu = -1;
  1260. kvm_cpu_vmxoff();
  1261. }
  1262. }
  1263. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1264. {
  1265. ulong cr0;
  1266. if (vcpu->fpu_active)
  1267. return;
  1268. vcpu->fpu_active = 1;
  1269. cr0 = vmcs_readl(GUEST_CR0);
  1270. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1271. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1272. vmcs_writel(GUEST_CR0, cr0);
  1273. update_exception_bitmap(vcpu);
  1274. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1275. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1276. }
  1277. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1278. /*
  1279. * Return the cr0 value that a nested guest would read. This is a combination
  1280. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1281. * its hypervisor (cr0_read_shadow).
  1282. */
  1283. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1284. {
  1285. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1286. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1287. }
  1288. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1289. {
  1290. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1291. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1292. }
  1293. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1294. {
  1295. vmx_decache_cr0_guest_bits(vcpu);
  1296. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1297. update_exception_bitmap(vcpu);
  1298. vcpu->arch.cr0_guest_owned_bits = 0;
  1299. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1300. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1301. }
  1302. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1303. {
  1304. unsigned long rflags, save_rflags;
  1305. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1306. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1307. rflags = vmcs_readl(GUEST_RFLAGS);
  1308. if (to_vmx(vcpu)->rmode.vm86_active) {
  1309. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1310. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1311. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1312. }
  1313. to_vmx(vcpu)->rflags = rflags;
  1314. }
  1315. return to_vmx(vcpu)->rflags;
  1316. }
  1317. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1318. {
  1319. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1320. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1321. to_vmx(vcpu)->rflags = rflags;
  1322. if (to_vmx(vcpu)->rmode.vm86_active) {
  1323. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1324. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1325. }
  1326. vmcs_writel(GUEST_RFLAGS, rflags);
  1327. }
  1328. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1329. {
  1330. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1331. int ret = 0;
  1332. if (interruptibility & GUEST_INTR_STATE_STI)
  1333. ret |= KVM_X86_SHADOW_INT_STI;
  1334. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1335. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1336. return ret & mask;
  1337. }
  1338. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1339. {
  1340. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1341. u32 interruptibility = interruptibility_old;
  1342. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1343. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1344. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1345. else if (mask & KVM_X86_SHADOW_INT_STI)
  1346. interruptibility |= GUEST_INTR_STATE_STI;
  1347. if ((interruptibility != interruptibility_old))
  1348. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1349. }
  1350. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1351. {
  1352. unsigned long rip;
  1353. rip = kvm_rip_read(vcpu);
  1354. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1355. kvm_rip_write(vcpu, rip);
  1356. /* skipping an emulated instruction also counts */
  1357. vmx_set_interrupt_shadow(vcpu, 0);
  1358. }
  1359. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1360. {
  1361. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1362. * explicitly skip the instruction because if the HLT state is set, then
  1363. * the instruction is already executing and RIP has already been
  1364. * advanced. */
  1365. if (!yield_on_hlt &&
  1366. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1367. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1368. }
  1369. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1370. bool has_error_code, u32 error_code,
  1371. bool reinject)
  1372. {
  1373. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1374. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1375. if (has_error_code) {
  1376. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1377. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1378. }
  1379. if (vmx->rmode.vm86_active) {
  1380. int inc_eip = 0;
  1381. if (kvm_exception_is_soft(nr))
  1382. inc_eip = vcpu->arch.event_exit_inst_len;
  1383. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1384. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1385. return;
  1386. }
  1387. if (kvm_exception_is_soft(nr)) {
  1388. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1389. vmx->vcpu.arch.event_exit_inst_len);
  1390. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1391. } else
  1392. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1393. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1394. vmx_clear_hlt(vcpu);
  1395. }
  1396. static bool vmx_rdtscp_supported(void)
  1397. {
  1398. return cpu_has_vmx_rdtscp();
  1399. }
  1400. /*
  1401. * Swap MSR entry in host/guest MSR entry array.
  1402. */
  1403. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1404. {
  1405. struct shared_msr_entry tmp;
  1406. tmp = vmx->guest_msrs[to];
  1407. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1408. vmx->guest_msrs[from] = tmp;
  1409. }
  1410. /*
  1411. * Set up the vmcs to automatically save and restore system
  1412. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1413. * mode, as fiddling with msrs is very expensive.
  1414. */
  1415. static void setup_msrs(struct vcpu_vmx *vmx)
  1416. {
  1417. int save_nmsrs, index;
  1418. unsigned long *msr_bitmap;
  1419. vmx_load_host_state(vmx);
  1420. save_nmsrs = 0;
  1421. #ifdef CONFIG_X86_64
  1422. if (is_long_mode(&vmx->vcpu)) {
  1423. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1424. if (index >= 0)
  1425. move_msr_up(vmx, index, save_nmsrs++);
  1426. index = __find_msr_index(vmx, MSR_LSTAR);
  1427. if (index >= 0)
  1428. move_msr_up(vmx, index, save_nmsrs++);
  1429. index = __find_msr_index(vmx, MSR_CSTAR);
  1430. if (index >= 0)
  1431. move_msr_up(vmx, index, save_nmsrs++);
  1432. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1433. if (index >= 0 && vmx->rdtscp_enabled)
  1434. move_msr_up(vmx, index, save_nmsrs++);
  1435. /*
  1436. * MSR_STAR is only needed on long mode guests, and only
  1437. * if efer.sce is enabled.
  1438. */
  1439. index = __find_msr_index(vmx, MSR_STAR);
  1440. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1441. move_msr_up(vmx, index, save_nmsrs++);
  1442. }
  1443. #endif
  1444. index = __find_msr_index(vmx, MSR_EFER);
  1445. if (index >= 0 && update_transition_efer(vmx, index))
  1446. move_msr_up(vmx, index, save_nmsrs++);
  1447. vmx->save_nmsrs = save_nmsrs;
  1448. if (cpu_has_vmx_msr_bitmap()) {
  1449. if (is_long_mode(&vmx->vcpu))
  1450. msr_bitmap = vmx_msr_bitmap_longmode;
  1451. else
  1452. msr_bitmap = vmx_msr_bitmap_legacy;
  1453. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1454. }
  1455. }
  1456. /*
  1457. * reads and returns guest's timestamp counter "register"
  1458. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1459. */
  1460. static u64 guest_read_tsc(void)
  1461. {
  1462. u64 host_tsc, tsc_offset;
  1463. rdtscll(host_tsc);
  1464. tsc_offset = vmcs_read64(TSC_OFFSET);
  1465. return host_tsc + tsc_offset;
  1466. }
  1467. /*
  1468. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1469. * ioctl. In this case the call-back should update internal vmx state to make
  1470. * the changes effective.
  1471. */
  1472. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1473. {
  1474. /* Nothing to do here */
  1475. }
  1476. /*
  1477. * writes 'offset' into guest's timestamp counter offset register
  1478. */
  1479. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1480. {
  1481. vmcs_write64(TSC_OFFSET, offset);
  1482. }
  1483. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1484. {
  1485. u64 offset = vmcs_read64(TSC_OFFSET);
  1486. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1487. }
  1488. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1489. {
  1490. return target_tsc - native_read_tsc();
  1491. }
  1492. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1493. {
  1494. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1495. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1496. }
  1497. /*
  1498. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1499. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1500. * all guests if the "nested" module option is off, and can also be disabled
  1501. * for a single guest by disabling its VMX cpuid bit.
  1502. */
  1503. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1504. {
  1505. return nested && guest_cpuid_has_vmx(vcpu);
  1506. }
  1507. /*
  1508. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1509. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1510. * The same values should also be used to verify that vmcs12 control fields are
  1511. * valid during nested entry from L1 to L2.
  1512. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1513. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1514. * bit in the high half is on if the corresponding bit in the control field
  1515. * may be on. See also vmx_control_verify().
  1516. * TODO: allow these variables to be modified (downgraded) by module options
  1517. * or other means.
  1518. */
  1519. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1520. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1521. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1522. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1523. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1524. static __init void nested_vmx_setup_ctls_msrs(void)
  1525. {
  1526. /*
  1527. * Note that as a general rule, the high half of the MSRs (bits in
  1528. * the control fields which may be 1) should be initialized by the
  1529. * intersection of the underlying hardware's MSR (i.e., features which
  1530. * can be supported) and the list of features we want to expose -
  1531. * because they are known to be properly supported in our code.
  1532. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1533. * be set to 0, meaning that L1 may turn off any of these bits. The
  1534. * reason is that if one of these bits is necessary, it will appear
  1535. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1536. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1537. * nested_vmx_exit_handled() will not pass related exits to L1.
  1538. * These rules have exceptions below.
  1539. */
  1540. /* pin-based controls */
  1541. /*
  1542. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1543. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1544. */
  1545. nested_vmx_pinbased_ctls_low = 0x16 ;
  1546. nested_vmx_pinbased_ctls_high = 0x16 |
  1547. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1548. PIN_BASED_VIRTUAL_NMIS;
  1549. /* exit controls */
  1550. nested_vmx_exit_ctls_low = 0;
  1551. #ifdef CONFIG_X86_64
  1552. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1553. #else
  1554. nested_vmx_exit_ctls_high = 0;
  1555. #endif
  1556. /* entry controls */
  1557. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1558. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1559. nested_vmx_entry_ctls_low = 0;
  1560. nested_vmx_entry_ctls_high &=
  1561. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1562. /* cpu-based controls */
  1563. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1564. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1565. nested_vmx_procbased_ctls_low = 0;
  1566. nested_vmx_procbased_ctls_high &=
  1567. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1568. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1569. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1570. CPU_BASED_CR3_STORE_EXITING |
  1571. #ifdef CONFIG_X86_64
  1572. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1573. #endif
  1574. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1575. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1576. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1577. /*
  1578. * We can allow some features even when not supported by the
  1579. * hardware. For example, L1 can specify an MSR bitmap - and we
  1580. * can use it to avoid exits to L1 - even when L0 runs L2
  1581. * without MSR bitmaps.
  1582. */
  1583. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1584. /* secondary cpu-based controls */
  1585. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1586. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1587. nested_vmx_secondary_ctls_low = 0;
  1588. nested_vmx_secondary_ctls_high &=
  1589. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1590. }
  1591. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1592. {
  1593. /*
  1594. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1595. */
  1596. return ((control & high) | low) == control;
  1597. }
  1598. static inline u64 vmx_control_msr(u32 low, u32 high)
  1599. {
  1600. return low | ((u64)high << 32);
  1601. }
  1602. /*
  1603. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1604. * also let it use VMX-specific MSRs.
  1605. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1606. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1607. * like all other MSRs).
  1608. */
  1609. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1610. {
  1611. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1612. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1613. /*
  1614. * According to the spec, processors which do not support VMX
  1615. * should throw a #GP(0) when VMX capability MSRs are read.
  1616. */
  1617. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1618. return 1;
  1619. }
  1620. switch (msr_index) {
  1621. case MSR_IA32_FEATURE_CONTROL:
  1622. *pdata = 0;
  1623. break;
  1624. case MSR_IA32_VMX_BASIC:
  1625. /*
  1626. * This MSR reports some information about VMX support. We
  1627. * should return information about the VMX we emulate for the
  1628. * guest, and the VMCS structure we give it - not about the
  1629. * VMX support of the underlying hardware.
  1630. */
  1631. *pdata = VMCS12_REVISION |
  1632. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1633. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1634. break;
  1635. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1636. case MSR_IA32_VMX_PINBASED_CTLS:
  1637. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1638. nested_vmx_pinbased_ctls_high);
  1639. break;
  1640. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1641. case MSR_IA32_VMX_PROCBASED_CTLS:
  1642. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1643. nested_vmx_procbased_ctls_high);
  1644. break;
  1645. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1646. case MSR_IA32_VMX_EXIT_CTLS:
  1647. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1648. nested_vmx_exit_ctls_high);
  1649. break;
  1650. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1651. case MSR_IA32_VMX_ENTRY_CTLS:
  1652. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1653. nested_vmx_entry_ctls_high);
  1654. break;
  1655. case MSR_IA32_VMX_MISC:
  1656. *pdata = 0;
  1657. break;
  1658. /*
  1659. * These MSRs specify bits which the guest must keep fixed (on or off)
  1660. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1661. * We picked the standard core2 setting.
  1662. */
  1663. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1664. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1665. case MSR_IA32_VMX_CR0_FIXED0:
  1666. *pdata = VMXON_CR0_ALWAYSON;
  1667. break;
  1668. case MSR_IA32_VMX_CR0_FIXED1:
  1669. *pdata = -1ULL;
  1670. break;
  1671. case MSR_IA32_VMX_CR4_FIXED0:
  1672. *pdata = VMXON_CR4_ALWAYSON;
  1673. break;
  1674. case MSR_IA32_VMX_CR4_FIXED1:
  1675. *pdata = -1ULL;
  1676. break;
  1677. case MSR_IA32_VMX_VMCS_ENUM:
  1678. *pdata = 0x1f;
  1679. break;
  1680. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1681. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1682. nested_vmx_secondary_ctls_high);
  1683. break;
  1684. case MSR_IA32_VMX_EPT_VPID_CAP:
  1685. /* Currently, no nested ept or nested vpid */
  1686. *pdata = 0;
  1687. break;
  1688. default:
  1689. return 0;
  1690. }
  1691. return 1;
  1692. }
  1693. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1694. {
  1695. if (!nested_vmx_allowed(vcpu))
  1696. return 0;
  1697. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1698. /* TODO: the right thing. */
  1699. return 1;
  1700. /*
  1701. * No need to treat VMX capability MSRs specially: If we don't handle
  1702. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1703. */
  1704. return 0;
  1705. }
  1706. /*
  1707. * Reads an msr value (of 'msr_index') into 'pdata'.
  1708. * Returns 0 on success, non-0 otherwise.
  1709. * Assumes vcpu_load() was already called.
  1710. */
  1711. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1712. {
  1713. u64 data;
  1714. struct shared_msr_entry *msr;
  1715. if (!pdata) {
  1716. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1717. return -EINVAL;
  1718. }
  1719. switch (msr_index) {
  1720. #ifdef CONFIG_X86_64
  1721. case MSR_FS_BASE:
  1722. data = vmcs_readl(GUEST_FS_BASE);
  1723. break;
  1724. case MSR_GS_BASE:
  1725. data = vmcs_readl(GUEST_GS_BASE);
  1726. break;
  1727. case MSR_KERNEL_GS_BASE:
  1728. vmx_load_host_state(to_vmx(vcpu));
  1729. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1730. break;
  1731. #endif
  1732. case MSR_EFER:
  1733. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1734. case MSR_IA32_TSC:
  1735. data = guest_read_tsc();
  1736. break;
  1737. case MSR_IA32_SYSENTER_CS:
  1738. data = vmcs_read32(GUEST_SYSENTER_CS);
  1739. break;
  1740. case MSR_IA32_SYSENTER_EIP:
  1741. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1742. break;
  1743. case MSR_IA32_SYSENTER_ESP:
  1744. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1745. break;
  1746. case MSR_TSC_AUX:
  1747. if (!to_vmx(vcpu)->rdtscp_enabled)
  1748. return 1;
  1749. /* Otherwise falls through */
  1750. default:
  1751. vmx_load_host_state(to_vmx(vcpu));
  1752. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1753. return 0;
  1754. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1755. if (msr) {
  1756. vmx_load_host_state(to_vmx(vcpu));
  1757. data = msr->data;
  1758. break;
  1759. }
  1760. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1761. }
  1762. *pdata = data;
  1763. return 0;
  1764. }
  1765. /*
  1766. * Writes msr value into into the appropriate "register".
  1767. * Returns 0 on success, non-0 otherwise.
  1768. * Assumes vcpu_load() was already called.
