messenger.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. static void queue_con(struct ceph_connection *con);
  36. static void con_work(struct work_struct *);
  37. static void ceph_fault(struct ceph_connection *con);
  38. /*
  39. * Nicely render a sockaddr as a string. An array of formatted
  40. * strings is used, to approximate reentrancy.
  41. */
  42. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  43. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  44. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  45. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  46. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  47. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  48. static struct page *zero_page; /* used in certain error cases */
  49. static void *zero_page_address; /* kernel virtual addr of zero_page */
  50. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  51. {
  52. int i;
  53. char *s;
  54. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  55. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  56. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  57. s = addr_str[i];
  58. switch (ss->ss_family) {
  59. case AF_INET:
  60. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  61. ntohs(in4->sin_port));
  62. break;
  63. case AF_INET6:
  64. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  65. ntohs(in6->sin6_port));
  66. break;
  67. default:
  68. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  69. ss->ss_family);
  70. }
  71. return s;
  72. }
  73. EXPORT_SYMBOL(ceph_pr_addr);
  74. static void encode_my_addr(struct ceph_messenger *msgr)
  75. {
  76. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  77. ceph_encode_addr(&msgr->my_enc_addr);
  78. }
  79. /*
  80. * work queue for all reading and writing to/from the socket.
  81. */
  82. static struct workqueue_struct *ceph_msgr_wq;
  83. void _ceph_msgr_exit(void)
  84. {
  85. if (ceph_msgr_wq) {
  86. destroy_workqueue(ceph_msgr_wq);
  87. ceph_msgr_wq = NULL;
  88. }
  89. BUG_ON(zero_page_address == NULL);
  90. zero_page_address = NULL;
  91. BUG_ON(zero_page == NULL);
  92. kunmap(zero_page);
  93. page_cache_release(zero_page);
  94. zero_page = NULL;
  95. }
  96. int ceph_msgr_init(void)
  97. {
  98. BUG_ON(zero_page != NULL);
  99. zero_page = ZERO_PAGE(0);
  100. page_cache_get(zero_page);
  101. BUG_ON(zero_page_address != NULL);
  102. zero_page_address = kmap(zero_page);
  103. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  104. if (ceph_msgr_wq)
  105. return 0;
  106. pr_err("msgr_init failed to create workqueue\n");
  107. _ceph_msgr_exit();
  108. return -ENOMEM;
  109. }
  110. EXPORT_SYMBOL(ceph_msgr_init);
  111. void ceph_msgr_exit(void)
  112. {
  113. BUG_ON(ceph_msgr_wq == NULL);
  114. _ceph_msgr_exit();
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_exit);
  117. void ceph_msgr_flush(void)
  118. {
  119. flush_workqueue(ceph_msgr_wq);
  120. }
  121. EXPORT_SYMBOL(ceph_msgr_flush);
  122. /*
  123. * socket callback functions
  124. */
  125. /* data available on socket, or listen socket received a connect */
  126. static void ceph_data_ready(struct sock *sk, int count_unused)
  127. {
  128. struct ceph_connection *con = sk->sk_user_data;
  129. if (sk->sk_state != TCP_CLOSE_WAIT) {
  130. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  131. con, con->state);
  132. queue_con(con);
  133. }
  134. }
  135. /* socket has buffer space for writing */
  136. static void ceph_write_space(struct sock *sk)
  137. {
  138. struct ceph_connection *con = sk->sk_user_data;
  139. /* only queue to workqueue if there is data we want to write,
  140. * and there is sufficient space in the socket buffer to accept
  141. * more data. clear SOCK_NOSPACE so that ceph_write_space()
  142. * doesn't get called again until try_write() fills the socket
  143. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  144. * and net/core/stream.c:sk_stream_write_space().
  145. */
  146. if (test_bit(WRITE_PENDING, &con->state)) {
  147. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  148. dout("ceph_write_space %p queueing write work\n", con);
  149. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  150. queue_con(con);
  151. }
  152. } else {
  153. dout("ceph_write_space %p nothing to write\n", con);
  154. }
  155. }
  156. /* socket's state has changed */
  157. static void ceph_state_change(struct sock *sk)
  158. {
  159. struct ceph_connection *con = sk->sk_user_data;
  160. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  161. con, con->state, sk->sk_state);
  162. if (test_bit(CLOSED, &con->state))
  163. return;
  164. switch (sk->sk_state) {
  165. case TCP_CLOSE:
  166. dout("ceph_state_change TCP_CLOSE\n");
  167. case TCP_CLOSE_WAIT:
  168. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  169. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  170. if (test_bit(CONNECTING, &con->state))
  171. con->error_msg = "connection failed";
  172. else
  173. con->error_msg = "socket closed";
  174. queue_con(con);
  175. }
  176. break;
  177. case TCP_ESTABLISHED:
  178. dout("ceph_state_change TCP_ESTABLISHED\n");
  179. queue_con(con);
  180. break;
  181. default: /* Everything else is uninteresting */
  182. break;
  183. }
  184. }
  185. /*
  186. * set up socket callbacks
  187. */
  188. static void set_sock_callbacks(struct socket *sock,
  189. struct ceph_connection *con)
  190. {
  191. struct sock *sk = sock->sk;
  192. sk->sk_user_data = con;
  193. sk->sk_data_ready = ceph_data_ready;
  194. sk->sk_write_space = ceph_write_space;
  195. sk->sk_state_change = ceph_state_change;
  196. }
  197. /*
  198. * socket helpers
  199. */
  200. /*
  201. * initiate connection to a remote socket.
  202. */
  203. static int ceph_tcp_connect(struct ceph_connection *con)
  204. {
  205. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  206. struct socket *sock;
  207. int ret;
  208. BUG_ON(con->sock);
  209. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  210. IPPROTO_TCP, &sock);
  211. if (ret)
  212. return ret;
  213. sock->sk->sk_allocation = GFP_NOFS;
  214. #ifdef CONFIG_LOCKDEP
  215. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  216. #endif
  217. set_sock_callbacks(sock, con);
  218. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  219. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  220. O_NONBLOCK);
  221. if (ret == -EINPROGRESS) {
  222. dout("connect %s EINPROGRESS sk_state = %u\n",
  223. ceph_pr_addr(&con->peer_addr.in_addr),
  224. sock->sk->sk_state);
  225. } else if (ret < 0) {
  226. pr_err("connect %s error %d\n",
  227. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  228. sock_release(sock);
  229. con->error_msg = "connect error";
  230. return ret;
  231. }
  232. con->sock = sock;
  233. return 0;
  234. }
  235. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  236. {
  237. struct kvec iov = {buf, len};
  238. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  239. int r;
  240. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  241. if (r == -EAGAIN)
  242. r = 0;
  243. return r;
  244. }
  245. /*
  246. * write something. @more is true if caller will be sending more data
  247. * shortly.
  248. */
  249. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  250. size_t kvlen, size_t len, int more)
  251. {
  252. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  253. int r;
  254. if (more)
  255. msg.msg_flags |= MSG_MORE;
  256. else
  257. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  258. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  259. if (r == -EAGAIN)
  260. r = 0;
  261. return r;
  262. }
  263. /*
  264. * Shutdown/close the socket for the given connection.
  265. */
  266. static int con_close_socket(struct ceph_connection *con)
  267. {
  268. int rc;
  269. dout("con_close_socket on %p sock %p\n", con, con->sock);
  270. if (!con->sock)
  271. return 0;
  272. set_bit(SOCK_CLOSED, &con->state);
  273. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  274. sock_release(con->sock);
  275. con->sock = NULL;
  276. clear_bit(SOCK_CLOSED, &con->state);
  277. return rc;
  278. }
  279. /*
  280. * Reset a connection. Discard all incoming and outgoing messages
  281. * and clear *_seq state.
  282. */
  283. static void ceph_msg_remove(struct ceph_msg *msg)
  284. {
  285. list_del_init(&msg->list_head);
  286. ceph_msg_put(msg);
  287. }
  288. static void ceph_msg_remove_list(struct list_head *head)
  289. {
  290. while (!list_empty(head)) {
  291. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  292. list_head);
  293. ceph_msg_remove(msg);
  294. }
  295. }
  296. static void reset_connection(struct ceph_connection *con)
  297. {
  298. /* reset connection, out_queue, msg_ and connect_seq */
  299. /* discard existing out_queue and msg_seq */
  300. ceph_msg_remove_list(&con->out_queue);
  301. ceph_msg_remove_list(&con->out_sent);
  302. if (con->in_msg) {
  303. ceph_msg_put(con->in_msg);
  304. con->in_msg = NULL;
  305. }
  306. con->connect_seq = 0;
  307. con->out_seq = 0;
  308. if (con->out_msg) {
  309. ceph_msg_put(con->out_msg);
  310. con->out_msg = NULL;
  311. }
  312. con->in_seq = 0;
  313. con->in_seq_acked = 0;
  314. }
  315. /*
  316. * mark a peer down. drop any open connections.
  317. */
  318. void ceph_con_close(struct ceph_connection *con)
  319. {
  320. dout("con_close %p peer %s\n", con,
  321. ceph_pr_addr(&con->peer_addr.in_addr));
  322. set_bit(CLOSED, &con->state); /* in case there's queued work */
  323. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  324. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  325. clear_bit(KEEPALIVE_PENDING, &con->state);
  326. clear_bit(WRITE_PENDING, &con->state);
  327. mutex_lock(&con->mutex);
  328. reset_connection(con);
  329. con->peer_global_seq = 0;
  330. cancel_delayed_work(&con->work);
  331. mutex_unlock(&con->mutex);
  332. queue_con(con);
  333. }
  334. EXPORT_SYMBOL(ceph_con_close);
  335. /*
  336. * Reopen a closed connection, with a new peer address.
