intel_dp.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. int dpms_mode;
  48. uint8_t link_bw;
  49. uint8_t lane_count;
  50. uint8_t dpcd[4];
  51. struct i2c_adapter adapter;
  52. struct i2c_algo_dp_aux_data algo;
  53. bool is_pch_edp;
  54. uint8_t train_set[4];
  55. uint8_t link_status[DP_LINK_STATUS_SIZE];
  56. struct drm_property *force_audio_property;
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[0] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[1];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. unsigned retry;
  426. int msg_bytes;
  427. int reply_bytes;
  428. int ret;
  429. /* Set up the command byte */
  430. if (mode & MODE_I2C_READ)
  431. msg[0] = AUX_I2C_READ << 4;
  432. else
  433. msg[0] = AUX_I2C_WRITE << 4;
  434. if (!(mode & MODE_I2C_STOP))
  435. msg[0] |= AUX_I2C_MOT << 4;
  436. msg[1] = address >> 8;
  437. msg[2] = address;
  438. switch (mode) {
  439. case MODE_I2C_WRITE:
  440. msg[3] = 0;
  441. msg[4] = write_byte;
  442. msg_bytes = 5;
  443. reply_bytes = 1;
  444. break;
  445. case MODE_I2C_READ:
  446. msg[3] = 0;
  447. msg_bytes = 4;
  448. reply_bytes = 2;
  449. break;
  450. default:
  451. msg_bytes = 3;
  452. reply_bytes = 1;
  453. break;
  454. }
  455. for (retry = 0; retry < 5; retry++) {
  456. ret = intel_dp_aux_ch(intel_dp,
  457. msg, msg_bytes,
  458. reply, reply_bytes);
  459. if (ret < 0) {
  460. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  461. return ret;
  462. }
  463. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  464. case AUX_NATIVE_REPLY_ACK:
  465. /* I2C-over-AUX Reply field is only valid
  466. * when paired with AUX ACK.
  467. */
  468. break;
  469. case AUX_NATIVE_REPLY_NACK:
  470. DRM_DEBUG_KMS("aux_ch native nack\n");
  471. return -EREMOTEIO;
  472. case AUX_NATIVE_REPLY_DEFER:
  473. udelay(100);
  474. continue;
  475. default:
  476. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  477. reply[0]);
  478. return -EREMOTEIO;
  479. }
  480. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  481. case AUX_I2C_REPLY_ACK:
  482. if (mode == MODE_I2C_READ) {
  483. *read_byte = reply[1];
  484. }
  485. return reply_bytes - 1;
  486. case AUX_I2C_REPLY_NACK:
  487. DRM_DEBUG_KMS("aux_i2c nack\n");
  488. return -EREMOTEIO;
  489. case AUX_I2C_REPLY_DEFER:
  490. DRM_DEBUG_KMS("aux_i2c defer\n");
  491. udelay(100);
  492. break;
  493. default:
  494. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  495. return -EREMOTEIO;
  496. }
  497. }
  498. DRM_ERROR("too many retries, giving up\n");
  499. return -EREMOTEIO;
  500. }
  501. static int
  502. intel_dp_i2c_init(struct intel_dp *intel_dp,
  503. struct intel_connector *intel_connector, const char *name)
  504. {
  505. DRM_DEBUG_KMS("i2c_init %s\n", name);
  506. intel_dp->algo.running = false;
  507. intel_dp->algo.address = 0;
  508. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  509. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  510. intel_dp->adapter.owner = THIS_MODULE;
  511. intel_dp->adapter.class = I2C_CLASS_DDC;
  512. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  513. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  514. intel_dp->adapter.algo_data = &intel_dp->algo;
  515. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  516. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  517. }
  518. static bool
  519. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  520. struct drm_display_mode *adjusted_mode)
  521. {
  522. struct drm_device *dev = encoder->dev;
  523. struct drm_i915_private *dev_priv = dev->dev_private;
  524. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  525. int lane_count, clock;
  526. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  527. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  528. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  529. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  530. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  531. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  532. mode, adjusted_mode);
  533. /*
  534. * the mode->clock is used to calculate the Data&Link M/N
  535. * of the pipe. For the eDP the fixed clock should be used.