  1769. */
  1770. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1771. {
  1772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1773. struct shared_msr_entry *msr;
  1774. int ret = 0;
  1775. switch (msr_index) {
  1776. case MSR_EFER:
  1777. vmx_load_host_state(vmx);
  1778. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1779. break;
  1780. #ifdef CONFIG_X86_64
  1781. case MSR_FS_BASE:
  1782. vmx_segment_cache_clear(vmx);
  1783. vmcs_writel(GUEST_FS_BASE, data);
  1784. break;
  1785. case MSR_GS_BASE:
  1786. vmx_segment_cache_clear(vmx);
  1787. vmcs_writel(GUEST_GS_BASE, data);
  1788. break;
  1789. case MSR_KERNEL_GS_BASE:
  1790. vmx_load_host_state(vmx);
  1791. vmx->msr_guest_kernel_gs_base = data;
  1792. break;
  1793. #endif
  1794. case MSR_IA32_SYSENTER_CS:
  1795. vmcs_write32(GUEST_SYSENTER_CS, data);
  1796. break;
  1797. case MSR_IA32_SYSENTER_EIP:
  1798. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1799. break;
  1800. case MSR_IA32_SYSENTER_ESP:
  1801. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1802. break;
  1803. case MSR_IA32_TSC:
  1804. kvm_write_tsc(vcpu, data);
  1805. break;
  1806. case MSR_IA32_CR_PAT:
  1807. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1808. vmcs_write64(GUEST_IA32_PAT, data);
  1809. vcpu->arch.pat = data;
  1810. break;
  1811. }
  1812. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1813. break;
  1814. case MSR_TSC_AUX:
  1815. if (!vmx->rdtscp_enabled)
  1816. return 1;
  1817. /* Check reserved bit, higher 32 bits should be zero */
  1818. if ((data >> 32) != 0)
  1819. return 1;
  1820. /* Otherwise falls through */
  1821. default:
  1822. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1823. break;
  1824. msr = find_msr_entry(vmx, msr_index);
  1825. if (msr) {
  1826. vmx_load_host_state(vmx);
  1827. msr->data = data;
  1828. break;
  1829. }
  1830. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1831. }
  1832. return ret;
  1833. }
  1834. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1835. {
  1836. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1837. switch (reg) {
  1838. case VCPU_REGS_RSP:
  1839. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1840. break;
  1841. case VCPU_REGS_RIP:
  1842. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1843. break;
  1844. case VCPU_EXREG_PDPTR:
  1845. if (enable_ept)
  1846. ept_save_pdptrs(vcpu);
  1847. break;
  1848. default:
  1849. break;
  1850. }
  1851. }
  1852. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1853. {
  1854. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1855. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1856. else
  1857. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1858. update_exception_bitmap(vcpu);
  1859. }
  1860. static __init int cpu_has_kvm_support(void)
  1861. {
  1862. return cpu_has_vmx();
  1863. }
  1864. static __init int vmx_disabled_by_bios(void)
  1865. {
  1866. u64 msr;
  1867. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1868. if (msr & FEATURE_CONTROL_LOCKED) {
  1869. /* launched w/ TXT and VMX disabled */
  1870. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1871. && tboot_enabled())
  1872. return 1;
  1873. /* launched w/o TXT and VMX only enabled w/ TXT */
  1874. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1875. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1876. && !tboot_enabled()) {
  1877. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1878. "activate TXT before enabling KVM\n");
  1879. return 1;
  1880. }
  1881. /* launched w/o TXT and VMX disabled */
  1882. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1883. && !tboot_enabled())
  1884. return 1;
  1885. }
  1886. return 0;
  1887. }
  1888. static void kvm_cpu_vmxon(u64 addr)
  1889. {
  1890. asm volatile (ASM_VMX_VMXON_RAX
  1891. : : "a"(&addr), "m"(addr)
  1892. : "memory", "cc");
  1893. }
  1894. static int hardware_enable(void *garbage)
  1895. {
  1896. int cpu = raw_smp_processor_id();
  1897. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1898. u64 old, test_bits;
  1899. if (read_cr4() & X86_CR4_VMXE)
  1900. return -EBUSY;
  1901. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1902. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1903. test_bits = FEATURE_CONTROL_LOCKED;
  1904. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1905. if (tboot_enabled())
  1906. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1907. if ((old & test_bits) != test_bits) {
  1908. /* enable and lock */
  1909. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1910. }
  1911. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1912. if (vmm_exclusive) {
  1913. kvm_cpu_vmxon(phys_addr);
  1914. ept_sync_global();
  1915. }
  1916. store_gdt(&__get_cpu_var(host_gdt));
  1917. return 0;
  1918. }
  1919. static void vmclear_local_loaded_vmcss(void)
  1920. {
  1921. int cpu = raw_smp_processor_id();
  1922. struct loaded_vmcs *v, *n;
  1923. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1924. loaded_vmcss_on_cpu_link)
  1925. __loaded_vmcs_clear(v);
  1926. }
  1927. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1928. * tricks.
  1929. */
  1930. static void kvm_cpu_vmxoff(void)
  1931. {
  1932. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1933. }
  1934. static void hardware_disable(void *garbage)
  1935. {
  1936. if (vmm_exclusive) {
  1937. vmclear_local_loaded_vmcss();
  1938. kvm_cpu_vmxoff();
  1939. }
  1940. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1941. }
  1942. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1943. u32 msr, u32 *result)
  1944. {
  1945. u32 vmx_msr_low, vmx_msr_high;
  1946. u32 ctl = ctl_min | ctl_opt;
  1947. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1948. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1949. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1950. /* Ensure minimum (required) set of control bits are supported. */
  1951. if (ctl_min & ~ctl)
  1952. return -EIO;
  1953. *result = ctl;
  1954. return 0;
  1955. }
  1956. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1957. {
  1958. u32 vmx_msr_low, vmx_msr_high;
  1959. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1960. return vmx_msr_high & ctl;
  1961. }
  1962. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1963. {
  1964. u32 vmx_msr_low, vmx_msr_high;
  1965. u32 min, opt, min2, opt2;
  1966. u32 _pin_based_exec_control = 0;
  1967. u32 _cpu_based_exec_control = 0;
  1968. u32 _cpu_based_2nd_exec_control = 0;
  1969. u32 _vmexit_control = 0;
  1970. u32 _vmentry_control = 0;
  1971. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1972. opt = PIN_BASED_VIRTUAL_NMIS;
  1973. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1974. &_pin_based_exec_control) < 0)
  1975. return -EIO;
  1976. min =
  1977. #ifdef CONFIG_X86_64
  1978. CPU_BASED_CR8_LOAD_EXITING |
  1979. CPU_BASED_CR8_STORE_EXITING |
  1980. #endif
  1981. CPU_BASED_CR3_LOAD_EXITING |
  1982. CPU_BASED_CR3_STORE_EXITING |
  1983. CPU_BASED_USE_IO_BITMAPS |
  1984. CPU_BASED_MOV_DR_EXITING |
  1985. CPU_BASED_USE_TSC_OFFSETING |
  1986. CPU_BASED_MWAIT_EXITING |
  1987. CPU_BASED_MONITOR_EXITING |
  1988. CPU_BASED_INVLPG_EXITING;
  1989. if (yield_on_hlt)
  1990. min |= CPU_BASED_HLT_EXITING;
  1991. opt = CPU_BASED_TPR_SHADOW |
  1992. CPU_BASED_USE_MSR_BITMAPS |
  1993. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1994. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1995. &_cpu_based_exec_control) < 0)
  1996. return -EIO;
  1997. #ifdef CONFIG_X86_64
  1998. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1999. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2000. ~CPU_BASED_CR8_STORE_EXITING;
  2001. #endif
  2002. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2003. min2 = 0;
  2004. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2005. SECONDARY_EXEC_WBINVD_EXITING |
  2006. SECONDARY_EXEC_ENABLE_VPID |
  2007. SECONDARY_EXEC_ENABLE_EPT |
  2008. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2009. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2010. SECONDARY_EXEC_RDTSCP;
  2011. if (adjust_vmx_controls(min2, opt2,
  2012. MSR_IA32_VMX_PROCBASED_CTLS2,
  2013. &_cpu_based_2nd_exec_control) < 0)
  2014. return -EIO;
  2015. }
  2016. #ifndef CONFIG_X86_64
  2017. if (!(_cpu_based_2nd_exec_control &
  2018. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2019. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2020. #endif
  2021. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2022. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2023. enabled */
  2024. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2025. CPU_BASED_CR3_STORE_EXITING |
  2026. CPU_BASED_INVLPG_EXITING);
  2027. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2028. vmx_capability.ept, vmx_capability.vpid);
  2029. }
  2030. min = 0;
  2031. #ifdef CONFIG_X86_64
  2032. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2033. #endif
  2034. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2035. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2036. &_vmexit_control) < 0)
  2037. return -EIO;
  2038. min = 0;
  2039. opt = VM_ENTRY_LOAD_IA32_PAT;
  2040. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2041. &_vmentry_control) < 0)
  2042. return -EIO;
  2043. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2044. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2045. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2046. return -EIO;
  2047. #ifdef CONFIG_X86_64
  2048. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2049. if (vmx_msr_high & (1u<<16))
  2050. return -EIO;
  2051. #endif
  2052. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2053. if (((vmx_msr_high >> 18) & 15) != 6)
  2054. return -EIO;
  2055. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2056. vmcs_conf->order = get_order(vmcs_config.size);
  2057. vmcs_conf->revision_id = vmx_msr_low;
  2058. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2059. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2060. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2061. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2062. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2063. cpu_has_load_ia32_efer =
  2064. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2065. VM_ENTRY_LOAD_IA32_EFER)
  2066. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2067. VM_EXIT_LOAD_IA32_EFER);
  2068. return 0;
  2069. }
  2070. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2071. {
  2072. int node = cpu_to_node(cpu);
  2073. struct page *pages;
  2074. struct vmcs *vmcs;
  2075. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2076. if (!pages)
  2077. return NULL;
  2078. vmcs = page_address(pages);
  2079. memset(vmcs, 0, vmcs_config.size);
  2080. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2081. return vmcs;
  2082. }
  2083. static struct vmcs *alloc_vmcs(void)
  2084. {
  2085. return alloc_vmcs_cpu(raw_smp_processor_id());
  2086. }
  2087. static void free_vmcs(struct vmcs *vmcs)
  2088. {
  2089. free_pages((unsigned long)vmcs, vmcs_config.order);
  2090. }
  2091. /*
  2092. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2093. */
  2094. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2095. {
  2096. if (!loaded_vmcs->vmcs)
  2097. return;
  2098. loaded_vmcs_clear(loaded_vmcs);
  2099. free_vmcs(loaded_vmcs->vmcs);
  2100. loaded_vmcs->vmcs = NULL;
  2101. }
  2102. static void free_kvm_area(void)
  2103. {
  2104. int cpu;
  2105. for_each_possible_cpu(cpu) {
  2106. free_vmcs(per_cpu(vmxarea, cpu));
  2107. per_cpu(vmxarea, cpu) = NULL;
  2108. }
  2109. }
  2110. static __init int alloc_kvm_area(void)
  2111. {
  2112. int cpu;
  2113. for_each_possible_cpu(cpu) {
  2114. struct vmcs *vmcs;
  2115. vmcs = alloc_vmcs_cpu(cpu);
  2116. if (!vmcs) {
  2117. free_kvm_area();
  2118. return -ENOMEM;
  2119. }
  2120. per_cpu(vmxarea, cpu) = vmcs;
  2121. }
  2122. return 0;
  2123. }
  2124. static __init int hardware_setup(void)
  2125. {
  2126. if (setup_vmcs_config(&vmcs_config) < 0)
  2127. return -EIO;
  2128. if (boot_cpu_has(X86_FEATURE_NX))
  2129. kvm_enable_efer_bits(EFER_NX);
  2130. if (!cpu_has_vmx_vpid())
  2131. enable_vpid = 0;
  2132. if (!cpu_has_vmx_ept() ||
  2133. !cpu_has_vmx_ept_4levels()) {
  2134. enable_ept = 0;
  2135. enable_unrestricted_guest = 0;
  2136. }
  2137. if (!cpu_has_vmx_unrestricted_guest())
  2138. enable_unrestricted_guest = 0;
  2139. if (!cpu_has_vmx_flexpriority())
  2140. flexpriority_enabled = 0;
  2141. if (!cpu_has_vmx_tpr_shadow())
  2142. kvm_x86_ops->update_cr8_intercept = NULL;
  2143. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2144. kvm_disable_largepages();
  2145. if (!cpu_has_vmx_ple())
  2146. ple_gap = 0;
  2147. if (nested)
  2148. nested_vmx_setup_ctls_msrs();
  2149. return alloc_kvm_area();
  2150. }
  2151. static __exit void hardware_unsetup(void)
  2152. {
  2153. free_kvm_area();
  2154. }
  2155. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2156. {
  2157. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2158. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2159. vmcs_write16(sf->selector, save->selector);
  2160. vmcs_writel(sf->base, save->base);
  2161. vmcs_write32(sf->limit, save->limit);
  2162. vmcs_write32(sf->ar_bytes, save->ar);
  2163. } else {
  2164. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2165. << AR_DPL_SHIFT;
  2166. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2167. }
  2168. }
  2169. static void enter_pmode(struct kvm_vcpu *vcpu)
  2170. {
  2171. unsigned long flags;
  2172. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2173. vmx->emulation_required = 1;
  2174. vmx->rmode.vm86_active = 0;
  2175. vmx_segment_cache_clear(vmx);
  2176. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2177. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2178. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2179. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2180. flags = vmcs_readl(GUEST_RFLAGS);
  2181. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2182. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2183. vmcs_writel(GUEST_RFLAGS, flags);
  2184. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2185. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2186. update_exception_bitmap(vcpu);
  2187. if (emulate_invalid_guest_state)
  2188. return;
  2189. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2190. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2191. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2192. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2193. vmx_segment_cache_clear(vmx);
  2194. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2195. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2196. vmcs_write16(GUEST_CS_SELECTOR,
  2197. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2198. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2199. }
  2200. static gva_t rmode_tss_base(struct kvm *kvm)
  2201. {
  2202. if (!kvm->arch.tss_addr) {
  2203. struct kvm_memslots *slots;
  2204. gfn_t base_gfn;
  2205. slots = kvm_memslots(kvm);
  2206. base_gfn = slots->memslots[0].base_gfn +
  2207. kvm->memslots->memslots[0].npages - 3;
  2208. return base_gfn << PAGE_SHIFT;
  2209. }
  2210. return kvm->arch.tss_addr;
  2211. }
  2212. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2213. {
  2214. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2215. save->selector = vmcs_read16(sf->selector);
  2216. save->base = vmcs_readl(sf->base);
  2217. save->limit = vmcs_read32(sf->limit);
  2218. save->ar = vmcs_read32(sf->ar_bytes);
  2219. vmcs_write16(sf->selector, save->base >> 4);
  2220. vmcs_write32(sf->base, save->base & 0xffff0);
  2221. vmcs_write32(sf->limit, 0xffff);
  2222. vmcs_write32(sf->ar_bytes, 0xf3);
  2223. if (save->base & 0xf)
  2224. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2225. " aligned when entering protected mode (seg=%d)",
  2226. seg);
  2227. }
  2228. static void enter_rmode(struct kvm_vcpu *vcpu)
  2229. {
  2230. unsigned long flags;
  2231. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2232. if (enable_unrestricted_guest)
  2233. return;
  2234. vmx->emulation_required = 1;
  2235. vmx->rmode.vm86_active = 1;
  2236. /*
  2237. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2238. * vcpu. Call it here with phys address pointing 16M below 4G.
  2239. */
  2240. if (!vcpu->kvm->arch.tss_addr) {
  2241. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2242. "called before entering vcpu\n");
  2243. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2244. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2245. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2246. }
  2247. vmx_segment_cache_clear(vmx);
  2248. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2249. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2250. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2251. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2252. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2253. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2254. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2255. flags = vmcs_readl(GUEST_RFLAGS);
  2256. vmx->rmode.save_rflags = flags;
  2257. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2258. vmcs_writel(GUEST_RFLAGS, flags);
  2259. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2260. update_exception_bitmap(vcpu);
  2261. if (emulate_invalid_guest_state)
  2262. goto continue_rmode;
  2263. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2264. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2265. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2266. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2267. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2268. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2269. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2270. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2271. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2272. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2273. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2274. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2275. continue_rmode:
  2276. kvm_mmu_reset_context(vcpu);
  2277. }
  2278. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2279. {
  2280. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2281. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2282. if (!msr)
  2283. return;
  2284. /*
  2285. * Force kernel_gs_base reloading before EFER changes, as control
  2286. * of this msr depends on is_long_mode().
