sky2.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/crc32.h>
  26. #include <linux/kernel.h>
  27. #include <linux/version.h>
  28. #include <linux/module.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/ip.h>
  35. #include <linux/tcp.h>
  36. #include <linux/in.h>
  37. #include <linux/delay.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/prefetch.h>
  41. #include <linux/mii.h>
  42. #include <asm/irq.h>
  43. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  44. #define SKY2_VLAN_TAG_USED 1
  45. #endif
  46. #include "sky2.h"
  47. #define DRV_NAME "sky2"
  48. #define DRV_VERSION "1.6"
  49. #define PFX DRV_NAME " "
  50. /*
  51. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  52. * that are organized into three (receive, transmit, status) different rings
  53. * similar to Tigon3. A transmit can require several elements;
  54. * a receive requires one (or two if using 64 bit dma).
  55. */
  56. #define RX_LE_SIZE 512
  57. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  58. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  59. #define RX_DEF_PENDING RX_MAX_PENDING
  60. #define RX_SKB_ALIGN 8
  61. #define RX_BUF_WRITE 16
  62. #define TX_RING_SIZE 512
  63. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  64. #define TX_MIN_PENDING 64
  65. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  66. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  67. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  68. #define ETH_JUMBO_MTU 9000
  69. #define TX_WATCHDOG (5 * HZ)
  70. #define NAPI_WEIGHT 64
  71. #define PHY_RETRIES 1000
  72. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  73. static const u32 default_msg =
  74. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  75. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  76. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  77. static int debug = -1; /* defaults above */
  78. module_param(debug, int, 0);
  79. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  80. static int copybreak __read_mostly = 256;
  81. module_param(copybreak, int, 0);
  82. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  83. static int disable_msi = 0;
  84. module_param(disable_msi, int, 0);
  85. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  86. static int idle_timeout = 100;
  87. module_param(idle_timeout, int, 0);
  88. MODULE_PARM_DESC(idle_timeout, "Idle timeout workaround for lost interrupts (ms)");
  89. static const struct pci_device_id sky2_id_table[] = {
  90. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  91. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) },
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) },
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) },
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) },
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) },
  113. { 0 }
  114. };
  115. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  116. /* Avoid conditionals by using array */
  117. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  118. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  119. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  120. /* This driver supports yukon2 chipset only */
  121. static const char *yukon2_name[] = {
  122. "XL", /* 0xb3 */
  123. "EC Ultra", /* 0xb4 */
  124. "UNKNOWN", /* 0xb5 */
  125. "EC", /* 0xb6 */
  126. "FE", /* 0xb7 */
  127. };
  128. /* Access to external PHY */
  129. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  130. {
  131. int i;
  132. gma_write16(hw, port, GM_SMI_DATA, val);
  133. gma_write16(hw, port, GM_SMI_CTRL,
  134. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  135. for (i = 0; i < PHY_RETRIES; i++) {
  136. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  137. return 0;
  138. udelay(1);
  139. }
  140. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  141. return -ETIMEDOUT;
  142. }
  143. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  144. {
  145. int i;
  146. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  147. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  148. for (i = 0; i < PHY_RETRIES; i++) {
  149. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  150. *val = gma_read16(hw, port, GM_SMI_DATA);
  151. return 0;
  152. }
  153. udelay(1);
  154. }
  155. return -ETIMEDOUT;
  156. }
  157. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  158. {
  159. u16 v;
  160. if (__gm_phy_read(hw, port, reg, &v) != 0)
  161. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  162. return v;
  163. }
  164. static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  165. {
  166. u16 power_control;
  167. u32 reg1;
  168. int vaux;
  169. pr_debug("sky2_set_power_state %d\n", state);
  170. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  171. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  172. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  173. (power_control & PCI_PM_CAP_PME_D3cold);
  174. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  175. power_control |= PCI_PM_CTRL_PME_STATUS;
  176. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  177. switch (state) {
  178. case PCI_D0:
  179. /* switch power to VCC (WA for VAUX problem) */
  180. sky2_write8(hw, B0_POWER_CTRL,
  181. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  182. /* disable Core Clock Division, */
  183. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  184. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  185. /* enable bits are inverted */
  186. sky2_write8(hw, B2_Y2_CLK_GATE,
  187. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  188. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  189. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  190. else
  191. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  192. /* Turn off phy power saving */
  193. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  194. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  195. /* looks like this XL is back asswards .. */
  196. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
  197. reg1 |= PCI_Y2_PHY1_COMA;
  198. if (hw->ports > 1)
  199. reg1 |= PCI_Y2_PHY2_COMA;
  200. }
  201. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  202. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  203. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  204. reg1 &= P_ASPM_CONTROL_MSK;
  205. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  206. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  207. }
  208. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  209. udelay(100);
  210. break;
  211. case PCI_D3hot:
  212. case PCI_D3cold:
  213. /* Turn on phy power saving */
  214. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  215. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  216. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  217. else
  218. reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  219. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  220. udelay(100);
  221. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  222. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  223. else
  224. /* enable bits are inverted */
  225. sky2_write8(hw, B2_Y2_CLK_GATE,
  226. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  227. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  228. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  229. /* switch power to VAUX */
  230. if (vaux && state != PCI_D3cold)
  231. sky2_write8(hw, B0_POWER_CTRL,
  232. (PC_VAUX_ENA | PC_VCC_ENA |
  233. PC_VAUX_ON | PC_VCC_OFF));
  234. break;
  235. default:
  236. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  237. }
  238. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  239. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  240. }
  241. static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
  242. {
  243. u16 reg;
  244. /* disable all GMAC IRQ's */
  245. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  246. /* disable PHY IRQs */
  247. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  248. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  249. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  250. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  251. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  252. reg = gma_read16(hw, port, GM_RX_CTRL);
  253. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  254. gma_write16(hw, port, GM_RX_CTRL, reg);
  255. }
  256. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  257. {
  258. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  259. u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
  260. if (sky2->autoneg == AUTONEG_ENABLE &&
  261. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  262. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  263. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  264. PHY_M_EC_MAC_S_MSK);
  265. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  266. if (hw->chip_id == CHIP_ID_YUKON_EC)
  267. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  268. else
  269. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  270. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  271. }
  272. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  273. if (hw->copper) {
  274. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  275. /* enable automatic crossover */
  276. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  277. } else {
  278. /* disable energy detect */
  279. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  280. /* enable automatic crossover */
  281. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  282. if (sky2->autoneg == AUTONEG_ENABLE &&
  283. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  284. ctrl &= ~PHY_M_PC_DSC_MSK;
  285. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  286. }
  287. }
  288. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  289. } else {
  290. /* workaround for deviation #4.88 (CRC errors) */
  291. /* disable Automatic Crossover */
  292. ctrl &= ~PHY_M_PC_MDIX_MSK;
  293. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  294. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  295. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  296. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  297. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  298. ctrl &= ~PHY_M_MAC_MD_MSK;
  299. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  300. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  301. /* select page 1 to access Fiber registers */
  302. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  303. }
  304. }
  305. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  306. if (sky2->autoneg == AUTONEG_DISABLE)
  307. ctrl &= ~PHY_CT_ANE;
  308. else
  309. ctrl |= PHY_CT_ANE;
  310. ctrl |= PHY_CT_RESET;
  311. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  312. ctrl = 0;
  313. ct1000 = 0;
  314. adv = PHY_AN_CSMA;
  315. if (sky2->autoneg == AUTONEG_ENABLE) {
  316. if (hw->copper) {
  317. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  318. ct1000 |= PHY_M_1000C_AFD;
  319. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  320. ct1000 |= PHY_M_1000C_AHD;
  321. if (sky2->advertising & ADVERTISED_100baseT_Full)
  322. adv |= PHY_M_AN_100_FD;
  323. if (sky2->advertising & ADVERTISED_100baseT_Half)
  324. adv |= PHY_M_AN_100_HD;
  325. if (sky2->advertising & ADVERTISED_10baseT_Full)
  326. adv |= PHY_M_AN_10_FD;
  327. if (sky2->advertising & ADVERTISED_10baseT_Half)
  328. adv |= PHY_M_AN_10_HD;
  329. } else /* special defines for FIBER (88E1011S only) */
  330. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  331. /* Set Flow-control capabilities */
  332. if (sky2->tx_pause && sky2->rx_pause)
  333. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  334. else if (sky2->rx_pause && !sky2->tx_pause)
  335. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  336. else if (!sky2->rx_pause && sky2->tx_pause)
  337. adv |= PHY_AN_PAUSE_ASYM; /* local */
  338. /* Restart Auto-negotiation */
  339. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  340. } else {
  341. /* forced speed/duplex settings */
  342. ct1000 = PHY_M_1000C_MSE;
  343. if (sky2->duplex == DUPLEX_FULL)
  344. ctrl |= PHY_CT_DUP_MD;
  345. switch (sky2->speed) {
  346. case SPEED_1000:
  347. ctrl |= PHY_CT_SP1000;
  348. break;
  349. case SPEED_100:
  350. ctrl |= PHY_CT_SP100;
  351. break;
  352. }
  353. ctrl |= PHY_CT_RESET;
  354. }
  355. if (hw->chip_id != CHIP_ID_YUKON_FE)
  356. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  357. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  358. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  359. /* Setup Phy LED's */
  360. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  361. ledover = 0;
  362. switch (hw->chip_id) {
  363. case CHIP_ID_YUKON_FE:
  364. /* on 88E3082 these bits are at 11..9 (shifted left) */
  365. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  366. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  367. /* delete ACT LED control bits */
  368. ctrl &= ~PHY_M_FELP_LED1_MSK;
  369. /* change ACT LED control to blink mode */
  370. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  371. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  372. break;
  373. case CHIP_ID_YUKON_XL:
  374. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  375. /* select page 3 to access LED control register */
  376. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  377. /* set LED Function Control register */
  378. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  379. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  380. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  381. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  382. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  383. /* set Polarity Control register */
  384. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  385. (PHY_M_POLC_LS1_P_MIX(4) |
  386. PHY_M_POLC_IS0_P_MIX(4) |
  387. PHY_M_POLC_LOS_CTRL(2) |
  388. PHY_M_POLC_INIT_CTRL(2) |
  389. PHY_M_POLC_STA1_CTRL(2) |
  390. PHY_M_POLC_STA0_CTRL(2)));
  391. /* restore page register */
  392. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  393. break;
  394. case CHIP_ID_YUKON_EC_U:
  395. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  396. /* select page 3 to access LED control register */
  397. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  398. /* set LED Function Control register */
  399. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  400. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  401. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  402. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  403. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  404. /* set Blink Rate in LED Timer Control Register */
  405. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  406. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  407. /* restore page register */
  408. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  409. break;
  410. default:
  411. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  412. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  413. /* turn off the Rx LED (LED_RX) */
  414. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  415. }
  416. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  417. /* apply fixes in PHY AFE */
  418. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  419. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  420. /* increase differential signal amplitude in 10BASE-T */
  421. gm_phy_write(hw, port, 0x18, 0xaa99);
  422. gm_phy_write(hw, port, 0x17, 0x2011);
  423. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  424. gm_phy_write(hw, port, 0x18, 0xa204);
  425. gm_phy_write(hw, port, 0x17, 0x2002);
  426. /* set page register to 0 */
  427. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  428. } else {
  429. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  430. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  431. /* turn on 100 Mbps LED (LED_LINK100) */
  432. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  433. }
  434. if (ledover)
  435. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  436. }
  437. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  438. if (sky2->autoneg == AUTONEG_ENABLE)
  439. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  440. else
  441. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  442. }
  443. /* Force a renegotiation */
  444. static void sky2_phy_reinit(struct sky2_port *sky2)
  445. {
  446. spin_lock_bh(&sky2->phy_lock);
  447. sky2_phy_init(sky2->hw, sky2->port);
  448. spin_unlock_bh(&sky2->phy_lock);
  449. }
  450. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  451. {
  452. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  453. u16 reg;
  454. int i;
  455. const u8 *addr = hw->dev[port]->dev_addr;
  456. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  457. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  458. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  459. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  460. /* WA DEV_472 -- looks like crossed wires on port 2 */
  461. /* clear GMAC 1 Control reset */
  462. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  463. do {
  464. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  465. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  466. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  467. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  468. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  469. }
  470. if (sky2->autoneg == AUTONEG_DISABLE) {
  471. reg = gma_read16(hw, port, GM_GP_CTRL);
  472. reg |= GM_GPCR_AU_ALL_DIS;
  473. gma_write16(hw, port, GM_GP_CTRL, reg);
  474. gma_read16(hw, port, GM_GP_CTRL);
  475. switch (sky2->speed) {
  476. case SPEED_1000:
  477. reg &= ~GM_GPCR_SPEED_100;
  478. reg |= GM_GPCR_SPEED_1000;
  479. break;
  480. case SPEED_100:
  481. reg &= ~GM_GPCR_SPEED_1000;
  482. reg |= GM_GPCR_SPEED_100;
  483. break;
  484. case SPEED_10:
  485. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  486. break;
  487. }
  488. if (sky2->duplex == DUPLEX_FULL)
  489. reg |= GM_GPCR_DUP_FULL;
  490. /* turn off pause in 10/100mbps half duplex */
  491. else if (sky2->speed != SPEED_1000 &&
  492. hw->chip_id != CHIP_ID_YUKON_EC_U)
  493. sky2->tx_pause = sky2->rx_pause = 0;
  494. } else
  495. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  496. if (!sky2->tx_pause && !sky2->rx_pause) {
  497. sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  498. reg |=
  499. GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  500. } else if (sky2->tx_pause && !sky2->rx_pause) {
  501. /* disable Rx flow-control */
  502. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  503. }
  504. gma_write16(hw, port, GM_GP_CTRL, reg);
  505. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  506. spin_lock_bh(&sky2->phy_lock);
  507. sky2_phy_init(hw, port);
  508. spin_unlock_bh(&sky2->phy_lock);
  509. /* MIB clear */
  510. reg = gma_read16(hw, port, GM_PHY_ADDR);
  511. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  512. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  513. gma_read16(hw, port, i);
  514. gma_write16(hw, port, GM_PHY_ADDR, reg);
  515. /* transmit control */
  516. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  517. /* receive control reg: unicast + multicast + no FCS */
  518. gma_write16(hw, port, GM_RX_CTRL,
  519. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  520. /* transmit flow control */
  521. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  522. /* transmit parameter */
  523. gma_write16(hw, port, GM_TX_PARAM,
  524. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  525. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  526. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  527. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  528. /* serial mode register */
  529. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  530. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  531. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  532. reg |= GM_SMOD_JUMBO_ENA;
  533. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  534. /* virtual address for data */
  535. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  536. /* physical address: used for pause frames */
  537. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  538. /* ignore counter overflows */
  539. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  540. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  541. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  542. /* Configure Rx MAC FIFO */
  543. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  544. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  545. GMF_OPER_ON | GMF_RX_F_FL_ON);
  546. /* Flush Rx MAC FIFO on any flow control or error */
  547. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  548. /* Set threshold to 0xa (64 bytes)
  549. * ASF disabled so no need to do WA dev #4.30
  550. */
  551. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  552. /* Configure Tx MAC FIFO */
  553. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  554. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  555. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  556. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  557. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  558. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  559. /* set Tx GMAC FIFO Almost Empty Threshold */
  560. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  561. /* Disable Store & Forward mode for TX */
  562. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  563. }
  564. }
  565. }
  566. /* Assign Ram Buffer allocation.