  337. */
  338. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  339. {
  340. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  341. set_bit(OPENING, &con->state);
  342. clear_bit(CLOSED, &con->state);
  343. memcpy(&con->peer_addr, addr, sizeof(*addr));
  344. con->delay = 0; /* reset backoff memory */
  345. queue_con(con);
  346. }
  347. EXPORT_SYMBOL(ceph_con_open);
  348. /*
  349. * return true if this connection ever successfully opened
  350. */
  351. bool ceph_con_opened(struct ceph_connection *con)
  352. {
  353. return con->connect_seq > 0;
  354. }
  355. /*
  356. * generic get/put
  357. */
  358. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  359. {
  360. int nref = __atomic_add_unless(&con->nref, 1, 0);
  361. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  362. return nref ? con : NULL;
  363. }
  364. void ceph_con_put(struct ceph_connection *con)
  365. {
  366. int nref = atomic_dec_return(&con->nref);
  367. BUG_ON(nref < 0);
  368. if (nref == 0) {
  369. BUG_ON(con->sock);
  370. kfree(con);
  371. }
  372. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  373. }
  374. /*
  375. * initialize a new connection.
  376. */
  377. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  378. {
  379. dout("con_init %p\n", con);
  380. memset(con, 0, sizeof(*con));
  381. atomic_set(&con->nref, 1);
  382. con->msgr = msgr;
  383. mutex_init(&con->mutex);
  384. INIT_LIST_HEAD(&con->out_queue);
  385. INIT_LIST_HEAD(&con->out_sent);
  386. INIT_DELAYED_WORK(&con->work, con_work);
  387. }
  388. EXPORT_SYMBOL(ceph_con_init);
  389. /*
  390. * We maintain a global counter to order connection attempts. Get
  391. * a unique seq greater than @gt.
  392. */
  393. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  394. {
  395. u32 ret;
  396. spin_lock(&msgr->global_seq_lock);
  397. if (msgr->global_seq < gt)
  398. msgr->global_seq = gt;
  399. ret = ++msgr->global_seq;
  400. spin_unlock(&msgr->global_seq_lock);
  401. return ret;
  402. }
  403. static void ceph_con_out_kvec_reset(struct ceph_connection *con)
  404. {
  405. con->out_kvec_left = 0;
  406. con->out_kvec_bytes = 0;
  407. con->out_kvec_cur = &con->out_kvec[0];
  408. }
  409. static void ceph_con_out_kvec_add(struct ceph_connection *con,
  410. size_t size, void *data)
  411. {
  412. int index;
  413. index = con->out_kvec_left;
  414. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  415. con->out_kvec[index].iov_len = size;
  416. con->out_kvec[index].iov_base = data;
  417. con->out_kvec_left++;
  418. con->out_kvec_bytes += size;
  419. }
  420. /*
  421. * Prepare footer for currently outgoing message, and finish things
  422. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  423. */
  424. static void prepare_write_message_footer(struct ceph_connection *con)
  425. {
  426. struct ceph_msg *m = con->out_msg;
  427. int v = con->out_kvec_left;
  428. dout("prepare_write_message_footer %p\n", con);
  429. con->out_kvec_is_msg = true;
  430. con->out_kvec[v].iov_base = &m->footer;
  431. con->out_kvec[v].iov_len = sizeof(m->footer);
  432. con->out_kvec_bytes += sizeof(m->footer);
  433. con->out_kvec_left++;
  434. con->out_more = m->more_to_follow;
  435. con->out_msg_done = true;
  436. }
  437. /*
  438. * Prepare headers for the next outgoing message.
  439. */
  440. static void prepare_write_message(struct ceph_connection *con)
  441. {
  442. struct ceph_msg *m;
  443. u32 crc;
  444. ceph_con_out_kvec_reset(con);
  445. con->out_kvec_is_msg = true;
  446. con->out_msg_done = false;
  447. /* Sneak an ack in there first? If we can get it into the same
  448. * TCP packet that's a good thing. */
  449. if (con->in_seq > con->in_seq_acked) {
  450. con->in_seq_acked = con->in_seq;
  451. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  452. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  453. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  454. &con->out_temp_ack);
  455. }
  456. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  457. con->out_msg = m;
  458. /* put message on sent list */
  459. ceph_msg_get(m);
  460. list_move_tail(&m->list_head, &con->out_sent);
  461. /*
  462. * only assign outgoing seq # if we haven't sent this message
  463. * yet. if it is requeued, resend with it's original seq.
  464. */
  465. if (m->needs_out_seq) {
  466. m->hdr.seq = cpu_to_le64(++con->out_seq);
  467. m->needs_out_seq = false;
  468. }
  469. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  470. m, con->out_seq, le16_to_cpu(m->hdr.type),
  471. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  472. le32_to_cpu(m->hdr.data_len),
  473. m->nr_pages);
  474. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  475. /* tag + hdr + front + middle */
  476. ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  477. ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  478. ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  479. if (m->middle)
  480. ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
  481. m->middle->vec.iov_base);
  482. /* fill in crc (except data pages), footer */
  483. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  484. con->out_msg->hdr.crc = cpu_to_le32(crc);
  485. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  486. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  487. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  488. if (m->middle) {
  489. crc = crc32c(0, m->middle->vec.iov_base,
  490. m->middle->vec.iov_len);
  491. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  492. } else
  493. con->out_msg->footer.middle_crc = 0;
  494. con->out_msg->footer.data_crc = 0;
  495. dout("prepare_write_message front_crc %u data_crc %u\n",
  496. le32_to_cpu(con->out_msg->footer.front_crc),
  497. le32_to_cpu(con->out_msg->footer.middle_crc));
  498. /* is there a data payload? */
  499. if (le32_to_cpu(m->hdr.data_len) > 0) {
  500. /* initialize page iterator */
  501. con->out_msg_pos.page = 0;
  502. if (m->pages)
  503. con->out_msg_pos.page_pos = m->page_alignment;
  504. else
  505. con->out_msg_pos.page_pos = 0;
  506. con->out_msg_pos.data_pos = 0;
  507. con->out_msg_pos.did_page_crc = false;
  508. con->out_more = 1; /* data + footer will follow */
  509. } else {
  510. /* no, queue up footer too and be done */
  511. prepare_write_message_footer(con);
  512. }
  513. set_bit(WRITE_PENDING, &con->state);
  514. }
  515. /*
  516. * Prepare an ack.
  517. */
  518. static void prepare_write_ack(struct ceph_connection *con)
  519. {
  520. dout("prepare_write_ack %p %llu -> %llu\n", con,
  521. con->in_seq_acked, con->in_seq);
  522. con->in_seq_acked = con->in_seq;
  523. ceph_con_out_kvec_reset(con);
  524. ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  525. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  526. ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
  527. &con->out_temp_ack);
  528. con->out_more = 1; /* more will follow.. eventually.. */
  529. set_bit(WRITE_PENDING, &con->state);
  530. }
  531. /*
  532. * Prepare to write keepalive byte.
  533. */
  534. static void prepare_write_keepalive(struct ceph_connection *con)
  535. {
  536. dout("prepare_write_keepalive %p\n", con);
  537. ceph_con_out_kvec_reset(con);
  538. ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  539. set_bit(WRITE_PENDING, &con->state);
  540. }
  541. /*
  542. * Connection negotiation.
  543. */
  544. static int prepare_connect_authorizer(struct ceph_connection *con)
  545. {
  546. void *auth_buf;
  547. int auth_len = 0;
  548. int auth_protocol = 0;
  549. mutex_unlock(&con->mutex);
  550. if (con->ops->get_authorizer)
  551. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  552. &auth_protocol, &con->auth_reply_buf,
  553. &con->auth_reply_buf_len,
  554. con->auth_retry);
  555. mutex_lock(&con->mutex);
  556. if (test_bit(CLOSED, &con->state) ||
  557. test_bit(OPENING, &con->state))
  558. return -EAGAIN;
  559. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  560. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  561. if (auth_len)
  562. ceph_con_out_kvec_add(con, auth_len, auth_buf);
  563. return 0;
  564. }
  565. /*
  566. * We connected to a peer and are saying hello.
  567. */
  568. static void prepare_write_banner(struct ceph_messenger *msgr,
  569. struct ceph_connection *con)
  570. {
  571. ceph_con_out_kvec_reset(con);
  572. ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  573. ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
  574. &msgr->my_enc_addr);
  575. con->out_more = 0;
  576. set_bit(WRITE_PENDING, &con->state);
  577. }
  578. static int prepare_write_connect(struct ceph_messenger *msgr,
  579. struct ceph_connection *con,
  580. int include_banner)
  581. {
  582. unsigned global_seq = get_global_seq(con->msgr, 0);
  583. int proto;
  584. switch (con->peer_name.type) {
  585. case CEPH_ENTITY_TYPE_MON:
  586. proto = CEPH_MONC_PROTOCOL;
  587. break;
  588. case CEPH_ENTITY_TYPE_OSD:
  589. proto = CEPH_OSDC_PROTOCOL;
  590. break;
  591. case CEPH_ENTITY_TYPE_MDS:
  592. proto = CEPH_MDSC_PROTOCOL;
  593. break;
  594. default:
  595. BUG();
  596. }
  597. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  598. con->connect_seq, global_seq, proto);
  599. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  600. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  601. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  602. con->out_connect.global_seq = cpu_to_le32(global_seq);
  603. con->out_connect.protocol_version = cpu_to_le32(proto);
  604. con->out_connect.flags = 0;
  605. if (include_banner)
  606. prepare_write_banner(msgr, con);
  607. else
  608. ceph_con_out_kvec_reset(con);
  609. ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
  610. con->out_more = 0;
  611. set_bit(WRITE_PENDING, &con->state);
  612. return prepare_connect_authorizer(con);
  613. }
  614. /*
  615. * write as much of pending kvecs to the socket as we can.