  536. */
  537. mode->clock = dev_priv->panel_fixed_mode->clock;
  538. }
  539. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  540. for (clock = 0; clock <= max_clock; clock++) {
  541. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  542. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  543. <= link_avail) {
  544. intel_dp->link_bw = bws[clock];
  545. intel_dp->lane_count = lane_count;
  546. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  547. DRM_DEBUG_KMS("Display port link bw %02x lane "
  548. "count %d clock %d\n",
  549. intel_dp->link_bw, intel_dp->lane_count,
  550. adjusted_mode->clock);
  551. return true;
  552. }
  553. }
  554. }
  555. if (is_edp(intel_dp)) {
  556. /* okay we failed just pick the highest */
  557. intel_dp->lane_count = max_lane_count;
  558. intel_dp->link_bw = bws[max_clock];
  559. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  560. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  561. "count %d clock %d\n",
  562. intel_dp->link_bw, intel_dp->lane_count,
  563. adjusted_mode->clock);
  564. return true;
  565. }
  566. return false;
  567. }
  568. struct intel_dp_m_n {
  569. uint32_t tu;
  570. uint32_t gmch_m;
  571. uint32_t gmch_n;
  572. uint32_t link_m;
  573. uint32_t link_n;
  574. };
  575. static void
  576. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  577. {
  578. while (*num > 0xffffff || *den > 0xffffff) {
  579. *num >>= 1;
  580. *den >>= 1;
  581. }
  582. }
  583. static void
  584. intel_dp_compute_m_n(int bpp,
  585. int nlanes,
  586. int pixel_clock,
  587. int link_clock,
  588. struct intel_dp_m_n *m_n)
  589. {
  590. m_n->tu = 64;
  591. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  592. m_n->gmch_n = link_clock * nlanes;
  593. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  594. m_n->link_m = pixel_clock;
  595. m_n->link_n = link_clock;
  596. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  597. }
  598. void
  599. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  600. struct drm_display_mode *adjusted_mode)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. struct drm_mode_config *mode_config = &dev->mode_config;
  604. struct drm_encoder *encoder;
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  607. int lane_count = 4, bpp = 24;
  608. struct intel_dp_m_n m_n;
  609. int pipe = intel_crtc->pipe;
  610. /*
  611. * Find the lane count in the intel_encoder private
  612. */
  613. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  614. struct intel_dp *intel_dp;
  615. if (encoder->crtc != crtc)
  616. continue;
  617. intel_dp = enc_to_intel_dp(encoder);
  618. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  619. lane_count = intel_dp->lane_count;
  620. break;
  621. } else if (is_edp(intel_dp)) {
  622. lane_count = dev_priv->edp.lanes;
  623. bpp = dev_priv->edp.bpp;
  624. break;
  625. }
  626. }
  627. /*
  628. * Compute the GMCH and Link ratios. The '3' here is
  629. * the number of bytes_per_pixel post-LUT, which we always
  630. * set up for 8-bits of R/G/B, or 3 bytes total.
  631. */
  632. intel_dp_compute_m_n(bpp, lane_count,
  633. mode->clock, adjusted_mode->clock, &m_n);
  634. if (HAS_PCH_SPLIT(dev)) {
  635. I915_WRITE(TRANSDATA_M1(pipe),
  636. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  637. m_n.gmch_m);
  638. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  639. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  640. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  641. } else {
  642. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  643. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  644. m_n.gmch_m);
  645. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  646. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  647. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  648. }
  649. }
  650. static void
  651. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  652. struct drm_display_mode *adjusted_mode)
  653. {
  654. struct drm_device *dev = encoder->dev;
  655. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  656. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  658. intel_dp->DP = (DP_VOLTAGE_0_4 |
  659. DP_PRE_EMPHASIS_0);
  660. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  661. intel_dp->DP |= DP_SYNC_HS_HIGH;
  662. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  663. intel_dp->DP |= DP_SYNC_VS_HIGH;
  664. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  665. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  666. else
  667. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  668. switch (intel_dp->lane_count) {
  669. case 1:
  670. intel_dp->DP |= DP_PORT_WIDTH_1;
  671. break;
  672. case 2:
  673. intel_dp->DP |= DP_PORT_WIDTH_2;
  674. break;
  675. case 4:
  676. intel_dp->DP |= DP_PORT_WIDTH_4;
  677. break;
  678. }
  679. if (intel_dp->has_audio)
  680. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  681. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  682. intel_dp->link_configuration[0] = intel_dp->link_bw;
  683. intel_dp->link_configuration[1] = intel_dp->lane_count;
  684. /*
  685. * Check for DPCD version > 1.1 and enhanced framing support
  686. */
  687. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  688. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  689. intel_dp->DP |= DP_ENHANCED_FRAMING;
  690. }
  691. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  692. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  693. intel_dp->DP |= DP_PIPEB_SELECT;
  694. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  695. /* don't miss out required setting for eDP */
  696. intel_dp->DP |= DP_PLL_ENABLE;
  697. if (adjusted_mode->clock < 200000)
  698. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  699. else
  700. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  701. }
  702. }
  703. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  704. {
  705. struct drm_device *dev = intel_dp->base.base.dev;
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. u32 pp;
  708. /*
  709. * If the panel wasn't on, make sure there's not a currently
  710. * active PP sequence before enabling AUX VDD.