  567. * start and end are in units of 4k bytes
  568. * ram registers are in units of 64bit words
  569. */
  570. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  571. {
  572. u32 start, end;
  573. start = startk * 4096/8;
  574. end = (endk * 4096/8) - 1;
  575. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  576. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  577. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  578. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  579. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  580. if (q == Q_R1 || q == Q_R2) {
  581. u32 space = (endk - startk) * 4096/8;
  582. u32 tp = space - space/4;
  583. /* On receive queue's set the thresholds
  584. * give receiver priority when > 3/4 full
  585. * send pause when down to 2K
  586. */
  587. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  588. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  589. tp = space - 2048/8;
  590. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  591. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  592. } else {
  593. /* Enable store & forward on Tx queue's because
  594. * Tx FIFO is only 1K on Yukon
  595. */
  596. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  597. }
  598. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  599. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  600. }
  601. /* Setup Bus Memory Interface */
  602. static void sky2_qset(struct sky2_hw *hw, u16 q)
  603. {
  604. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  605. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  606. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  607. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  608. }
  609. /* Setup prefetch unit registers. This is the interface between
  610. * hardware and driver list elements
  611. */
  612. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  613. u64 addr, u32 last)
  614. {
  615. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  616. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  617. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  618. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  619. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  620. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  621. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  622. }
  623. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  624. {
  625. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  626. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  627. return le;
  628. }
  629. /* Update chip's next pointer */
  630. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  631. {
  632. wmb();
  633. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
  634. mmiowb();
  635. }
  636. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  637. {
  638. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  639. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  640. return le;
  641. }
  642. /* Return high part of DMA address (could be 32 or 64 bit) */
  643. static inline u32 high32(dma_addr_t a)
  644. {
  645. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  646. }
  647. /* Build description to hardware about buffer */
  648. static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
  649. {
  650. struct sky2_rx_le *le;
  651. u32 hi = high32(map);
  652. u16 len = sky2->rx_bufsize;
  653. if (sky2->rx_addr64 != hi) {
  654. le = sky2_next_rx(sky2);
  655. le->addr = cpu_to_le32(hi);
  656. le->ctrl = 0;
  657. le->opcode = OP_ADDR64 | HW_OWNER;
  658. sky2->rx_addr64 = high32(map + len);
  659. }
  660. le = sky2_next_rx(sky2);
  661. le->addr = cpu_to_le32((u32) map);
  662. le->length = cpu_to_le16(len);
  663. le->ctrl = 0;
  664. le->opcode = OP_PACKET | HW_OWNER;
  665. }
  666. /* Tell chip where to start receive checksum.
  667. * Actually has two checksums, but set both same to avoid possible byte
  668. * order problems.
  669. */
  670. static void rx_set_checksum(struct sky2_port *sky2)
  671. {
  672. struct sky2_rx_le *le;
  673. le = sky2_next_rx(sky2);
  674. le->addr = (ETH_HLEN << 16) | ETH_HLEN;
  675. le->ctrl = 0;
  676. le->opcode = OP_TCPSTART | HW_OWNER;
  677. sky2_write32(sky2->hw,
  678. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  679. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  680. }
  681. /*
  682. * The RX Stop command will not work for Yukon-2 if the BMU does not
  683. * reach the end of packet and since we can't make sure that we have
  684. * incoming data, we must reset the BMU while it is not doing a DMA
  685. * transfer. Since it is possible that the RX path is still active,
  686. * the RX RAM buffer will be stopped first, so any possible incoming
  687. * data will not trigger a DMA. After the RAM buffer is stopped, the
  688. * BMU is polled until any DMA in progress is ended and only then it
  689. * will be reset.
  690. */
  691. static void sky2_rx_stop(struct sky2_port *sky2)
  692. {
  693. struct sky2_hw *hw = sky2->hw;
  694. unsigned rxq = rxqaddr[sky2->port];
  695. int i;
  696. /* disable the RAM Buffer receive queue */
  697. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  698. for (i = 0; i < 0xffff; i++)
  699. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  700. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  701. goto stopped;
  702. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  703. sky2->netdev->name);
  704. stopped:
  705. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  706. /* reset the Rx prefetch unit */
  707. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  708. }
  709. /* Clean out receive buffer area, assumes receiver hardware stopped */
  710. static void sky2_rx_clean(struct sky2_port *sky2)
  711. {
  712. unsigned i;
  713. memset(sky2->rx_le, 0, RX_LE_BYTES);
  714. for (i = 0; i < sky2->rx_pending; i++) {
  715. struct ring_info *re = sky2->rx_ring + i;
  716. if (re->skb) {
  717. pci_unmap_single(sky2->hw->pdev,
  718. re->mapaddr, sky2->rx_bufsize,
  719. PCI_DMA_FROMDEVICE);
  720. kfree_skb(re->skb);
  721. re->skb = NULL;
  722. }
  723. }
  724. }
  725. /* Basic MII support */
  726. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  727. {
  728. struct mii_ioctl_data *data = if_mii(ifr);
  729. struct sky2_port *sky2 = netdev_priv(dev);
  730. struct sky2_hw *hw = sky2->hw;
  731. int err = -EOPNOTSUPP;
  732. if (!netif_running(dev))
  733. return -ENODEV; /* Phy still in reset */
  734. switch (cmd) {
  735. case SIOCGMIIPHY:
  736. data->phy_id = PHY_ADDR_MARV;
  737. /* fallthru */
  738. case SIOCGMIIREG: {
  739. u16 val = 0;
  740. spin_lock_bh(&sky2->phy_lock);
  741. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  742. spin_unlock_bh(&sky2->phy_lock);
  743. data->val_out = val;
  744. break;
  745. }
  746. case SIOCSMIIREG:
  747. if (!capable(CAP_NET_ADMIN))
  748. return -EPERM;
  749. spin_lock_bh(&sky2->phy_lock);
  750. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  751. data->val_in);
  752. spin_unlock_bh(&sky2->phy_lock);
  753. break;
  754. }
  755. return err;
  756. }
  757. #ifdef SKY2_VLAN_TAG_USED
  758. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  759. {
  760. struct sky2_port *sky2 = netdev_priv(dev);
  761. struct sky2_hw *hw = sky2->hw;
  762. u16 port = sky2->port;
  763. spin_lock_bh(&sky2->tx_lock);
  764. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  765. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  766. sky2->vlgrp = grp;
  767. spin_unlock_bh(&sky2->tx_lock);
  768. }
  769. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  770. {
  771. struct sky2_port *sky2 = netdev_priv(dev);
  772. struct sky2_hw *hw = sky2->hw;
  773. u16 port = sky2->port;
  774. spin_lock_bh(&sky2->tx_lock);
  775. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  776. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  777. if (sky2->vlgrp)
  778. sky2->vlgrp->vlan_devices[vid] = NULL;
  779. spin_unlock_bh(&sky2->tx_lock);
  780. }
  781. #endif
  782. /*
  783. * It appears the hardware has a bug in the FIFO logic that
  784. * cause it to hang if the FIFO gets overrun and the receive buffer
  785. * is not aligned. ALso alloc_skb() won't align properly if slab
  786. * debugging is enabled.
  787. */
  788. static inline struct sk_buff *sky2_alloc_skb(unsigned int size, gfp_t gfp_mask)
  789. {
  790. struct sk_buff *skb;
  791. skb = alloc_skb(size + RX_SKB_ALIGN, gfp_mask);
  792. if (likely(skb)) {
  793. unsigned long p = (unsigned long) skb->data;
  794. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  795. }
  796. return skb;
  797. }
  798. /*
  799. * Allocate and setup receiver buffer pool.
  800. * In case of 64 bit dma, there are 2X as many list elements
  801. * available as ring entries
  802. * and need to reserve one list element so we don't wrap around.
  803. */
  804. static int sky2_rx_start(struct sky2_port *sky2)
  805. {
  806. struct sky2_hw *hw = sky2->hw;
  807. unsigned rxq = rxqaddr[sky2->port];
  808. int i;
  809. unsigned thresh;
  810. sky2->rx_put = sky2->rx_next = 0;
  811. sky2_qset(hw, rxq);
  812. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  813. /* MAC Rx RAM Read is controlled by hardware */
  814. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  815. }
  816. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  817. rx_set_checksum(sky2);
  818. for (i = 0; i < sky2->rx_pending; i++) {
  819. struct ring_info *re = sky2->rx_ring + i;
  820. re->skb = sky2_alloc_skb(sky2->rx_bufsize, GFP_KERNEL);
  821. if (!re->skb)
  822. goto nomem;
  823. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  824. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  825. sky2_rx_add(sky2, re->mapaddr);
  826. }
  827. /*
  828. * The receiver hangs if it receives frames larger than the
  829. * packet buffer. As a workaround, truncate oversize frames, but
  830. * the register is limited to 9 bits, so if you do frames > 2052
  831. * you better get the MTU right!
