rtc-mxc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /*
  2. * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/io.h>
  12. #include <linux/rtc.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/clk.h>
  18. #include <mach/hardware.h>
  19. #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
  20. #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
  21. #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
  22. #define RTC_SW_BIT (1 << 0)
  23. #define RTC_ALM_BIT (1 << 2)
  24. #define RTC_1HZ_BIT (1 << 4)
  25. #define RTC_2HZ_BIT (1 << 7)
  26. #define RTC_SAM0_BIT (1 << 8)
  27. #define RTC_SAM1_BIT (1 << 9)
  28. #define RTC_SAM2_BIT (1 << 10)
  29. #define RTC_SAM3_BIT (1 << 11)
  30. #define RTC_SAM4_BIT (1 << 12)
  31. #define RTC_SAM5_BIT (1 << 13)
  32. #define RTC_SAM6_BIT (1 << 14)
  33. #define RTC_SAM7_BIT (1 << 15)
  34. #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  35. RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  36. RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  37. #define RTC_ENABLE_BIT (1 << 7)
  38. #define MAX_PIE_NUM 9
  39. #define MAX_PIE_FREQ 512
  40. static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  41. { 2, RTC_2HZ_BIT },
  42. { 4, RTC_SAM0_BIT },
  43. { 8, RTC_SAM1_BIT },
  44. { 16, RTC_SAM2_BIT },
  45. { 32, RTC_SAM3_BIT },
  46. { 64, RTC_SAM4_BIT },
  47. { 128, RTC_SAM5_BIT },
  48. { 256, RTC_SAM6_BIT },
  49. { MAX_PIE_FREQ, RTC_SAM7_BIT },
  50. };
  51. /* Those are the bits from a classic RTC we want to mimic */
  52. #define RTC_IRQF 0x80 /* any of the following 3 is active */
  53. #define RTC_PF 0x40 /* Periodic interrupt */
  54. #define RTC_AF 0x20 /* Alarm interrupt */
  55. #define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */
  56. #define MXC_RTC_TIME 0
  57. #define MXC_RTC_ALARM 1
  58. #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
  59. #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
  60. #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
  61. #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
  62. #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
  63. #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
  64. #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
  65. #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
  66. #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
  67. #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
  68. #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
  69. #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
  70. #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
  71. struct rtc_plat_data {
  72. struct rtc_device *rtc;
  73. void __iomem *ioaddr;
  74. int irq;
  75. struct clk *clk;
  76. struct rtc_time g_rtc_alarm;
  77. };
  78. /*
  79. * This function is used to obtain the RTC time or the alarm value in
  80. * second.
  81. */
  82. static u32 get_alarm_or_time(struct device *dev, int time_alarm)
  83. {
  84. struct platform_device *pdev = to_platform_device(dev);
  85. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  86. void __iomem *ioaddr = pdata->ioaddr;
  87. u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
  88. switch (time_alarm) {
  89. case MXC_RTC_TIME:
  90. day = readw(ioaddr + RTC_DAYR);
  91. hr_min = readw(ioaddr + RTC_HOURMIN);
  92. sec = readw(ioaddr + RTC_SECOND);
  93. break;
  94. case MXC_RTC_ALARM:
  95. day = readw(ioaddr + RTC_DAYALARM);
  96. hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
  97. sec = readw(ioaddr + RTC_ALRM_SEC);
  98. break;
  99. }
  100. hr = hr_min >> 8;
  101. min = hr_min & 0xff;
  102. return (((day * 24 + hr) * 60) + min) * 60 + sec;
  103. }
  104. /*
  105. * This function sets the RTC alarm value or the time value.
  106. */
  107. static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
  108. {
  109. u32 day, hr, min, sec, temp;
  110. struct platform_device *pdev = to_platform_device(dev);
  111. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  112. void __iomem *ioaddr = pdata->ioaddr;
  113. day = time / 86400;
  114. time -= day * 86400;
  115. /* time is within a day now */
  116. hr = time / 3600;
  117. time -= hr * 3600;
  118. /* time is within an hour now */
  119. min = time / 60;
  120. sec = time - min * 60;
  121. temp = (hr << 8) + min;
  122. switch (time_alarm) {
  123. case MXC_RTC_TIME:
  124. writew(day, ioaddr + RTC_DAYR);
  125. writew(sec, ioaddr + RTC_SECOND);
  126. writew(temp, ioaddr + RTC_HOURMIN);
  127. break;
  128. case MXC_RTC_ALARM:
  129. writew(day, ioaddr + RTC_DAYALARM);
  130. writew(sec, ioaddr + RTC_ALRM_SEC);
  131. writew(temp, ioaddr + RTC_ALRM_HM);
  132. break;
  133. }
  134. }
  135. /*
  136. * This function updates the RTC alarm registers and then clears all the
  137. * interrupt status bits.