  711. */
  712. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  713. msleep(dev_priv->panel_t3);
  714. pp = I915_READ(PCH_PP_CONTROL);
  715. pp |= EDP_FORCE_VDD;
  716. I915_WRITE(PCH_PP_CONTROL, pp);
  717. POSTING_READ(PCH_PP_CONTROL);
  718. }
  719. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  720. {
  721. struct drm_device *dev = intel_dp->base.base.dev;
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. u32 pp;
  724. pp = I915_READ(PCH_PP_CONTROL);
  725. pp &= ~EDP_FORCE_VDD;
  726. I915_WRITE(PCH_PP_CONTROL, pp);
  727. POSTING_READ(PCH_PP_CONTROL);
  728. /* Make sure sequencer is idle before allowing subsequent activity */
  729. msleep(dev_priv->panel_t12);
  730. }
  731. /* Returns true if the panel was already on when called */
  732. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  733. {
  734. struct drm_device *dev = intel_dp->base.base.dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  737. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  738. return true;
  739. pp = I915_READ(PCH_PP_CONTROL);
  740. /* ILK workaround: disable reset around power sequence */
  741. pp &= ~PANEL_POWER_RESET;
  742. I915_WRITE(PCH_PP_CONTROL, pp);
  743. POSTING_READ(PCH_PP_CONTROL);
  744. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  745. I915_WRITE(PCH_PP_CONTROL, pp);
  746. POSTING_READ(PCH_PP_CONTROL);
  747. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  748. 5000))
  749. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  750. I915_READ(PCH_PP_STATUS));
  751. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  752. I915_WRITE(PCH_PP_CONTROL, pp);
  753. POSTING_READ(PCH_PP_CONTROL);
  754. return false;
  755. }
  756. static void ironlake_edp_panel_off (struct drm_device *dev)
  757. {
  758. struct drm_i915_private *dev_priv = dev->dev_private;
  759. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  760. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  761. pp = I915_READ(PCH_PP_CONTROL);
  762. /* ILK workaround: disable reset around power sequence */
  763. pp &= ~PANEL_POWER_RESET;
  764. I915_WRITE(PCH_PP_CONTROL, pp);
  765. POSTING_READ(PCH_PP_CONTROL);
  766. pp &= ~POWER_TARGET_ON;
  767. I915_WRITE(PCH_PP_CONTROL, pp);
  768. POSTING_READ(PCH_PP_CONTROL);
  769. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  770. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  771. I915_READ(PCH_PP_STATUS));
  772. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  773. I915_WRITE(PCH_PP_CONTROL, pp);
  774. POSTING_READ(PCH_PP_CONTROL);
  775. }
  776. static void ironlake_edp_backlight_on (struct drm_device *dev)
  777. {
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. u32 pp;
  780. DRM_DEBUG_KMS("\n");
  781. /*
  782. * If we enable the backlight right away following a panel power
  783. * on, we may see slight flicker as the panel syncs with the eDP
  784. * link. So delay a bit to make sure the image is solid before
  785. * allowing it to appear.
  786. */
  787. msleep(300);
  788. pp = I915_READ(PCH_PP_CONTROL);
  789. pp |= EDP_BLC_ENABLE;
  790. I915_WRITE(PCH_PP_CONTROL, pp);
  791. }
  792. static void ironlake_edp_backlight_off (struct drm_device *dev)
  793. {
  794. struct drm_i915_private *dev_priv = dev->dev_private;
  795. u32 pp;
  796. DRM_DEBUG_KMS("\n");
  797. pp = I915_READ(PCH_PP_CONTROL);
  798. pp &= ~EDP_BLC_ENABLE;
  799. I915_WRITE(PCH_PP_CONTROL, pp);
  800. }
  801. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  802. {
  803. struct drm_device *dev = encoder->dev;
  804. struct drm_i915_private *dev_priv = dev->dev_private;
  805. u32 dpa_ctl;
  806. DRM_DEBUG_KMS("\n");
  807. dpa_ctl = I915_READ(DP_A);
  808. dpa_ctl |= DP_PLL_ENABLE;
  809. I915_WRITE(DP_A, dpa_ctl);
  810. POSTING_READ(DP_A);
  811. udelay(200);
  812. }
  813. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  814. {
  815. struct drm_device *dev = encoder->dev;
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u32 dpa_ctl;
  818. dpa_ctl = I915_READ(DP_A);
  819. dpa_ctl &= ~DP_PLL_ENABLE;
  820. I915_WRITE(DP_A, dpa_ctl);
  821. POSTING_READ(DP_A);
  822. udelay(200);
  823. }
  824. static void intel_dp_prepare(struct drm_encoder *encoder)
  825. {
  826. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  827. struct drm_device *dev = encoder->dev;
  828. if (is_edp(intel_dp)) {
  829. ironlake_edp_backlight_off(dev);
  830. ironlake_edp_panel_off(dev);
  831. if (!is_pch_edp(intel_dp))
  832. ironlake_edp_pll_on(encoder);
  833. else
  834. ironlake_edp_pll_off(encoder);
  835. }
  836. intel_dp_link_down(intel_dp);
  837. }
  838. static void intel_dp_commit(struct drm_encoder *encoder)
  839. {
  840. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  841. struct drm_device *dev = encoder->dev;
  842. if (is_edp(intel_dp))
  843. ironlake_edp_panel_vdd_on(intel_dp);
  844. intel_dp_start_link_train(intel_dp);
  845. if (is_edp(intel_dp)) {
  846. ironlake_edp_panel_on(intel_dp);
  847. ironlake_edp_panel_vdd_off(intel_dp);
  848. }
  849. intel_dp_complete_link_train(intel_dp);
  850. if (is_edp(intel_dp))
  851. ironlake_edp_backlight_on(dev);
  852. }
  853. static void
  854. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  855. {
  856. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  857. struct drm_device *dev = encoder->dev;
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  860. if (mode != DRM_MODE_DPMS_ON) {
  861. if (is_edp(intel_dp))
  862. ironlake_edp_backlight_off(dev);
  863. intel_dp_link_down(intel_dp);
  864. if (is_edp(intel_dp))
  865. ironlake_edp_panel_off(dev);
  866. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  867. ironlake_edp_pll_off(encoder);
  868. } else {
  869. if (is_edp(intel_dp))
  870. ironlake_edp_panel_vdd_on(intel_dp);
  871. if (!(dp_reg & DP_PORT_EN)) {
  872. intel_dp_start_link_train(intel_dp);
  873. if (is_edp(intel_dp)) {
  874. ironlake_edp_panel_on(intel_dp);
  875. ironlake_edp_panel_vdd_off(intel_dp);
  876. }
  877. intel_dp_complete_link_train(intel_dp);
  878. }
  879. if (is_edp(intel_dp))
  880. ironlake_edp_backlight_on(dev);
  881. }
  882. intel_dp->dpms_mode = mode;
  883. }
  884. /*
  885. * Fetch AUX CH registers 0x202 - 0x207 which contain
  886. * link status information
  887. */
  888. static bool
  889. intel_dp_get_link_status(struct intel_dp *intel_dp)
  890. {
  891. int ret;
  892. ret = intel_dp_aux_native_read(intel_dp,
  893. DP_LANE0_1_STATUS,
  894. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  895. if (ret != DP_LINK_STATUS_SIZE)
  896. return false;
  897. return true;
  898. }
  899. static uint8_t
  900. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  901. int r)
  902. {
  903. return link_status[r - DP_LANE0_1_STATUS];
  904. }
  905. static uint8_t
  906. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  907. int lane)
  908. {
  909. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  910. int s = ((lane & 1) ?