  832. */
  833. thresh = (sky2->rx_bufsize - 8) / sizeof(u32);
  834. if (thresh > 0x1ff)
  835. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  836. else {
  837. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  838. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  839. }
  840. /* Tell chip about available buffers */
  841. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  842. return 0;
  843. nomem:
  844. sky2_rx_clean(sky2);
  845. return -ENOMEM;
  846. }
  847. /* Bring up network interface. */
  848. static int sky2_up(struct net_device *dev)
  849. {
  850. struct sky2_port *sky2 = netdev_priv(dev);
  851. struct sky2_hw *hw = sky2->hw;
  852. unsigned port = sky2->port;
  853. u32 ramsize, rxspace, imask;
  854. int cap, err = -ENOMEM;
  855. struct net_device *otherdev = hw->dev[sky2->port^1];
  856. /*
  857. * On dual port PCI-X card, there is an problem where status
  858. * can be received out of order due to split transactions
  859. */
  860. if (otherdev && netif_running(otherdev) &&
  861. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  862. struct sky2_port *osky2 = netdev_priv(otherdev);
  863. u16 cmd;
  864. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  865. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  866. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  867. sky2->rx_csum = 0;
  868. osky2->rx_csum = 0;
  869. }
  870. if (netif_msg_ifup(sky2))
  871. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  872. /* must be power of 2 */
  873. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  874. TX_RING_SIZE *
  875. sizeof(struct sky2_tx_le),
  876. &sky2->tx_le_map);
  877. if (!sky2->tx_le)
  878. goto err_out;
  879. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  880. GFP_KERNEL);
  881. if (!sky2->tx_ring)
  882. goto err_out;
  883. sky2->tx_prod = sky2->tx_cons = 0;
  884. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  885. &sky2->rx_le_map);
  886. if (!sky2->rx_le)
  887. goto err_out;
  888. memset(sky2->rx_le, 0, RX_LE_BYTES);
  889. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
  890. GFP_KERNEL);
  891. if (!sky2->rx_ring)
  892. goto err_out;
  893. sky2_mac_init(hw, port);
  894. /* Determine available ram buffer space (in 4K blocks).
  895. * Note: not sure about the FE setting below yet
  896. */
  897. if (hw->chip_id == CHIP_ID_YUKON_FE)
  898. ramsize = 4;
  899. else
  900. ramsize = sky2_read8(hw, B2_E_0);
  901. /* Give transmitter one third (rounded up) */
  902. rxspace = ramsize - (ramsize + 2) / 3;
  903. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  904. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  905. /* Make sure SyncQ is disabled */
  906. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  907. RB_RST_SET);
  908. sky2_qset(hw, txqaddr[port]);
  909. /* Set almost empty threshold */
  910. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1)
  911. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  912. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  913. TX_RING_SIZE - 1);
  914. err = sky2_rx_start(sky2);
  915. if (err)
  916. goto err_out;
  917. /* Enable interrupts from phy/mac for port */
  918. imask = sky2_read32(hw, B0_IMSK);
  919. imask |= portirq_msk[port];
  920. sky2_write32(hw, B0_IMSK, imask);
  921. return 0;
  922. err_out:
  923. if (sky2->rx_le) {
  924. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  925. sky2->rx_le, sky2->rx_le_map);
  926. sky2->rx_le = NULL;
  927. }
  928. if (sky2->tx_le) {
  929. pci_free_consistent(hw->pdev,
  930. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  931. sky2->tx_le, sky2->tx_le_map);
  932. sky2->tx_le = NULL;
  933. }
  934. kfree(sky2->tx_ring);
  935. kfree(sky2->rx_ring);
  936. sky2->tx_ring = NULL;
  937. sky2->rx_ring = NULL;
  938. return err;
  939. }
  940. /* Modular subtraction in ring */
  941. static inline int tx_dist(unsigned tail, unsigned head)
  942. {
  943. return (head - tail) & (TX_RING_SIZE - 1);
  944. }
  945. /* Number of list elements available for next tx */
  946. static inline int tx_avail(const struct sky2_port *sky2)
  947. {
  948. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  949. }
  950. /* Estimate of number of transmit list elements required */
  951. static unsigned tx_le_req(const struct sk_buff *skb)
  952. {
  953. unsigned count;
  954. count = sizeof(dma_addr_t) / sizeof(u32);
  955. count += skb_shinfo(skb)->nr_frags * count;
  956. if (skb_is_gso(skb))
  957. ++count;
  958. if (skb->ip_summed == CHECKSUM_HW)
  959. ++count;
  960. return count;
  961. }
  962. /*
  963. * Put one packet in ring for transmit.
  964. * A single packet can generate multiple list elements, and
  965. * the number of ring elements will probably be less than the number
  966. * of list elements used.
  967. *
  968. * No BH disabling for tx_lock here (like tg3)
  969. */
  970. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  971. {
  972. struct sky2_port *sky2 = netdev_priv(dev);
  973. struct sky2_hw *hw = sky2->hw;
  974. struct sky2_tx_le *le = NULL;
  975. struct tx_ring_info *re;
  976. unsigned i, len;
  977. int avail;
  978. dma_addr_t mapping;
  979. u32 addr64;
  980. u16 mss;
  981. u8 ctrl;
  982. /* No BH disabling for tx_lock here. We are running in BH disabled
  983. * context and TX reclaim runs via poll inside of a software
  984. * interrupt, and no related locks in IRQ processing.
  985. */
  986. if (!spin_trylock(&sky2->tx_lock))
  987. return NETDEV_TX_LOCKED;
  988. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  989. /* There is a known but harmless race with lockless tx
  990. * and netif_stop_queue.
  991. */
  992. if (!netif_queue_stopped(dev)) {
  993. netif_stop_queue(dev);
  994. if (net_ratelimit())
  995. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  996. dev->name);
  997. }
  998. spin_unlock(&sky2->tx_lock);
  999. return NETDEV_TX_BUSY;
  1000. }
  1001. if (unlikely(netif_msg_tx_queued(sky2)))
  1002. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1003. dev->name, sky2->tx_prod, skb->len);
  1004. len = skb_headlen(skb);
  1005. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1006. addr64 = high32(mapping);
  1007. re = sky2->tx_ring + sky2->tx_prod;
  1008. /* Send high bits if changed or crosses boundary */
  1009. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1010. le = get_tx_le(sky2);
  1011. le->tx.addr = cpu_to_le32(addr64);
  1012. le->ctrl = 0;
  1013. le->opcode = OP_ADDR64 | HW_OWNER;
  1014. sky2->tx_addr64 = high32(mapping + len);
  1015. }
  1016. /* Check for TCP Segmentation Offload */
  1017. mss = skb_shinfo(skb)->gso_size;
  1018. if (mss != 0) {
  1019. /* just drop the packet if non-linear expansion fails */
  1020. if (skb_header_cloned(skb) &&
  1021. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  1022. dev_kfree_skb(skb);
  1023. goto out_unlock;
  1024. }
  1025. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1026. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1027. mss += ETH_HLEN;
  1028. }
  1029. if (mss != sky2->tx_last_mss) {
  1030. le = get_tx_le(sky2);
  1031. le->tx.tso.size = cpu_to_le16(mss);
  1032. le->tx.tso.rsvd = 0;
  1033. le->opcode = OP_LRGLEN | HW_OWNER;
  1034. le->ctrl = 0;
  1035. sky2->tx_last_mss = mss;
  1036. }
  1037. ctrl = 0;
  1038. #ifdef SKY2_VLAN_TAG_USED
  1039. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1040. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1041. if (!le) {
  1042. le = get_tx_le(sky2);
  1043. le->tx.addr = 0;
  1044. le->opcode = OP_VLAN|HW_OWNER;
  1045. le->ctrl = 0;
  1046. } else
  1047. le->opcode |= OP_VLAN;
  1048. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1049. ctrl |= INS_VLAN;
  1050. }
  1051. #endif
  1052. /* Handle TCP checksum offload */
  1053. if (skb->ip_summed == CHECKSUM_HW) {
  1054. u16 hdr = skb->h.raw - skb->data;
  1055. u16 offset = hdr + skb->csum;
  1056. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1057. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1058. ctrl |= UDPTCP;
  1059. le = get_tx_le(sky2);
  1060. le->tx.csum.start = cpu_to_le16(hdr);
  1061. le->tx.csum.offset = cpu_to_le16(offset);
  1062. le->length = 0; /* initial checksum value */
  1063. le->ctrl = 1; /* one packet */
  1064. le->opcode = OP_TCPLISW | HW_OWNER;
  1065. }
  1066. le = get_tx_le(sky2);
  1067. le->tx.addr = cpu_to_le32((u32) mapping);
  1068. le->length = cpu_to_le16(len);
  1069. le->ctrl = ctrl;
  1070. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1071. /* Record the transmit mapping info */
  1072. re->skb = skb;
  1073. pci_unmap_addr_set(re, mapaddr, mapping);
  1074. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1075. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1076. struct tx_ring_info *fre;
  1077. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1078. frag->size, PCI_DMA_TODEVICE);
  1079. addr64 = high32(mapping);
  1080. if (addr64 != sky2->tx_addr64) {
  1081. le = get_tx_le(sky2);
  1082. le->tx.addr = cpu_to_le32(addr64);
  1083. le->ctrl = 0;
  1084. le->opcode = OP_ADDR64 | HW_OWNER;
  1085. sky2->tx_addr64 = addr64;
  1086. }
  1087. le = get_tx_le(sky2);
  1088. le->tx.addr = cpu_to_le32((u32) mapping);
  1089. le->length = cpu_to_le16(frag->size);
  1090. le->ctrl = ctrl;
  1091. le->opcode = OP_BUFFER | HW_OWNER;
  1092. fre = sky2->tx_ring
  1093. + RING_NEXT((re - sky2->tx_ring) + i, TX_RING_SIZE);
  1094. pci_unmap_addr_set(fre, mapaddr, mapping);
  1095. }
  1096. re->idx = sky2->tx_prod;
  1097. le->ctrl |= EOP;
  1098. avail = tx_avail(sky2);
  1099. if (mss != 0 || avail < TX_MIN_PENDING) {
  1100. le->ctrl |= FRC_STAT;
  1101. if (avail <= MAX_SKB_TX_LE)
  1102. netif_stop_queue(dev);
  1103. }
  1104. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1105. out_unlock:
  1106. spin_unlock(&sky2->tx_lock);
  1107. dev->trans_start = jiffies;
  1108. return NETDEV_TX_OK;
  1109. }
  1110. /*
  1111. * Free ring elements from starting at tx_cons until "done"
  1112. *
  1113. * NB: the hardware will tell us about partial completion of multi-part
  1114. * buffers; these are deferred until completion.