  616. * 1 -> done
  617. * 0 -> socket full, but more to do
  618. * <0 -> error
  619. */
  620. static int write_partial_kvec(struct ceph_connection *con)
  621. {
  622. int ret;
  623. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  624. while (con->out_kvec_bytes > 0) {
  625. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  626. con->out_kvec_left, con->out_kvec_bytes,
  627. con->out_more);
  628. if (ret <= 0)
  629. goto out;
  630. con->out_kvec_bytes -= ret;
  631. if (con->out_kvec_bytes == 0)
  632. break; /* done */
  633. while (ret > 0) {
  634. if (ret >= con->out_kvec_cur->iov_len) {
  635. ret -= con->out_kvec_cur->iov_len;
  636. con->out_kvec_cur++;
  637. con->out_kvec_left--;
  638. } else {
  639. con->out_kvec_cur->iov_len -= ret;
  640. con->out_kvec_cur->iov_base += ret;
  641. ret = 0;
  642. break;
  643. }
  644. }
  645. }
  646. con->out_kvec_left = 0;
  647. con->out_kvec_is_msg = false;
  648. ret = 1;
  649. out:
  650. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  651. con->out_kvec_bytes, con->out_kvec_left, ret);
  652. return ret; /* done! */
  653. }
  654. #ifdef CONFIG_BLOCK
  655. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  656. {
  657. if (!bio) {
  658. *iter = NULL;
  659. *seg = 0;
  660. return;
  661. }
  662. *iter = bio;
  663. *seg = bio->bi_idx;
  664. }
  665. static void iter_bio_next(struct bio **bio_iter, int *seg)
  666. {
  667. if (*bio_iter == NULL)
  668. return;
  669. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  670. (*seg)++;
  671. if (*seg == (*bio_iter)->bi_vcnt)
  672. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  673. }
  674. #endif
  675. /*
  676. * Write as much message data payload as we can. If we finish, queue
  677. * up the footer.
  678. * 1 -> done, footer is now queued in out_kvec[].
  679. * 0 -> socket full, but more to do
  680. * <0 -> error
  681. */
  682. static int write_partial_msg_pages(struct ceph_connection *con)
  683. {
  684. struct ceph_msg *msg = con->out_msg;
  685. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  686. size_t len;
  687. bool do_crc = con->msgr->nocrc;
  688. int ret;
  689. int total_max_write;
  690. int in_trail = 0;
  691. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  692. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  693. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  694. con->out_msg_pos.page_pos);
  695. #ifdef CONFIG_BLOCK
  696. if (msg->bio && !msg->bio_iter)
  697. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  698. #endif
  699. while (data_len > con->out_msg_pos.data_pos) {
  700. struct page *page = NULL;
  701. void *kaddr = NULL;
  702. int max_write = PAGE_SIZE;
  703. int page_shift = 0;
  704. total_max_write = data_len - trail_len -
  705. con->out_msg_pos.data_pos;
  706. /*
  707. * if we are calculating the data crc (the default), we need
  708. * to map the page. if our pages[] has been revoked, use the
  709. * zero page.
  710. */
  711. /* have we reached the trail part of the data? */
  712. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  713. in_trail = 1;
  714. total_max_write = data_len - con->out_msg_pos.data_pos;
  715. page = list_first_entry(&msg->trail->head,
  716. struct page, lru);
  717. if (do_crc)
  718. kaddr = kmap(page);
  719. max_write = PAGE_SIZE;
  720. } else if (msg->pages) {
  721. page = msg->pages[con->out_msg_pos.page];
  722. if (do_crc)
  723. kaddr = kmap(page);
  724. } else if (msg->pagelist) {
  725. page = list_first_entry(&msg->pagelist->head,
  726. struct page, lru);
  727. if (do_crc)
  728. kaddr = kmap(page);
  729. #ifdef CONFIG_BLOCK
  730. } else if (msg->bio) {
  731. struct bio_vec *bv;
  732. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  733. page = bv->bv_page;
  734. page_shift = bv->bv_offset;
  735. if (do_crc)
  736. kaddr = kmap(page) + page_shift;
  737. max_write = bv->bv_len;
  738. #endif
  739. } else {
  740. page = zero_page;
  741. if (do_crc)
  742. kaddr = zero_page_address;
  743. }
  744. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  745. total_max_write);
  746. if (do_crc && !con->out_msg_pos.did_page_crc) {
  747. u32 crc;
  748. void *base = kaddr + con->out_msg_pos.page_pos;
  749. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  750. BUG_ON(kaddr == NULL);
  751. crc = crc32c(tmpcrc, base, len);
  752. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  753. con->out_msg_pos.did_page_crc = true;
  754. }
  755. ret = kernel_sendpage(con->sock, page,
  756. con->out_msg_pos.page_pos + page_shift,
  757. len,
  758. MSG_DONTWAIT | MSG_NOSIGNAL |
  759. MSG_MORE);
  760. if (do_crc &&
  761. (msg->pages || msg->pagelist || msg->bio || in_trail))
  762. kunmap(page);
  763. if (ret == -EAGAIN)
  764. ret = 0;
  765. if (ret <= 0)
  766. goto out;
  767. con->out_msg_pos.data_pos += ret;
  768. con->out_msg_pos.page_pos += ret;
  769. if (ret == len) {
  770. con->out_msg_pos.page_pos = 0;
  771. con->out_msg_pos.page++;
  772. con->out_msg_pos.did_page_crc = false;
  773. if (in_trail)
  774. list_move_tail(&page->lru,
  775. &msg->trail->head);
  776. else if (msg->pagelist)
  777. list_move_tail(&page->lru,
  778. &msg->pagelist->head);
  779. #ifdef CONFIG_BLOCK
  780. else if (msg->bio)
  781. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  782. #endif
  783. }
  784. }
  785. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  786. /* prepare and queue up footer, too */
  787. if (!do_crc)
  788. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  789. ceph_con_out_kvec_reset(con);
  790. prepare_write_message_footer(con);
  791. ret = 1;
  792. out:
  793. return ret;
  794. }
  795. /*
  796. * write some zeros
  797. */
  798. static int write_partial_skip(struct ceph_connection *con)
  799. {
  800. int ret;
  801. while (con->out_skip > 0) {
  802. struct kvec iov = {
  803. .iov_base = zero_page_address,
  804. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  805. };
  806. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  807. if (ret <= 0)
  808. goto out;
  809. con->out_skip -= ret;
  810. }
  811. ret = 1;
  812. out:
  813. return ret;
  814. }
  815. /*
  816. * Prepare to read connection handshake, or an ack.
  817. */
  818. static void prepare_read_banner(struct ceph_connection *con)
  819. {
  820. dout("prepare_read_banner %p\n", con);
  821. con->in_base_pos = 0;
  822. }
  823. static void prepare_read_connect(struct ceph_connection *con)
  824. {
  825. dout("prepare_read_connect %p\n", con);
  826. con->in_base_pos = 0;
  827. }
  828. static void prepare_read_ack(struct ceph_connection *con)
  829. {
  830. dout("prepare_read_ack %p\n", con);
  831. con->in_base_pos = 0;
  832. }
  833. static void prepare_read_tag(struct ceph_connection *con)
  834. {
  835. dout("prepare_read_tag %p\n", con);
  836. con->in_base_pos = 0;
  837. con->in_tag = CEPH_MSGR_TAG_READY;
  838. }
  839. /*
  840. * Prepare to read a message.
  841. */
  842. static int prepare_read_message(struct ceph_connection *con)
  843. {
  844. dout("prepare_read_message %p\n", con);
  845. BUG_ON(con->in_msg != NULL);
  846. con->in_base_pos = 0;
  847. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  848. return 0;
  849. }
  850. static int read_partial(struct ceph_connection *con,
  851. int *to, int size, void *object)
  852. {
  853. *to += size;
  854. while (con->in_base_pos < *to) {
  855. int left = *to - con->in_base_pos;
  856. int have = size - left;
  857. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  858. if (ret <= 0)
  859. return ret;
  860. con->in_base_pos += ret;
  861. }
  862. return 1;
  863. }
  864. /*
  865. * Read all or part of the connect-side handshake on a new connection
  866. */
  867. static int read_partial_banner(struct ceph_connection *con)
  868. {
  869. int ret, to = 0;
  870. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  871. /* peer's banner */
  872. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  873. if (ret <= 0)
  874. goto out;
  875. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  876. &con->actual_peer_addr);
  877. if (ret <= 0)
  878. goto out;
  879. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  880. &con->peer_addr_for_me);
  881. if (ret <= 0)
  882. goto out;
  883. out:
  884. return ret;
  885. }
  886. static int read_partial_connect(struct ceph_connection *con)
  887. {
  888. int ret, to = 0;
  889. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  890. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  891. if (ret <= 0)
  892. goto out;
  893. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  894. con->auth_reply_buf);
  895. if (ret <= 0)
  896. goto out;
  897. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  898. con, (int)con->in_reply.tag,
  899. le32_to_cpu(con->in_reply.connect_seq),
  900. le32_to_cpu(con->in_reply.global_seq));
  901. out:
  902. return ret;
  903. }
  904. /*
  905. * Verify the hello banner looks okay.