  911. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  912. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  913. uint8_t l = intel_dp_link_status(link_status, i);
  914. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  915. }
  916. static uint8_t
  917. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  918. int lane)
  919. {
  920. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  921. int s = ((lane & 1) ?
  922. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  923. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  924. uint8_t l = intel_dp_link_status(link_status, i);
  925. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  926. }
  927. #if 0
  928. static char *voltage_names[] = {
  929. "0.4V", "0.6V", "0.8V", "1.2V"
  930. };
  931. static char *pre_emph_names[] = {
  932. "0dB", "3.5dB", "6dB", "9.5dB"
  933. };
  934. static char *link_train_names[] = {
  935. "pattern 1", "pattern 2", "idle", "off"
  936. };
  937. #endif
  938. /*
  939. * These are source-specific values; current Intel hardware supports
  940. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  941. */
  942. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  943. static uint8_t
  944. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  945. {
  946. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  947. case DP_TRAIN_VOLTAGE_SWING_400:
  948. return DP_TRAIN_PRE_EMPHASIS_6;
  949. case DP_TRAIN_VOLTAGE_SWING_600:
  950. return DP_TRAIN_PRE_EMPHASIS_6;
  951. case DP_TRAIN_VOLTAGE_SWING_800:
  952. return DP_TRAIN_PRE_EMPHASIS_3_5;
  953. case DP_TRAIN_VOLTAGE_SWING_1200:
  954. default:
  955. return DP_TRAIN_PRE_EMPHASIS_0;
  956. }
  957. }
  958. static void
  959. intel_get_adjust_train(struct intel_dp *intel_dp)
  960. {
  961. uint8_t v = 0;
  962. uint8_t p = 0;
  963. int lane;
  964. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  965. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  966. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  967. if (this_v > v)
  968. v = this_v;
  969. if (this_p > p)
  970. p = this_p;
  971. }
  972. if (v >= I830_DP_VOLTAGE_MAX)
  973. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  974. if (p >= intel_dp_pre_emphasis_max(v))
  975. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  976. for (lane = 0; lane < 4; lane++)
  977. intel_dp->train_set[lane] = v | p;
  978. }
  979. static uint32_t
  980. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  981. {
  982. uint32_t signal_levels = 0;
  983. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  984. case DP_TRAIN_VOLTAGE_SWING_400:
  985. default:
  986. signal_levels |= DP_VOLTAGE_0_4;
  987. break;
  988. case DP_TRAIN_VOLTAGE_SWING_600:
  989. signal_levels |= DP_VOLTAGE_0_6;
  990. break;
  991. case DP_TRAIN_VOLTAGE_SWING_800:
  992. signal_levels |= DP_VOLTAGE_0_8;
  993. break;
  994. case DP_TRAIN_VOLTAGE_SWING_1200:
  995. signal_levels |= DP_VOLTAGE_1_2;
  996. break;
  997. }
  998. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  999. case DP_TRAIN_PRE_EMPHASIS_0:
  1000. default:
  1001. signal_levels |= DP_PRE_EMPHASIS_0;
  1002. break;
  1003. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1004. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1005. break;
  1006. case DP_TRAIN_PRE_EMPHASIS_6:
  1007. signal_levels |= DP_PRE_EMPHASIS_6;
  1008. break;
  1009. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1010. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1011. break;
  1012. }
  1013. return signal_levels;
  1014. }
  1015. /* Gen6's DP voltage swing and pre-emphasis control */
  1016. static uint32_t
  1017. intel_gen6_edp_signal_levels(uint8_t train_set)
  1018. {
  1019. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1020. DP_TRAIN_PRE_EMPHASIS_MASK);
  1021. switch (signal_levels) {
  1022. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1023. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1024. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1025. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1026. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1027. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1028. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1029. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1030. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1031. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1032. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1033. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1034. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1035. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1036. default:
  1037. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1038. "0x%x\n", signal_levels);
  1039. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1040. }
  1041. }
  1042. static uint8_t
  1043. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1044. int lane)
  1045. {
  1046. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1047. int s = (lane & 1) * 4;
  1048. uint8_t l = intel_dp_link_status(link_status, i);
  1049. return (l >> s) & 0xf;
  1050. }
  1051. /* Check for clock recovery is done on all channels */
  1052. static bool
  1053. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1054. {
  1055. int lane;
  1056. uint8_t lane_status;
  1057. for (lane = 0; lane < lane_count; lane++) {
  1058. lane_status = intel_get_lane_status(link_status, lane);
  1059. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1060. return false;
  1061. }