  1115. */
  1116. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1117. {
  1118. struct net_device *dev = sky2->netdev;
  1119. struct pci_dev *pdev = sky2->hw->pdev;
  1120. u16 nxt, put;
  1121. unsigned i;
  1122. BUG_ON(done >= TX_RING_SIZE);
  1123. if (unlikely(netif_msg_tx_done(sky2)))
  1124. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1125. dev->name, done);
  1126. for (put = sky2->tx_cons; put != done; put = nxt) {
  1127. struct tx_ring_info *re = sky2->tx_ring + put;
  1128. struct sk_buff *skb = re->skb;
  1129. nxt = re->idx;
  1130. BUG_ON(nxt >= TX_RING_SIZE);
  1131. prefetch(sky2->tx_ring + nxt);
  1132. /* Check for partial status */
  1133. if (tx_dist(put, done) < tx_dist(put, nxt))
  1134. break;
  1135. skb = re->skb;
  1136. pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
  1137. skb_headlen(skb), PCI_DMA_TODEVICE);
  1138. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1139. struct tx_ring_info *fre;
  1140. fre = sky2->tx_ring + RING_NEXT(put + i, TX_RING_SIZE);
  1141. pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
  1142. skb_shinfo(skb)->frags[i].size,
  1143. PCI_DMA_TODEVICE);
  1144. }
  1145. dev_kfree_skb(skb);
  1146. }
  1147. sky2->tx_cons = put;
  1148. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1149. netif_wake_queue(dev);
  1150. }
  1151. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1152. static void sky2_tx_clean(struct sky2_port *sky2)
  1153. {
  1154. spin_lock_bh(&sky2->tx_lock);
  1155. sky2_tx_complete(sky2, sky2->tx_prod);
  1156. spin_unlock_bh(&sky2->tx_lock);
  1157. }
  1158. /* Network shutdown */
  1159. static int sky2_down(struct net_device *dev)
  1160. {
  1161. struct sky2_port *sky2 = netdev_priv(dev);
  1162. struct sky2_hw *hw = sky2->hw;
  1163. unsigned port = sky2->port;
  1164. u16 ctrl;
  1165. u32 imask;
  1166. /* Never really got started! */
  1167. if (!sky2->tx_le)
  1168. return 0;
  1169. if (netif_msg_ifdown(sky2))
  1170. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1171. /* Stop more packets from being queued */
  1172. netif_stop_queue(dev);
  1173. sky2_phy_reset(hw, port);
  1174. /* Stop transmitter */
  1175. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1176. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1177. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1178. RB_RST_SET | RB_DIS_OP_MD);
  1179. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1180. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1181. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1182. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1183. /* Workaround shared GMAC reset */
  1184. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1185. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1186. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1187. /* Disable Force Sync bit and Enable Alloc bit */
  1188. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1189. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1190. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1191. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1192. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1193. /* Reset the PCI FIFO of the async Tx queue */
  1194. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1195. BMU_RST_SET | BMU_FIFO_RST);
  1196. /* Reset the Tx prefetch units */
  1197. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1198. PREF_UNIT_RST_SET);
  1199. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1200. sky2_rx_stop(sky2);
  1201. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1202. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1203. /* Disable port IRQ */
  1204. imask = sky2_read32(hw, B0_IMSK);
  1205. imask &= ~portirq_msk[port];
  1206. sky2_write32(hw, B0_IMSK, imask);
  1207. /* turn off LED's */
  1208. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1209. synchronize_irq(hw->pdev->irq);
  1210. sky2_tx_clean(sky2);
  1211. sky2_rx_clean(sky2);
  1212. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1213. sky2->rx_le, sky2->rx_le_map);
  1214. kfree(sky2->rx_ring);
  1215. pci_free_consistent(hw->pdev,
  1216. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1217. sky2->tx_le, sky2->tx_le_map);
  1218. kfree(sky2->tx_ring);
  1219. sky2->tx_le = NULL;
  1220. sky2->rx_le = NULL;
  1221. sky2->rx_ring = NULL;
  1222. sky2->tx_ring = NULL;
  1223. return 0;
  1224. }
  1225. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1226. {
  1227. if (!hw->copper)
  1228. return SPEED_1000;
  1229. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1230. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1231. switch (aux & PHY_M_PS_SPEED_MSK) {
  1232. case PHY_M_PS_SPEED_1000:
  1233. return SPEED_1000;
  1234. case PHY_M_PS_SPEED_100:
  1235. return SPEED_100;
  1236. default:
  1237. return SPEED_10;
  1238. }
  1239. }
  1240. static void sky2_link_up(struct sky2_port *sky2)
  1241. {
  1242. struct sky2_hw *hw = sky2->hw;
  1243. unsigned port = sky2->port;
  1244. u16 reg;
  1245. /* Enable Transmit FIFO Underrun */
  1246. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1247. reg = gma_read16(hw, port, GM_GP_CTRL);
  1248. if (sky2->autoneg == AUTONEG_DISABLE) {
  1249. reg |= GM_GPCR_AU_ALL_DIS;
  1250. /* Is write/read necessary? Copied from sky2_mac_init */
  1251. gma_write16(hw, port, GM_GP_CTRL, reg);
  1252. gma_read16(hw, port, GM_GP_CTRL);
  1253. switch (sky2->speed) {
  1254. case SPEED_1000:
  1255. reg &= ~GM_GPCR_SPEED_100;
  1256. reg |= GM_GPCR_SPEED_1000;
  1257. break;
  1258. case SPEED_100:
  1259. reg &= ~GM_GPCR_SPEED_1000;
  1260. reg |= GM_GPCR_SPEED_100;
  1261. break;
  1262. case SPEED_10:
  1263. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1264. break;
  1265. }
  1266. } else
  1267. reg &= ~GM_GPCR_AU_ALL_DIS;
  1268. if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
  1269. reg |= GM_GPCR_DUP_FULL;
  1270. /* enable Rx/Tx */
  1271. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1272. gma_write16(hw, port, GM_GP_CTRL, reg);
  1273. gma_read16(hw, port, GM_GP_CTRL);
  1274. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1275. netif_carrier_on(sky2->netdev);
  1276. netif_wake_queue(sky2->netdev);
  1277. /* Turn on link LED */
  1278. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1279. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1280. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1281. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1282. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1283. switch(sky2->speed) {
  1284. case SPEED_10:
  1285. led |= PHY_M_LEDC_INIT_CTRL(7);
  1286. break;
  1287. case SPEED_100:
  1288. led |= PHY_M_LEDC_STA1_CTRL(7);
  1289. break;
  1290. case SPEED_1000:
  1291. led |= PHY_M_LEDC_STA0_CTRL(7);
  1292. break;
  1293. }
  1294. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1295. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1296. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1297. }
  1298. if (netif_msg_link(sky2))
  1299. printk(KERN_INFO PFX
  1300. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1301. sky2->netdev->name, sky2->speed,
  1302. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1303. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1304. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1305. }
  1306. static void sky2_link_down(struct sky2_port *sky2)
  1307. {
  1308. struct sky2_hw *hw = sky2->hw;
  1309. unsigned port = sky2->port;
  1310. u16 reg;
  1311. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1312. reg = gma_read16(hw, port, GM_GP_CTRL);
  1313. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1314. gma_write16(hw, port, GM_GP_CTRL, reg);
  1315. gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
  1316. if (sky2->rx_pause && !sky2->tx_pause) {
  1317. /* restore Asymmetric Pause bit */
  1318. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1319. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1320. | PHY_M_AN_ASP);
  1321. }
  1322. netif_carrier_off(sky2->netdev);
  1323. netif_stop_queue(sky2->netdev);
  1324. /* Turn on link LED */
  1325. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1326. if (netif_msg_link(sky2))
  1327. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1328. sky2_phy_init(hw, port);
  1329. }
  1330. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1331. {
  1332. struct sky2_hw *hw = sky2->hw;
  1333. unsigned port = sky2->port;
  1334. u16 lpa;
  1335. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1336. if (lpa & PHY_M_AN_RF) {
  1337. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1338. return -1;
  1339. }
  1340. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1341. gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1342. printk(KERN_ERR PFX "%s: master/slave fault",
  1343. sky2->netdev->name);
  1344. return -1;
  1345. }
  1346. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1347. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1348. sky2->netdev->name);
  1349. return -1;
  1350. }
  1351. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1352. sky2->speed = sky2_phy_speed(hw, aux);
  1353. /* Pause bits are offset (9..8) */
  1354. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1355. aux >>= 6;
  1356. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1357. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1358. if ((sky2->tx_pause || sky2->rx_pause)
  1359. && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
  1360. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1361. else
  1362. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1363. return 0;
  1364. }
  1365. /* Interrupt from PHY */
  1366. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1367. {
  1368. struct net_device *dev = hw->dev[port];
  1369. struct sky2_port *sky2 = netdev_priv(dev);
  1370. u16 istatus, phystat;
  1371. spin_lock(&sky2->phy_lock);
  1372. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1373. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1374. if (!netif_running(dev))
  1375. goto out;
  1376. if (netif_msg_intr(sky2))
  1377. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1378. sky2->netdev->name, istatus, phystat);
  1379. if (istatus & PHY_M_IS_AN_COMPL) {
  1380. if (sky2_autoneg_done(sky2, phystat) == 0)
  1381. sky2_link_up(sky2);
  1382. goto out;
  1383. }
  1384. if (istatus & PHY_M_IS_LSP_CHANGE)
  1385. sky2->speed = sky2_phy_speed(hw, phystat);
  1386. if (istatus & PHY_M_IS_DUP_CHANGE)
  1387. sky2->duplex =
  1388. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1389. if (istatus & PHY_M_IS_LST_CHANGE) {
  1390. if (phystat & PHY_M_PS_LINK_UP)
  1391. sky2_link_up(sky2);
  1392. else
  1393. sky2_link_down(sky2);
  1394. }
  1395. out:
  1396. spin_unlock(&sky2->phy_lock);
  1397. }
  1398. /* Transmit timeout is only called if we are running, carries is up
  1399. * and tx queue is full (stopped).
  1400. */
  1401. static void sky2_tx_timeout(struct net_device *dev)
  1402. {
  1403. struct sky2_port *sky2 = netdev_priv(dev);
  1404. struct sky2_hw *hw = sky2->hw;
  1405. unsigned txq = txqaddr[sky2->port];
  1406. u16 report, done;
  1407. if (netif_msg_timer(sky2))
  1408. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1409. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1410. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1411. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1412. dev->name,
  1413. sky2->tx_cons, sky2->tx_prod, report, done);
  1414. if (report != done) {
  1415. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1416. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1417. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1418. } else if (report != sky2->tx_cons) {
  1419. printk(KERN_INFO PFX "status report lost?\n");
  1420. spin_lock_bh(&sky2->tx_lock);
  1421. sky2_tx_complete(sky2, report);
  1422. spin_unlock_bh(&sky2->tx_lock);
  1423. } else {
  1424. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1425. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1426. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1427. sky2_tx_clean(sky2);
  1428. sky2_qset(hw, txq);
  1429. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1430. }
  1431. }
  1432. /* Want receive buffer size to be multiple of 64 bits
  1433. * and incl room for vlan and truncation
  1434. */
  1435. static inline unsigned sky2_buf_size(int mtu)
  1436. {
  1437. return ALIGN(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8;
  1438. }
  1439. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1440. {
  1441. struct sky2_port *sky2 = netdev_priv(dev);
  1442. struct sky2_hw *hw = sky2->hw;
  1443. int err;
  1444. u16 ctl, mode;
  1445. u32 imask;
  1446. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1447. return -EINVAL;
  1448. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1449. return -EINVAL;
  1450. if (!netif_running(dev)) {
  1451. dev->mtu = new_mtu;
  1452. return 0;
  1453. }
  1454. imask = sky2_read32(hw, B0_IMSK);
  1455. sky2_write32(hw, B0_IMSK, 0);
  1456. dev->trans_start = jiffies; /* prevent tx timeout */
  1457. netif_stop_queue(dev);
  1458. netif_poll_disable(hw->dev[0]);
  1459. synchronize_irq(hw->pdev->irq);
  1460. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1461. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1462. sky2_rx_stop(sky2);
  1463. sky2_rx_clean(sky2);
  1464. dev->mtu = new_mtu;
  1465. sky2->rx_bufsize = sky2_buf_size(new_mtu);
  1466. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1467. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1468. if (dev->mtu > ETH_DATA_LEN)
  1469. mode |= GM_SMOD_JUMBO_ENA;
  1470. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1471. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1472. err = sky2_rx_start(sky2);
  1473. sky2_write32(hw, B0_IMSK, imask);
  1474. if (err)
  1475. dev_close(dev);
  1476. else {
  1477. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1478. netif_poll_enable(hw->dev[0]);
  1479. netif_wake_queue(dev);
  1480. }
  1481. return err;
  1482. }
  1483. /*
  1484. * Receive one packet.
  1485. * For small packets or errors, just reuse existing skb.
  1486. * For larger packets, get new buffer.