  138. */
  139. static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
  140. {
  141. struct rtc_time alarm_tm, now_tm;
  142. unsigned long now, time;
  143. int ret;
  144. struct platform_device *pdev = to_platform_device(dev);
  145. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  146. void __iomem *ioaddr = pdata->ioaddr;
  147. now = get_alarm_or_time(dev, MXC_RTC_TIME);
  148. rtc_time_to_tm(now, &now_tm);
  149. alarm_tm.tm_year = now_tm.tm_year;
  150. alarm_tm.tm_mon = now_tm.tm_mon;
  151. alarm_tm.tm_mday = now_tm.tm_mday;
  152. alarm_tm.tm_hour = alrm->tm_hour;
  153. alarm_tm.tm_min = alrm->tm_min;
  154. alarm_tm.tm_sec = alrm->tm_sec;
  155. rtc_tm_to_time(&now_tm, &now);
  156. rtc_tm_to_time(&alarm_tm, &time);
  157. if (time < now) {
  158. time += 60 * 60 * 24;
  159. rtc_time_to_tm(time, &alarm_tm);
  160. }
  161. ret = rtc_tm_to_time(&alarm_tm, &time);
  162. /* clear all the interrupt status bits */
  163. writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
  164. set_alarm_or_time(dev, MXC_RTC_ALARM, time);
  165. return ret;
  166. }
  167. /* This function is the RTC interrupt service routine. */
  168. static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
  169. {
  170. struct platform_device *pdev = dev_id;
  171. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  172. void __iomem *ioaddr = pdata->ioaddr;
  173. u32 status;
  174. u32 events = 0;
  175. spin_lock_irq(&pdata->rtc->irq_lock);
  176. status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
  177. /* clear interrupt sources */
  178. writew(status, ioaddr + RTC_RTCISR);
  179. /* clear alarm interrupt if it has occurred */
  180. if (status & RTC_ALM_BIT)
  181. status &= ~RTC_ALM_BIT;
  182. /* update irq data & counter */
  183. if (status & RTC_ALM_BIT)
  184. events |= (RTC_AF | RTC_IRQF);
  185. if (status & RTC_1HZ_BIT)
  186. events |= (RTC_UF | RTC_IRQF);
  187. if (status & PIT_ALL_ON)
  188. events |= (RTC_PF | RTC_IRQF);
  189. if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
  190. rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
  191. rtc_update_irq(pdata->rtc, 1, events);
  192. spin_unlock_irq(&pdata->rtc->irq_lock);
  193. return IRQ_HANDLED;
  194. }
  195. /*
  196. * Clear all interrupts and release the IRQ
  197. */
  198. static void mxc_rtc_release(struct device *dev)
  199. {
  200. struct platform_device *pdev = to_platform_device(dev);
  201. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  202. void __iomem *ioaddr = pdata->ioaddr;
  203. spin_lock_irq(&pdata->rtc->irq_lock);
  204. /* Disable all rtc interrupts */
  205. writew(0, ioaddr + RTC_RTCIENR);
  206. /* Clear all interrupt status */
  207. writew(0xffffffff, ioaddr + RTC_RTCISR);
  208. spin_unlock_irq(&pdata->rtc->irq_lock);
  209. }
  210. static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
  211. unsigned int enabled)
  212. {
  213. struct platform_device *pdev = to_platform_device(dev);
  214. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  215. void __iomem *ioaddr = pdata->ioaddr;
  216. u32 reg;
  217. spin_lock_irq(&pdata->rtc->irq_lock);
  218. reg = readw(ioaddr + RTC_RTCIENR);
  219. if (enabled)
  220. reg |= bit;
  221. else
  222. reg &= ~bit;
  223. writew(reg, ioaddr + RTC_RTCIENR);
  224. spin_unlock_irq(&pdata->rtc->irq_lock);
  225. }
  226. static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  227. {
  228. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
  229. return 0;
  230. }
  231. /*
  232. * This function reads the current RTC time into tm in Gregorian date.
  233. */
  234. static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
  235. {
  236. u32 val;
  237. /* Avoid roll-over from reading the different registers */
  238. do {
  239. val = get_alarm_or_time(dev, MXC_RTC_TIME);
  240. } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
  241. rtc_time_to_tm(val, tm);
  242. return 0;
  243. }
  244. /*
  245. * This function sets the internal RTC time based on tm in Gregorian date.