  1062. return true;
  1063. }
  1064. /* Check to see if channel eq is done on all channels */
  1065. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1066. DP_LANE_CHANNEL_EQ_DONE|\
  1067. DP_LANE_SYMBOL_LOCKED)
  1068. static bool
  1069. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1070. {
  1071. uint8_t lane_align;
  1072. uint8_t lane_status;
  1073. int lane;
  1074. lane_align = intel_dp_link_status(intel_dp->link_status,
  1075. DP_LANE_ALIGN_STATUS_UPDATED);
  1076. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1077. return false;
  1078. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1079. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1080. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1081. return false;
  1082. }
  1083. return true;
  1084. }
  1085. static bool
  1086. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1087. uint32_t dp_reg_value,
  1088. uint8_t dp_train_pat)
  1089. {
  1090. struct drm_device *dev = intel_dp->base.base.dev;
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. int ret;
  1093. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1094. POSTING_READ(intel_dp->output_reg);
  1095. intel_dp_aux_native_write_1(intel_dp,
  1096. DP_TRAINING_PATTERN_SET,
  1097. dp_train_pat);
  1098. ret = intel_dp_aux_native_write(intel_dp,
  1099. DP_TRAINING_LANE0_SET,
  1100. intel_dp->train_set, 4);
  1101. if (ret != 4)
  1102. return false;
  1103. return true;
  1104. }
  1105. /* Enable corresponding port and start training pattern 1 */
  1106. static void
  1107. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1108. {
  1109. struct drm_device *dev = intel_dp->base.base.dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1112. int i;
  1113. uint8_t voltage;
  1114. bool clock_recovery = false;
  1115. int tries;
  1116. u32 reg;
  1117. uint32_t DP = intel_dp->DP;
  1118. /* Enable output, wait for it to become active */
  1119. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1120. POSTING_READ(intel_dp->output_reg);
  1121. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1122. /* Write the link configuration data */
  1123. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1124. intel_dp->link_configuration,
  1125. DP_LINK_CONFIGURATION_SIZE);
  1126. DP |= DP_PORT_EN;
  1127. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1128. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1129. else
  1130. DP &= ~DP_LINK_TRAIN_MASK;
  1131. memset(intel_dp->train_set, 0, 4);
  1132. voltage = 0xff;
  1133. tries = 0;
  1134. clock_recovery = false;
  1135. for (;;) {
  1136. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1137. uint32_t signal_levels;
  1138. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1139. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1140. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1141. } else {
  1142. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1143. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1144. }
  1145. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1146. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1147. else
  1148. reg = DP | DP_LINK_TRAIN_PAT_1;
  1149. if (!intel_dp_set_link_train(intel_dp, reg,
  1150. DP_TRAINING_PATTERN_1))
  1151. break;
  1152. /* Set training pattern 1 */
  1153. udelay(100);
  1154. if (!intel_dp_get_link_status(intel_dp))
  1155. break;
  1156. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1157. clock_recovery = true;
  1158. break;
  1159. }
  1160. /* Check to see if we've tried the max voltage */
  1161. for (i = 0; i < intel_dp->lane_count; i++)
  1162. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1163. break;
  1164. if (i == intel_dp->lane_count)
  1165. break;
  1166. /* Check to see if we've tried the same voltage 5 times */
  1167. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1168. ++tries;
  1169. if (tries == 5)
  1170. break;
  1171. } else
  1172. tries = 0;
  1173. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1174. /* Compute new intel_dp->train_set as requested by target */
  1175. intel_get_adjust_train(intel_dp);
  1176. }
  1177. intel_dp->DP = DP;
  1178. }
  1179. static void
  1180. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1181. {
  1182. struct drm_device *dev = intel_dp->base.base.dev;
  1183. struct drm_i915_private *dev_priv = dev->dev_private;
  1184. bool channel_eq = false;
  1185. int tries, cr_tries;
  1186. u32 reg;
  1187. uint32_t DP = intel_dp->DP;
  1188. /* channel equalization */
  1189. tries = 0;
  1190. cr_tries = 0;
  1191. channel_eq = false;
  1192. for (;;) {
  1193. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1194. uint32_t signal_levels;
  1195. if (cr_tries > 5) {
  1196. DRM_ERROR("failed to train DP, aborting\n");
  1197. intel_dp_link_down(intel_dp);
  1198. break;
  1199. }
  1200. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1201. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1202. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1203. } else {
  1204. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1205. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1206. }
  1207. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1208. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1209. else
  1210. reg = DP | DP_LINK_TRAIN_PAT_2;
  1211. /* channel eq pattern */
  1212. if (!intel_dp_set_link_train(intel_dp, reg,
  1213. DP_TRAINING_PATTERN_2))
  1214. break;
  1215. udelay(400);
  1216. if (!intel_dp_get_link_status(intel_dp))
  1217. break;