  1487. */
  1488. static struct sk_buff *sky2_receive(struct sky2_port *sky2,
  1489. u16 length, u32 status)
  1490. {
  1491. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1492. struct sk_buff *skb = NULL;
  1493. if (unlikely(netif_msg_rx_status(sky2)))
  1494. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1495. sky2->netdev->name, sky2->rx_next, status, length);
  1496. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1497. prefetch(sky2->rx_ring + sky2->rx_next);
  1498. if (status & GMR_FS_ANY_ERR)
  1499. goto error;
  1500. if (!(status & GMR_FS_RX_OK))
  1501. goto resubmit;
  1502. if (length > sky2->netdev->mtu + ETH_HLEN)
  1503. goto oversize;
  1504. if (length < copybreak) {
  1505. skb = alloc_skb(length + 2, GFP_ATOMIC);
  1506. if (!skb)
  1507. goto resubmit;
  1508. skb_reserve(skb, 2);
  1509. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1510. length, PCI_DMA_FROMDEVICE);
  1511. memcpy(skb->data, re->skb->data, length);
  1512. skb->ip_summed = re->skb->ip_summed;
  1513. skb->csum = re->skb->csum;
  1514. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1515. length, PCI_DMA_FROMDEVICE);
  1516. } else {
  1517. struct sk_buff *nskb;
  1518. nskb = sky2_alloc_skb(sky2->rx_bufsize, GFP_ATOMIC);
  1519. if (!nskb)
  1520. goto resubmit;
  1521. skb = re->skb;
  1522. re->skb = nskb;
  1523. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1524. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1525. prefetch(skb->data);
  1526. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1527. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1528. }
  1529. skb_put(skb, length);
  1530. resubmit:
  1531. re->skb->ip_summed = CHECKSUM_NONE;
  1532. sky2_rx_add(sky2, re->mapaddr);
  1533. return skb;
  1534. oversize:
  1535. ++sky2->net_stats.rx_over_errors;
  1536. goto resubmit;
  1537. error:
  1538. ++sky2->net_stats.rx_errors;
  1539. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1540. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1541. sky2->netdev->name, status, length);
  1542. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1543. sky2->net_stats.rx_length_errors++;
  1544. if (status & GMR_FS_FRAGMENT)
  1545. sky2->net_stats.rx_frame_errors++;
  1546. if (status & GMR_FS_CRC_ERR)
  1547. sky2->net_stats.rx_crc_errors++;
  1548. if (status & GMR_FS_RX_FF_OV)
  1549. sky2->net_stats.rx_fifo_errors++;
  1550. goto resubmit;
  1551. }
  1552. /* Transmit complete */
  1553. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1554. {
  1555. struct sky2_port *sky2 = netdev_priv(dev);
  1556. if (netif_running(dev)) {
  1557. spin_lock(&sky2->tx_lock);
  1558. sky2_tx_complete(sky2, last);
  1559. spin_unlock(&sky2->tx_lock);
  1560. }
  1561. }
  1562. /* Process status response ring */
  1563. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1564. {
  1565. struct sky2_port *sky2;
  1566. int work_done = 0;
  1567. unsigned buf_write[2] = { 0, 0 };
  1568. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1569. rmb();
  1570. while (hw->st_idx != hwidx) {
  1571. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1572. struct net_device *dev;
  1573. struct sk_buff *skb;
  1574. u32 status;
  1575. u16 length;
  1576. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1577. BUG_ON(le->link >= 2);
  1578. dev = hw->dev[le->link];
  1579. sky2 = netdev_priv(dev);
  1580. length = le->length;
  1581. status = le->status;
  1582. switch (le->opcode & ~HW_OWNER) {
  1583. case OP_RXSTAT:
  1584. skb = sky2_receive(sky2, length, status);
  1585. if (!skb)
  1586. break;
  1587. skb->dev = dev;
  1588. skb->protocol = eth_type_trans(skb, dev);
  1589. dev->last_rx = jiffies;
  1590. #ifdef SKY2_VLAN_TAG_USED
  1591. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1592. vlan_hwaccel_receive_skb(skb,
  1593. sky2->vlgrp,
  1594. be16_to_cpu(sky2->rx_tag));
  1595. } else
  1596. #endif
  1597. netif_receive_skb(skb);
  1598. /* Update receiver after 16 frames */
  1599. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1600. sky2_put_idx(hw, rxqaddr[le->link],
  1601. sky2->rx_put);
  1602. buf_write[le->link] = 0;
  1603. }
  1604. /* Stop after net poll weight */
  1605. if (++work_done >= to_do)
  1606. goto exit_loop;
  1607. break;
  1608. #ifdef SKY2_VLAN_TAG_USED
  1609. case OP_RXVLAN:
  1610. sky2->rx_tag = length;
  1611. break;
  1612. case OP_RXCHKSVLAN:
  1613. sky2->rx_tag = length;
  1614. /* fall through */
  1615. #endif
  1616. case OP_RXCHKS:
  1617. skb = sky2->rx_ring[sky2->rx_next].skb;
  1618. skb->ip_summed = CHECKSUM_HW;
  1619. skb->csum = le16_to_cpu(status);
  1620. break;
  1621. case OP_TXINDEXLE:
  1622. /* TX index reports status for both ports */
  1623. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1624. sky2_tx_done(hw->dev[0], status & 0xfff);
  1625. if (hw->dev[1])
  1626. sky2_tx_done(hw->dev[1],
  1627. ((status >> 24) & 0xff)
  1628. | (u16)(length & 0xf) << 8);
  1629. break;
  1630. default:
  1631. if (net_ratelimit())
  1632. printk(KERN_WARNING PFX
  1633. "unknown status opcode 0x%x\n", le->opcode);
  1634. goto exit_loop;
  1635. }
  1636. }
  1637. /* Fully processed status ring so clear irq */
  1638. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1639. exit_loop:
  1640. if (buf_write[0]) {
  1641. sky2 = netdev_priv(hw->dev[0]);
  1642. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1643. }
  1644. if (buf_write[1]) {
  1645. sky2 = netdev_priv(hw->dev[1]);
  1646. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1647. }
  1648. return work_done;
  1649. }
  1650. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1651. {
  1652. struct net_device *dev = hw->dev[port];
  1653. if (net_ratelimit())
  1654. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1655. dev->name, status);
  1656. if (status & Y2_IS_PAR_RD1) {
  1657. if (net_ratelimit())
  1658. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1659. dev->name);
  1660. /* Clear IRQ */
  1661. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1662. }
  1663. if (status & Y2_IS_PAR_WR1) {
  1664. if (net_ratelimit())
  1665. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1666. dev->name);
  1667. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1668. }
  1669. if (status & Y2_IS_PAR_MAC1) {
  1670. if (net_ratelimit())
  1671. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1672. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1673. }
  1674. if (status & Y2_IS_PAR_RX1) {
  1675. if (net_ratelimit())
  1676. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1677. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1678. }
  1679. if (status & Y2_IS_TCP_TXA1) {
  1680. if (net_ratelimit())
  1681. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1682. dev->name);
  1683. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1684. }
  1685. }
  1686. static void sky2_hw_intr(struct sky2_hw *hw)
  1687. {
  1688. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1689. if (status & Y2_IS_TIST_OV)
  1690. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1691. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1692. u16 pci_err;
  1693. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1694. if (net_ratelimit())
  1695. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1696. pci_name(hw->pdev), pci_err);
  1697. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1698. sky2_pci_write16(hw, PCI_STATUS,
  1699. pci_err | PCI_STATUS_ERROR_BITS);
  1700. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1701. }
  1702. if (status & Y2_IS_PCI_EXP) {
  1703. /* PCI-Express uncorrectable Error occurred */
  1704. u32 pex_err;
  1705. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1706. if (net_ratelimit())
  1707. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1708. pci_name(hw->pdev), pex_err);
  1709. /* clear the interrupt */
  1710. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1711. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1712. 0xffffffffUL);
  1713. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1714. if (pex_err & PEX_FATAL_ERRORS) {
  1715. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1716. hwmsk &= ~Y2_IS_PCI_EXP;
  1717. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1718. }
  1719. }
  1720. if (status & Y2_HWE_L1_MASK)
  1721. sky2_hw_error(hw, 0, status);
  1722. status >>= 8;
  1723. if (status & Y2_HWE_L1_MASK)
  1724. sky2_hw_error(hw, 1, status);
  1725. }
  1726. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1727. {
  1728. struct net_device *dev = hw->dev[port];
  1729. struct sky2_port *sky2 = netdev_priv(dev);
  1730. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1731. if (netif_msg_intr(sky2))
  1732. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1733. dev->name, status);
  1734. if (status & GM_IS_RX_FF_OR) {
  1735. ++sky2->net_stats.rx_fifo_errors;
  1736. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1737. }
  1738. if (status & GM_IS_TX_FF_UR) {
  1739. ++sky2->net_stats.tx_fifo_errors;
  1740. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1741. }
  1742. }
  1743. /* This should never happen it is a fatal situation */
  1744. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1745. const char *rxtx, u32 mask)
  1746. {
  1747. struct net_device *dev = hw->dev[port];
  1748. struct sky2_port *sky2 = netdev_priv(dev);
  1749. u32 imask;
  1750. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1751. dev ? dev->name : "<not registered>", rxtx);
  1752. imask = sky2_read32(hw, B0_IMSK);
  1753. imask &= ~mask;
  1754. sky2_write32(hw, B0_IMSK, imask);
  1755. if (dev) {
  1756. spin_lock(&sky2->phy_lock);
  1757. sky2_link_down(sky2);
  1758. spin_unlock(&sky2->phy_lock);
  1759. }
  1760. }
  1761. /* If idle then force a fake soft NAPI poll once a second
  1762. * to work around cases where sharing an edge triggered interrupt.