  2287. */
  2288. vmx_load_host_state(to_vmx(vcpu));
  2289. vcpu->arch.efer = efer;
  2290. if (efer & EFER_LMA) {
  2291. vmcs_write32(VM_ENTRY_CONTROLS,
  2292. vmcs_read32(VM_ENTRY_CONTROLS) |
  2293. VM_ENTRY_IA32E_MODE);
  2294. msr->data = efer;
  2295. } else {
  2296. vmcs_write32(VM_ENTRY_CONTROLS,
  2297. vmcs_read32(VM_ENTRY_CONTROLS) &
  2298. ~VM_ENTRY_IA32E_MODE);
  2299. msr->data = efer & ~EFER_LME;
  2300. }
  2301. setup_msrs(vmx);
  2302. }
  2303. #ifdef CONFIG_X86_64
  2304. static void enter_lmode(struct kvm_vcpu *vcpu)
  2305. {
  2306. u32 guest_tr_ar;
  2307. vmx_segment_cache_clear(to_vmx(vcpu));
  2308. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2309. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2310. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  2311. __func__);
  2312. vmcs_write32(GUEST_TR_AR_BYTES,
  2313. (guest_tr_ar & ~AR_TYPE_MASK)
  2314. | AR_TYPE_BUSY_64_TSS);
  2315. }
  2316. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2317. }
  2318. static void exit_lmode(struct kvm_vcpu *vcpu)
  2319. {
  2320. vmcs_write32(VM_ENTRY_CONTROLS,
  2321. vmcs_read32(VM_ENTRY_CONTROLS)
  2322. & ~VM_ENTRY_IA32E_MODE);
  2323. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2324. }
  2325. #endif
  2326. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2327. {
  2328. vpid_sync_context(to_vmx(vcpu));
  2329. if (enable_ept) {
  2330. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2331. return;
  2332. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2333. }
  2334. }
  2335. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2336. {
  2337. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2338. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2339. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2340. }
  2341. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2342. {
  2343. if (enable_ept && is_paging(vcpu))
  2344. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2345. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2346. }
  2347. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2348. {
  2349. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2350. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2351. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2352. }
  2353. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2354. {
  2355. if (!test_bit(VCPU_EXREG_PDPTR,
  2356. (unsigned long *)&vcpu->arch.regs_dirty))
  2357. return;
  2358. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2359. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2360. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2361. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2362. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2363. }
  2364. }
  2365. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2366. {
  2367. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2368. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2369. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2370. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2371. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2372. }
  2373. __set_bit(VCPU_EXREG_PDPTR,
  2374. (unsigned long *)&vcpu->arch.regs_avail);
  2375. __set_bit(VCPU_EXREG_PDPTR,
  2376. (unsigned long *)&vcpu->arch.regs_dirty);
  2377. }
  2378. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2379. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2380. unsigned long cr0,
  2381. struct kvm_vcpu *vcpu)
  2382. {
  2383. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2384. vmx_decache_cr3(vcpu);
  2385. if (!(cr0 & X86_CR0_PG)) {
  2386. /* From paging/starting to nonpaging */
  2387. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2388. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2389. (CPU_BASED_CR3_LOAD_EXITING |
  2390. CPU_BASED_CR3_STORE_EXITING));
  2391. vcpu->arch.cr0 = cr0;
  2392. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2393. } else if (!is_paging(vcpu)) {
  2394. /* From nonpaging to paging */
  2395. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2396. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2397. ~(CPU_BASED_CR3_LOAD_EXITING |
  2398. CPU_BASED_CR3_STORE_EXITING));
  2399. vcpu->arch.cr0 = cr0;
  2400. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2401. }
  2402. if (!(cr0 & X86_CR0_WP))
  2403. *hw_cr0 &= ~X86_CR0_WP;
  2404. }
  2405. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2406. {
  2407. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2408. unsigned long hw_cr0;
  2409. if (enable_unrestricted_guest)
  2410. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2411. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2412. else
  2413. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2414. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2415. enter_pmode(vcpu);
  2416. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2417. enter_rmode(vcpu);
  2418. #ifdef CONFIG_X86_64
  2419. if (vcpu->arch.efer & EFER_LME) {
  2420. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2421. enter_lmode(vcpu);
  2422. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2423. exit_lmode(vcpu);
  2424. }
  2425. #endif
  2426. if (enable_ept)
  2427. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2428. if (!vcpu->fpu_active)
  2429. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2430. vmcs_writel(CR0_READ_SHADOW, cr0);
  2431. vmcs_writel(GUEST_CR0, hw_cr0);
  2432. vcpu->arch.cr0 = cr0;
  2433. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2434. }
  2435. static u64 construct_eptp(unsigned long root_hpa)
  2436. {
  2437. u64 eptp;
  2438. /* TODO write the value reading from MSR */
  2439. eptp = VMX_EPT_DEFAULT_MT |
  2440. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2441. eptp |= (root_hpa & PAGE_MASK);
  2442. return eptp;
  2443. }
  2444. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2445. {
  2446. unsigned long guest_cr3;
  2447. u64 eptp;
  2448. guest_cr3 = cr3;
  2449. if (enable_ept) {
  2450. eptp = construct_eptp(cr3);
  2451. vmcs_write64(EPT_POINTER, eptp);
  2452. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2453. vcpu->kvm->arch.ept_identity_map_addr;
  2454. ept_load_pdptrs(vcpu);
  2455. }
  2456. vmx_flush_tlb(vcpu);
  2457. vmcs_writel(GUEST_CR3, guest_cr3);
  2458. }
  2459. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2460. {
  2461. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2462. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2463. if (cr4 & X86_CR4_VMXE) {
  2464. /*
  2465. * To use VMXON (and later other VMX instructions), a guest
  2466. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2467. * So basically the check on whether to allow nested VMX
  2468. * is here.
  2469. */
  2470. if (!nested_vmx_allowed(vcpu))
  2471. return 1;
  2472. } else if (to_vmx(vcpu)->nested.vmxon)
  2473. return 1;
  2474. vcpu->arch.cr4 = cr4;
  2475. if (enable_ept) {
  2476. if (!is_paging(vcpu)) {
  2477. hw_cr4 &= ~X86_CR4_PAE;
  2478. hw_cr4 |= X86_CR4_PSE;
  2479. } else if (!(cr4 & X86_CR4_PAE)) {
  2480. hw_cr4 &= ~X86_CR4_PAE;
  2481. }
  2482. }
  2483. vmcs_writel(CR4_READ_SHADOW, cr4);
  2484. vmcs_writel(GUEST_CR4, hw_cr4);
  2485. return 0;
  2486. }
  2487. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2488. struct kvm_segment *var, int seg)
  2489. {
  2490. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2491. struct kvm_save_segment *save;
  2492. u32 ar;
  2493. if (vmx->rmode.vm86_active
  2494. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2495. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2496. || seg == VCPU_SREG_GS)
  2497. && !emulate_invalid_guest_state) {
  2498. switch (seg) {
  2499. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2500. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2501. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2502. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2503. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2504. default: BUG();
  2505. }
  2506. var->selector = save->selector;
  2507. var->base = save->base;
  2508. var->limit = save->limit;
  2509. ar = save->ar;
  2510. if (seg == VCPU_SREG_TR
  2511. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2512. goto use_saved_rmode_seg;
  2513. }
  2514. var->base = vmx_read_guest_seg_base(vmx, seg);
  2515. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2516. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2517. ar = vmx_read_guest_seg_ar(vmx, seg);
  2518. use_saved_rmode_seg:
  2519. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2520. ar = 0;
  2521. var->type = ar & 15;
  2522. var->s = (ar >> 4) & 1;
  2523. var->dpl = (ar >> 5) & 3;
  2524. var->present = (ar >> 7) & 1;
  2525. var->avl = (ar >> 12) & 1;
  2526. var->l = (ar >> 13) & 1;
  2527. var->db = (ar >> 14) & 1;
  2528. var->g = (ar >> 15) & 1;
  2529. var->unusable = (ar >> 16) & 1;
  2530. }
  2531. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2532. {
  2533. struct kvm_segment s;
  2534. if (to_vmx(vcpu)->rmode.vm86_active) {
  2535. vmx_get_segment(vcpu, &s, seg);
  2536. return s.base;
  2537. }
  2538. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2539. }
  2540. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2541. {
  2542. if (!is_protmode(vcpu))
  2543. return 0;
  2544. if (!is_long_mode(vcpu)
  2545. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2546. return 3;
  2547. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2548. }
  2549. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2550. {
  2551. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2552. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2553. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2554. }
  2555. return to_vmx(vcpu)->cpl;
  2556. }
  2557. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2558. {
  2559. u32 ar;
  2560. if (var->unusable)
  2561. ar = 1 << 16;
  2562. else {
  2563. ar = var->type & 15;
  2564. ar |= (var->s & 1) << 4;
  2565. ar |= (var->dpl & 3) << 5;
  2566. ar |= (var->present & 1) << 7;
  2567. ar |= (var->avl & 1) << 12;
  2568. ar |= (var->l & 1) << 13;
  2569. ar |= (var->db & 1) << 14;
  2570. ar |= (var->g & 1) << 15;
  2571. }
  2572. if (ar == 0) /* a 0 value means unusable */
  2573. ar = AR_UNUSABLE_MASK;
  2574. return ar;
  2575. }
  2576. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2577. struct kvm_segment *var, int seg)
  2578. {
  2579. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2580. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2581. u32 ar;
  2582. vmx_segment_cache_clear(vmx);
  2583. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2584. vmcs_write16(sf->selector, var->selector);
  2585. vmx->rmode.tr.selector = var->selector;
  2586. vmx->rmode.tr.base = var->base;
  2587. vmx->rmode.tr.limit = var->limit;
  2588. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2589. return;
  2590. }
  2591. vmcs_writel(sf->base, var->base);
  2592. vmcs_write32(sf->limit, var->limit);
  2593. vmcs_write16(sf->selector, var->selector);
  2594. if (vmx->rmode.vm86_active && var->s) {
  2595. /*
  2596. * Hack real-mode segments into vm86 compatibility.
  2597. */
  2598. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2599. vmcs_writel(sf->base, 0xf0000);
  2600. ar = 0xf3;
  2601. } else
  2602. ar = vmx_segment_access_rights(var);
  2603. /*
  2604. * Fix the "Accessed" bit in AR field of segment registers for older
  2605. * qemu binaries.
  2606. * IA32 arch specifies that at the time of processor reset the
  2607. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2608. * is setting it to 0 in the usedland code. This causes invalid guest
  2609. * state vmexit when "unrestricted guest" mode is turned on.
  2610. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2611. * tree. Newer qemu binaries with that qemu fix would not need this
  2612. * kvm hack.
  2613. */
  2614. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2615. ar |= 0x1; /* Accessed */
  2616. vmcs_write32(sf->ar_bytes, ar);
  2617. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2618. }
  2619. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2620. {
  2621. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2622. *db = (ar >> 14) & 1;
  2623. *l = (ar >> 13) & 1;
  2624. }
  2625. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2626. {
  2627. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2628. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2629. }
  2630. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2631. {
  2632. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2633. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2634. }
  2635. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2636. {
  2637. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2638. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2639. }
  2640. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2641. {
  2642. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2643. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2644. }
  2645. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2646. {
  2647. struct kvm_segment var;
  2648. u32 ar;
  2649. vmx_get_segment(vcpu, &var, seg);
  2650. ar = vmx_segment_access_rights(&var);
  2651. if (var.base != (var.selector << 4))
  2652. return false;
  2653. if (var.limit != 0xffff)
  2654. return false;
  2655. if (ar != 0xf3)
  2656. return false;
  2657. return true;
  2658. }
  2659. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2660. {
  2661. struct kvm_segment cs;
  2662. unsigned int cs_rpl;
  2663. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2664. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2665. if (cs.unusable)
  2666. return false;
  2667. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2668. return false;
  2669. if (!cs.s)
  2670. return false;
  2671. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2672. if (cs.dpl > cs_rpl)
  2673. return false;
  2674. } else {
  2675. if (cs.dpl != cs_rpl)
  2676. return false;
  2677. }
  2678. if (!cs.present)
  2679. return false;
  2680. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2681. return true;
  2682. }
  2683. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2684. {
  2685. struct kvm_segment ss;
  2686. unsigned int ss_rpl;
  2687. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2688. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2689. if (ss.unusable)
  2690. return true;
  2691. if (ss.type != 3 && ss.type != 7)
  2692. return false;
  2693. if (!ss.s)
  2694. return false;
  2695. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2696. return false;
  2697. if (!ss.present)
  2698. return false;
  2699. return true;
  2700. }
  2701. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2702. {
  2703. struct kvm_segment var;
  2704. unsigned int rpl;
  2705. vmx_get_segment(vcpu, &var, seg);
  2706. rpl = var.selector & SELECTOR_RPL_MASK;
  2707. if (var.unusable)
  2708. return true;
  2709. if (!var.s)
  2710. return false;
  2711. if (!var.present)
  2712. return false;
  2713. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2714. if (var.dpl < rpl) /* DPL < RPL */
  2715. return false;
  2716. }
  2717. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2718. * rights flags
  2719. */
  2720. return true;
  2721. }
  2722. static bool tr_valid(struct kvm_vcpu *vcpu)
  2723. {
  2724. struct kvm_segment tr;
  2725. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2726. if (tr.unusable)
  2727. return false;
  2728. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2729. return false;
  2730. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2731. return false;
  2732. if (!tr.present)
  2733. return false;
  2734. return true;
  2735. }
  2736. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2737. {
  2738. struct kvm_segment ldtr;
  2739. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2740. if (ldtr.unusable)
  2741. return true;
  2742. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2743. return false;
  2744. if (ldtr.type != 2)
  2745. return false;
  2746. if (!ldtr.present)
  2747. return false;
  2748. return true;
  2749. }
  2750. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2751. {
  2752. struct kvm_segment cs, ss;
  2753. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2754. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2755. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2756. (ss.selector & SELECTOR_RPL_MASK));
  2757. }
  2758. /*
  2759. * Check if guest state is valid. Returns true if valid, false if
  2760. * not.
  2761. * We assume that registers are always usable
  2762. */
  2763. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2764. {
  2765. /* real mode guest state checks */
  2766. if (!is_protmode(vcpu)) {
  2767. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2768. return false;
  2769. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2770. return false;
  2771. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2772. return false;
  2773. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2774. return false;
  2775. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2776. return false;
  2777. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2778. return false;
  2779. } else {
  2780. /* protected mode guest state checks */
  2781. if (!cs_ss_rpl_check(vcpu))
  2782. return false;
  2783. if (!code_segment_valid(vcpu))
  2784. return false;
  2785. if (!stack_segment_valid(vcpu))
  2786. return false;
  2787. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2788. return false;
  2789. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2790. return false;
  2791. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2792. return false;
  2793. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2794. return false;
  2795. if (!tr_valid(vcpu))
  2796. return false;
  2797. if (!ldtr_valid(vcpu))
  2798. return false;
  2799. }
  2800. /* TODO:
  2801. * - Add checks on RIP
  2802. * - Add checks on RFLAGS
  2803. */
  2804. return true;
  2805. }
  2806. static int init_rmode_tss(struct kvm *kvm)
  2807. {
  2808. gfn_t fn;
  2809. u16 data = 0;
  2810. int r, idx, ret = 0;
  2811. idx = srcu_read_lock(&kvm->srcu);
  2812. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2813. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2814. if (r < 0)
  2815. goto out;
  2816. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2817. r = kvm_write_guest_page(kvm, fn++, &data,
  2818. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2819. if (r < 0)
  2820. goto out;
  2821. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2822. if (r < 0)
  2823. goto out;
  2824. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2825. if (r < 0)
  2826. goto out;
  2827. data = ~0;
  2828. r = kvm_write_guest_page(kvm, fn, &data,
  2829. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2830. sizeof(u8));
  2831. if (r < 0)
  2832. goto out;
  2833. ret = 1;
  2834. out:
  2835. srcu_read_unlock(&kvm->srcu, idx);
  2836. return ret;
  2837. }
  2838. static int init_rmode_identity_map(struct kvm *kvm)
  2839. {
  2840. int i, idx, r, ret;
  2841. pfn_t identity_map_pfn;
  2842. u32 tmp;
  2843. if (!enable_ept)
  2844. return 1;
  2845. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2846. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2847. "haven't been allocated!\n");
  2848. return 0;
  2849. }
  2850. if (likely(kvm->arch.ept_identity_pagetable_done))
  2851. return 1;
  2852. ret = 0;
  2853. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2854. idx = srcu_read_lock(&kvm->srcu);
  2855. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2856. if (r < 0)
  2857. goto out;
  2858. /* Set up identity-mapping pagetable for EPT in real mode */
  2859. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2860. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2861. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2862. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2863. &tmp, i * sizeof(tmp), sizeof(tmp));
  2864. if (r < 0)
  2865. goto out;
  2866. }
  2867. kvm->arch.ept_identity_pagetable_done = true;
  2868. ret = 1;
  2869. out:
  2870. srcu_read_unlock(&kvm->srcu, idx);
  2871. return ret;
  2872. }
  2873. static void seg_setup(int seg)
  2874. {
  2875. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2876. unsigned int ar;
  2877. vmcs_write16(sf->selector, 0);
  2878. vmcs_writel(sf->base, 0);
  2879. vmcs_write32(sf->limit, 0xffff);
  2880. if (enable_unrestricted_guest) {
  2881. ar = 0x93;
  2882. if (seg == VCPU_SREG_CS)
  2883. ar |= 0x08; /* code segment */
  2884. } else
  2885. ar = 0xf3;
  2886. vmcs_write32(sf->ar_bytes, ar);
  2887. }
  2888. static int alloc_apic_access_page(struct kvm *kvm)
  2889. {
  2890. struct kvm_userspace_memory_region kvm_userspace_mem;
  2891. int r = 0;
  2892. mutex_lock(&kvm->slots_lock);
  2893. if (kvm->arch.apic_access_page)
  2894. goto out;
  2895. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2896. kvm_userspace_mem.flags = 0;
  2897. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2898. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2899. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2900. if (r)
  2901. goto out;
  2902. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2903. out:
  2904. mutex_unlock(&kvm->slots_lock);
  2905. return r;
  2906. }
  2907. static int alloc_identity_pagetable(struct kvm *kvm)
  2908. {
  2909. struct kvm_userspace_memory_region kvm_userspace_mem;
  2910. int r = 0;
  2911. mutex_lock(&kvm->slots_lock);
  2912. if (kvm->arch.ept_identity_pagetable)
  2913. goto out;
  2914. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2915. kvm_userspace_mem.flags = 0;
  2916. kvm_userspace_mem.guest_phys_addr =
  2917. kvm->arch.ept_identity_map_addr;
  2918. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2919. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2920. if (r)
  2921. goto out;
  2922. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2923. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2924. out:
  2925. mutex_unlock(&kvm->slots_lock);
  2926. return r;
  2927. }
  2928. static void allocate_vpid(struct vcpu_vmx *vmx)
  2929. {
  2930. int vpid;
  2931. vmx->vpid = 0;
  2932. if (!enable_vpid)
  2933. return;
  2934. spin_lock(&vmx_vpid_lock);
  2935. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2936. if (vpid < VMX_NR_VPIDS) {
  2937. vmx->vpid = vpid;
  2938. __set_bit(vpid, vmx_vpid_bitmap);
  2939. }
  2940. spin_unlock(&vmx_vpid_lock);
  2941. }
  2942. static void free_vpid(struct vcpu_vmx *vmx)
  2943. {
  2944. if (!enable_vpid)
  2945. return;
  2946. spin_lock(&vmx_vpid_lock);
  2947. if (vmx->vpid != 0)
  2948. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2949. spin_unlock(&vmx_vpid_lock);
  2950. }
  2951. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2952. {
  2953. int f = sizeof(unsigned long);
  2954. if (!cpu_has_vmx_msr_bitmap())
  2955. return;
  2956. /*
  2957. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2958. * have the write-low and read-high bitmap offsets the wrong way round.