  1218. /* Make sure clock is still ok */
  1219. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1220. intel_dp_start_link_train(intel_dp);
  1221. cr_tries++;
  1222. continue;
  1223. }
  1224. if (intel_channel_eq_ok(intel_dp)) {
  1225. channel_eq = true;
  1226. break;
  1227. }
  1228. /* Try 5 times, then try clock recovery if that fails */
  1229. if (tries > 5) {
  1230. intel_dp_link_down(intel_dp);
  1231. intel_dp_start_link_train(intel_dp);
  1232. tries = 0;
  1233. cr_tries++;
  1234. continue;
  1235. }
  1236. /* Compute new intel_dp->train_set as requested by target */
  1237. intel_get_adjust_train(intel_dp);
  1238. ++tries;
  1239. }
  1240. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1241. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1242. else
  1243. reg = DP | DP_LINK_TRAIN_OFF;
  1244. I915_WRITE(intel_dp->output_reg, reg);
  1245. POSTING_READ(intel_dp->output_reg);
  1246. intel_dp_aux_native_write_1(intel_dp,
  1247. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1248. }
  1249. static void
  1250. intel_dp_link_down(struct intel_dp *intel_dp)
  1251. {
  1252. struct drm_device *dev = intel_dp->base.base.dev;
  1253. struct drm_i915_private *dev_priv = dev->dev_private;
  1254. uint32_t DP = intel_dp->DP;
  1255. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1256. return;
  1257. DRM_DEBUG_KMS("\n");
  1258. if (is_edp(intel_dp)) {
  1259. DP &= ~DP_PLL_ENABLE;
  1260. I915_WRITE(intel_dp->output_reg, DP);
  1261. POSTING_READ(intel_dp->output_reg);
  1262. udelay(100);
  1263. }
  1264. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1265. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1266. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1267. } else {
  1268. DP &= ~DP_LINK_TRAIN_MASK;
  1269. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1270. }
  1271. POSTING_READ(intel_dp->output_reg);
  1272. msleep(17);
  1273. if (is_edp(intel_dp))
  1274. DP |= DP_LINK_TRAIN_OFF;
  1275. if (!HAS_PCH_CPT(dev) &&
  1276. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1277. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1278. /* Hardware workaround: leaving our transcoder select
  1279. * set to transcoder B while it's off will prevent the
  1280. * corresponding HDMI output on transcoder A.
  1281. *
  1282. * Combine this with another hardware workaround:
  1283. * transcoder select bit can only be cleared while the
  1284. * port is enabled.
  1285. */
  1286. DP &= ~DP_PIPEB_SELECT;
  1287. I915_WRITE(intel_dp->output_reg, DP);
  1288. /* Changes to enable or select take place the vblank
  1289. * after being written.
  1290. */
  1291. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1292. }
  1293. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1294. POSTING_READ(intel_dp->output_reg);
  1295. }
  1296. /*
  1297. * According to DP spec
  1298. * 5.1.2:
  1299. * 1. Read DPCD
  1300. * 2. Configure link according to Receiver Capabilities
  1301. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1302. * 4. Check link status on receipt of hot-plug interrupt
  1303. */
  1304. static void
  1305. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1306. {
  1307. if (!intel_dp->base.base.crtc)
  1308. return;
  1309. if (!intel_dp_get_link_status(intel_dp)) {
  1310. intel_dp_link_down(intel_dp);
  1311. return;
  1312. }
  1313. if (!intel_channel_eq_ok(intel_dp)) {
  1314. intel_dp_start_link_train(intel_dp);
  1315. intel_dp_complete_link_train(intel_dp);
  1316. }
  1317. }
  1318. static enum drm_connector_status
  1319. ironlake_dp_detect(struct intel_dp *intel_dp)
  1320. {
  1321. enum drm_connector_status status;
  1322. /* Can't disconnect eDP, but you can close the lid... */
  1323. if (is_edp(intel_dp)) {
  1324. status = intel_panel_detect(intel_dp->base.base.dev);
  1325. if (status == connector_status_unknown)
  1326. status = connector_status_connected;
  1327. return status;
  1328. }
  1329. status = connector_status_disconnected;
  1330. if (intel_dp_aux_native_read(intel_dp,
  1331. 0x000, intel_dp->dpcd,
  1332. sizeof (intel_dp->dpcd))
  1333. == sizeof(intel_dp->dpcd)) {
  1334. if (intel_dp->dpcd[0] != 0)
  1335. status = connector_status_connected;
  1336. }
  1337. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1338. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1339. return status;
  1340. }
  1341. static enum drm_connector_status
  1342. g4x_dp_detect(struct intel_dp *intel_dp)
  1343. {
  1344. struct drm_device *dev = intel_dp->base.base.dev;
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. enum drm_connector_status status;
  1347. uint32_t temp, bit;
  1348. switch (intel_dp->output_reg) {
  1349. case DP_B:
  1350. bit = DPB_HOTPLUG_INT_STATUS;
  1351. break;
  1352. case DP_C:
  1353. bit = DPC_HOTPLUG_INT_STATUS;
  1354. break;
  1355. case DP_D:
  1356. bit = DPD_HOTPLUG_INT_STATUS;
  1357. break;
  1358. default:
  1359. return connector_status_unknown;
  1360. }
  1361. temp = I915_READ(PORT_HOTPLUG_STAT);
  1362. if ((temp & bit) == 0)
  1363. return connector_status_disconnected;
  1364. status = connector_status_disconnected;
  1365. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1366. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1367. {
  1368. if (intel_dp->dpcd[0] != 0)
  1369. status = connector_status_connected;
  1370. }
  1371. return status;
  1372. }
  1373. /**
  1374. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1375. *
  1376. * \return true if DP port is connected.