  906. */
  907. static int verify_hello(struct ceph_connection *con)
  908. {
  909. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  910. pr_err("connect to %s got bad banner\n",
  911. ceph_pr_addr(&con->peer_addr.in_addr));
  912. con->error_msg = "protocol error, bad banner";
  913. return -1;
  914. }
  915. return 0;
  916. }
  917. static bool addr_is_blank(struct sockaddr_storage *ss)
  918. {
  919. switch (ss->ss_family) {
  920. case AF_INET:
  921. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  922. case AF_INET6:
  923. return
  924. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  925. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  926. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  927. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  928. }
  929. return false;
  930. }
  931. static int addr_port(struct sockaddr_storage *ss)
  932. {
  933. switch (ss->ss_family) {
  934. case AF_INET:
  935. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  936. case AF_INET6:
  937. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  938. }
  939. return 0;
  940. }
  941. static void addr_set_port(struct sockaddr_storage *ss, int p)
  942. {
  943. switch (ss->ss_family) {
  944. case AF_INET:
  945. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  946. break;
  947. case AF_INET6:
  948. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  949. break;
  950. }
  951. }
  952. /*
  953. * Unlike other *_pton function semantics, zero indicates success.
  954. */
  955. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  956. char delim, const char **ipend)
  957. {
  958. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  959. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  960. memset(ss, 0, sizeof(*ss));
  961. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  962. ss->ss_family = AF_INET;
  963. return 0;
  964. }
  965. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  966. ss->ss_family = AF_INET6;
  967. return 0;
  968. }
  969. return -EINVAL;
  970. }
  971. /*
  972. * Extract hostname string and resolve using kernel DNS facility.
  973. */
  974. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  975. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  976. struct sockaddr_storage *ss, char delim, const char **ipend)
  977. {
  978. const char *end, *delim_p;
  979. char *colon_p, *ip_addr = NULL;
  980. int ip_len, ret;
  981. /*
  982. * The end of the hostname occurs immediately preceding the delimiter or
  983. * the port marker (':') where the delimiter takes precedence.
  984. */
  985. delim_p = memchr(name, delim, namelen);
  986. colon_p = memchr(name, ':', namelen);
  987. if (delim_p && colon_p)
  988. end = delim_p < colon_p ? delim_p : colon_p;
  989. else if (!delim_p && colon_p)
  990. end = colon_p;
  991. else {
  992. end = delim_p;
  993. if (!end) /* case: hostname:/ */
  994. end = name + namelen;
  995. }
  996. if (end <= name)
  997. return -EINVAL;
  998. /* do dns_resolve upcall */
  999. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1000. if (ip_len > 0)
  1001. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1002. else
  1003. ret = -ESRCH;
  1004. kfree(ip_addr);
  1005. *ipend = end;
  1006. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1007. ret, ret ? "failed" : ceph_pr_addr(ss));
  1008. return ret;
  1009. }
  1010. #else
  1011. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1012. struct sockaddr_storage *ss, char delim, const char **ipend)
  1013. {
  1014. return -EINVAL;
  1015. }
  1016. #endif
  1017. /*
  1018. * Parse a server name (IP or hostname). If a valid IP address is not found
  1019. * then try to extract a hostname to resolve using userspace DNS upcall.
  1020. */
  1021. static int ceph_parse_server_name(const char *name, size_t namelen,
  1022. struct sockaddr_storage *ss, char delim, const char **ipend)
  1023. {
  1024. int ret;
  1025. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1026. if (ret)
  1027. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1028. return ret;
  1029. }
  1030. /*
  1031. * Parse an ip[:port] list into an addr array. Use the default
  1032. * monitor port if a port isn't specified.
  1033. */
  1034. int ceph_parse_ips(const char *c, const char *end,
  1035. struct ceph_entity_addr *addr,
  1036. int max_count, int *count)
  1037. {
  1038. int i, ret = -EINVAL;
  1039. const char *p = c;
  1040. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1041. for (i = 0; i < max_count; i++) {
  1042. const char *ipend;
  1043. struct sockaddr_storage *ss = &addr[i].in_addr;
  1044. int port;
  1045. char delim = ',';
  1046. if (*p == '[') {
  1047. delim = ']';
  1048. p++;
  1049. }
  1050. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1051. if (ret)
  1052. goto bad;
  1053. ret = -EINVAL;
  1054. p = ipend;
  1055. if (delim == ']') {
  1056. if (*p != ']') {
  1057. dout("missing matching ']'\n");
  1058. goto bad;
  1059. }
  1060. p++;
  1061. }
  1062. /* port? */
  1063. if (p < end && *p == ':') {
  1064. port = 0;
  1065. p++;
  1066. while (p < end && *p >= '0' && *p <= '9') {
  1067. port = (port * 10) + (*p - '0');
  1068. p++;
  1069. }
  1070. if (port > 65535 || port == 0)
  1071. goto bad;
  1072. } else {
  1073. port = CEPH_MON_PORT;
  1074. }
  1075. addr_set_port(ss, port);
  1076. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1077. if (p == end)
  1078. break;
  1079. if (*p != ',')
  1080. goto bad;
  1081. p++;
  1082. }
  1083. if (p != end)
  1084. goto bad;
  1085. if (count)
  1086. *count = i + 1;
  1087. return 0;
  1088. bad:
  1089. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1090. return ret;
  1091. }
  1092. EXPORT_SYMBOL(ceph_parse_ips);
  1093. static int process_banner(struct ceph_connection *con)
  1094. {
  1095. dout("process_banner on %p\n", con);
  1096. if (verify_hello(con) < 0)
  1097. return -1;
  1098. ceph_decode_addr(&con->actual_peer_addr);
  1099. ceph_decode_addr(&con->peer_addr_for_me);
  1100. /*
  1101. * Make sure the other end is who we wanted. note that the other
  1102. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1103. * them the benefit of the doubt.
  1104. */
  1105. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1106. sizeof(con->peer_addr)) != 0 &&
  1107. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1108. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1109. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1110. ceph_pr_addr(&con->peer_addr.in_addr),
  1111. (int)le32_to_cpu(con->peer_addr.nonce),
  1112. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1113. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1114. con->error_msg = "wrong peer at address";
  1115. return -1;
  1116. }
  1117. /*
  1118. * did we learn our address?
  1119. */
  1120. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1121. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1122. memcpy(&con->msgr->inst.addr.in_addr,
  1123. &con->peer_addr_for_me.in_addr,
  1124. sizeof(con->peer_addr_for_me.in_addr));
  1125. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1126. encode_my_addr(con->msgr);
  1127. dout("process_banner learned my addr is %s\n",
  1128. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1129. }
  1130. set_bit(NEGOTIATING, &con->state);
  1131. prepare_read_connect(con);
  1132. return 0;
  1133. }
  1134. static void fail_protocol(struct ceph_connection *con)
  1135. {
  1136. reset_connection(con);
  1137. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1138. mutex_unlock(&con->mutex);
  1139. if (con->ops->bad_proto)
  1140. con->ops->bad_proto(con);
  1141. mutex_lock(&con->mutex);
  1142. }
  1143. static int process_connect(struct ceph_connection *con)
  1144. {
  1145. u64 sup_feat = con->msgr->supported_features;
  1146. u64 req_feat = con->msgr->required_features;
  1147. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1148. int ret;
  1149. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1150. switch (con->in_reply.tag) {
  1151. case CEPH_MSGR_TAG_FEATURES:
  1152. pr_err("%s%lld %s feature set mismatch,"
  1153. " my %llx < server's %llx, missing %llx\n",
  1154. ENTITY_NAME(con->peer_name),
  1155. ceph_pr_addr(&con->peer_addr.in_addr),
  1156. sup_feat, server_feat, server_feat & ~sup_feat);
  1157. con->error_msg = "missing required protocol features";
  1158. fail_protocol(con);
  1159. return -1;
  1160. case CEPH_MSGR_TAG_BADPROTOVER:
  1161. pr_err("%s%lld %s protocol version mismatch,"
  1162. " my %d != server's %d\n",
  1163. ENTITY_NAME(con->peer_name),
  1164. ceph_pr_addr(&con->peer_addr.in_addr),
  1165. le32_to_cpu(con->out_connect.protocol_version),
  1166. le32_to_cpu(con->in_reply.protocol_version));
  1167. con->error_msg = "protocol version mismatch";
  1168. fail_protocol(con);
  1169. return -1;
  1170. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1171. con->auth_retry++;
  1172. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1173. con->auth_retry);
  1174. if (con->auth_retry == 2) {
  1175. con->error_msg = "connect authorization failure";
  1176. return -1;
  1177. }
  1178. con->auth_retry = 1;
  1179. ret = prepare_write_connect(con->msgr, con, 0);
  1180. if (ret < 0)
  1181. return ret;
  1182. prepare_read_connect(con);
  1183. break;
  1184. case CEPH_MSGR_TAG_RESETSESSION:
  1185. /*
  1186. * If we connected with a large connect_seq but the peer
  1187. * has no record of a session with us (no connection, or
  1188. * connect_seq == 0), they will send RESETSESION to indicate
  1189. * that they must have reset their session, and may have
  1190. * dropped messages.