  1763. */
  1764. static inline void sky2_idle_start(struct sky2_hw *hw)
  1765. {
  1766. if (idle_timeout > 0)
  1767. mod_timer(&hw->idle_timer,
  1768. jiffies + msecs_to_jiffies(idle_timeout));
  1769. }
  1770. static void sky2_idle(unsigned long arg)
  1771. {
  1772. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1773. struct net_device *dev = hw->dev[0];
  1774. if (__netif_rx_schedule_prep(dev))
  1775. __netif_rx_schedule(dev);
  1776. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1777. }
  1778. static int sky2_poll(struct net_device *dev0, int *budget)
  1779. {
  1780. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1781. int work_limit = min(dev0->quota, *budget);
  1782. int work_done = 0;
  1783. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1784. if (status & Y2_IS_HW_ERR)
  1785. sky2_hw_intr(hw);
  1786. if (status & Y2_IS_IRQ_PHY1)
  1787. sky2_phy_intr(hw, 0);
  1788. if (status & Y2_IS_IRQ_PHY2)
  1789. sky2_phy_intr(hw, 1);
  1790. if (status & Y2_IS_IRQ_MAC1)
  1791. sky2_mac_intr(hw, 0);
  1792. if (status & Y2_IS_IRQ_MAC2)
  1793. sky2_mac_intr(hw, 1);
  1794. if (status & Y2_IS_CHK_RX1)
  1795. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1796. if (status & Y2_IS_CHK_RX2)
  1797. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1798. if (status & Y2_IS_CHK_TXA1)
  1799. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1800. if (status & Y2_IS_CHK_TXA2)
  1801. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1802. work_done = sky2_status_intr(hw, work_limit);
  1803. if (work_done < work_limit) {
  1804. netif_rx_complete(dev0);
  1805. sky2_read32(hw, B0_Y2_SP_LISR);
  1806. return 0;
  1807. } else {
  1808. *budget -= work_done;
  1809. dev0->quota -= work_done;
  1810. return 1;
  1811. }
  1812. }
  1813. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1814. {
  1815. struct sky2_hw *hw = dev_id;
  1816. struct net_device *dev0 = hw->dev[0];
  1817. u32 status;
  1818. /* Reading this mask interrupts as side effect */
  1819. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1820. if (status == 0 || status == ~0)
  1821. return IRQ_NONE;
  1822. prefetch(&hw->st_le[hw->st_idx]);
  1823. if (likely(__netif_rx_schedule_prep(dev0)))
  1824. __netif_rx_schedule(dev0);
  1825. return IRQ_HANDLED;
  1826. }
  1827. #ifdef CONFIG_NET_POLL_CONTROLLER
  1828. static void sky2_netpoll(struct net_device *dev)
  1829. {
  1830. struct sky2_port *sky2 = netdev_priv(dev);
  1831. struct net_device *dev0 = sky2->hw->dev[0];
  1832. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1833. __netif_rx_schedule(dev0);
  1834. }
  1835. #endif
  1836. /* Chip internal frequency for clock calculations */
  1837. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1838. {
  1839. switch (hw->chip_id) {
  1840. case CHIP_ID_YUKON_EC:
  1841. case CHIP_ID_YUKON_EC_U:
  1842. return 125; /* 125 Mhz */
  1843. case CHIP_ID_YUKON_FE:
  1844. return 100; /* 100 Mhz */
  1845. default: /* YUKON_XL */
  1846. return 156; /* 156 Mhz */
  1847. }
  1848. }
  1849. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1850. {
  1851. return sky2_mhz(hw) * us;
  1852. }
  1853. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1854. {
  1855. return clk / sky2_mhz(hw);
  1856. }
  1857. static int sky2_reset(struct sky2_hw *hw)
  1858. {
  1859. u16 status;
  1860. u8 t8, pmd_type;
  1861. int i;
  1862. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1863. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1864. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1865. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1866. pci_name(hw->pdev), hw->chip_id);
  1867. return -EOPNOTSUPP;
  1868. }
  1869. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1870. /* This rev is really old, and requires untested workarounds */
  1871. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1872. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1873. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1874. hw->chip_id, hw->chip_rev);
  1875. return -EOPNOTSUPP;
  1876. }
  1877. /* disable ASF */
  1878. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1879. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1880. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1881. }
  1882. /* do a SW reset */
  1883. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1884. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1885. /* clear PCI errors, if any */
  1886. status = sky2_pci_read16(hw, PCI_STATUS);
  1887. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1888. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1889. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1890. /* clear any PEX errors */
  1891. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1892. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1893. pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1894. hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
  1895. hw->ports = 1;
  1896. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1897. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1898. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1899. ++hw->ports;
  1900. }
  1901. sky2_set_power_state(hw, PCI_D0);
  1902. for (i = 0; i < hw->ports; i++) {
  1903. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1904. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1905. }
  1906. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1907. /* Clear I2C IRQ noise */
  1908. sky2_write32(hw, B2_I2C_IRQ, 1);
  1909. /* turn off hardware timer (unused) */
  1910. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1911. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1912. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1913. /* Turn off descriptor polling */
  1914. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1915. /* Turn off receive timestamp */
  1916. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1917. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1918. /* enable the Tx Arbiters */
  1919. for (i = 0; i < hw->ports; i++)
  1920. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1921. /* Initialize ram interface */
  1922. for (i = 0; i < hw->ports; i++) {
  1923. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1924. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1925. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1926. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1927. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1928. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1929. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1930. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1931. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1932. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1933. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1934. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1935. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1936. }
  1937. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  1938. for (i = 0; i < hw->ports; i++)
  1939. sky2_phy_reset(hw, i);
  1940. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1941. hw->st_idx = 0;
  1942. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1943. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1944. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1945. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1946. /* Set the list last index */
  1947. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1948. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  1949. sky2_write8(hw, STAT_FIFO_WM, 16);
  1950. /* set Status-FIFO ISR watermark */
  1951. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1952. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  1953. else
  1954. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  1955. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  1956. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  1957. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  1958. /* enable status unit */
  1959. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1960. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1961. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1962. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1963. return 0;
  1964. }
  1965. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  1966. {
  1967. u32 modes;
  1968. if (hw->copper) {
  1969. modes = SUPPORTED_10baseT_Half
  1970. | SUPPORTED_10baseT_Full
  1971. | SUPPORTED_100baseT_Half
  1972. | SUPPORTED_100baseT_Full
  1973. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1974. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1975. modes |= SUPPORTED_1000baseT_Half
  1976. | SUPPORTED_1000baseT_Full;
  1977. } else
  1978. modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1979. | SUPPORTED_Autoneg;
  1980. return modes;
  1981. }
  1982. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1983. {
  1984. struct sky2_port *sky2 = netdev_priv(dev);
  1985. struct sky2_hw *hw = sky2->hw;
  1986. ecmd->transceiver = XCVR_INTERNAL;
  1987. ecmd->supported = sky2_supported_modes(hw);
  1988. ecmd->phy_address = PHY_ADDR_MARV;
  1989. if (hw->copper) {
  1990. ecmd->supported = SUPPORTED_10baseT_Half
  1991. | SUPPORTED_10baseT_Full
  1992. | SUPPORTED_100baseT_Half
  1993. | SUPPORTED_100baseT_Full
  1994. | SUPPORTED_1000baseT_Half
  1995. | SUPPORTED_1000baseT_Full
  1996. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1997. ecmd->port = PORT_TP;
  1998. } else
  1999. ecmd->port = PORT_FIBRE;
  2000. ecmd->advertising = sky2->advertising;
  2001. ecmd->autoneg = sky2->autoneg;
  2002. ecmd->speed = sky2->speed;
  2003. ecmd->duplex = sky2->duplex;
  2004. return 0;
  2005. }
  2006. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2007. {
  2008. struct sky2_port *sky2 = netdev_priv(dev);
  2009. const struct sky2_hw *hw = sky2->hw;
  2010. u32 supported = sky2_supported_modes(hw);
  2011. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2012. ecmd->advertising = supported;
  2013. sky2->duplex = -1;
  2014. sky2->speed = -1;
  2015. } else {
  2016. u32 setting;
  2017. switch (ecmd->speed) {
  2018. case SPEED_1000:
  2019. if (ecmd->duplex == DUPLEX_FULL)
  2020. setting = SUPPORTED_1000baseT_Full;
  2021. else if (ecmd->duplex == DUPLEX_HALF)
  2022. setting = SUPPORTED_1000baseT_Half;
  2023. else
  2024. return -EINVAL;
  2025. break;
  2026. case SPEED_100:
  2027. if (ecmd->duplex == DUPLEX_FULL)
  2028. setting = SUPPORTED_100baseT_Full;
  2029. else if (ecmd->duplex == DUPLEX_HALF)
  2030. setting = SUPPORTED_100baseT_Half;
  2031. else
  2032. return -EINVAL;
  2033. break;
  2034. case SPEED_10:
  2035. if (ecmd->duplex == DUPLEX_FULL)
  2036. setting = SUPPORTED_10baseT_Full;
  2037. else if (ecmd->duplex == DUPLEX_HALF)
  2038. setting = SUPPORTED_10baseT_Half;
  2039. else
  2040. return -EINVAL;
  2041. break;
  2042. default:
  2043. return -EINVAL;
  2044. }
  2045. if ((setting & supported) == 0)
  2046. return -EINVAL;
  2047. sky2->speed = ecmd->speed;
  2048. sky2->duplex = ecmd->duplex;
  2049. }
  2050. sky2->autoneg = ecmd->autoneg;
  2051. sky2->advertising = ecmd->advertising;
  2052. if (netif_running(dev))
  2053. sky2_phy_reinit(sky2);
  2054. return 0;
  2055. }
  2056. static void sky2_get_drvinfo(struct net_device *dev,
  2057. struct ethtool_drvinfo *info)
  2058. {
  2059. struct sky2_port *sky2 = netdev_priv(dev);
  2060. strcpy(info->driver, DRV_NAME);
  2061. strcpy(info->version, DRV_VERSION);
  2062. strcpy(info->fw_version, "N/A");
  2063. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2064. }
  2065. static const struct sky2_stat {
  2066. char name[ETH_GSTRING_LEN];
  2067. u16 offset;
  2068. } sky2_stats[] = {
  2069. { "tx_bytes", GM_TXO_OK_HI },
  2070. { "rx_bytes", GM_RXO_OK_HI },
  2071. { "tx_broadcast", GM_TXF_BC_OK },
  2072. { "rx_broadcast", GM_RXF_BC_OK },
  2073. { "tx_multicast", GM_TXF_MC_OK },
  2074. { "rx_multicast", GM_RXF_MC_OK },
  2075. { "tx_unicast", GM_TXF_UC_OK },
  2076. { "rx_unicast", GM_RXF_UC_OK },
  2077. { "tx_mac_pause", GM_TXF_MPAUSE },
  2078. { "rx_mac_pause", GM_RXF_MPAUSE },
  2079. { "collisions", GM_TXF_COL },
  2080. { "late_collision",GM_TXF_LAT_COL },
  2081. { "aborted", GM_TXF_ABO_COL },
  2082. { "single_collisions", GM_TXF_SNG_COL },
  2083. { "multi_collisions", GM_TXF_MUL_COL },
  2084. { "rx_short", GM_RXF_SHT },
  2085. { "rx_runt", GM_RXE_FRAG },
  2086. { "rx_64_byte_packets", GM_RXF_64B },
  2087. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2088. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2089. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2090. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2091. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2092. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2093. { "rx_too_long", GM_RXF_LNG_ERR },
  2094. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2095. { "rx_jabber", GM_RXF_JAB_PKT },
  2096. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2097. { "tx_64_byte_packets", GM_TXF_64B },
  2098. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2099. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2100. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2101. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2102. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2103. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2104. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2105. };
  2106. static u32 sky2_get_rx_csum(struct net_device *dev)
  2107. {
  2108. struct sky2_port *sky2 = netdev_priv(dev);
  2109. return sky2->rx_csum;
  2110. }
  2111. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2112. {
  2113. struct sky2_port *sky2 = netdev_priv(dev);
  2114. sky2->rx_csum = data;
  2115. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2116. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2117. return 0;
  2118. }
  2119. static u32 sky2_get_msglevel(struct net_device *netdev)
  2120. {
  2121. struct sky2_port *sky2 = netdev_priv(netdev);
  2122. return sky2->msg_enable;
  2123. }
  2124. static int sky2_nway_reset(struct net_device *dev)
  2125. {
  2126. struct sky2_port *sky2 = netdev_priv(dev);
  2127. if (sky2->autoneg != AUTONEG_ENABLE)
  2128. return -EINVAL;
  2129. sky2_phy_reinit(sky2);
  2130. return 0;
  2131. }
  2132. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2133. {
  2134. struct sky2_hw *hw = sky2->hw;
  2135. unsigned port = sky2->port;
  2136. int i;
  2137. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2138. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2139. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2140. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2141. for (i = 2; i < count; i++)
  2142. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2143. }
  2144. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2145. {
  2146. struct sky2_port *sky2 = netdev_priv(netdev);
  2147. sky2->msg_enable = value;
  2148. }
  2149. static int sky2_get_stats_count(struct net_device *dev)
  2150. {
  2151. return ARRAY_SIZE(sky2_stats);
  2152. }
  2153. static void sky2_get_ethtool_stats(struct net_device *dev,
  2154. struct ethtool_stats *stats, u64 * data)
  2155. {
  2156. struct sky2_port *sky2 = netdev_priv(dev);
  2157. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2158. }
  2159. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2160. {
  2161. int i;
  2162. switch (stringset) {
  2163. case ETH_SS_STATS:
  2164. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2165. memcpy(data + i * ETH_GSTRING_LEN,
  2166. sky2_stats[i].name, ETH_GSTRING_LEN);
  2167. break;
  2168. }
  2169. }
  2170. /* Use hardware MIB variables for critical path statistics and
  2171. * transmit feedback not reported at interrupt.
  2172. * Other errors are accounted for in interrupt handler.