  2959. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2960. */
  2961. if (msr <= 0x1fff) {
  2962. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2963. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2964. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2965. msr &= 0x1fff;
  2966. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2967. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2968. }
  2969. }
  2970. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2971. {
  2972. if (!longmode_only)
  2973. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2974. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2975. }
  2976. /*
  2977. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  2978. * will not change in the lifetime of the guest.
  2979. * Note that host-state that does change is set elsewhere. E.g., host-state
  2980. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  2981. */
  2982. static void vmx_set_constant_host_state(void)
  2983. {
  2984. u32 low32, high32;
  2985. unsigned long tmpl;
  2986. struct desc_ptr dt;
  2987. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2988. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2989. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2990. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2991. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2992. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2993. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2994. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2995. native_store_idt(&dt);
  2996. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2997. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  2998. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  2999. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3000. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3001. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3002. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3003. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3004. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3005. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3006. }
  3007. }
  3008. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3009. {
  3010. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3011. if (enable_ept)
  3012. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3013. if (is_guest_mode(&vmx->vcpu))
  3014. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3015. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3016. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3017. }
  3018. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3019. {
  3020. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3021. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3022. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3023. #ifdef CONFIG_X86_64
  3024. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3025. CPU_BASED_CR8_LOAD_EXITING;
  3026. #endif
  3027. }
  3028. if (!enable_ept)
  3029. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3030. CPU_BASED_CR3_LOAD_EXITING |
  3031. CPU_BASED_INVLPG_EXITING;
  3032. return exec_control;
  3033. }
  3034. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3035. {
  3036. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3037. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3038. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3039. if (vmx->vpid == 0)
  3040. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3041. if (!enable_ept) {
  3042. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3043. enable_unrestricted_guest = 0;
  3044. }
  3045. if (!enable_unrestricted_guest)
  3046. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3047. if (!ple_gap)
  3048. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3049. return exec_control;
  3050. }
  3051. /*
  3052. * Sets up the vmcs for emulated real mode.
  3053. */
  3054. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3055. {
  3056. unsigned long a;
  3057. int i;
  3058. /* I/O */
  3059. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3060. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3061. if (cpu_has_vmx_msr_bitmap())
  3062. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3063. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3064. /* Control */
  3065. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3066. vmcs_config.pin_based_exec_ctrl);
  3067. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3068. if (cpu_has_secondary_exec_ctrls()) {
  3069. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3070. vmx_secondary_exec_control(vmx));
  3071. }
  3072. if (ple_gap) {
  3073. vmcs_write32(PLE_GAP, ple_gap);
  3074. vmcs_write32(PLE_WINDOW, ple_window);
  3075. }
  3076. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  3077. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  3078. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3079. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3080. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3081. vmx_set_constant_host_state();
  3082. #ifdef CONFIG_X86_64
  3083. rdmsrl(MSR_FS_BASE, a);
  3084. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3085. rdmsrl(MSR_GS_BASE, a);
  3086. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3087. #else
  3088. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3089. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3090. #endif
  3091. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3092. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3093. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3094. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3095. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3096. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3097. u32 msr_low, msr_high;
  3098. u64 host_pat;
  3099. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3100. host_pat = msr_low | ((u64) msr_high << 32);
  3101. /* Write the default value follow host pat */
  3102. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3103. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3104. vmx->vcpu.arch.pat = host_pat;
  3105. }
  3106. for (i = 0; i < NR_VMX_MSR; ++i) {
  3107. u32 index = vmx_msr_index[i];
  3108. u32 data_low, data_high;
  3109. int j = vmx->nmsrs;
  3110. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3111. continue;
  3112. if (wrmsr_safe(index, data_low, data_high) < 0)
  3113. continue;
  3114. vmx->guest_msrs[j].index = i;
  3115. vmx->guest_msrs[j].data = 0;
  3116. vmx->guest_msrs[j].mask = -1ull;
  3117. ++vmx->nmsrs;
  3118. }
  3119. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3120. /* 22.2.1, 20.8.1 */
  3121. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3122. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3123. set_cr4_guest_host_mask(vmx);
  3124. kvm_write_tsc(&vmx->vcpu, 0);
  3125. return 0;
  3126. }
  3127. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3128. {
  3129. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3130. u64 msr;
  3131. int ret;
  3132. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3133. vmx->rmode.vm86_active = 0;
  3134. vmx->soft_vnmi_blocked = 0;
  3135. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3136. kvm_set_cr8(&vmx->vcpu, 0);
  3137. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3138. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3139. msr |= MSR_IA32_APICBASE_BSP;
  3140. kvm_set_apic_base(&vmx->vcpu, msr);
  3141. ret = fx_init(&vmx->vcpu);
  3142. if (ret != 0)
  3143. goto out;
  3144. vmx_segment_cache_clear(vmx);
  3145. seg_setup(VCPU_SREG_CS);
  3146. /*
  3147. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3148. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3149. */
  3150. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3151. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3152. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3153. } else {
  3154. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3155. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3156. }
  3157. seg_setup(VCPU_SREG_DS);
  3158. seg_setup(VCPU_SREG_ES);
  3159. seg_setup(VCPU_SREG_FS);
  3160. seg_setup(VCPU_SREG_GS);
  3161. seg_setup(VCPU_SREG_SS);
  3162. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3163. vmcs_writel(GUEST_TR_BASE, 0);
  3164. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3165. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3166. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3167. vmcs_writel(GUEST_LDTR_BASE, 0);
  3168. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3169. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3170. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3171. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3172. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3173. vmcs_writel(GUEST_RFLAGS, 0x02);
  3174. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3175. kvm_rip_write(vcpu, 0xfff0);
  3176. else
  3177. kvm_rip_write(vcpu, 0);
  3178. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3179. vmcs_writel(GUEST_DR7, 0x400);
  3180. vmcs_writel(GUEST_GDTR_BASE, 0);
  3181. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3182. vmcs_writel(GUEST_IDTR_BASE, 0);
  3183. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3184. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3185. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3186. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3187. /* Special registers */
  3188. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3189. setup_msrs(vmx);
  3190. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3191. if (cpu_has_vmx_tpr_shadow()) {
  3192. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3193. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3194. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3195. __pa(vmx->vcpu.arch.apic->regs));
  3196. vmcs_write32(TPR_THRESHOLD, 0);
  3197. }
  3198. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3199. vmcs_write64(APIC_ACCESS_ADDR,
  3200. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3201. if (vmx->vpid != 0)
  3202. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3203. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3204. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3205. vmx_set_cr4(&vmx->vcpu, 0);
  3206. vmx_set_efer(&vmx->vcpu, 0);
  3207. vmx_fpu_activate(&vmx->vcpu);
  3208. update_exception_bitmap(&vmx->vcpu);
  3209. vpid_sync_context(vmx);
  3210. ret = 0;
  3211. /* HACK: Don't enable emulation on guest boot/reset */
  3212. vmx->emulation_required = 0;
  3213. out:
  3214. return ret;
  3215. }
  3216. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3217. {
  3218. u32 cpu_based_vm_exec_control;
  3219. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3220. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3221. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3222. }
  3223. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3224. {
  3225. u32 cpu_based_vm_exec_control;
  3226. if (!cpu_has_virtual_nmis()) {
  3227. enable_irq_window(vcpu);
  3228. return;
  3229. }
  3230. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3231. enable_irq_window(vcpu);
  3232. return;
  3233. }
  3234. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3235. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3236. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3237. }
  3238. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3239. {
  3240. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3241. uint32_t intr;
  3242. int irq = vcpu->arch.interrupt.nr;
  3243. trace_kvm_inj_virq(irq);
  3244. ++vcpu->stat.irq_injections;
  3245. if (vmx->rmode.vm86_active) {
  3246. int inc_eip = 0;
  3247. if (vcpu->arch.interrupt.soft)
  3248. inc_eip = vcpu->arch.event_exit_inst_len;
  3249. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3250. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3251. return;
  3252. }
  3253. intr = irq | INTR_INFO_VALID_MASK;
  3254. if (vcpu->arch.interrupt.soft) {
  3255. intr |= INTR_TYPE_SOFT_INTR;
  3256. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3257. vmx->vcpu.arch.event_exit_inst_len);
  3258. } else
  3259. intr |= INTR_TYPE_EXT_INTR;
  3260. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3261. vmx_clear_hlt(vcpu);
  3262. }
  3263. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3264. {
  3265. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3266. if (!cpu_has_virtual_nmis()) {
  3267. /*
  3268. * Tracking the NMI-blocked state in software is built upon
  3269. * finding the next open IRQ window. This, in turn, depends on
  3270. * well-behaving guests: They have to keep IRQs disabled at
  3271. * least as long as the NMI handler runs. Otherwise we may
  3272. * cause NMI nesting, maybe breaking the guest. But as this is
  3273. * highly unlikely, we can live with the residual risk.
  3274. */
  3275. vmx->soft_vnmi_blocked = 1;
  3276. vmx->vnmi_blocked_time = 0;
  3277. }
  3278. ++vcpu->stat.nmi_injections;
  3279. vmx->nmi_known_unmasked = false;
  3280. if (vmx->rmode.vm86_active) {
  3281. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3282. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3283. return;
  3284. }
  3285. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3286. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3287. vmx_clear_hlt(vcpu);
  3288. }
  3289. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3290. {
  3291. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3292. return 0;
  3293. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3294. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3295. | GUEST_INTR_STATE_NMI));
  3296. }
  3297. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3298. {
  3299. if (!cpu_has_virtual_nmis())
  3300. return to_vmx(vcpu)->soft_vnmi_blocked;
  3301. if (to_vmx(vcpu)->nmi_known_unmasked)
  3302. return false;
  3303. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3304. }
  3305. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3306. {
  3307. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3308. if (!cpu_has_virtual_nmis()) {
  3309. if (vmx->soft_vnmi_blocked != masked) {
  3310. vmx->soft_vnmi_blocked = masked;
  3311. vmx->vnmi_blocked_time = 0;
  3312. }
  3313. } else {
  3314. vmx->nmi_known_unmasked = !masked;
  3315. if (masked)
  3316. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3317. GUEST_INTR_STATE_NMI);
  3318. else
  3319. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3320. GUEST_INTR_STATE_NMI);
  3321. }
  3322. }
  3323. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3324. {
  3325. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3326. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3327. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3328. }
  3329. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3330. {
  3331. int ret;
  3332. struct kvm_userspace_memory_region tss_mem = {
  3333. .slot = TSS_PRIVATE_MEMSLOT,
  3334. .guest_phys_addr = addr,
  3335. .memory_size = PAGE_SIZE * 3,
  3336. .flags = 0,
  3337. };
  3338. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3339. if (ret)
  3340. return ret;
  3341. kvm->arch.tss_addr = addr;
  3342. if (!init_rmode_tss(kvm))
  3343. return -ENOMEM;
  3344. return 0;
  3345. }
  3346. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3347. int vec, u32 err_code)
  3348. {
  3349. /*
  3350. * Instruction with address size override prefix opcode 0x67
  3351. * Cause the #SS fault with 0 error code in VM86 mode.
  3352. */
  3353. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3354. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3355. return 1;
  3356. /*
  3357. * Forward all other exceptions that are valid in real mode.
  3358. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3359. * the required debugging infrastructure rework.
  3360. */
  3361. switch (vec) {
  3362. case DB_VECTOR:
  3363. if (vcpu->guest_debug &
  3364. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3365. return 0;
  3366. kvm_queue_exception(vcpu, vec);
  3367. return 1;
  3368. case BP_VECTOR:
  3369. /*
  3370. * Update instruction length as we may reinject the exception
  3371. * from user space while in guest debugging mode.
  3372. */
  3373. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3374. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3375. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3376. return 0;
  3377. /* fall through */
  3378. case DE_VECTOR:
  3379. case OF_VECTOR:
  3380. case BR_VECTOR:
  3381. case UD_VECTOR:
  3382. case DF_VECTOR:
  3383. case SS_VECTOR:
  3384. case GP_VECTOR:
  3385. case MF_VECTOR:
  3386. kvm_queue_exception(vcpu, vec);
  3387. return 1;
  3388. }
  3389. return 0;
  3390. }
  3391. /*
  3392. * Trigger machine check on the host. We assume all the MSRs are already set up
  3393. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3394. * We pass a fake environment to the machine check handler because we want
  3395. * the guest to be always treated like user space, no matter what context
  3396. * it used internally.
  3397. */
  3398. static void kvm_machine_check(void)
  3399. {
  3400. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3401. struct pt_regs regs = {
  3402. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3403. .flags = X86_EFLAGS_IF,
  3404. };
  3405. do_machine_check(&regs, 0);
  3406. #endif
  3407. }
  3408. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3409. {
  3410. /* already handled by vcpu_run */
  3411. return 1;
  3412. }
  3413. static int handle_exception(struct kvm_vcpu *vcpu)
  3414. {
  3415. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3416. struct kvm_run *kvm_run = vcpu->run;
  3417. u32 intr_info, ex_no, error_code;
  3418. unsigned long cr2, rip, dr6;
  3419. u32 vect_info;
  3420. enum emulation_result er;
  3421. vect_info = vmx->idt_vectoring_info;
  3422. intr_info = vmx->exit_intr_info;
  3423. if (is_machine_check(intr_info))
  3424. return handle_machine_check(vcpu);
  3425. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3426. !is_page_fault(intr_info)) {
  3427. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3428. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3429. vcpu->run->internal.ndata = 2;
  3430. vcpu->run->internal.data[0] = vect_info;
  3431. vcpu->run->internal.data[1] = intr_info;
  3432. return 0;
  3433. }
  3434. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3435. return 1; /* already handled by vmx_vcpu_run() */
  3436. if (is_no_device(intr_info)) {
  3437. vmx_fpu_activate(vcpu);
  3438. return 1;
  3439. }
  3440. if (is_invalid_opcode(intr_info)) {
  3441. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3442. if (er != EMULATE_DONE)
  3443. kvm_queue_exception(vcpu, UD_VECTOR);
  3444. return 1;
  3445. }
  3446. error_code = 0;
  3447. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3448. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3449. if (is_page_fault(intr_info)) {
  3450. /* EPT won't cause page fault directly */
  3451. if (enable_ept)
  3452. BUG();
  3453. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3454. trace_kvm_page_fault(cr2, error_code);
  3455. if (kvm_event_needs_reinjection(vcpu))
  3456. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3457. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3458. }
  3459. if (vmx->rmode.vm86_active &&
  3460. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3461. error_code)) {
  3462. if (vcpu->arch.halt_request) {
  3463. vcpu->arch.halt_request = 0;
  3464. return kvm_emulate_halt(vcpu);
  3465. }
  3466. return 1;
  3467. }
  3468. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3469. switch (ex_no) {
  3470. case DB_VECTOR:
  3471. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3472. if (!(vcpu->guest_debug &
  3473. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3474. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3475. kvm_queue_exception(vcpu, DB_VECTOR);
  3476. return 1;
  3477. }
  3478. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3479. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3480. /* fall through */
  3481. case BP_VECTOR:
  3482. /*
  3483. * Update instruction length as we may reinject #BP from
  3484. * user space while in guest debugging mode. Reading it for
  3485. * #DB as well causes no harm, it is not used in that case.