  1191. */
  1192. dout("process_connect got RESET peer seq %u\n",
  1193. le32_to_cpu(con->in_connect.connect_seq));
  1194. pr_err("%s%lld %s connection reset\n",
  1195. ENTITY_NAME(con->peer_name),
  1196. ceph_pr_addr(&con->peer_addr.in_addr));
  1197. reset_connection(con);
  1198. prepare_write_connect(con->msgr, con, 0);
  1199. prepare_read_connect(con);
  1200. /* Tell ceph about it. */
  1201. mutex_unlock(&con->mutex);
  1202. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1203. if (con->ops->peer_reset)
  1204. con->ops->peer_reset(con);
  1205. mutex_lock(&con->mutex);
  1206. if (test_bit(CLOSED, &con->state) ||
  1207. test_bit(OPENING, &con->state))
  1208. return -EAGAIN;
  1209. break;
  1210. case CEPH_MSGR_TAG_RETRY_SESSION:
  1211. /*
  1212. * If we sent a smaller connect_seq than the peer has, try
  1213. * again with a larger value.
  1214. */
  1215. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1216. le32_to_cpu(con->out_connect.connect_seq),
  1217. le32_to_cpu(con->in_connect.connect_seq));
  1218. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1219. prepare_write_connect(con->msgr, con, 0);
  1220. prepare_read_connect(con);
  1221. break;
  1222. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1223. /*
  1224. * If we sent a smaller global_seq than the peer has, try
  1225. * again with a larger value.
  1226. */
  1227. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1228. con->peer_global_seq,
  1229. le32_to_cpu(con->in_connect.global_seq));
  1230. get_global_seq(con->msgr,
  1231. le32_to_cpu(con->in_connect.global_seq));
  1232. prepare_write_connect(con->msgr, con, 0);
  1233. prepare_read_connect(con);
  1234. break;
  1235. case CEPH_MSGR_TAG_READY:
  1236. if (req_feat & ~server_feat) {
  1237. pr_err("%s%lld %s protocol feature mismatch,"
  1238. " my required %llx > server's %llx, need %llx\n",
  1239. ENTITY_NAME(con->peer_name),
  1240. ceph_pr_addr(&con->peer_addr.in_addr),
  1241. req_feat, server_feat, req_feat & ~server_feat);
  1242. con->error_msg = "missing required protocol features";
  1243. fail_protocol(con);
  1244. return -1;
  1245. }
  1246. clear_bit(CONNECTING, &con->state);
  1247. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1248. con->connect_seq++;
  1249. con->peer_features = server_feat;
  1250. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1251. con->peer_global_seq,
  1252. le32_to_cpu(con->in_reply.connect_seq),
  1253. con->connect_seq);
  1254. WARN_ON(con->connect_seq !=
  1255. le32_to_cpu(con->in_reply.connect_seq));
  1256. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1257. set_bit(LOSSYTX, &con->state);
  1258. prepare_read_tag(con);
  1259. break;
  1260. case CEPH_MSGR_TAG_WAIT:
  1261. /*
  1262. * If there is a connection race (we are opening
  1263. * connections to each other), one of us may just have
  1264. * to WAIT. This shouldn't happen if we are the
  1265. * client.
  1266. */
  1267. pr_err("process_connect got WAIT as client\n");
  1268. con->error_msg = "protocol error, got WAIT as client";
  1269. return -1;
  1270. default:
  1271. pr_err("connect protocol error, will retry\n");
  1272. con->error_msg = "protocol error, garbage tag during connect";
  1273. return -1;
  1274. }
  1275. return 0;
  1276. }
  1277. /*
  1278. * read (part of) an ack
  1279. */
  1280. static int read_partial_ack(struct ceph_connection *con)
  1281. {
  1282. int to = 0;
  1283. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1284. &con->in_temp_ack);
  1285. }
  1286. /*
  1287. * We can finally discard anything that's been acked.
  1288. */
  1289. static void process_ack(struct ceph_connection *con)
  1290. {
  1291. struct ceph_msg *m;
  1292. u64 ack = le64_to_cpu(con->in_temp_ack);
  1293. u64 seq;
  1294. while (!list_empty(&con->out_sent)) {
  1295. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1296. list_head);
  1297. seq = le64_to_cpu(m->hdr.seq);
  1298. if (seq > ack)
  1299. break;
  1300. dout("got ack for seq %llu type %d at %p\n", seq,
  1301. le16_to_cpu(m->hdr.type), m);
  1302. m->ack_stamp = jiffies;
  1303. ceph_msg_remove(m);
  1304. }
  1305. prepare_read_tag(con);
  1306. }
  1307. static int read_partial_message_section(struct ceph_connection *con,
  1308. struct kvec *section,
  1309. unsigned int sec_len, u32 *crc)
  1310. {
  1311. int ret, left;
  1312. BUG_ON(!section);
  1313. while (section->iov_len < sec_len) {
  1314. BUG_ON(section->iov_base == NULL);
  1315. left = sec_len - section->iov_len;
  1316. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1317. section->iov_len, left);
  1318. if (ret <= 0)
  1319. return ret;
  1320. section->iov_len += ret;
  1321. }
  1322. if (section->iov_len == sec_len)
  1323. *crc = crc32c(0, section->iov_base, section->iov_len);
  1324. return 1;
  1325. }
  1326. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1327. struct ceph_msg_header *hdr,
  1328. int *skip);
  1329. static int read_partial_message_pages(struct ceph_connection *con,
  1330. struct page **pages,
  1331. unsigned data_len, bool do_datacrc)
  1332. {
  1333. void *p;
  1334. int ret;
  1335. int left;
  1336. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1337. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1338. /* (page) data */
  1339. BUG_ON(pages == NULL);
  1340. p = kmap(pages[con->in_msg_pos.page]);
  1341. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1342. left);
  1343. if (ret > 0 && do_datacrc)
  1344. con->in_data_crc =
  1345. crc32c(con->in_data_crc,
  1346. p + con->in_msg_pos.page_pos, ret);
  1347. kunmap(pages[con->in_msg_pos.page]);
  1348. if (ret <= 0)
  1349. return ret;
  1350. con->in_msg_pos.data_pos += ret;
  1351. con->in_msg_pos.page_pos += ret;
  1352. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1353. con->in_msg_pos.page_pos = 0;
  1354. con->in_msg_pos.page++;
  1355. }
  1356. return ret;
  1357. }
  1358. #ifdef CONFIG_BLOCK
  1359. static int read_partial_message_bio(struct ceph_connection *con,
  1360. struct bio **bio_iter, int *bio_seg,
  1361. unsigned data_len, bool do_datacrc)
  1362. {
  1363. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1364. void *p;
  1365. int ret, left;
  1366. if (IS_ERR(bv))
  1367. return PTR_ERR(bv);
  1368. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1369. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1370. p = kmap(bv->bv_page) + bv->bv_offset;
  1371. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1372. left);
  1373. if (ret > 0 && do_datacrc)
  1374. con->in_data_crc =
  1375. crc32c(con->in_data_crc,
  1376. p + con->in_msg_pos.page_pos, ret);
  1377. kunmap(bv->bv_page);
  1378. if (ret <= 0)
  1379. return ret;
  1380. con->in_msg_pos.data_pos += ret;
  1381. con->in_msg_pos.page_pos += ret;
  1382. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1383. con->in_msg_pos.page_pos = 0;
  1384. iter_bio_next(bio_iter, bio_seg);
  1385. }
  1386. return ret;
  1387. }
  1388. #endif
  1389. /*
  1390. * read (part of) a message.