  1377. * \return false if DP port is disconnected.
  1378. */
  1379. static enum drm_connector_status
  1380. intel_dp_detect(struct drm_connector *connector, bool force)
  1381. {
  1382. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1383. struct drm_device *dev = intel_dp->base.base.dev;
  1384. enum drm_connector_status status;
  1385. struct edid *edid = NULL;
  1386. intel_dp->has_audio = false;
  1387. if (HAS_PCH_SPLIT(dev))
  1388. status = ironlake_dp_detect(intel_dp);
  1389. else
  1390. status = g4x_dp_detect(intel_dp);
  1391. if (status != connector_status_connected)
  1392. return status;
  1393. if (intel_dp->force_audio) {
  1394. intel_dp->has_audio = intel_dp->force_audio > 0;
  1395. } else {
  1396. edid = drm_get_edid(connector, &intel_dp->adapter);
  1397. if (edid) {
  1398. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1399. connector->display_info.raw_edid = NULL;
  1400. kfree(edid);
  1401. }
  1402. }
  1403. return connector_status_connected;
  1404. }
  1405. static int intel_dp_get_modes(struct drm_connector *connector)
  1406. {
  1407. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1408. struct drm_device *dev = intel_dp->base.base.dev;
  1409. struct drm_i915_private *dev_priv = dev->dev_private;
  1410. int ret;
  1411. /* We should parse the EDID data and find out if it has an audio sink
  1412. */
  1413. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1414. if (ret) {
  1415. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1416. struct drm_display_mode *newmode;
  1417. list_for_each_entry(newmode, &connector->probed_modes,
  1418. head) {
  1419. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1420. dev_priv->panel_fixed_mode =
  1421. drm_mode_duplicate(dev, newmode);
  1422. break;
  1423. }
  1424. }
  1425. }
  1426. return ret;
  1427. }
  1428. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1429. if (is_edp(intel_dp)) {
  1430. if (dev_priv->panel_fixed_mode != NULL) {
  1431. struct drm_display_mode *mode;
  1432. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1433. drm_mode_probed_add(connector, mode);
  1434. return 1;
  1435. }
  1436. }
  1437. return 0;
  1438. }
  1439. static int
  1440. intel_dp_set_property(struct drm_connector *connector,
  1441. struct drm_property *property,
  1442. uint64_t val)
  1443. {
  1444. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1445. int ret;
  1446. ret = drm_connector_property_set_value(connector, property, val);
  1447. if (ret)
  1448. return ret;
  1449. if (property == intel_dp->force_audio_property) {
  1450. if (val == intel_dp->force_audio)
  1451. return 0;
  1452. intel_dp->force_audio = val;
  1453. if (val > 0 && intel_dp->has_audio)
  1454. return 0;
  1455. if (val < 0 && !intel_dp->has_audio)
  1456. return 0;
  1457. intel_dp->has_audio = val > 0;
  1458. goto done;
  1459. }
  1460. return -EINVAL;
  1461. done:
  1462. if (intel_dp->base.base.crtc) {
  1463. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1464. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1465. crtc->x, crtc->y,
  1466. crtc->fb);
  1467. }
  1468. return 0;
  1469. }
  1470. static void
  1471. intel_dp_destroy (struct drm_connector *connector)
  1472. {
  1473. drm_sysfs_connector_remove(connector);
  1474. drm_connector_cleanup(connector);
  1475. kfree(connector);
  1476. }
  1477. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1478. {
  1479. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1480. i2c_del_adapter(&intel_dp->adapter);
  1481. drm_encoder_cleanup(encoder);
  1482. kfree(intel_dp);
  1483. }
  1484. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1485. .dpms = intel_dp_dpms,
  1486. .mode_fixup = intel_dp_mode_fixup,
  1487. .prepare = intel_dp_prepare,
  1488. .mode_set = intel_dp_mode_set,
  1489. .commit = intel_dp_commit,
  1490. };
  1491. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1492. .dpms = drm_helper_connector_dpms,
  1493. .detect = intel_dp_detect,
  1494. .fill_modes = drm_helper_probe_single_connector_modes,
  1495. .set_property = intel_dp_set_property,
  1496. .destroy = intel_dp_destroy,
  1497. };
  1498. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1499. .get_modes = intel_dp_get_modes,
  1500. .mode_valid = intel_dp_mode_valid,
  1501. .best_encoder = intel_best_encoder,
  1502. };
  1503. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1504. .destroy = intel_dp_encoder_destroy,
  1505. };
  1506. static void
  1507. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1508. {
  1509. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1510. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1511. intel_dp_check_link_status(intel_dp);
  1512. }
  1513. /* Return which DP Port should be selected for Transcoder DP control */
  1514. int
  1515. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1516. {
  1517. struct drm_device *dev = crtc->dev;
  1518. struct drm_mode_config *mode_config = &dev->mode_config;
  1519. struct drm_encoder *encoder;
  1520. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1521. struct intel_dp *intel_dp;
  1522. if (encoder->crtc != crtc)
  1523. continue;
  1524. intel_dp = enc_to_intel_dp(encoder);
  1525. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1526. return intel_dp->output_reg;
  1527. }
  1528. return -1;
  1529. }
  1530. /* check the VBT to see whether the eDP is on DP-D port */
  1531. bool intel_dpd_is_edp(struct drm_device *dev)
  1532. {
  1533. struct drm_i915_private *dev_priv = dev->dev_private;
  1534. struct child_device_config *p_child;