  3486. */
  3487. vmx->vcpu.arch.event_exit_inst_len =
  3488. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3489. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3490. rip = kvm_rip_read(vcpu);
  3491. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3492. kvm_run->debug.arch.exception = ex_no;
  3493. break;
  3494. default:
  3495. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3496. kvm_run->ex.exception = ex_no;
  3497. kvm_run->ex.error_code = error_code;
  3498. break;
  3499. }
  3500. return 0;
  3501. }
  3502. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3503. {
  3504. ++vcpu->stat.irq_exits;
  3505. return 1;
  3506. }
  3507. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3508. {
  3509. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3510. return 0;
  3511. }
  3512. static int handle_io(struct kvm_vcpu *vcpu)
  3513. {
  3514. unsigned long exit_qualification;
  3515. int size, in, string;
  3516. unsigned port;
  3517. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3518. string = (exit_qualification & 16) != 0;
  3519. in = (exit_qualification & 8) != 0;
  3520. ++vcpu->stat.io_exits;
  3521. if (string || in)
  3522. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3523. port = exit_qualification >> 16;
  3524. size = (exit_qualification & 7) + 1;
  3525. skip_emulated_instruction(vcpu);
  3526. return kvm_fast_pio_out(vcpu, size, port);
  3527. }
  3528. static void
  3529. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3530. {
  3531. /*
  3532. * Patch in the VMCALL instruction:
  3533. */
  3534. hypercall[0] = 0x0f;
  3535. hypercall[1] = 0x01;
  3536. hypercall[2] = 0xc1;
  3537. }
  3538. static int handle_cr(struct kvm_vcpu *vcpu)
  3539. {
  3540. unsigned long exit_qualification, val;
  3541. int cr;
  3542. int reg;
  3543. int err;
  3544. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3545. cr = exit_qualification & 15;
  3546. reg = (exit_qualification >> 8) & 15;
  3547. switch ((exit_qualification >> 4) & 3) {
  3548. case 0: /* mov to cr */
  3549. val = kvm_register_read(vcpu, reg);
  3550. trace_kvm_cr_write(cr, val);
  3551. switch (cr) {
  3552. case 0:
  3553. err = kvm_set_cr0(vcpu, val);
  3554. kvm_complete_insn_gp(vcpu, err);
  3555. return 1;
  3556. case 3:
  3557. err = kvm_set_cr3(vcpu, val);
  3558. kvm_complete_insn_gp(vcpu, err);
  3559. return 1;
  3560. case 4:
  3561. err = kvm_set_cr4(vcpu, val);
  3562. kvm_complete_insn_gp(vcpu, err);
  3563. return 1;
  3564. case 8: {
  3565. u8 cr8_prev = kvm_get_cr8(vcpu);
  3566. u8 cr8 = kvm_register_read(vcpu, reg);
  3567. err = kvm_set_cr8(vcpu, cr8);
  3568. kvm_complete_insn_gp(vcpu, err);
  3569. if (irqchip_in_kernel(vcpu->kvm))
  3570. return 1;
  3571. if (cr8_prev <= cr8)
  3572. return 1;
  3573. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3574. return 0;
  3575. }
  3576. };
  3577. break;
  3578. case 2: /* clts */
  3579. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3580. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3581. skip_emulated_instruction(vcpu);
  3582. vmx_fpu_activate(vcpu);
  3583. return 1;
  3584. case 1: /*mov from cr*/
  3585. switch (cr) {
  3586. case 3:
  3587. val = kvm_read_cr3(vcpu);
  3588. kvm_register_write(vcpu, reg, val);
  3589. trace_kvm_cr_read(cr, val);
  3590. skip_emulated_instruction(vcpu);
  3591. return 1;
  3592. case 8:
  3593. val = kvm_get_cr8(vcpu);
  3594. kvm_register_write(vcpu, reg, val);
  3595. trace_kvm_cr_read(cr, val);
  3596. skip_emulated_instruction(vcpu);
  3597. return 1;
  3598. }
  3599. break;
  3600. case 3: /* lmsw */
  3601. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3602. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3603. kvm_lmsw(vcpu, val);
  3604. skip_emulated_instruction(vcpu);
  3605. return 1;
  3606. default:
  3607. break;
  3608. }
  3609. vcpu->run->exit_reason = 0;
  3610. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3611. (int)(exit_qualification >> 4) & 3, cr);
  3612. return 0;
  3613. }
  3614. static int handle_dr(struct kvm_vcpu *vcpu)
  3615. {
  3616. unsigned long exit_qualification;
  3617. int dr, reg;
  3618. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3619. if (!kvm_require_cpl(vcpu, 0))
  3620. return 1;
  3621. dr = vmcs_readl(GUEST_DR7);
  3622. if (dr & DR7_GD) {
  3623. /*
  3624. * As the vm-exit takes precedence over the debug trap, we
  3625. * need to emulate the latter, either for the host or the
  3626. * guest debugging itself.
  3627. */
  3628. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3629. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3630. vcpu->run->debug.arch.dr7 = dr;
  3631. vcpu->run->debug.arch.pc =
  3632. vmcs_readl(GUEST_CS_BASE) +
  3633. vmcs_readl(GUEST_RIP);
  3634. vcpu->run->debug.arch.exception = DB_VECTOR;
  3635. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3636. return 0;
  3637. } else {
  3638. vcpu->arch.dr7 &= ~DR7_GD;
  3639. vcpu->arch.dr6 |= DR6_BD;
  3640. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3641. kvm_queue_exception(vcpu, DB_VECTOR);
  3642. return 1;
  3643. }
  3644. }
  3645. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3646. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3647. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3648. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3649. unsigned long val;
  3650. if (!kvm_get_dr(vcpu, dr, &val))
  3651. kvm_register_write(vcpu, reg, val);
  3652. } else
  3653. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3654. skip_emulated_instruction(vcpu);
  3655. return 1;
  3656. }
  3657. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3658. {
  3659. vmcs_writel(GUEST_DR7, val);
  3660. }
  3661. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3662. {
  3663. kvm_emulate_cpuid(vcpu);
  3664. return 1;
  3665. }
  3666. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3667. {
  3668. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3669. u64 data;
  3670. if (vmx_get_msr(vcpu, ecx, &data)) {
  3671. trace_kvm_msr_read_ex(ecx);
  3672. kvm_inject_gp(vcpu, 0);
  3673. return 1;
  3674. }
  3675. trace_kvm_msr_read(ecx, data);
  3676. /* FIXME: handling of bits 32:63 of rax, rdx */
  3677. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3678. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3679. skip_emulated_instruction(vcpu);
  3680. return 1;
  3681. }
  3682. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3683. {
  3684. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3685. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3686. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3687. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3688. trace_kvm_msr_write_ex(ecx, data);
  3689. kvm_inject_gp(vcpu, 0);
  3690. return 1;
  3691. }
  3692. trace_kvm_msr_write(ecx, data);
  3693. skip_emulated_instruction(vcpu);
  3694. return 1;
  3695. }
  3696. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3697. {
  3698. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3699. return 1;
  3700. }
  3701. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3702. {
  3703. u32 cpu_based_vm_exec_control;
  3704. /* clear pending irq */
  3705. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3706. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3707. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3708. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3709. ++vcpu->stat.irq_window_exits;
  3710. /*
  3711. * If the user space waits to inject interrupts, exit as soon as
  3712. * possible
  3713. */
  3714. if (!irqchip_in_kernel(vcpu->kvm) &&
  3715. vcpu->run->request_interrupt_window &&
  3716. !kvm_cpu_has_interrupt(vcpu)) {
  3717. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3718. return 0;
  3719. }
  3720. return 1;
  3721. }
  3722. static int handle_halt(struct kvm_vcpu *vcpu)
  3723. {
  3724. skip_emulated_instruction(vcpu);
  3725. return kvm_emulate_halt(vcpu);
  3726. }
  3727. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3728. {
  3729. skip_emulated_instruction(vcpu);
  3730. kvm_emulate_hypercall(vcpu);
  3731. return 1;
  3732. }
  3733. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  3734. {
  3735. kvm_queue_exception(vcpu, UD_VECTOR);
  3736. return 1;
  3737. }
  3738. static int handle_invd(struct kvm_vcpu *vcpu)
  3739. {
  3740. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3741. }
  3742. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3743. {
  3744. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3745. kvm_mmu_invlpg(vcpu, exit_qualification);
  3746. skip_emulated_instruction(vcpu);
  3747. return 1;
  3748. }
  3749. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3750. {
  3751. skip_emulated_instruction(vcpu);
  3752. kvm_emulate_wbinvd(vcpu);
  3753. return 1;
  3754. }
  3755. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3756. {
  3757. u64 new_bv = kvm_read_edx_eax(vcpu);
  3758. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3759. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3760. skip_emulated_instruction(vcpu);
  3761. return 1;
  3762. }
  3763. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3764. {
  3765. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3766. }
  3767. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3768. {
  3769. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3770. unsigned long exit_qualification;
  3771. bool has_error_code = false;
  3772. u32 error_code = 0;
  3773. u16 tss_selector;
  3774. int reason, type, idt_v;
  3775. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3776. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3777. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3778. reason = (u32)exit_qualification >> 30;
  3779. if (reason == TASK_SWITCH_GATE && idt_v) {
  3780. switch (type) {
  3781. case INTR_TYPE_NMI_INTR:
  3782. vcpu->arch.nmi_injected = false;
  3783. vmx_set_nmi_mask(vcpu, true);
  3784. break;
  3785. case INTR_TYPE_EXT_INTR:
  3786. case INTR_TYPE_SOFT_INTR:
  3787. kvm_clear_interrupt_queue(vcpu);
  3788. break;
  3789. case INTR_TYPE_HARD_EXCEPTION:
  3790. if (vmx->idt_vectoring_info &
  3791. VECTORING_INFO_DELIVER_CODE_MASK) {
  3792. has_error_code = true;
  3793. error_code =
  3794. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3795. }
  3796. /* fall through */
  3797. case INTR_TYPE_SOFT_EXCEPTION:
  3798. kvm_clear_exception_queue(vcpu);
  3799. break;
  3800. default:
  3801. break;
  3802. }
  3803. }
  3804. tss_selector = exit_qualification;
  3805. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3806. type != INTR_TYPE_EXT_INTR &&
  3807. type != INTR_TYPE_NMI_INTR))
  3808. skip_emulated_instruction(vcpu);
  3809. if (kvm_task_switch(vcpu, tss_selector, reason,
  3810. has_error_code, error_code) == EMULATE_FAIL) {
  3811. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3812. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3813. vcpu->run->internal.ndata = 0;
  3814. return 0;
  3815. }
  3816. /* clear all local breakpoint enable flags */
  3817. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3818. /*
  3819. * TODO: What about debug traps on tss switch?
  3820. * Are we supposed to inject them and update dr6?
  3821. */
  3822. return 1;
  3823. }
  3824. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3825. {
  3826. unsigned long exit_qualification;
  3827. gpa_t gpa;
  3828. int gla_validity;
  3829. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3830. if (exit_qualification & (1 << 6)) {
  3831. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3832. return -EINVAL;
  3833. }
  3834. gla_validity = (exit_qualification >> 7) & 0x3;
  3835. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3836. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3837. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3838. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3839. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3840. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3841. (long unsigned int)exit_qualification);
  3842. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3843. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3844. return 0;
  3845. }
  3846. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3847. trace_kvm_page_fault(gpa, exit_qualification);
  3848. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3849. }
  3850. static u64 ept_rsvd_mask(u64 spte, int level)
  3851. {
  3852. int i;
  3853. u64 mask = 0;
  3854. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3855. mask |= (1ULL << i);
  3856. if (level > 2)
  3857. /* bits 7:3 reserved */
  3858. mask |= 0xf8;
  3859. else if (level == 2) {
  3860. if (spte & (1ULL << 7))
  3861. /* 2MB ref, bits 20:12 reserved */
  3862. mask |= 0x1ff000;
  3863. else
  3864. /* bits 6:3 reserved */
  3865. mask |= 0x78;
  3866. }
  3867. return mask;
  3868. }
  3869. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3870. int level)
  3871. {
  3872. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3873. /* 010b (write-only) */
  3874. WARN_ON((spte & 0x7) == 0x2);
  3875. /* 110b (write/execute) */
  3876. WARN_ON((spte & 0x7) == 0x6);
  3877. /* 100b (execute-only) and value not supported by logical processor */
  3878. if (!cpu_has_vmx_ept_execute_only())
  3879. WARN_ON((spte & 0x7) == 0x4);
  3880. /* not 000b */
  3881. if ((spte & 0x7)) {
  3882. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3883. if (rsvd_bits != 0) {
  3884. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3885. __func__, rsvd_bits);
  3886. WARN_ON(1);
  3887. }
  3888. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3889. u64 ept_mem_type = (spte & 0x38) >> 3;
  3890. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3891. ept_mem_type == 7) {
  3892. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3893. __func__, ept_mem_type);
  3894. WARN_ON(1);
  3895. }
  3896. }
  3897. }
  3898. }
  3899. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3900. {
  3901. u64 sptes[4];
  3902. int nr_sptes, i;
  3903. gpa_t gpa;
  3904. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3905. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3906. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3907. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3908. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3909. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3910. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3911. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3912. return 0;
  3913. }
  3914. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3915. {
  3916. u32 cpu_based_vm_exec_control;
  3917. /* clear pending NMI */
  3918. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3919. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3920. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3921. ++vcpu->stat.nmi_window_exits;
  3922. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3923. return 1;
  3924. }
  3925. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3926. {
  3927. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3928. enum emulation_result err = EMULATE_DONE;
  3929. int ret = 1;
  3930. u32 cpu_exec_ctrl;
  3931. bool intr_window_requested;
  3932. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3933. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3934. while (!guest_state_valid(vcpu)) {
  3935. if (intr_window_requested
  3936. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3937. return handle_interrupt_window(&vmx->vcpu);
  3938. err = emulate_instruction(vcpu, 0);
  3939. if (err == EMULATE_DO_MMIO) {
  3940. ret = 0;
  3941. goto out;
  3942. }
  3943. if (err != EMULATE_DONE)
  3944. return 0;
  3945. if (signal_pending(current))
  3946. goto out;
  3947. if (need_resched())
  3948. schedule();
  3949. }
  3950. vmx->emulation_required = 0;
  3951. out:
  3952. return ret;
  3953. }
  3954. /*
  3955. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3956. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3957. */
  3958. static int handle_pause(struct kvm_vcpu *vcpu)
  3959. {
  3960. skip_emulated_instruction(vcpu);
  3961. kvm_vcpu_on_spin(vcpu);
  3962. return 1;
  3963. }
  3964. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3965. {
  3966. kvm_queue_exception(vcpu, UD_VECTOR);
  3967. return 1;
  3968. }
  3969. /*
  3970. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  3971. * We could reuse a single VMCS for all the L2 guests, but we also want the
  3972. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  3973. * allows keeping them loaded on the processor, and in the future will allow
  3974. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  3975. * every entry if they never change.
  3976. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  3977. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  3978. *
  3979. * The following functions allocate and free a vmcs02 in this pool.