  2173. */
  2174. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2175. {
  2176. struct sky2_port *sky2 = netdev_priv(dev);
  2177. u64 data[13];
  2178. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2179. sky2->net_stats.tx_bytes = data[0];
  2180. sky2->net_stats.rx_bytes = data[1];
  2181. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2182. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2183. sky2->net_stats.multicast = data[3] + data[5];
  2184. sky2->net_stats.collisions = data[10];
  2185. sky2->net_stats.tx_aborted_errors = data[12];
  2186. return &sky2->net_stats;
  2187. }
  2188. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2189. {
  2190. struct sky2_port *sky2 = netdev_priv(dev);
  2191. struct sky2_hw *hw = sky2->hw;
  2192. unsigned port = sky2->port;
  2193. const struct sockaddr *addr = p;
  2194. if (!is_valid_ether_addr(addr->sa_data))
  2195. return -EADDRNOTAVAIL;
  2196. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2197. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2198. dev->dev_addr, ETH_ALEN);
  2199. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2200. dev->dev_addr, ETH_ALEN);
  2201. /* virtual address for data */
  2202. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2203. /* physical address: used for pause frames */
  2204. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2205. return 0;
  2206. }
  2207. static void sky2_set_multicast(struct net_device *dev)
  2208. {
  2209. struct sky2_port *sky2 = netdev_priv(dev);
  2210. struct sky2_hw *hw = sky2->hw;
  2211. unsigned port = sky2->port;
  2212. struct dev_mc_list *list = dev->mc_list;
  2213. u16 reg;
  2214. u8 filter[8];
  2215. memset(filter, 0, sizeof(filter));
  2216. reg = gma_read16(hw, port, GM_RX_CTRL);
  2217. reg |= GM_RXCR_UCF_ENA;
  2218. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2219. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2220. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2221. memset(filter, 0xff, sizeof(filter));
  2222. else if (dev->mc_count == 0) /* no multicast */
  2223. reg &= ~GM_RXCR_MCF_ENA;
  2224. else {
  2225. int i;
  2226. reg |= GM_RXCR_MCF_ENA;
  2227. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2228. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2229. filter[bit / 8] |= 1 << (bit % 8);
  2230. }
  2231. }
  2232. gma_write16(hw, port, GM_MC_ADDR_H1,
  2233. (u16) filter[0] | ((u16) filter[1] << 8));
  2234. gma_write16(hw, port, GM_MC_ADDR_H2,
  2235. (u16) filter[2] | ((u16) filter[3] << 8));
  2236. gma_write16(hw, port, GM_MC_ADDR_H3,
  2237. (u16) filter[4] | ((u16) filter[5] << 8));
  2238. gma_write16(hw, port, GM_MC_ADDR_H4,
  2239. (u16) filter[6] | ((u16) filter[7] << 8));
  2240. gma_write16(hw, port, GM_RX_CTRL, reg);
  2241. }
  2242. /* Can have one global because blinking is controlled by
  2243. * ethtool and that is always under RTNL mutex
  2244. */
  2245. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2246. {
  2247. u16 pg;
  2248. switch (hw->chip_id) {
  2249. case CHIP_ID_YUKON_XL:
  2250. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2251. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2252. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2253. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2254. PHY_M_LEDC_INIT_CTRL(7) |
  2255. PHY_M_LEDC_STA1_CTRL(7) |
  2256. PHY_M_LEDC_STA0_CTRL(7))
  2257. : 0);
  2258. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2259. break;
  2260. default:
  2261. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2262. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2263. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2264. PHY_M_LED_MO_10(MO_LED_ON) |
  2265. PHY_M_LED_MO_100(MO_LED_ON) |
  2266. PHY_M_LED_MO_1000(MO_LED_ON) |
  2267. PHY_M_LED_MO_RX(MO_LED_ON)
  2268. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2269. PHY_M_LED_MO_10(MO_LED_OFF) |
  2270. PHY_M_LED_MO_100(MO_LED_OFF) |
  2271. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2272. PHY_M_LED_MO_RX(MO_LED_OFF));
  2273. }
  2274. }
  2275. /* blink LED's for finding board */
  2276. static int sky2_phys_id(struct net_device *dev, u32 data)
  2277. {
  2278. struct sky2_port *sky2 = netdev_priv(dev);
  2279. struct sky2_hw *hw = sky2->hw;
  2280. unsigned port = sky2->port;
  2281. u16 ledctrl, ledover = 0;
  2282. long ms;
  2283. int interrupted;
  2284. int onoff = 1;
  2285. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2286. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2287. else
  2288. ms = data * 1000;
  2289. /* save initial values */
  2290. spin_lock_bh(&sky2->phy_lock);
  2291. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2292. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2293. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2294. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2295. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2296. } else {
  2297. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2298. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2299. }
  2300. interrupted = 0;
  2301. while (!interrupted && ms > 0) {
  2302. sky2_led(hw, port, onoff);
  2303. onoff = !onoff;
  2304. spin_unlock_bh(&sky2->phy_lock);
  2305. interrupted = msleep_interruptible(250);
  2306. spin_lock_bh(&sky2->phy_lock);
  2307. ms -= 250;
  2308. }
  2309. /* resume regularly scheduled programming */
  2310. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2311. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2312. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2313. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2314. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2315. } else {
  2316. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2317. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2318. }
  2319. spin_unlock_bh(&sky2->phy_lock);
  2320. return 0;
  2321. }
  2322. static void sky2_get_pauseparam(struct net_device *dev,
  2323. struct ethtool_pauseparam *ecmd)
  2324. {
  2325. struct sky2_port *sky2 = netdev_priv(dev);
  2326. ecmd->tx_pause = sky2->tx_pause;
  2327. ecmd->rx_pause = sky2->rx_pause;
  2328. ecmd->autoneg = sky2->autoneg;
  2329. }
  2330. static int sky2_set_pauseparam(struct net_device *dev,
  2331. struct ethtool_pauseparam *ecmd)
  2332. {
  2333. struct sky2_port *sky2 = netdev_priv(dev);
  2334. int err = 0;
  2335. sky2->autoneg = ecmd->autoneg;
  2336. sky2->tx_pause = ecmd->tx_pause != 0;
  2337. sky2->rx_pause = ecmd->rx_pause != 0;
  2338. sky2_phy_reinit(sky2);
  2339. return err;
  2340. }
  2341. static int sky2_get_coalesce(struct net_device *dev,
  2342. struct ethtool_coalesce *ecmd)
  2343. {
  2344. struct sky2_port *sky2 = netdev_priv(dev);
  2345. struct sky2_hw *hw = sky2->hw;
  2346. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2347. ecmd->tx_coalesce_usecs = 0;
  2348. else {
  2349. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2350. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2351. }
  2352. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2353. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2354. ecmd->rx_coalesce_usecs = 0;
  2355. else {
  2356. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2357. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2358. }
  2359. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2360. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2361. ecmd->rx_coalesce_usecs_irq = 0;
  2362. else {
  2363. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2364. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2365. }
  2366. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2367. return 0;
  2368. }
  2369. /* Note: this affect both ports */
  2370. static int sky2_set_coalesce(struct net_device *dev,
  2371. struct ethtool_coalesce *ecmd)
  2372. {
  2373. struct sky2_port *sky2 = netdev_priv(dev);
  2374. struct sky2_hw *hw = sky2->hw;
  2375. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2376. if (ecmd->tx_coalesce_usecs > tmax ||
  2377. ecmd->rx_coalesce_usecs > tmax ||
  2378. ecmd->rx_coalesce_usecs_irq > tmax)
  2379. return -EINVAL;
  2380. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2381. return -EINVAL;
  2382. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2383. return -EINVAL;
  2384. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2385. return -EINVAL;
  2386. if (ecmd->tx_coalesce_usecs == 0)
  2387. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2388. else {
  2389. sky2_write32(hw, STAT_TX_TIMER_INI,
  2390. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2391. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2392. }
  2393. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2394. if (ecmd->rx_coalesce_usecs == 0)
  2395. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2396. else {
  2397. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2398. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2399. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2400. }
  2401. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2402. if (ecmd->rx_coalesce_usecs_irq == 0)
  2403. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2404. else {
  2405. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2406. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2407. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2408. }
  2409. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2410. return 0;
  2411. }
  2412. static void sky2_get_ringparam(struct net_device *dev,
  2413. struct ethtool_ringparam *ering)
  2414. {
  2415. struct sky2_port *sky2 = netdev_priv(dev);
  2416. ering->rx_max_pending = RX_MAX_PENDING;
  2417. ering->rx_mini_max_pending = 0;
  2418. ering->rx_jumbo_max_pending = 0;
  2419. ering->tx_max_pending = TX_RING_SIZE - 1;
  2420. ering->rx_pending = sky2->rx_pending;
  2421. ering->rx_mini_pending = 0;
  2422. ering->rx_jumbo_pending = 0;
  2423. ering->tx_pending = sky2->tx_pending;
  2424. }
  2425. static int sky2_set_ringparam(struct net_device *dev,
  2426. struct ethtool_ringparam *ering)
  2427. {
  2428. struct sky2_port *sky2 = netdev_priv(dev);
  2429. int err = 0;
  2430. if (ering->rx_pending > RX_MAX_PENDING ||
  2431. ering->rx_pending < 8 ||
  2432. ering->tx_pending < MAX_SKB_TX_LE ||
  2433. ering->tx_pending > TX_RING_SIZE - 1)
  2434. return -EINVAL;
  2435. if (netif_running(dev))
  2436. sky2_down(dev);
  2437. sky2->rx_pending = ering->rx_pending;
  2438. sky2->tx_pending = ering->tx_pending;
  2439. if (netif_running(dev)) {
  2440. err = sky2_up(dev);
  2441. if (err)
  2442. dev_close(dev);
  2443. else
  2444. sky2_set_multicast(dev);
  2445. }
  2446. return err;
  2447. }
  2448. static int sky2_get_regs_len(struct net_device *dev)
  2449. {
  2450. return 0x4000;
  2451. }
  2452. /*
  2453. * Returns copy of control register region
  2454. * Note: access to the RAM address register set will cause timeouts.