  1535. int i;
  1536. if (!dev_priv->child_dev_num)
  1537. return false;
  1538. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1539. p_child = dev_priv->child_dev + i;
  1540. if (p_child->dvo_port == PORT_IDPD &&
  1541. p_child->device_type == DEVICE_TYPE_eDP)
  1542. return true;
  1543. }
  1544. return false;
  1545. }
  1546. static void
  1547. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1548. {
  1549. struct drm_device *dev = connector->dev;
  1550. intel_dp->force_audio_property =
  1551. drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
  1552. if (intel_dp->force_audio_property) {
  1553. intel_dp->force_audio_property->values[0] = -1;
  1554. intel_dp->force_audio_property->values[1] = 1;
  1555. drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
  1556. }
  1557. }
  1558. void
  1559. intel_dp_init(struct drm_device *dev, int output_reg)
  1560. {
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct drm_connector *connector;
  1563. struct intel_dp *intel_dp;
  1564. struct intel_encoder *intel_encoder;
  1565. struct intel_connector *intel_connector;
  1566. const char *name = NULL;
  1567. int type;
  1568. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1569. if (!intel_dp)
  1570. return;
  1571. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1572. if (!intel_connector) {
  1573. kfree(intel_dp);
  1574. return;
  1575. }
  1576. intel_encoder = &intel_dp->base;
  1577. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1578. if (intel_dpd_is_edp(dev))
  1579. intel_dp->is_pch_edp = true;
  1580. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1581. type = DRM_MODE_CONNECTOR_eDP;
  1582. intel_encoder->type = INTEL_OUTPUT_EDP;
  1583. } else {
  1584. type = DRM_MODE_CONNECTOR_DisplayPort;
  1585. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1586. }
  1587. connector = &intel_connector->base;
  1588. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1589. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1590. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1591. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1592. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1593. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1594. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1595. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1596. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1597. if (is_edp(intel_dp))
  1598. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1599. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1600. connector->interlace_allowed = true;
  1601. connector->doublescan_allowed = 0;
  1602. intel_dp->output_reg = output_reg;
  1603. intel_dp->has_audio = false;
  1604. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1605. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1606. DRM_MODE_ENCODER_TMDS);
  1607. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1608. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1609. drm_sysfs_connector_add(connector);
  1610. /* Set up the DDC bus. */
  1611. switch (output_reg) {
  1612. case DP_A:
  1613. name = "DPDDC-A";
  1614. break;
  1615. case DP_B:
  1616. case PCH_DP_B:
  1617. dev_priv->hotplug_supported_mask |=
  1618. HDMIB_HOTPLUG_INT_STATUS;
  1619. name = "DPDDC-B";
  1620. break;
  1621. case DP_C:
  1622. case PCH_DP_C:
  1623. dev_priv->hotplug_supported_mask |=
  1624. HDMIC_HOTPLUG_INT_STATUS;
  1625. name = "DPDDC-C";
  1626. break;
  1627. case DP_D:
  1628. case PCH_DP_D:
  1629. dev_priv->hotplug_supported_mask |=
  1630. HDMID_HOTPLUG_INT_STATUS;
  1631. name = "DPDDC-D";
  1632. break;
  1633. }
  1634. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1635. /* Cache some DPCD data in the eDP case */
  1636. if (is_edp(intel_dp)) {
  1637. int ret;
  1638. u32 pp_on, pp_div;
  1639. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1640. pp_div = I915_READ(PCH_PP_DIVISOR);
  1641. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1642. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1643. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1644. dev_priv->panel_t12 = pp_div & 0xf;
  1645. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1646. ironlake_edp_panel_vdd_on(intel_dp);
  1647. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1648. intel_dp->dpcd,
  1649. sizeof(intel_dp->dpcd));
  1650. if (ret == sizeof(intel_dp->dpcd)) {
  1651. if (intel_dp->dpcd[0] >= 0x11)
  1652. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1653. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1654. } else {
  1655. DRM_ERROR("failed to retrieve link info\n");
  1656. }
  1657. ironlake_edp_panel_vdd_off(intel_dp);
  1658. }
  1659. intel_encoder->hot_plug = intel_dp_hot_plug;
  1660. if (is_edp(intel_dp)) {
  1661. /* initialize panel mode from VBT if available for eDP */
  1662. if (dev_priv->lfp_lvds_vbt_mode) {
  1663. dev_priv->panel_fixed_mode =
  1664. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1665. if (dev_priv->panel_fixed_mode) {
  1666. dev_priv->panel_fixed_mode->type |=
  1667. DRM_MODE_TYPE_PREFERRED;
  1668. }
  1669. }
  1670. }
  1671. intel_dp_add_properties(intel_dp, connector);
  1672. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1673. * 0xd. Failure to do so will result in spurious interrupts being
  1674. * generated on the port when a cable is not attached.
  1675. */
  1676. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1677. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1678. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1679. }
  1680. }