  3980. */
  3981. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  3982. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  3983. {
  3984. struct vmcs02_list *item;
  3985. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  3986. if (item->vmptr == vmx->nested.current_vmptr) {
  3987. list_move(&item->list, &vmx->nested.vmcs02_pool);
  3988. return &item->vmcs02;
  3989. }
  3990. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  3991. /* Recycle the least recently used VMCS. */
  3992. item = list_entry(vmx->nested.vmcs02_pool.prev,
  3993. struct vmcs02_list, list);
  3994. item->vmptr = vmx->nested.current_vmptr;
  3995. list_move(&item->list, &vmx->nested.vmcs02_pool);
  3996. return &item->vmcs02;
  3997. }
  3998. /* Create a new VMCS */
  3999. item = (struct vmcs02_list *)
  4000. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4001. if (!item)
  4002. return NULL;
  4003. item->vmcs02.vmcs = alloc_vmcs();
  4004. if (!item->vmcs02.vmcs) {
  4005. kfree(item);
  4006. return NULL;
  4007. }
  4008. loaded_vmcs_init(&item->vmcs02);
  4009. item->vmptr = vmx->nested.current_vmptr;
  4010. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4011. vmx->nested.vmcs02_num++;
  4012. return &item->vmcs02;
  4013. }
  4014. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4015. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4016. {
  4017. struct vmcs02_list *item;
  4018. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4019. if (item->vmptr == vmptr) {
  4020. free_loaded_vmcs(&item->vmcs02);
  4021. list_del(&item->list);
  4022. kfree(item);
  4023. vmx->nested.vmcs02_num--;
  4024. return;
  4025. }
  4026. }
  4027. /*
  4028. * Free all VMCSs saved for this vcpu, except the one pointed by
  4029. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4030. * currently used, if running L2), and vmcs01 when running L2.
  4031. */
  4032. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4033. {
  4034. struct vmcs02_list *item, *n;
  4035. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4036. if (vmx->loaded_vmcs != &item->vmcs02)
  4037. free_loaded_vmcs(&item->vmcs02);
  4038. list_del(&item->list);
  4039. kfree(item);
  4040. }
  4041. vmx->nested.vmcs02_num = 0;
  4042. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4043. free_loaded_vmcs(&vmx->vmcs01);
  4044. }
  4045. /*
  4046. * Emulate the VMXON instruction.
  4047. * Currently, we just remember that VMX is active, and do not save or even
  4048. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4049. * do not currently need to store anything in that guest-allocated memory
  4050. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4051. * argument is different from the VMXON pointer (which the spec says they do).
  4052. */
  4053. static int handle_vmon(struct kvm_vcpu *vcpu)
  4054. {
  4055. struct kvm_segment cs;
  4056. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4057. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4058. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4059. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4060. * Otherwise, we should fail with #UD. We test these now:
  4061. */
  4062. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4063. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4064. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4065. kvm_queue_exception(vcpu, UD_VECTOR);
  4066. return 1;
  4067. }
  4068. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4069. if (is_long_mode(vcpu) && !cs.l) {
  4070. kvm_queue_exception(vcpu, UD_VECTOR);
  4071. return 1;
  4072. }
  4073. if (vmx_get_cpl(vcpu)) {
  4074. kvm_inject_gp(vcpu, 0);
  4075. return 1;
  4076. }
  4077. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4078. vmx->nested.vmcs02_num = 0;
  4079. vmx->nested.vmxon = true;
  4080. skip_emulated_instruction(vcpu);
  4081. return 1;
  4082. }
  4083. /*
  4084. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4085. * for running VMX instructions (except VMXON, whose prerequisites are
  4086. * slightly different). It also specifies what exception to inject otherwise.
  4087. */
  4088. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4089. {
  4090. struct kvm_segment cs;
  4091. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4092. if (!vmx->nested.vmxon) {
  4093. kvm_queue_exception(vcpu, UD_VECTOR);
  4094. return 0;
  4095. }
  4096. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4097. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4098. (is_long_mode(vcpu) && !cs.l)) {
  4099. kvm_queue_exception(vcpu, UD_VECTOR);
  4100. return 0;
  4101. }
  4102. if (vmx_get_cpl(vcpu)) {
  4103. kvm_inject_gp(vcpu, 0);
  4104. return 0;
  4105. }
  4106. return 1;
  4107. }
  4108. /*
  4109. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4110. * just stops using VMX.
  4111. */
  4112. static void free_nested(struct vcpu_vmx *vmx)
  4113. {
  4114. if (!vmx->nested.vmxon)
  4115. return;
  4116. vmx->nested.vmxon = false;
  4117. if (vmx->nested.current_vmptr != -1ull) {
  4118. kunmap(vmx->nested.current_vmcs12_page);
  4119. nested_release_page(vmx->nested.current_vmcs12_page);
  4120. vmx->nested.current_vmptr = -1ull;
  4121. vmx->nested.current_vmcs12 = NULL;
  4122. }
  4123. /* Unpin physical memory we referred to in current vmcs02 */
  4124. if (vmx->nested.apic_access_page) {
  4125. nested_release_page(vmx->nested.apic_access_page);
  4126. vmx->nested.apic_access_page = 0;
  4127. }
  4128. nested_free_all_saved_vmcss(vmx);
  4129. }
  4130. /* Emulate the VMXOFF instruction */
  4131. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4132. {
  4133. if (!nested_vmx_check_permission(vcpu))
  4134. return 1;
  4135. free_nested(to_vmx(vcpu));
  4136. skip_emulated_instruction(vcpu);
  4137. return 1;
  4138. }
  4139. /*
  4140. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4141. * exit caused by such an instruction (run by a guest hypervisor).
  4142. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4143. * #UD or #GP.
  4144. */
  4145. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4146. unsigned long exit_qualification,
  4147. u32 vmx_instruction_info, gva_t *ret)
  4148. {
  4149. /*
  4150. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4151. * Execution", on an exit, vmx_instruction_info holds most of the
  4152. * addressing components of the operand. Only the displacement part
  4153. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4154. * For how an actual address is calculated from all these components,
  4155. * refer to Vol. 1, "Operand Addressing".
  4156. */
  4157. int scaling = vmx_instruction_info & 3;
  4158. int addr_size = (vmx_instruction_info >> 7) & 7;
  4159. bool is_reg = vmx_instruction_info & (1u << 10);
  4160. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4161. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4162. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4163. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4164. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4165. if (is_reg) {
  4166. kvm_queue_exception(vcpu, UD_VECTOR);
  4167. return 1;
  4168. }
  4169. /* Addr = segment_base + offset */
  4170. /* offset = base + [index * scale] + displacement */
  4171. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4172. if (base_is_valid)
  4173. *ret += kvm_register_read(vcpu, base_reg);
  4174. if (index_is_valid)
  4175. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4176. *ret += exit_qualification; /* holds the displacement */
  4177. if (addr_size == 1) /* 32 bit */
  4178. *ret &= 0xffffffff;
  4179. /*
  4180. * TODO: throw #GP (and return 1) in various cases that the VM*
  4181. * instructions require it - e.g., offset beyond segment limit,
  4182. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4183. * address, and so on. Currently these are not checked.
  4184. */
  4185. return 0;
  4186. }
  4187. /*
  4188. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4189. * set the success or error code of an emulated VMX instruction, as specified
  4190. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4191. */
  4192. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4193. {
  4194. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4195. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4196. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4197. }
  4198. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4199. {
  4200. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4201. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4202. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4203. | X86_EFLAGS_CF);
  4204. }
  4205. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4206. u32 vm_instruction_error)
  4207. {
  4208. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4209. /*
  4210. * failValid writes the error number to the current VMCS, which
  4211. * can't be done there isn't a current VMCS.
  4212. */
  4213. nested_vmx_failInvalid(vcpu);
  4214. return;
  4215. }
  4216. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4217. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4218. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4219. | X86_EFLAGS_ZF);
  4220. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4221. }
  4222. /* Emulate the VMCLEAR instruction */
  4223. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4224. {
  4225. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4226. gva_t gva;
  4227. gpa_t vmptr;
  4228. struct vmcs12 *vmcs12;
  4229. struct page *page;
  4230. struct x86_exception e;
  4231. if (!nested_vmx_check_permission(vcpu))
  4232. return 1;
  4233. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4234. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4235. return 1;
  4236. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4237. sizeof(vmptr), &e)) {
  4238. kvm_inject_page_fault(vcpu, &e);
  4239. return 1;
  4240. }
  4241. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4242. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4243. skip_emulated_instruction(vcpu);
  4244. return 1;
  4245. }
  4246. if (vmptr == vmx->nested.current_vmptr) {
  4247. kunmap(vmx->nested.current_vmcs12_page);
  4248. nested_release_page(vmx->nested.current_vmcs12_page);
  4249. vmx->nested.current_vmptr = -1ull;
  4250. vmx->nested.current_vmcs12 = NULL;
  4251. }
  4252. page = nested_get_page(vcpu, vmptr);
  4253. if (page == NULL) {
  4254. /*
  4255. * For accurate processor emulation, VMCLEAR beyond available
  4256. * physical memory should do nothing at all. However, it is
  4257. * possible that a nested vmx bug, not a guest hypervisor bug,
  4258. * resulted in this case, so let's shut down before doing any
  4259. * more damage:
  4260. */
  4261. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4262. return 1;
  4263. }
  4264. vmcs12 = kmap(page);
  4265. vmcs12->launch_state = 0;
  4266. kunmap(page);
  4267. nested_release_page(page);
  4268. nested_free_vmcs02(vmx, vmptr);
  4269. skip_emulated_instruction(vcpu);
  4270. nested_vmx_succeed(vcpu);
  4271. return 1;
  4272. }
  4273. enum vmcs_field_type {
  4274. VMCS_FIELD_TYPE_U16 = 0,
  4275. VMCS_FIELD_TYPE_U64 = 1,
  4276. VMCS_FIELD_TYPE_U32 = 2,
  4277. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4278. };
  4279. static inline int vmcs_field_type(unsigned long field)
  4280. {
  4281. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4282. return VMCS_FIELD_TYPE_U32;
  4283. return (field >> 13) & 0x3 ;
  4284. }
  4285. static inline int vmcs_field_readonly(unsigned long field)
  4286. {
  4287. return (((field >> 10) & 0x3) == 1);
  4288. }
  4289. /*
  4290. * Read a vmcs12 field. Since these can have varying lengths and we return
  4291. * one type, we chose the biggest type (u64) and zero-extend the return value
  4292. * to that size. Note that the caller, handle_vmread, might need to use only
  4293. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4294. * 64-bit fields are to be returned).
  4295. */
  4296. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4297. unsigned long field, u64 *ret)
  4298. {
  4299. short offset = vmcs_field_to_offset(field);
  4300. char *p;
  4301. if (offset < 0)
  4302. return 0;
  4303. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4304. switch (vmcs_field_type(field)) {
  4305. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4306. *ret = *((natural_width *)p);
  4307. return 1;
  4308. case VMCS_FIELD_TYPE_U16:
  4309. *ret = *((u16 *)p);
  4310. return 1;
  4311. case VMCS_FIELD_TYPE_U32:
  4312. *ret = *((u32 *)p);
  4313. return 1;
  4314. case VMCS_FIELD_TYPE_U64:
  4315. *ret = *((u64 *)p);
  4316. return 1;
  4317. default:
  4318. return 0; /* can never happen. */
  4319. }
  4320. }
  4321. /*
  4322. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4323. * used before) all generate the same failure when it is missing.
  4324. */
  4325. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4326. {
  4327. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4328. if (vmx->nested.current_vmptr == -1ull) {
  4329. nested_vmx_failInvalid(vcpu);
  4330. skip_emulated_instruction(vcpu);
  4331. return 0;
  4332. }
  4333. return 1;
  4334. }
  4335. static int handle_vmread(struct kvm_vcpu *vcpu)
  4336. {
  4337. unsigned long field;
  4338. u64 field_value;
  4339. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4340. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4341. gva_t gva = 0;
  4342. if (!nested_vmx_check_permission(vcpu) ||
  4343. !nested_vmx_check_vmcs12(vcpu))
  4344. return 1;
  4345. /* Decode instruction info and find the field to read */
  4346. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4347. /* Read the field, zero-extended to a u64 field_value */
  4348. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4349. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4350. skip_emulated_instruction(vcpu);
  4351. return 1;
  4352. }
  4353. /*
  4354. * Now copy part of this value to register or memory, as requested.
  4355. * Note that the number of bits actually copied is 32 or 64 depending
  4356. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4357. */
  4358. if (vmx_instruction_info & (1u << 10)) {
  4359. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4360. field_value);
  4361. } else {
  4362. if (get_vmx_mem_address(vcpu, exit_qualification,
  4363. vmx_instruction_info, &gva))
  4364. return 1;
  4365. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4366. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4367. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4368. }
  4369. nested_vmx_succeed(vcpu);
  4370. skip_emulated_instruction(vcpu);
  4371. return 1;
  4372. }
  4373. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4374. {
  4375. unsigned long field;
  4376. gva_t gva;
  4377. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4378. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4379. char *p;
  4380. short offset;
  4381. /* The value to write might be 32 or 64 bits, depending on L1's long
  4382. * mode, and eventually we need to write that into a field of several
  4383. * possible lengths. The code below first zero-extends the value to 64
  4384. * bit (field_value), and then copies only the approriate number of
  4385. * bits into the vmcs12 field.
  4386. */
  4387. u64 field_value = 0;
  4388. struct x86_exception e;
  4389. if (!nested_vmx_check_permission(vcpu) ||
  4390. !nested_vmx_check_vmcs12(vcpu))
  4391. return 1;
  4392. if (vmx_instruction_info & (1u << 10))
  4393. field_value = kvm_register_read(vcpu,
  4394. (((vmx_instruction_info) >> 3) & 0xf));
  4395. else {
  4396. if (get_vmx_mem_address(vcpu, exit_qualification,
  4397. vmx_instruction_info, &gva))
  4398. return 1;
  4399. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4400. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4401. kvm_inject_page_fault(vcpu, &e);
  4402. return 1;
  4403. }
  4404. }
  4405. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4406. if (vmcs_field_readonly(field)) {
  4407. nested_vmx_failValid(vcpu,
  4408. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4409. skip_emulated_instruction(vcpu);
  4410. return 1;
  4411. }
  4412. offset = vmcs_field_to_offset(field);
  4413. if (offset < 0) {
  4414. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4415. skip_emulated_instruction(vcpu);
  4416. return 1;
  4417. }
  4418. p = ((char *) get_vmcs12(vcpu)) + offset;
  4419. switch (vmcs_field_type(field)) {
  4420. case VMCS_FIELD_TYPE_U16:
  4421. *(u16 *)p = field_value;
  4422. break;
  4423. case VMCS_FIELD_TYPE_U32:
  4424. *(u32 *)p = field_value;
  4425. break;
  4426. case VMCS_FIELD_TYPE_U64:
  4427. *(u64 *)p = field_value;
  4428. break;
  4429. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4430. *(natural_width *)p = field_value;
  4431. break;
  4432. default:
  4433. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4434. skip_emulated_instruction(vcpu);
  4435. return 1;
  4436. }
  4437. nested_vmx_succeed(vcpu);
  4438. skip_emulated_instruction(vcpu);
  4439. return 1;
  4440. }
  4441. /* Emulate the VMPTRLD instruction */
  4442. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4443. {
  4444. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4445. gva_t gva;
  4446. gpa_t vmptr;
  4447. struct x86_exception e;
  4448. if (!nested_vmx_check_permission(vcpu))
  4449. return 1;
  4450. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4451. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4452. return 1;
  4453. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4454. sizeof(vmptr), &e)) {
  4455. kvm_inject_page_fault(vcpu, &e);
  4456. return 1;
  4457. }
  4458. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4459. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4460. skip_emulated_instruction(vcpu);
  4461. return 1;
  4462. }
  4463. if (vmx->nested.current_vmptr != vmptr) {
  4464. struct vmcs12 *new_vmcs12;
  4465. struct page *page;
  4466. page = nested_get_page(vcpu, vmptr);
  4467. if (page == NULL) {
  4468. nested_vmx_failInvalid(vcpu);
  4469. skip_emulated_instruction(vcpu);
  4470. return 1;
  4471. }
  4472. new_vmcs12 = kmap(page);
  4473. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4474. kunmap(page);
  4475. nested_release_page_clean(page);
  4476. nested_vmx_failValid(vcpu,
  4477. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4478. skip_emulated_instruction(vcpu);
  4479. return 1;
  4480. }
  4481. if (vmx->nested.current_vmptr != -1ull) {
  4482. kunmap(vmx->nested.current_vmcs12_page);
  4483. nested_release_page(vmx->nested.current_vmcs12_page);
  4484. }
  4485. vmx->nested.current_vmptr = vmptr;
  4486. vmx->nested.current_vmcs12 = new_vmcs12;
  4487. vmx->nested.current_vmcs12_page = page;
  4488. }
  4489. nested_vmx_succeed(vcpu);
  4490. skip_emulated_instruction(vcpu);
  4491. return 1;
  4492. }
  4493. /* Emulate the VMPTRST instruction */
  4494. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4495. {
  4496. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4497. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4498. gva_t vmcs_gva;
  4499. struct x86_exception e;
  4500. if (!nested_vmx_check_permission(vcpu))
  4501. return 1;
  4502. if (get_vmx_mem_address(vcpu, exit_qualification,
  4503. vmx_instruction_info, &vmcs_gva))
  4504. return 1;
  4505. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4506. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4507. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4508. sizeof(u64), &e)) {
  4509. kvm_inject_page_fault(vcpu, &e);
  4510. return 1;
  4511. }
  4512. nested_vmx_succeed(vcpu);
  4513. skip_emulated_instruction(vcpu);
  4514. return 1;
  4515. }
  4516. /*
  4517. * The exit handlers return 1 if the exit was handled fully and guest execution
  4518. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4519. * to be done to userspace and return 0.