  1391. */
  1392. static int read_partial_message(struct ceph_connection *con)
  1393. {
  1394. struct ceph_msg *m = con->in_msg;
  1395. int ret;
  1396. int to, left;
  1397. unsigned front_len, middle_len, data_len;
  1398. bool do_datacrc = con->msgr->nocrc;
  1399. int skip;
  1400. u64 seq;
  1401. u32 crc;
  1402. dout("read_partial_message con %p msg %p\n", con, m);
  1403. /* header */
  1404. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1405. left = sizeof(con->in_hdr) - con->in_base_pos;
  1406. ret = ceph_tcp_recvmsg(con->sock,
  1407. (char *)&con->in_hdr + con->in_base_pos,
  1408. left);
  1409. if (ret <= 0)
  1410. return ret;
  1411. con->in_base_pos += ret;
  1412. }
  1413. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1414. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1415. pr_err("read_partial_message bad hdr "
  1416. " crc %u != expected %u\n",
  1417. crc, con->in_hdr.crc);
  1418. return -EBADMSG;
  1419. }
  1420. front_len = le32_to_cpu(con->in_hdr.front_len);
  1421. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1422. return -EIO;
  1423. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1424. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1425. return -EIO;
  1426. data_len = le32_to_cpu(con->in_hdr.data_len);
  1427. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1428. return -EIO;
  1429. /* verify seq# */
  1430. seq = le64_to_cpu(con->in_hdr.seq);
  1431. if ((s64)seq - (s64)con->in_seq < 1) {
  1432. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1433. ENTITY_NAME(con->peer_name),
  1434. ceph_pr_addr(&con->peer_addr.in_addr),
  1435. seq, con->in_seq + 1);
  1436. con->in_base_pos = -front_len - middle_len - data_len -
  1437. sizeof(m->footer);
  1438. con->in_tag = CEPH_MSGR_TAG_READY;
  1439. return 0;
  1440. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1441. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1442. seq, con->in_seq + 1);
  1443. con->error_msg = "bad message sequence # for incoming message";
  1444. return -EBADMSG;
  1445. }
  1446. /* allocate message? */
  1447. if (!con->in_msg) {
  1448. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1449. con->in_hdr.front_len, con->in_hdr.data_len);
  1450. skip = 0;
  1451. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1452. if (skip) {
  1453. /* skip this message */
  1454. dout("alloc_msg said skip message\n");
  1455. BUG_ON(con->in_msg);
  1456. con->in_base_pos = -front_len - middle_len - data_len -
  1457. sizeof(m->footer);
  1458. con->in_tag = CEPH_MSGR_TAG_READY;
  1459. con->in_seq++;
  1460. return 0;
  1461. }
  1462. if (!con->in_msg) {
  1463. con->error_msg =
  1464. "error allocating memory for incoming message";
  1465. return -ENOMEM;
  1466. }
  1467. m = con->in_msg;
  1468. m->front.iov_len = 0; /* haven't read it yet */
  1469. if (m->middle)
  1470. m->middle->vec.iov_len = 0;
  1471. con->in_msg_pos.page = 0;
  1472. if (m->pages)
  1473. con->in_msg_pos.page_pos = m->page_alignment;
  1474. else
  1475. con->in_msg_pos.page_pos = 0;
  1476. con->in_msg_pos.data_pos = 0;
  1477. }
  1478. /* front */
  1479. ret = read_partial_message_section(con, &m->front, front_len,
  1480. &con->in_front_crc);
  1481. if (ret <= 0)
  1482. return ret;
  1483. /* middle */
  1484. if (m->middle) {
  1485. ret = read_partial_message_section(con, &m->middle->vec,
  1486. middle_len,
  1487. &con->in_middle_crc);
  1488. if (ret <= 0)
  1489. return ret;
  1490. }
  1491. #ifdef CONFIG_BLOCK
  1492. if (m->bio && !m->bio_iter)
  1493. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1494. #endif
  1495. /* (page) data */
  1496. while (con->in_msg_pos.data_pos < data_len) {
  1497. if (m->pages) {
  1498. ret = read_partial_message_pages(con, m->pages,
  1499. data_len, do_datacrc);
  1500. if (ret <= 0)
  1501. return ret;
  1502. #ifdef CONFIG_BLOCK
  1503. } else if (m->bio) {
  1504. ret = read_partial_message_bio(con,
  1505. &m->bio_iter, &m->bio_seg,
  1506. data_len, do_datacrc);
  1507. if (ret <= 0)
  1508. return ret;
  1509. #endif
  1510. } else {
  1511. BUG_ON(1);
  1512. }
  1513. }
  1514. /* footer */
  1515. to = sizeof(m->hdr) + sizeof(m->footer);
  1516. while (con->in_base_pos < to) {
  1517. left = to - con->in_base_pos;
  1518. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1519. (con->in_base_pos - sizeof(m->hdr)),
  1520. left);
  1521. if (ret <= 0)
  1522. return ret;
  1523. con->in_base_pos += ret;
  1524. }
  1525. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1526. m, front_len, m->footer.front_crc, middle_len,
  1527. m->footer.middle_crc, data_len, m->footer.data_crc);
  1528. /* crc ok? */
  1529. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1530. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1531. m, con->in_front_crc, m->footer.front_crc);
  1532. return -EBADMSG;
  1533. }
  1534. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1535. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1536. m, con->in_middle_crc, m->footer.middle_crc);
  1537. return -EBADMSG;
  1538. }
  1539. if (do_datacrc &&
  1540. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1541. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1542. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1543. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1544. return -EBADMSG;
  1545. }
  1546. return 1; /* done! */
  1547. }
  1548. /*
  1549. * Process message. This happens in the worker thread. The callback should
  1550. * be careful not to do anything that waits on other incoming messages or it
  1551. * may deadlock.
  1552. */
  1553. static void process_message(struct ceph_connection *con)
  1554. {
  1555. struct ceph_msg *msg;
  1556. msg = con->in_msg;
  1557. con->in_msg = NULL;
  1558. /* if first message, set peer_name */
  1559. if (con->peer_name.type == 0)
  1560. con->peer_name = msg->hdr.src;
  1561. con->in_seq++;
  1562. mutex_unlock(&con->mutex);
  1563. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1564. msg, le64_to_cpu(msg->hdr.seq),
  1565. ENTITY_NAME(msg->hdr.src),
  1566. le16_to_cpu(msg->hdr.type),
  1567. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1568. le32_to_cpu(msg->hdr.front_len),
  1569. le32_to_cpu(msg->hdr.data_len),
  1570. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1571. con->ops->dispatch(con, msg);
  1572. mutex_lock(&con->mutex);
  1573. prepare_read_tag(con);
  1574. }
  1575. /*
  1576. * Write something to the socket. Called in a worker thread when the
  1577. * socket appears to be writeable and we have something ready to send.
  1578. */
  1579. static int try_write(struct ceph_connection *con)
  1580. {
  1581. struct ceph_messenger *msgr = con->msgr;
  1582. int ret = 1;
  1583. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1584. atomic_read(&con->nref));
  1585. more:
  1586. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1587. /* open the socket first? */
  1588. if (con->sock == NULL) {
  1589. prepare_write_connect(msgr, con, 1);
  1590. prepare_read_banner(con);
  1591. set_bit(CONNECTING, &con->state);
  1592. clear_bit(NEGOTIATING, &con->state);
  1593. BUG_ON(con->in_msg);
  1594. con->in_tag = CEPH_MSGR_TAG_READY;
  1595. dout("try_write initiating connect on %p new state %lu\n",
  1596. con, con->state);
  1597. ret = ceph_tcp_connect(con);
  1598. if (ret < 0) {
  1599. con->error_msg = "connect error";
  1600. goto out;
  1601. }
  1602. }
  1603. more_kvec:
  1604. /* kvec data queued? */
  1605. if (con->out_skip) {
  1606. ret = write_partial_skip(con);
  1607. if (ret <= 0)
  1608. goto out;
  1609. }
  1610. if (con->out_kvec_left) {
  1611. ret = write_partial_kvec(con);
  1612. if (ret <= 0)
  1613. goto out;
  1614. }
  1615. /* msg pages? */
  1616. if (con->out_msg) {
  1617. if (con->out_msg_done) {
  1618. ceph_msg_put(con->out_msg);
  1619. con->out_msg = NULL; /* we're done with this one */
  1620. goto do_next;
  1621. }
  1622. ret = write_partial_msg_pages(con);
  1623. if (ret == 1)
  1624. goto more_kvec; /* we need to send the footer, too! */
  1625. if (ret == 0)
  1626. goto out;
  1627. if (ret < 0) {
  1628. dout("try_write write_partial_msg_pages err %d\n",
  1629. ret);
  1630. goto out;
  1631. }
  1632. }
  1633. do_next:
  1634. if (!test_bit(CONNECTING, &con->state)) {
  1635. /* is anything else pending? */
  1636. if (!list_empty(&con->out_queue)) {
  1637. prepare_write_message(con);
  1638. goto more;
  1639. }
  1640. if (con->in_seq > con->in_seq_acked) {
  1641. prepare_write_ack(con);
  1642. goto more;
  1643. }
  1644. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1645. prepare_write_keepalive(con);
  1646. goto more;
  1647. }
  1648. }
  1649. /* Nothing to do! */
  1650. clear_bit(WRITE_PENDING, &con->state);
  1651. dout("try_write nothing else to write.\n");
  1652. ret = 0;
  1653. out:
  1654. dout("try_write done on %p ret %d\n", con, ret);
  1655. return ret;
  1656. }
  1657. /*
  1658. * Read what we can from the socket.
  1659. */
  1660. static int try_read(struct ceph_connection *con)
  1661. {
  1662. int ret = -1;
  1663. if (!con->sock)
  1664. return 0;
  1665. if (test_bit(STANDBY, &con->state))
  1666. return 0;
  1667. dout("try_read start on %p\n", con);
  1668. more:
  1669. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1670. con->in_base_pos);
  1671. /*
  1672. * process_connect and process_message drop and re-take
  1673. * con->mutex. make sure we handle a racing close or reopen.
  1674. */
  1675. if (test_bit(CLOSED, &con->state) ||
  1676. test_bit(OPENING, &con->state)) {
  1677. ret = -EAGAIN;
  1678. goto out;
  1679. }
  1680. if (test_bit(CONNECTING, &con->state)) {
  1681. if (!test_bit(NEGOTIATING, &con->state)) {
  1682. dout("try_read connecting\n");
  1683. ret = read_partial_banner(con);
  1684. if (ret <= 0)
  1685. goto out;
  1686. ret = process_banner(con);
  1687. if (ret < 0)
  1688. goto out;
  1689. }
  1690. ret = read_partial_connect(con);
  1691. if (ret <= 0)
  1692. goto out;
  1693. ret = process_connect(con);
  1694. if (ret < 0)
  1695. goto out;
  1696. goto more;
  1697. }
  1698. if (con->in_base_pos < 0) {
  1699. /*
  1700. * skipping + discarding content.
  1701. *
  1702. * FIXME: there must be a better way to do this!
  1703. */
  1704. static char buf[1024];
  1705. int skip = min(1024, -con->in_base_pos);
  1706. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1707. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1708. if (ret <= 0)
  1709. goto out;
  1710. con->in_base_pos += ret;
  1711. if (con->in_base_pos)
  1712. goto more;
  1713. }
  1714. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1715. /*
  1716. * what's next?