  2455. */
  2456. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2457. void *p)
  2458. {
  2459. const struct sky2_port *sky2 = netdev_priv(dev);
  2460. const void __iomem *io = sky2->hw->regs;
  2461. BUG_ON(regs->len < B3_RI_WTO_R1);
  2462. regs->version = 1;
  2463. memset(p, 0, regs->len);
  2464. memcpy_fromio(p, io, B3_RAM_ADDR);
  2465. memcpy_fromio(p + B3_RI_WTO_R1,
  2466. io + B3_RI_WTO_R1,
  2467. regs->len - B3_RI_WTO_R1);
  2468. }
  2469. static struct ethtool_ops sky2_ethtool_ops = {
  2470. .get_settings = sky2_get_settings,
  2471. .set_settings = sky2_set_settings,
  2472. .get_drvinfo = sky2_get_drvinfo,
  2473. .get_msglevel = sky2_get_msglevel,
  2474. .set_msglevel = sky2_set_msglevel,
  2475. .nway_reset = sky2_nway_reset,
  2476. .get_regs_len = sky2_get_regs_len,
  2477. .get_regs = sky2_get_regs,
  2478. .get_link = ethtool_op_get_link,
  2479. .get_sg = ethtool_op_get_sg,
  2480. .set_sg = ethtool_op_set_sg,
  2481. .get_tx_csum = ethtool_op_get_tx_csum,
  2482. .set_tx_csum = ethtool_op_set_tx_csum,
  2483. .get_tso = ethtool_op_get_tso,
  2484. .set_tso = ethtool_op_set_tso,
  2485. .get_rx_csum = sky2_get_rx_csum,
  2486. .set_rx_csum = sky2_set_rx_csum,
  2487. .get_strings = sky2_get_strings,
  2488. .get_coalesce = sky2_get_coalesce,
  2489. .set_coalesce = sky2_set_coalesce,
  2490. .get_ringparam = sky2_get_ringparam,
  2491. .set_ringparam = sky2_set_ringparam,
  2492. .get_pauseparam = sky2_get_pauseparam,
  2493. .set_pauseparam = sky2_set_pauseparam,
  2494. .phys_id = sky2_phys_id,
  2495. .get_stats_count = sky2_get_stats_count,
  2496. .get_ethtool_stats = sky2_get_ethtool_stats,
  2497. .get_perm_addr = ethtool_op_get_perm_addr,
  2498. };
  2499. /* Initialize network device */
  2500. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2501. unsigned port, int highmem)
  2502. {
  2503. struct sky2_port *sky2;
  2504. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2505. if (!dev) {
  2506. printk(KERN_ERR "sky2 etherdev alloc failed");
  2507. return NULL;
  2508. }
  2509. SET_MODULE_OWNER(dev);
  2510. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2511. dev->irq = hw->pdev->irq;
  2512. dev->open = sky2_up;
  2513. dev->stop = sky2_down;
  2514. dev->do_ioctl = sky2_ioctl;
  2515. dev->hard_start_xmit = sky2_xmit_frame;
  2516. dev->get_stats = sky2_get_stats;
  2517. dev->set_multicast_list = sky2_set_multicast;
  2518. dev->set_mac_address = sky2_set_mac_address;
  2519. dev->change_mtu = sky2_change_mtu;
  2520. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2521. dev->tx_timeout = sky2_tx_timeout;
  2522. dev->watchdog_timeo = TX_WATCHDOG;
  2523. if (port == 0)
  2524. dev->poll = sky2_poll;
  2525. dev->weight = NAPI_WEIGHT;
  2526. #ifdef CONFIG_NET_POLL_CONTROLLER
  2527. dev->poll_controller = sky2_netpoll;
  2528. #endif
  2529. sky2 = netdev_priv(dev);
  2530. sky2->netdev = dev;
  2531. sky2->hw = hw;
  2532. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2533. spin_lock_init(&sky2->tx_lock);
  2534. /* Auto speed and flow control */
  2535. sky2->autoneg = AUTONEG_ENABLE;
  2536. sky2->tx_pause = 1;
  2537. sky2->rx_pause = 1;
  2538. sky2->duplex = -1;
  2539. sky2->speed = -1;
  2540. sky2->advertising = sky2_supported_modes(hw);
  2541. sky2->rx_csum = 1;
  2542. spin_lock_init(&sky2->phy_lock);
  2543. sky2->tx_pending = TX_DEF_PENDING;
  2544. sky2->rx_pending = RX_DEF_PENDING;
  2545. sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
  2546. hw->dev[port] = dev;
  2547. sky2->port = port;
  2548. dev->features |= NETIF_F_LLTX;
  2549. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2550. dev->features |= NETIF_F_TSO;
  2551. if (highmem)
  2552. dev->features |= NETIF_F_HIGHDMA;
  2553. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2554. #ifdef SKY2_VLAN_TAG_USED
  2555. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2556. dev->vlan_rx_register = sky2_vlan_rx_register;
  2557. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2558. #endif
  2559. /* read the mac address */
  2560. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2561. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2562. /* device is off until link detection */
  2563. netif_carrier_off(dev);
  2564. netif_stop_queue(dev);
  2565. return dev;
  2566. }
  2567. static void __devinit sky2_show_addr(struct net_device *dev)
  2568. {
  2569. const struct sky2_port *sky2 = netdev_priv(dev);
  2570. if (netif_msg_probe(sky2))
  2571. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2572. dev->name,
  2573. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2574. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2575. }
  2576. /* Handle software interrupt used during MSI test */
  2577. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
  2578. struct pt_regs *regs)
  2579. {
  2580. struct sky2_hw *hw = dev_id;
  2581. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2582. if (status == 0)
  2583. return IRQ_NONE;
  2584. if (status & Y2_IS_IRQ_SW) {
  2585. hw->msi_detected = 1;
  2586. wake_up(&hw->msi_wait);
  2587. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2588. }
  2589. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2590. return IRQ_HANDLED;
  2591. }
  2592. /* Test interrupt path by forcing a a software IRQ */
  2593. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2594. {
  2595. struct pci_dev *pdev = hw->pdev;
  2596. int err;
  2597. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2598. err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw);
  2599. if (err) {
  2600. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2601. pci_name(pdev), pdev->irq);
  2602. return err;
  2603. }
  2604. init_waitqueue_head (&hw->msi_wait);
  2605. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2606. wmb();
  2607. wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
  2608. if (!hw->msi_detected) {
  2609. /* MSI test failed, go back to INTx mode */
  2610. printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
  2611. "switching to INTx mode. Please report this failure to "
  2612. "the PCI maintainer and include system chipset information.\n",
  2613. pci_name(pdev));
  2614. err = -EOPNOTSUPP;
  2615. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2616. }
  2617. sky2_write32(hw, B0_IMSK, 0);
  2618. free_irq(pdev->irq, hw);
  2619. return err;
  2620. }
  2621. static int __devinit sky2_probe(struct pci_dev *pdev,
  2622. const struct pci_device_id *ent)
  2623. {
  2624. struct net_device *dev, *dev1 = NULL;
  2625. struct sky2_hw *hw;
  2626. int err, pm_cap, using_dac = 0;
  2627. err = pci_enable_device(pdev);
  2628. if (err) {
  2629. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2630. pci_name(pdev));
  2631. goto err_out;
  2632. }
  2633. err = pci_request_regions(pdev, DRV_NAME);
  2634. if (err) {
  2635. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2636. pci_name(pdev));
  2637. goto err_out;
  2638. }
  2639. pci_set_master(pdev);
  2640. /* Find power-management capability. */
  2641. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2642. if (pm_cap == 0) {
  2643. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2644. "aborting.\n");
  2645. err = -EIO;
  2646. goto err_out_free_regions;
  2647. }
  2648. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2649. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2650. using_dac = 1;
  2651. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2652. if (err < 0) {
  2653. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2654. "for consistent allocations\n", pci_name(pdev));
  2655. goto err_out_free_regions;
  2656. }
  2657. } else {
  2658. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2659. if (err) {
  2660. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2661. pci_name(pdev));
  2662. goto err_out_free_regions;
  2663. }
  2664. }
  2665. err = -ENOMEM;
  2666. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2667. if (!hw) {
  2668. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2669. pci_name(pdev));
  2670. goto err_out_free_regions;
  2671. }
  2672. hw->pdev = pdev;
  2673. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2674. if (!hw->regs) {
  2675. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2676. pci_name(pdev));
  2677. goto err_out_free_hw;
  2678. }
  2679. hw->pm_cap = pm_cap;
  2680. #ifdef __BIG_ENDIAN
  2681. /* byte swap descriptors in hardware */
  2682. {
  2683. u32 reg;
  2684. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2685. reg |= PCI_REV_DESC;
  2686. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2687. }
  2688. #endif
  2689. /* ring for status responses */
  2690. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2691. &hw->st_dma);
  2692. if (!hw->st_le)
  2693. goto err_out_iounmap;
  2694. err = sky2_reset(hw);
  2695. if (err)
  2696. goto err_out_iounmap;
  2697. printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2698. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2699. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2700. hw->chip_id, hw->chip_rev);
  2701. dev = sky2_init_netdev(hw, 0, using_dac);
  2702. if (!dev)
  2703. goto err_out_free_pci;
  2704. err = register_netdev(dev);
  2705. if (err) {
  2706. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2707. pci_name(pdev));
  2708. goto err_out_free_netdev;
  2709. }
  2710. sky2_show_addr(dev);
  2711. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2712. if (register_netdev(dev1) == 0)
  2713. sky2_show_addr(dev1);
  2714. else {
  2715. /* Failure to register second port need not be fatal */
  2716. printk(KERN_WARNING PFX
  2717. "register of second port failed\n");
  2718. hw->dev[1] = NULL;
  2719. free_netdev(dev1);
  2720. }
  2721. }
  2722. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2723. err = sky2_test_msi(hw);
  2724. if (err == -EOPNOTSUPP)
  2725. pci_disable_msi(pdev);
  2726. else if (err)
  2727. goto err_out_unregister;
  2728. }
  2729. err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, DRV_NAME, hw);
  2730. if (err) {
  2731. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2732. pci_name(pdev), pdev->irq);
  2733. goto err_out_unregister;
  2734. }
  2735. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2736. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2737. sky2_idle_start(hw);
  2738. pci_set_drvdata(pdev, hw);
  2739. return 0;
  2740. err_out_unregister:
  2741. pci_disable_msi(pdev);
  2742. if (dev1) {
  2743. unregister_netdev(dev1);
  2744. free_netdev(dev1);
  2745. }
  2746. unregister_netdev(dev);
  2747. err_out_free_netdev:
  2748. free_netdev(dev);
  2749. err_out_free_pci:
  2750. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2751. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2752. err_out_iounmap:
  2753. iounmap(hw->regs);
  2754. err_out_free_hw:
  2755. kfree(hw);
  2756. err_out_free_regions:
  2757. pci_release_regions(pdev);
  2758. pci_disable_device(pdev);
  2759. err_out:
  2760. return err;
  2761. }
  2762. static void __devexit sky2_remove(struct pci_dev *pdev)
  2763. {
  2764. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2765. struct net_device *dev0, *dev1;
  2766. if (!hw)
  2767. return;
  2768. del_timer_sync(&hw->idle_timer);
  2769. sky2_write32(hw, B0_IMSK, 0);
  2770. synchronize_irq(hw->pdev->irq);
  2771. dev0 = hw->dev[0];
  2772. dev1 = hw->dev[1];
  2773. if (dev1)
  2774. unregister_netdev(dev1);
  2775. unregister_netdev(dev0);
  2776. sky2_set_power_state(hw, PCI_D3hot);
  2777. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2778. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2779. sky2_read8(hw, B0_CTST);
  2780. free_irq(pdev->irq, hw);
  2781. pci_disable_msi(pdev);
  2782. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2783. pci_release_regions(pdev);
  2784. pci_disable_device(pdev);
  2785. if (dev1)
  2786. free_netdev(dev1);
  2787. free_netdev(dev0);
  2788. iounmap(hw->regs);
  2789. kfree(hw);
  2790. pci_set_drvdata(pdev, NULL);
  2791. }
  2792. #ifdef CONFIG_PM
  2793. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2794. {
  2795. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2796. int i;
  2797. pci_power_t pstate = pci_choose_state(pdev, state);
  2798. if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
  2799. return -EINVAL;
  2800. del_timer_sync(&hw->idle_timer);
  2801. netif_poll_disable(hw->dev[0]);
  2802. for (i = 0; i < hw->ports; i++) {
  2803. struct net_device *dev = hw->dev[i];
  2804. if (netif_running(dev)) {
  2805. sky2_down(dev);
  2806. netif_device_detach(dev);
  2807. }
  2808. }
  2809. sky2_write32(hw, B0_IMSK, 0);
  2810. pci_save_state(pdev);
  2811. sky2_set_power_state(hw, pstate);
  2812. return 0;
  2813. }
  2814. static int sky2_resume(struct pci_dev *pdev)
  2815. {
  2816. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2817. int i, err;
  2818. pci_restore_state(pdev);
  2819. pci_enable_wake(pdev, PCI_D0, 0);
  2820. sky2_set_power_state(hw, PCI_D0);
  2821. err = sky2_reset(hw);
  2822. if (err)
  2823. goto out;
  2824. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2825. for (i = 0; i < hw->ports; i++) {
  2826. struct net_device *dev = hw->dev[i];
  2827. if (netif_running(dev)) {
  2828. netif_device_attach(dev);
  2829. err = sky2_up(dev);
  2830. if (err) {
  2831. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2832. dev->name, err);
  2833. dev_close(dev);
  2834. goto out;
  2835. }
  2836. }
  2837. }
  2838. netif_poll_enable(hw->dev[0]);
  2839. sky2_idle_start(hw);
  2840. out:
  2841. return err;
  2842. }
  2843. #endif
  2844. static struct pci_driver sky2_driver = {
  2845. .name = DRV_NAME,
  2846. .id_table = sky2_id_table,
  2847. .probe = sky2_probe,
  2848. .remove = __devexit_p(sky2_remove),
  2849. #ifdef CONFIG_PM
  2850. .suspend = sky2_suspend,
  2851. .resume = sky2_resume,
  2852. #endif
  2853. };
  2854. static int __init sky2_init_module(void)
  2855. {
  2856. return pci_register_driver(&sky2_driver);
  2857. }
  2858. static void __exit sky2_cleanup_module(void)
  2859. {
  2860. pci_unregister_driver(&sky2_driver);
  2861. }
  2862. module_init(sky2_init_module);
  2863. module_exit(sky2_cleanup_module);
  2864. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2865. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2866. MODULE_LICENSE("GPL");
  2867. MODULE_VERSION(DRV_VERSION);