  4520. */
  4521. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4522. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4523. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4524. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4525. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4526. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4527. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4528. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4529. [EXIT_REASON_CPUID] = handle_cpuid,
  4530. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4531. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4532. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4533. [EXIT_REASON_HLT] = handle_halt,
  4534. [EXIT_REASON_INVD] = handle_invd,
  4535. [EXIT_REASON_INVLPG] = handle_invlpg,
  4536. [EXIT_REASON_VMCALL] = handle_vmcall,
  4537. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4538. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  4539. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4540. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4541. [EXIT_REASON_VMREAD] = handle_vmread,
  4542. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  4543. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4544. [EXIT_REASON_VMOFF] = handle_vmoff,
  4545. [EXIT_REASON_VMON] = handle_vmon,
  4546. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4547. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4548. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4549. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4550. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4551. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4552. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4553. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4554. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4555. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4556. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4557. };
  4558. static const int kvm_vmx_max_exit_handlers =
  4559. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4560. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  4561. {
  4562. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  4563. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  4564. }
  4565. /*
  4566. * The guest has exited. See if we can fix it or if we need userspace
  4567. * assistance.
  4568. */
  4569. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  4570. {
  4571. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4572. u32 exit_reason = vmx->exit_reason;
  4573. u32 vectoring_info = vmx->idt_vectoring_info;
  4574. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  4575. /* If guest state is invalid, start emulating */
  4576. if (vmx->emulation_required && emulate_invalid_guest_state)
  4577. return handle_invalid_guest_state(vcpu);
  4578. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  4579. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4580. vcpu->run->fail_entry.hardware_entry_failure_reason
  4581. = exit_reason;
  4582. return 0;
  4583. }
  4584. if (unlikely(vmx->fail)) {
  4585. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4586. vcpu->run->fail_entry.hardware_entry_failure_reason
  4587. = vmcs_read32(VM_INSTRUCTION_ERROR);
  4588. return 0;
  4589. }
  4590. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  4591. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  4592. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  4593. exit_reason != EXIT_REASON_TASK_SWITCH))
  4594. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  4595. "(0x%x) and exit reason is 0x%x\n",
  4596. __func__, vectoring_info, exit_reason);
  4597. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  4598. if (vmx_interrupt_allowed(vcpu)) {
  4599. vmx->soft_vnmi_blocked = 0;
  4600. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  4601. vcpu->arch.nmi_pending) {
  4602. /*
  4603. * This CPU don't support us in finding the end of an
  4604. * NMI-blocked window if the guest runs with IRQs
  4605. * disabled. So we pull the trigger after 1 s of
  4606. * futile waiting, but inform the user about this.
  4607. */
  4608. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  4609. "state on VCPU %d after 1 s timeout\n",
  4610. __func__, vcpu->vcpu_id);
  4611. vmx->soft_vnmi_blocked = 0;
  4612. }
  4613. }
  4614. if (exit_reason < kvm_vmx_max_exit_handlers
  4615. && kvm_vmx_exit_handlers[exit_reason])
  4616. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  4617. else {
  4618. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4619. vcpu->run->hw.hardware_exit_reason = exit_reason;
  4620. }
  4621. return 0;
  4622. }
  4623. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  4624. {
  4625. if (irr == -1 || tpr < irr) {
  4626. vmcs_write32(TPR_THRESHOLD, 0);
  4627. return;
  4628. }
  4629. vmcs_write32(TPR_THRESHOLD, irr);
  4630. }
  4631. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  4632. {
  4633. u32 exit_intr_info;
  4634. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  4635. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  4636. return;
  4637. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4638. exit_intr_info = vmx->exit_intr_info;
  4639. /* Handle machine checks before interrupts are enabled */
  4640. if (is_machine_check(exit_intr_info))
  4641. kvm_machine_check();
  4642. /* We need to handle NMIs before interrupts are enabled */
  4643. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  4644. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  4645. kvm_before_handle_nmi(&vmx->vcpu);
  4646. asm("int $2");
  4647. kvm_after_handle_nmi(&vmx->vcpu);
  4648. }
  4649. }
  4650. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  4651. {
  4652. u32 exit_intr_info;
  4653. bool unblock_nmi;
  4654. u8 vector;
  4655. bool idtv_info_valid;
  4656. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  4657. if (cpu_has_virtual_nmis()) {
  4658. if (vmx->nmi_known_unmasked)
  4659. return;
  4660. /*
  4661. * Can't use vmx->exit_intr_info since we're not sure what
  4662. * the exit reason is.
  4663. */
  4664. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4665. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  4666. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  4667. /*
  4668. * SDM 3: 27.7.1.2 (September 2008)
  4669. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  4670. * a guest IRET fault.
  4671. * SDM 3: 23.2.2 (September 2008)
  4672. * Bit 12 is undefined in any of the following cases:
  4673. * If the VM exit sets the valid bit in the IDT-vectoring
  4674. * information field.
  4675. * If the VM exit is due to a double fault.
  4676. */
  4677. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  4678. vector != DF_VECTOR && !idtv_info_valid)
  4679. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  4680. GUEST_INTR_STATE_NMI);
  4681. else
  4682. vmx->nmi_known_unmasked =
  4683. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  4684. & GUEST_INTR_STATE_NMI);
  4685. } else if (unlikely(vmx->soft_vnmi_blocked))
  4686. vmx->vnmi_blocked_time +=
  4687. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  4688. }
  4689. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  4690. u32 idt_vectoring_info,
  4691. int instr_len_field,
  4692. int error_code_field)
  4693. {
  4694. u8 vector;
  4695. int type;
  4696. bool idtv_info_valid;
  4697. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  4698. vmx->vcpu.arch.nmi_injected = false;
  4699. kvm_clear_exception_queue(&vmx->vcpu);
  4700. kvm_clear_interrupt_queue(&vmx->vcpu);
  4701. if (!idtv_info_valid)
  4702. return;
  4703. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  4704. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  4705. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  4706. switch (type) {
  4707. case INTR_TYPE_NMI_INTR:
  4708. vmx->vcpu.arch.nmi_injected = true;
  4709. /*
  4710. * SDM 3: 27.7.1.2 (September 2008)
  4711. * Clear bit "block by NMI" before VM entry if a NMI
  4712. * delivery faulted.
  4713. */
  4714. vmx_set_nmi_mask(&vmx->vcpu, false);
  4715. break;
  4716. case INTR_TYPE_SOFT_EXCEPTION:
  4717. vmx->vcpu.arch.event_exit_inst_len =
  4718. vmcs_read32(instr_len_field);
  4719. /* fall through */
  4720. case INTR_TYPE_HARD_EXCEPTION:
  4721. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  4722. u32 err = vmcs_read32(error_code_field);
  4723. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  4724. } else
  4725. kvm_queue_exception(&vmx->vcpu, vector);
  4726. break;
  4727. case INTR_TYPE_SOFT_INTR:
  4728. vmx->vcpu.arch.event_exit_inst_len =
  4729. vmcs_read32(instr_len_field);
  4730. /* fall through */
  4731. case INTR_TYPE_EXT_INTR:
  4732. kvm_queue_interrupt(&vmx->vcpu, vector,
  4733. type == INTR_TYPE_SOFT_INTR);
  4734. break;
  4735. default:
  4736. break;
  4737. }
  4738. }
  4739. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  4740. {
  4741. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  4742. VM_EXIT_INSTRUCTION_LEN,
  4743. IDT_VECTORING_ERROR_CODE);
  4744. }
  4745. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  4746. {
  4747. __vmx_complete_interrupts(to_vmx(vcpu),
  4748. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  4749. VM_ENTRY_INSTRUCTION_LEN,
  4750. VM_ENTRY_EXCEPTION_ERROR_CODE);
  4751. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  4752. }
  4753. #ifdef CONFIG_X86_64
  4754. #define R "r"
  4755. #define Q "q"
  4756. #else
  4757. #define R "e"
  4758. #define Q "l"
  4759. #endif
  4760. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  4761. {
  4762. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4763. /* Record the guest's net vcpu time for enforced NMI injections. */
  4764. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  4765. vmx->entry_time = ktime_get();
  4766. /* Don't enter VMX if guest state is invalid, let the exit handler
  4767. start emulation until we arrive back to a valid state */
  4768. if (vmx->emulation_required && emulate_invalid_guest_state)
  4769. return;
  4770. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  4771. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  4772. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  4773. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  4774. /* When single-stepping over STI and MOV SS, we must clear the
  4775. * corresponding interruptibility bits in the guest state. Otherwise
  4776. * vmentry fails as it then expects bit 14 (BS) in pending debug
  4777. * exceptions being set, but that's not correct for the guest debugging
  4778. * case. */
  4779. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4780. vmx_set_interrupt_shadow(vcpu, 0);
  4781. vmx->__launched = vmx->loaded_vmcs->launched;
  4782. asm(
  4783. /* Store host registers */
  4784. "push %%"R"dx; push %%"R"bp;"
  4785. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  4786. "push %%"R"cx \n\t"
  4787. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  4788. "je 1f \n\t"
  4789. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  4790. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  4791. "1: \n\t"
  4792. /* Reload cr2 if changed */
  4793. "mov %c[cr2](%0), %%"R"ax \n\t"
  4794. "mov %%cr2, %%"R"dx \n\t"
  4795. "cmp %%"R"ax, %%"R"dx \n\t"
  4796. "je 2f \n\t"
  4797. "mov %%"R"ax, %%cr2 \n\t"
  4798. "2: \n\t"
  4799. /* Check if vmlaunch of vmresume is needed */
  4800. "cmpl $0, %c[launched](%0) \n\t"
  4801. /* Load guest registers. Don't clobber flags. */
  4802. "mov %c[rax](%0), %%"R"ax \n\t"
  4803. "mov %c[rbx](%0), %%"R"bx \n\t"
  4804. "mov %c[rdx](%0), %%"R"dx \n\t"
  4805. "mov %c[rsi](%0), %%"R"si \n\t"
  4806. "mov %c[rdi](%0), %%"R"di \n\t"
  4807. "mov %c[rbp](%0), %%"R"bp \n\t"
  4808. #ifdef CONFIG_X86_64
  4809. "mov %c[r8](%0), %%r8 \n\t"
  4810. "mov %c[r9](%0), %%r9 \n\t"
  4811. "mov %c[r10](%0), %%r10 \n\t"
  4812. "mov %c[r11](%0), %%r11 \n\t"
  4813. "mov %c[r12](%0), %%r12 \n\t"
  4814. "mov %c[r13](%0), %%r13 \n\t"
  4815. "mov %c[r14](%0), %%r14 \n\t"
  4816. "mov %c[r15](%0), %%r15 \n\t"
  4817. #endif
  4818. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  4819. /* Enter guest mode */
  4820. "jne .Llaunched \n\t"
  4821. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  4822. "jmp .Lkvm_vmx_return \n\t"
  4823. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  4824. ".Lkvm_vmx_return: "
  4825. /* Save guest registers, load host registers, keep flags */
  4826. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  4827. "pop %0 \n\t"
  4828. "mov %%"R"ax, %c[rax](%0) \n\t"
  4829. "mov %%"R"bx, %c[rbx](%0) \n\t"
  4830. "pop"Q" %c[rcx](%0) \n\t"
  4831. "mov %%"R"dx, %c[rdx](%0) \n\t"
  4832. "mov %%"R"si, %c[rsi](%0) \n\t"
  4833. "mov %%"R"di, %c[rdi](%0) \n\t"
  4834. "mov %%"R"bp, %c[rbp](%0) \n\t"
  4835. #ifdef CONFIG_X86_64
  4836. "mov %%r8, %c[r8](%0) \n\t"
  4837. "mov %%r9, %c[r9](%0) \n\t"
  4838. "mov %%r10, %c[r10](%0) \n\t"
  4839. "mov %%r11, %c[r11](%0) \n\t"
  4840. "mov %%r12, %c[r12](%0) \n\t"
  4841. "mov %%r13, %c[r13](%0) \n\t"
  4842. "mov %%r14, %c[r14](%0) \n\t"
  4843. "mov %%r15, %c[r15](%0) \n\t"
  4844. #endif
  4845. "mov %%cr2, %%"R"ax \n\t"
  4846. "mov %%"R"ax, %c[cr2](%0) \n\t"
  4847. "pop %%"R"bp; pop %%"R"dx \n\t"
  4848. "setbe %c[fail](%0) \n\t"
  4849. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  4850. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  4851. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  4852. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  4853. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  4854. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  4855. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  4856. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  4857. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  4858. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  4859. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  4860. #ifdef CONFIG_X86_64
  4861. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  4862. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  4863. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  4864. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  4865. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  4866. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  4867. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  4868. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  4869. #endif
  4870. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  4871. [wordsize]"i"(sizeof(ulong))
  4872. : "cc", "memory"
  4873. , R"ax", R"bx", R"di", R"si"
  4874. #ifdef CONFIG_X86_64
  4875. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  4876. #endif
  4877. );
  4878. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  4879. | (1 << VCPU_EXREG_RFLAGS)
  4880. | (1 << VCPU_EXREG_CPL)
  4881. | (1 << VCPU_EXREG_PDPTR)
  4882. | (1 << VCPU_EXREG_SEGMENTS)
  4883. | (1 << VCPU_EXREG_CR3));
  4884. vcpu->arch.regs_dirty = 0;
  4885. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  4886. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  4887. vmx->loaded_vmcs->launched = 1;
  4888. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  4889. vmx_complete_atomic_exit(vmx);
  4890. vmx_recover_nmi_blocking(vmx);
  4891. vmx_complete_interrupts(vmx);
  4892. }
  4893. #undef R
  4894. #undef Q
  4895. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  4896. {
  4897. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4898. free_vpid(vmx);
  4899. free_nested(vmx);
  4900. free_loaded_vmcs(vmx->loaded_vmcs);
  4901. kfree(vmx->guest_msrs);
  4902. kvm_vcpu_uninit(vcpu);
  4903. kmem_cache_free(kvm_vcpu_cache, vmx);
  4904. }
  4905. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  4906. {
  4907. int err;
  4908. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  4909. int cpu;
  4910. if (!vmx)
  4911. return ERR_PTR(-ENOMEM);
  4912. allocate_vpid(vmx);
  4913. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  4914. if (err)
  4915. goto free_vcpu;
  4916. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4917. err = -ENOMEM;
  4918. if (!vmx->guest_msrs) {
  4919. goto uninit_vcpu;
  4920. }
  4921. vmx->loaded_vmcs = &vmx->vmcs01;
  4922. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  4923. if (!vmx->loaded_vmcs->vmcs)
  4924. goto free_msrs;
  4925. if (!vmm_exclusive)
  4926. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  4927. loaded_vmcs_init(vmx->loaded_vmcs);
  4928. if (!vmm_exclusive)
  4929. kvm_cpu_vmxoff();
  4930. cpu = get_cpu();
  4931. vmx_vcpu_load(&vmx->vcpu, cpu);
  4932. vmx->vcpu.cpu = cpu;
  4933. err = vmx_vcpu_setup(vmx);
  4934. vmx_vcpu_put(&vmx->vcpu);
  4935. put_cpu();
  4936. if (err)
  4937. goto free_vmcs;
  4938. if (vm_need_virtualize_apic_accesses(kvm))
  4939. err = alloc_apic_access_page(kvm);
  4940. if (err)
  4941. goto free_vmcs;
  4942. if (enable_ept) {
  4943. if (!kvm->arch.ept_identity_map_addr)
  4944. kvm->arch.ept_identity_map_addr =
  4945. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  4946. err = -ENOMEM;
  4947. if (alloc_identity_pagetable(kvm) != 0)
  4948. goto free_vmcs;
  4949. if (!init_rmode_identity_map(kvm))
  4950. goto free_vmcs;
  4951. }
  4952. vmx->nested.current_vmptr = -1ull;
  4953. vmx->nested.current_vmcs12 = NULL;
  4954. return &vmx->vcpu;
  4955. free_vmcs:
  4956. free_vmcs(vmx->loaded_vmcs->vmcs);
  4957. free_msrs:
  4958. kfree(vmx->guest_msrs);
  4959. uninit_vcpu:
  4960. kvm_vcpu_uninit(&vmx->vcpu);
  4961. free_vcpu:
  4962. free_vpid(vmx);
  4963. kmem_cache_free(kvm_vcpu_cache, vmx);
  4964. return ERR_PTR(err);
  4965. }
  4966. static void __init vmx_check_processor_compat(void *rtn)
  4967. {
  4968. struct vmcs_config vmcs_conf;
  4969. *(int *)rtn = 0;
  4970. if (setup_vmcs_config(&vmcs_conf) < 0)
  4971. *(int *)rtn = -EIO;
  4972. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  4973. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  4974. smp_processor_id());
  4975. *(int *)rtn = -EIO;
  4976. }
  4977. }
  4978. static int get_ept_level(void)
  4979. {
  4980. return VMX_EPT_DEFAULT_GAW + 1;
  4981. }
  4982. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  4983. {
  4984. u64 ret;
  4985. /* For VT-d and EPT combination
  4986. * 1. MMIO: always map as UC
  4987. * 2. EPT with VT-d:
  4988. * a. VT-d without snooping control feature: can't guarantee the
  4989. * result, try to trust guest.