  1717. */
  1718. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1719. if (ret <= 0)
  1720. goto out;
  1721. dout("try_read got tag %d\n", (int)con->in_tag);
  1722. switch (con->in_tag) {
  1723. case CEPH_MSGR_TAG_MSG:
  1724. prepare_read_message(con);
  1725. break;
  1726. case CEPH_MSGR_TAG_ACK:
  1727. prepare_read_ack(con);
  1728. break;
  1729. case CEPH_MSGR_TAG_CLOSE:
  1730. set_bit(CLOSED, &con->state); /* fixme */
  1731. goto out;
  1732. default:
  1733. goto bad_tag;
  1734. }
  1735. }
  1736. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1737. ret = read_partial_message(con);
  1738. if (ret <= 0) {
  1739. switch (ret) {
  1740. case -EBADMSG:
  1741. con->error_msg = "bad crc";
  1742. ret = -EIO;
  1743. break;
  1744. case -EIO:
  1745. con->error_msg = "io error";
  1746. break;
  1747. }
  1748. goto out;
  1749. }
  1750. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1751. goto more;
  1752. process_message(con);
  1753. goto more;
  1754. }
  1755. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1756. ret = read_partial_ack(con);
  1757. if (ret <= 0)
  1758. goto out;
  1759. process_ack(con);
  1760. goto more;
  1761. }
  1762. out:
  1763. dout("try_read done on %p ret %d\n", con, ret);
  1764. return ret;
  1765. bad_tag:
  1766. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1767. con->error_msg = "protocol error, garbage tag";
  1768. ret = -1;
  1769. goto out;
  1770. }
  1771. /*
  1772. * Atomically queue work on a connection. Bump @con reference to
  1773. * avoid races with connection teardown.
  1774. */
  1775. static void queue_con(struct ceph_connection *con)
  1776. {
  1777. if (test_bit(DEAD, &con->state)) {
  1778. dout("queue_con %p ignoring: DEAD\n",
  1779. con);
  1780. return;
  1781. }
  1782. if (!con->ops->get(con)) {
  1783. dout("queue_con %p ref count 0\n", con);
  1784. return;
  1785. }
  1786. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1787. dout("queue_con %p - already queued\n", con);
  1788. con->ops->put(con);
  1789. } else {
  1790. dout("queue_con %p\n", con);
  1791. }
  1792. }
  1793. /*
  1794. * Do some work on a connection. Drop a connection ref when we're done.
  1795. */
  1796. static void con_work(struct work_struct *work)
  1797. {
  1798. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1799. work.work);
  1800. int ret;
  1801. mutex_lock(&con->mutex);
  1802. restart:
  1803. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1804. dout("con_work %p backing off\n", con);
  1805. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1806. round_jiffies_relative(con->delay))) {
  1807. dout("con_work %p backoff %lu\n", con, con->delay);
  1808. mutex_unlock(&con->mutex);
  1809. return;
  1810. } else {
  1811. con->ops->put(con);
  1812. dout("con_work %p FAILED to back off %lu\n", con,
  1813. con->delay);
  1814. }
  1815. }
  1816. if (test_bit(STANDBY, &con->state)) {
  1817. dout("con_work %p STANDBY\n", con);
  1818. goto done;
  1819. }
  1820. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1821. dout("con_work CLOSED\n");
  1822. con_close_socket(con);
  1823. goto done;
  1824. }
  1825. if (test_and_clear_bit(OPENING, &con->state)) {
  1826. /* reopen w/ new peer */
  1827. dout("con_work OPENING\n");
  1828. con_close_socket(con);
  1829. }
  1830. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1831. goto fault;
  1832. ret = try_read(con);
  1833. if (ret == -EAGAIN)
  1834. goto restart;
  1835. if (ret < 0)
  1836. goto fault;
  1837. ret = try_write(con);
  1838. if (ret == -EAGAIN)
  1839. goto restart;
  1840. if (ret < 0)
  1841. goto fault;
  1842. done:
  1843. mutex_unlock(&con->mutex);
  1844. done_unlocked:
  1845. con->ops->put(con);
  1846. return;
  1847. fault:
  1848. mutex_unlock(&con->mutex);
  1849. ceph_fault(con); /* error/fault path */
  1850. goto done_unlocked;
  1851. }
  1852. /*
  1853. * Generic error/fault handler. A retry mechanism is used with
  1854. * exponential backoff
  1855. */
  1856. static void ceph_fault(struct ceph_connection *con)
  1857. {
  1858. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1859. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1860. dout("fault %p state %lu to peer %s\n",
  1861. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1862. if (test_bit(LOSSYTX, &con->state)) {
  1863. dout("fault on LOSSYTX channel\n");
  1864. goto out;
  1865. }
  1866. mutex_lock(&con->mutex);
  1867. if (test_bit(CLOSED, &con->state))
  1868. goto out_unlock;
  1869. con_close_socket(con);
  1870. if (con->in_msg) {
  1871. ceph_msg_put(con->in_msg);
  1872. con->in_msg = NULL;
  1873. }
  1874. /* Requeue anything that hasn't been acked */
  1875. list_splice_init(&con->out_sent, &con->out_queue);
  1876. /* If there are no messages queued or keepalive pending, place
  1877. * the connection in a STANDBY state */
  1878. if (list_empty(&con->out_queue) &&
  1879. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1880. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1881. clear_bit(WRITE_PENDING, &con->state);
  1882. set_bit(STANDBY, &con->state);
  1883. } else {
  1884. /* retry after a delay. */
  1885. if (con->delay == 0)
  1886. con->delay = BASE_DELAY_INTERVAL;
  1887. else if (con->delay < MAX_DELAY_INTERVAL)
  1888. con->delay *= 2;
  1889. con->ops->get(con);
  1890. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1891. round_jiffies_relative(con->delay))) {
  1892. dout("fault queued %p delay %lu\n", con, con->delay);
  1893. } else {
  1894. con->ops->put(con);
  1895. dout("fault failed to queue %p delay %lu, backoff\n",
  1896. con, con->delay);
  1897. /*
  1898. * In many cases we see a socket state change
  1899. * while con_work is running and end up
  1900. * queuing (non-delayed) work, such that we
  1901. * can't backoff with a delay. Set a flag so
  1902. * that when con_work restarts we schedule the
  1903. * delay then.
  1904. */
  1905. set_bit(BACKOFF, &con->state);
  1906. }
  1907. }
  1908. out_unlock:
  1909. mutex_unlock(&con->mutex);
  1910. out:
  1911. /*
  1912. * in case we faulted due to authentication, invalidate our
  1913. * current tickets so that we can get new ones.
  1914. */
  1915. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1916. dout("calling invalidate_authorizer()\n");
  1917. con->ops->invalidate_authorizer(con);
  1918. }
  1919. if (con->ops->fault)
  1920. con->ops->fault(con);
  1921. }
  1922. /*
  1923. * create a new messenger instance
  1924. */
  1925. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1926. u32 supported_features,
  1927. u32 required_features)
  1928. {
  1929. struct ceph_messenger *msgr;
  1930. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1931. if (msgr == NULL)
  1932. return ERR_PTR(-ENOMEM);
  1933. msgr->supported_features = supported_features;
  1934. msgr->required_features = required_features;
  1935. spin_lock_init(&msgr->global_seq_lock);
  1936. if (myaddr)
  1937. msgr->inst.addr = *myaddr;
  1938. /* select a random nonce */
  1939. msgr->inst.addr.type = 0;
  1940. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1941. encode_my_addr(msgr);
  1942. dout("messenger_create %p\n", msgr);
  1943. return msgr;
  1944. }
  1945. EXPORT_SYMBOL(ceph_messenger_create);
  1946. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1947. {
  1948. dout("destroy %p\n", msgr);
  1949. kfree(msgr);
  1950. dout("destroyed messenger %p\n", msgr);
  1951. }
  1952. EXPORT_SYMBOL(ceph_messenger_destroy);
  1953. static void clear_standby(struct ceph_connection *con)
  1954. {
  1955. /* come back from STANDBY? */
  1956. if (test_and_clear_bit(STANDBY, &con->state)) {
  1957. mutex_lock(&con->mutex);
  1958. dout("clear_standby %p and ++connect_seq\n", con);
  1959. con->connect_seq++;
  1960. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1961. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1962. mutex_unlock(&con->mutex);
  1963. }
  1964. }
  1965. /*
  1966. * Queue up an outgoing message on the given connection.
  1967. */
  1968. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1969. {
  1970. if (test_bit(CLOSED, &con->state)) {
  1971. dout("con_send %p closed, dropping %p\n", con, msg);
  1972. ceph_msg_put(msg);
  1973. return;
  1974. }
  1975. /* set src+dst */
  1976. msg->hdr.src = con->msgr->inst.name;
  1977. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1978. msg->needs_out_seq = true;
  1979. /* queue */
  1980. mutex_lock(&con->mutex);
  1981. BUG_ON(!list_empty(&msg->list_head));
  1982. list_add_tail(&msg->list_head, &con->out_queue);
  1983. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1984. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1985. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1986. le32_to_cpu(msg->hdr.front_len),
  1987. le32_to_cpu(msg->hdr.middle_len),
  1988. le32_to_cpu(msg->hdr.data_len));
  1989. mutex_unlock(&con->mutex);
  1990. /* if there wasn't anything waiting to send before, queue
  1991. * new work */
  1992. clear_standby(con);
  1993. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1994. queue_con(con);
  1995. }
  1996. EXPORT_SYMBOL(ceph_con_send);
  1997. /*
  1998. * Revoke a message that was previously queued for send
  1999. */
  2000. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2001. {
  2002. mutex_lock(&con->mutex);
  2003. if (!list_empty(&msg->list_head)) {
  2004. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2005. list_del_init(&msg->list_head);
  2006. ceph_msg_put(msg);
  2007. msg->hdr.seq = 0;
  2008. }
  2009. if (con->out_msg == msg) {
  2010. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2011. con->out_msg = NULL;
  2012. if (con->out_kvec_is_msg) {
  2013. con->out_skip = con->out_kvec_bytes;
  2014. con->out_kvec_is_msg = false;
  2015. }
  2016. ceph_msg_put(msg);
  2017. msg->hdr.seq = 0;
  2018. }
  2019. mutex_unlock(&con->mutex);
  2020. }
  2021. /*
  2022. * Revoke a message that we may be reading data into
  2023. */
  2024. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2025. {
  2026. mutex_lock(&con->mutex);
  2027. if (con->in_msg && con->in_msg == msg) {
  2028. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2029. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2030. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2031. /* skip rest of message */
  2032. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2033. con->in_base_pos = con->in_base_pos -
  2034. sizeof(struct ceph_msg_header) -
  2035. front_len -
  2036. middle_len -
  2037. data_len -
  2038. sizeof(struct ceph_msg_footer);
  2039. ceph_msg_put(con->in_msg);
  2040. con->in_msg = NULL;
  2041. con->in_tag = CEPH_MSGR_TAG_READY;
  2042. con->in_seq++;
  2043. } else {
  2044. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2045. con, con->in_msg, msg);
  2046. }
  2047. mutex_unlock(&con->mutex);
  2048. }
  2049. /*
  2050. * Queue a keepalive byte to ensure the tcp connection is alive.
  2051. */
  2052. void ceph_con_keepalive(struct ceph_connection *con)
  2053. {
  2054. dout("con_keepalive %p\n", con);
  2055. clear_standby(con);
  2056. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2057. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2058. queue_con(con);
  2059. }
  2060. EXPORT_SYMBOL(ceph_con_keepalive);
  2061. /*
  2062. * construct a new message with given type, size
  2063. * the new msg has a ref count of 1.
  2064. */
  2065. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2066. bool can_fail)
  2067. {
  2068. struct ceph_msg *m;
  2069. m = kmalloc(sizeof(*m), flags);
  2070. if (m == NULL)
  2071. goto out;
  2072. kref_init(&m->kref);
  2073. INIT_LIST_HEAD(&m->list_head);
  2074. m->hdr.tid = 0;
  2075. m->hdr.type = cpu_to_le16(type);
  2076. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2077. m->hdr.version = 0;
  2078. m->hdr.front_len = cpu_to_le32(front_len);
  2079. m->hdr.middle_len = 0;
  2080. m->hdr.data_len = 0;
  2081. m->hdr.data_off = 0;
  2082. m->hdr.reserved = 0;
  2083. m->footer.front_crc = 0;
  2084. m->footer.middle_crc = 0;
  2085. m->footer.data_crc = 0;
  2086. m->footer.flags = 0;
  2087. m->front_max = front_len;
  2088. m->front_is_vmalloc = false;
  2089. m->more_to_follow = false;
  2090. m->ack_stamp = 0;
  2091. m->pool = NULL;
  2092. /* middle */
  2093. m->middle = NULL;
  2094. /* data */
  2095. m->nr_pages = 0;
  2096. m->page_alignment = 0;
  2097. m->pages = NULL;
  2098. m->pagelist = NULL;
  2099. m->bio = NULL;
  2100. m->bio_iter = NULL;
  2101. m->bio_seg = 0;
  2102. m->trail = NULL;
  2103. /* front */
  2104. if (front_len) {
  2105. if (front_len > PAGE_CACHE_SIZE) {
  2106. m->front.iov_base = __vmalloc(front_len, flags,
  2107. PAGE_KERNEL);
  2108. m->front_is_vmalloc = true;
  2109. } else {
  2110. m->front.iov_base = kmalloc(front_len, flags);
  2111. }
  2112. if (m->front.iov_base == NULL) {
  2113. dout("ceph_msg_new can't allocate %d bytes\n",
  2114. front_len);
  2115. goto out2;
  2116. }
  2117. } else {
  2118. m->front.iov_base = NULL;
  2119. }
  2120. m->front.iov_len = front_len;
  2121. dout("ceph_msg_new %p front %d\n", m, front_len);
  2122. return m;
  2123. out2:
  2124. ceph_msg_put(m);
  2125. out:
  2126. if (!can_fail) {
  2127. pr_err("msg_new can't create type %d front %d\n", type,
  2128. front_len);
  2129. WARN_ON(1);
  2130. } else {
  2131. dout("msg_new can't create type %d front %d\n", type,
  2132. front_len);
  2133. }
  2134. return NULL;
  2135. }
  2136. EXPORT_SYMBOL(ceph_msg_new);
  2137. /*
  2138. * Allocate "middle" portion of a message, if it is needed and wasn't
  2139. * allocated by alloc_msg. This allows us to read a small fixed-size
  2140. * per-type header in the front and then gracefully fail (i.e.,
  2141. * propagate the error to the caller based on info in the front) when
  2142. * the middle is too large.
  2143. */
  2144. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2145. {
  2146. int type = le16_to_cpu(msg->hdr.type);
  2147. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2148. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2149. ceph_msg_type_name(type), middle_len);
  2150. BUG_ON(!middle_len);
  2151. BUG_ON(msg->middle);
  2152. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2153. if (!msg->middle)
  2154. return -ENOMEM;
  2155. return 0;
  2156. }
  2157. /*
  2158. * Generic message allocator, for incoming messages.
  2159. */
  2160. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2161. struct ceph_msg_header *hdr,
  2162. int *skip)
  2163. {
  2164. int type = le16_to_cpu(hdr->type);
  2165. int front_len = le32_to_cpu(hdr->front_len);
  2166. int middle_len = le32_to_cpu(hdr->middle_len);
  2167. struct ceph_msg *msg = NULL;
  2168. int ret;
  2169. if (con->ops->alloc_msg) {
  2170. mutex_unlock(&con->mutex);
  2171. msg = con->ops->alloc_msg(con, hdr, skip);
  2172. mutex_lock(&con->mutex);
  2173. if (!msg || *skip)
  2174. return NULL;
  2175. }
  2176. if (!msg) {
  2177. *skip = 0;
  2178. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2179. if (!msg) {
  2180. pr_err("unable to allocate msg type %d len %d\n",
  2181. type, front_len);
  2182. return NULL;
  2183. }
  2184. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2185. }
  2186. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2187. if (middle_len && !msg->middle) {
  2188. ret = ceph_alloc_middle(con, msg);
  2189. if (ret < 0) {
  2190. ceph_msg_put(msg);
  2191. return NULL;
  2192. }
  2193. }
  2194. return msg;
  2195. }
  2196. /*
  2197. * Free a generically kmalloc'd message.
  2198. */
  2199. void ceph_msg_kfree(struct ceph_msg *m)
  2200. {
  2201. dout("msg_kfree %p\n", m);
  2202. if (m->front_is_vmalloc)
  2203. vfree(m->front.iov_base);
  2204. else
  2205. kfree(m->front.iov_base);
  2206. kfree(m);
  2207. }
  2208. /*
  2209. * Drop a msg ref. Destroy as needed.
  2210. */
  2211. void ceph_msg_last_put(struct kref *kref)
  2212. {
  2213. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2214. dout("ceph_msg_put last one on %p\n", m);
  2215. WARN_ON(!list_empty(&m->list_head));
  2216. /* drop middle, data, if any */
  2217. if (m->middle) {
  2218. ceph_buffer_put(m->middle);
  2219. m->middle = NULL;
  2220. }
  2221. m->nr_pages = 0;
  2222. m->pages = NULL;
  2223. if (m->pagelist) {
  2224. ceph_pagelist_release(m->pagelist);
  2225. kfree(m->pagelist);
  2226. m->pagelist = NULL;
  2227. }
  2228. m->trail = NULL;
  2229. if (m->pool)
  2230. ceph_msgpool_put(m->pool, m);
  2231. else
  2232. ceph_msg_kfree(m);
  2233. }
  2234. EXPORT_SYMBOL(ceph_msg_last_put);
  2235. void ceph_msg_dump(struct ceph_msg *msg)
  2236. {
  2237. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2238. msg->front_max, msg->nr_pages);
  2239. print_hex_dump(KERN_DEBUG, "header: ",
  2240. DUMP_PREFIX_OFFSET, 16, 1,
  2241. &msg->hdr, sizeof(msg->hdr), true);
  2242. print_hex_dump(KERN_DEBUG, " front: ",
  2243. DUMP_PREFIX_OFFSET, 16, 1,
  2244. msg->front.iov_base, msg->front.iov_len, true);
  2245. if (msg->middle)
  2246. print_hex_dump(KERN_DEBUG, "middle: ",
  2247. DUMP_PREFIX_OFFSET, 16, 1,
  2248. msg->middle->vec.iov_base,
  2249. msg->middle->vec.iov_len, true);
  2250. print_hex_dump(KERN_DEBUG, "footer: ",
  2251. DUMP_PREFIX_OFFSET, 16, 1,
  2252. &msg->footer, sizeof(msg->footer), true);
  2253. }
  2254. EXPORT_SYMBOL(ceph_msg_dump);