  4990. * b. VT-d with snooping control feature: snooping control feature of
  4991. * VT-d engine can guarantee the cache correctness. Just set it
  4992. * to WB to keep consistent with host. So the same as item 3.
  4993. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  4994. * consistent with host MTRR
  4995. */
  4996. if (is_mmio)
  4997. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  4998. else if (vcpu->kvm->arch.iommu_domain &&
  4999. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5000. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5001. VMX_EPT_MT_EPTE_SHIFT;
  5002. else
  5003. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5004. | VMX_EPT_IPAT_BIT;
  5005. return ret;
  5006. }
  5007. #define _ER(x) { EXIT_REASON_##x, #x }
  5008. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  5009. _ER(EXCEPTION_NMI),
  5010. _ER(EXTERNAL_INTERRUPT),
  5011. _ER(TRIPLE_FAULT),
  5012. _ER(PENDING_INTERRUPT),
  5013. _ER(NMI_WINDOW),
  5014. _ER(TASK_SWITCH),
  5015. _ER(CPUID),
  5016. _ER(HLT),
  5017. _ER(INVLPG),
  5018. _ER(RDPMC),
  5019. _ER(RDTSC),
  5020. _ER(VMCALL),
  5021. _ER(VMCLEAR),
  5022. _ER(VMLAUNCH),
  5023. _ER(VMPTRLD),
  5024. _ER(VMPTRST),
  5025. _ER(VMREAD),
  5026. _ER(VMRESUME),
  5027. _ER(VMWRITE),
  5028. _ER(VMOFF),
  5029. _ER(VMON),
  5030. _ER(CR_ACCESS),
  5031. _ER(DR_ACCESS),
  5032. _ER(IO_INSTRUCTION),
  5033. _ER(MSR_READ),
  5034. _ER(MSR_WRITE),
  5035. _ER(MWAIT_INSTRUCTION),
  5036. _ER(MONITOR_INSTRUCTION),
  5037. _ER(PAUSE_INSTRUCTION),
  5038. _ER(MCE_DURING_VMENTRY),
  5039. _ER(TPR_BELOW_THRESHOLD),
  5040. _ER(APIC_ACCESS),
  5041. _ER(EPT_VIOLATION),
  5042. _ER(EPT_MISCONFIG),
  5043. _ER(WBINVD),
  5044. { -1, NULL }
  5045. };
  5046. #undef _ER
  5047. static int vmx_get_lpage_level(void)
  5048. {
  5049. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5050. return PT_DIRECTORY_LEVEL;
  5051. else
  5052. /* For shadow and EPT supported 1GB page */
  5053. return PT_PDPE_LEVEL;
  5054. }
  5055. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5056. {
  5057. struct kvm_cpuid_entry2 *best;
  5058. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5059. u32 exec_control;
  5060. vmx->rdtscp_enabled = false;
  5061. if (vmx_rdtscp_supported()) {
  5062. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5063. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5064. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5065. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5066. vmx->rdtscp_enabled = true;
  5067. else {
  5068. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5069. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5070. exec_control);
  5071. }
  5072. }
  5073. }
  5074. }
  5075. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5076. {
  5077. }
  5078. /*
  5079. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5080. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5081. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5082. * guest in a way that will both be appropriate to L1's requests, and our
  5083. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5084. * function also has additional necessary side-effects, like setting various
  5085. * vcpu->arch fields.
  5086. */
  5087. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5088. {
  5089. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5090. u32 exec_control;
  5091. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5092. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5093. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5094. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5095. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5096. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5097. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5098. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5099. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5100. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5101. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5102. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5103. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5104. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5105. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5106. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5107. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5108. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5109. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5110. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5111. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5112. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5113. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5114. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5115. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5116. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5117. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5118. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5119. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5120. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5121. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5122. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5123. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5124. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5125. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5126. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5127. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5128. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5129. vmcs12->vm_entry_intr_info_field);
  5130. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5131. vmcs12->vm_entry_exception_error_code);
  5132. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5133. vmcs12->vm_entry_instruction_len);
  5134. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5135. vmcs12->guest_interruptibility_info);
  5136. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5137. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5138. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5139. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5140. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5141. vmcs12->guest_pending_dbg_exceptions);
  5142. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5143. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5144. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5145. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5146. (vmcs_config.pin_based_exec_ctrl |
  5147. vmcs12->pin_based_vm_exec_control));
  5148. /*
  5149. * Whether page-faults are trapped is determined by a combination of
  5150. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5151. * If enable_ept, L0 doesn't care about page faults and we should
  5152. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5153. * care about (at least some) page faults, and because it is not easy
  5154. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5155. * to exit on each and every L2 page fault. This is done by setting
  5156. * MASK=MATCH=0 and (see below) EB.PF=1.
  5157. * Note that below we don't need special code to set EB.PF beyond the
  5158. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5159. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5160. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5161. *
  5162. * A problem with this approach (when !enable_ept) is that L1 may be
  5163. * injected with more page faults than it asked for. This could have
  5164. * caused problems, but in practice existing hypervisors don't care.
  5165. * To fix this, we will need to emulate the PFEC checking (on the L1
  5166. * page tables), using walk_addr(), when injecting PFs to L1.
  5167. */
  5168. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5169. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5170. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5171. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5172. if (cpu_has_secondary_exec_ctrls()) {
  5173. u32 exec_control = vmx_secondary_exec_control(vmx);
  5174. if (!vmx->rdtscp_enabled)
  5175. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5176. /* Take the following fields only from vmcs12 */
  5177. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5178. if (nested_cpu_has(vmcs12,
  5179. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5180. exec_control |= vmcs12->secondary_vm_exec_control;
  5181. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5182. /*
  5183. * Translate L1 physical address to host physical
  5184. * address for vmcs02. Keep the page pinned, so this
  5185. * physical address remains valid. We keep a reference
  5186. * to it so we can release it later.
  5187. */
  5188. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5189. nested_release_page(vmx->nested.apic_access_page);
  5190. vmx->nested.apic_access_page =
  5191. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5192. /*
  5193. * If translation failed, no matter: This feature asks
  5194. * to exit when accessing the given address, and if it
  5195. * can never be accessed, this feature won't do
  5196. * anything anyway.
  5197. */
  5198. if (!vmx->nested.apic_access_page)
  5199. exec_control &=
  5200. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5201. else
  5202. vmcs_write64(APIC_ACCESS_ADDR,
  5203. page_to_phys(vmx->nested.apic_access_page));
  5204. }
  5205. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5206. }
  5207. /*
  5208. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5209. * Some constant fields are set here by vmx_set_constant_host_state().
  5210. * Other fields are different per CPU, and will be set later when
  5211. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5212. */
  5213. vmx_set_constant_host_state();
  5214. /*
  5215. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5216. * entry, but only if the current (host) sp changed from the value
  5217. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5218. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5219. * here we just force the write to happen on entry.
  5220. */
  5221. vmx->host_rsp = 0;
  5222. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5223. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5224. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5225. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5226. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5227. /*
  5228. * Merging of IO and MSR bitmaps not currently supported.
  5229. * Rather, exit every time.
  5230. */
  5231. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5232. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5233. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5234. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5235. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5236. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5237. * trap. Note that CR0.TS also needs updating - we do this later.
  5238. */
  5239. update_exception_bitmap(vcpu);
  5240. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5241. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5242. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5243. vmcs_write32(VM_EXIT_CONTROLS,
  5244. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5245. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5246. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5247. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5248. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5249. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5250. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5251. set_cr4_guest_host_mask(vmx);
  5252. vmcs_write64(TSC_OFFSET,
  5253. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5254. if (enable_vpid) {
  5255. /*
  5256. * Trivially support vpid by letting L2s share their parent
  5257. * L1's vpid. TODO: move to a more elaborate solution, giving
  5258. * each L2 its own vpid and exposing the vpid feature to L1.
  5259. */
  5260. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5261. vmx_flush_tlb(vcpu);
  5262. }
  5263. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5264. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5265. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5266. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5267. else
  5268. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5269. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5270. vmx_set_efer(vcpu, vcpu->arch.efer);
  5271. /*
  5272. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5273. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5274. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5275. * the specifications by L1; It's not enough to take
  5276. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5277. * have more bits than L1 expected.
  5278. */
  5279. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5280. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5281. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5282. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5283. /* shadow page tables on either EPT or shadow page tables */
  5284. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5285. kvm_mmu_reset_context(vcpu);
  5286. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5287. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5288. }
  5289. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  5290. struct x86_instruction_info *info,
  5291. enum x86_intercept_stage stage)
  5292. {
  5293. return X86EMUL_CONTINUE;
  5294. }
  5295. static struct kvm_x86_ops vmx_x86_ops = {
  5296. .cpu_has_kvm_support = cpu_has_kvm_support,
  5297. .disabled_by_bios = vmx_disabled_by_bios,
  5298. .hardware_setup = hardware_setup,
  5299. .hardware_unsetup = hardware_unsetup,
  5300. .check_processor_compatibility = vmx_check_processor_compat,
  5301. .hardware_enable = hardware_enable,
  5302. .hardware_disable = hardware_disable,
  5303. .cpu_has_accelerated_tpr = report_flexpriority,
  5304. .vcpu_create = vmx_create_vcpu,
  5305. .vcpu_free = vmx_free_vcpu,
  5306. .vcpu_reset = vmx_vcpu_reset,
  5307. .prepare_guest_switch = vmx_save_host_state,
  5308. .vcpu_load = vmx_vcpu_load,
  5309. .vcpu_put = vmx_vcpu_put,
  5310. .set_guest_debug = set_guest_debug,
  5311. .get_msr = vmx_get_msr,
  5312. .set_msr = vmx_set_msr,
  5313. .get_segment_base = vmx_get_segment_base,
  5314. .get_segment = vmx_get_segment,
  5315. .set_segment = vmx_set_segment,
  5316. .get_cpl = vmx_get_cpl,
  5317. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  5318. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  5319. .decache_cr3 = vmx_decache_cr3,
  5320. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  5321. .set_cr0 = vmx_set_cr0,
  5322. .set_cr3 = vmx_set_cr3,
  5323. .set_cr4 = vmx_set_cr4,
  5324. .set_efer = vmx_set_efer,
  5325. .get_idt = vmx_get_idt,
  5326. .set_idt = vmx_set_idt,
  5327. .get_gdt = vmx_get_gdt,
  5328. .set_gdt = vmx_set_gdt,
  5329. .set_dr7 = vmx_set_dr7,
  5330. .cache_reg = vmx_cache_reg,
  5331. .get_rflags = vmx_get_rflags,
  5332. .set_rflags = vmx_set_rflags,
  5333. .fpu_activate = vmx_fpu_activate,
  5334. .fpu_deactivate = vmx_fpu_deactivate,
  5335. .tlb_flush = vmx_flush_tlb,
  5336. .run = vmx_vcpu_run,
  5337. .handle_exit = vmx_handle_exit,
  5338. .skip_emulated_instruction = skip_emulated_instruction,
  5339. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  5340. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  5341. .patch_hypercall = vmx_patch_hypercall,
  5342. .set_irq = vmx_inject_irq,
  5343. .set_nmi = vmx_inject_nmi,
  5344. .queue_exception = vmx_queue_exception,
  5345. .cancel_injection = vmx_cancel_injection,
  5346. .interrupt_allowed = vmx_interrupt_allowed,
  5347. .nmi_allowed = vmx_nmi_allowed,
  5348. .get_nmi_mask = vmx_get_nmi_mask,
  5349. .set_nmi_mask = vmx_set_nmi_mask,
  5350. .enable_nmi_window = enable_nmi_window,
  5351. .enable_irq_window = enable_irq_window,
  5352. .update_cr8_intercept = update_cr8_intercept,
  5353. .set_tss_addr = vmx_set_tss_addr,
  5354. .get_tdp_level = get_ept_level,
  5355. .get_mt_mask = vmx_get_mt_mask,
  5356. .get_exit_info = vmx_get_exit_info,
  5357. .exit_reasons_str = vmx_exit_reasons_str,
  5358. .get_lpage_level = vmx_get_lpage_level,
  5359. .cpuid_update = vmx_cpuid_update,
  5360. .rdtscp_supported = vmx_rdtscp_supported,
  5361. .set_supported_cpuid = vmx_set_supported_cpuid,
  5362. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  5363. .set_tsc_khz = vmx_set_tsc_khz,
  5364. .write_tsc_offset = vmx_write_tsc_offset,
  5365. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  5366. .compute_tsc_offset = vmx_compute_tsc_offset,
  5367. .set_tdp_cr3 = vmx_set_cr3,
  5368. .check_intercept = vmx_check_intercept,
  5369. };
  5370. static int __init vmx_init(void)
  5371. {
  5372. int r, i;
  5373. rdmsrl_safe(MSR_EFER, &host_efer);
  5374. for (i = 0; i < NR_VMX_MSR; ++i)
  5375. kvm_define_shared_msr(i, vmx_msr_index[i]);
  5376. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  5377. if (!vmx_io_bitmap_a)
  5378. return -ENOMEM;
  5379. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  5380. if (!vmx_io_bitmap_b) {
  5381. r = -ENOMEM;
  5382. goto out;
  5383. }
  5384. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  5385. if (!vmx_msr_bitmap_legacy) {
  5386. r = -ENOMEM;
  5387. goto out1;
  5388. }
  5389. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  5390. if (!vmx_msr_bitmap_longmode) {
  5391. r = -ENOMEM;
  5392. goto out2;
  5393. }
  5394. /*
  5395. * Allow direct access to the PC debug port (it is often used for I/O
  5396. * delays, but the vmexits simply slow things down).
  5397. */
  5398. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  5399. clear_bit(0x80, vmx_io_bitmap_a);
  5400. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  5401. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  5402. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  5403. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  5404. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  5405. __alignof__(struct vcpu_vmx), THIS_MODULE);
  5406. if (r)
  5407. goto out3;
  5408. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  5409. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  5410. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  5411. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  5412. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  5413. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  5414. if (enable_ept) {
  5415. bypass_guest_pf = 0;
  5416. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  5417. VMX_EPT_EXECUTABLE_MASK);
  5418. kvm_enable_tdp();
  5419. } else
  5420. kvm_disable_tdp();
  5421. if (bypass_guest_pf)
  5422. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  5423. return 0;
  5424. out3:
  5425. free_page((unsigned long)vmx_msr_bitmap_longmode);
  5426. out2:
  5427. free_page((unsigned long)vmx_msr_bitmap_legacy);
  5428. out1:
  5429. free_page((unsigned long)vmx_io_bitmap_b);
  5430. out:
  5431. free_page((unsigned long)vmx_io_bitmap_a);
  5432. return r;
  5433. }
  5434. static void __exit vmx_exit(void)
  5435. {
  5436. free_page((unsigned long)vmx_msr_bitmap_legacy);
  5437. free_page((unsigned long)vmx_msr_bitmap_longmode);
  5438. free_page((unsigned long)vmx_io_bitmap_b);
  5439. free_page((unsigned long)vmx_io_bitmap_a);
  5440. kvm_exit();
  5441. }
  5442. module_init(vmx_init)
  5443. module_exit(vmx_exit)