  246. */
  247. static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
  248. {
  249. /* Avoid roll-over from reading the different registers */
  250. do {
  251. set_alarm_or_time(dev, MXC_RTC_TIME, time);
  252. } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
  253. return 0;
  254. }
  255. /*
  256. * This function reads the current alarm value into the passed in 'alrm'
  257. * argument. It updates the alrm's pending field value based on the whether
  258. * an alarm interrupt occurs or not.
  259. */
  260. static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  261. {
  262. struct platform_device *pdev = to_platform_device(dev);
  263. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  264. void __iomem *ioaddr = pdata->ioaddr;
  265. rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
  266. alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
  267. return 0;
  268. }
  269. /*
  270. * This function sets the RTC alarm based on passed in alrm.
  271. */
  272. static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  273. {
  274. struct platform_device *pdev = to_platform_device(dev);
  275. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  276. int ret;
  277. if (rtc_valid_tm(&alrm->time)) {
  278. if (alrm->time.tm_sec > 59 ||
  279. alrm->time.tm_hour > 23 ||
  280. alrm->time.tm_min > 59)
  281. return -EINVAL;
  282. ret = rtc_update_alarm(dev, &alrm->time);
  283. } else {
  284. ret = rtc_valid_tm(&alrm->time);
  285. if (ret)
  286. return ret;
  287. ret = rtc_update_alarm(dev, &alrm->time);
  288. }
  289. if (ret)
  290. return ret;
  291. memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
  292. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
  293. return 0;
  294. }
  295. /* RTC layer */
  296. static struct rtc_class_ops mxc_rtc_ops = {
  297. .release = mxc_rtc_release,
  298. .read_time = mxc_rtc_read_time,
  299. .set_mmss = mxc_rtc_set_mmss,
  300. .read_alarm = mxc_rtc_read_alarm,
  301. .set_alarm = mxc_rtc_set_alarm,
  302. .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
  303. };
  304. static int __init mxc_rtc_probe(struct platform_device *pdev)
  305. {
  306. struct resource *res;
  307. struct rtc_device *rtc;
  308. struct rtc_plat_data *pdata = NULL;
  309. u32 reg;
  310. unsigned long rate;
  311. int ret;
  312. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  313. if (!res)
  314. return -ENODEV;
  315. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  316. if (!pdata)
  317. return -ENOMEM;
  318. if (!devm_request_mem_region(&pdev->dev, res->start,
  319. resource_size(res), pdev->name))
  320. return -EBUSY;
  321. pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
  322. resource_size(res));
  323. pdata->clk = clk_get(&pdev->dev, "rtc");
  324. if (IS_ERR(pdata->clk)) {
  325. dev_err(&pdev->dev, "unable to get clock!\n");
  326. ret = PTR_ERR(pdata->clk);
  327. goto exit_free_pdata;
  328. }
  329. clk_enable(pdata->clk);
  330. rate = clk_get_rate(pdata->clk);
  331. if (rate == 32768)
  332. reg = RTC_INPUT_CLK_32768HZ;
  333. else if (rate == 32000)
  334. reg = RTC_INPUT_CLK_32000HZ;
  335. else if (rate == 38400)
  336. reg = RTC_INPUT_CLK_38400HZ;
  337. else {
  338. dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
  339. ret = -EINVAL;
  340. goto exit_put_clk;
  341. }
  342. reg |= RTC_ENABLE_BIT;
  343. writew(reg, (pdata->ioaddr + RTC_RTCCTL));
  344. if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
  345. dev_err(&pdev->dev, "hardware module can't be enabled!\n");
  346. ret = -EIO;
  347. goto exit_put_clk;
  348. }
  349. rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
  350. THIS_MODULE);
  351. if (IS_ERR(rtc)) {
  352. ret = PTR_ERR(rtc);
  353. goto exit_put_clk;
  354. }
  355. pdata->rtc = rtc;
  356. platform_set_drvdata(pdev, pdata);
  357. /* Configure and enable the RTC */
  358. pdata->irq = platform_get_irq(pdev, 0);
  359. if (pdata->irq >= 0 &&
  360. devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
  361. IRQF_SHARED, pdev->name, pdev) < 0) {
  362. dev_warn(&pdev->dev, "interrupt not available.\n");
  363. pdata->irq = -1;
  364. }
  365. return 0;
  366. exit_put_clk:
  367. clk_disable(pdata->clk);
  368. clk_put(pdata->clk);
  369. exit_free_pdata:
  370. return ret;
  371. }
  372. static int __exit mxc_rtc_remove(struct platform_device *pdev)
  373. {
  374. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  375. rtc_device_unregister(pdata->rtc);
  376. clk_disable(pdata->clk);
  377. clk_put(pdata->clk);
  378. platform_set_drvdata(pdev, NULL);
  379. return 0;
  380. }
  381. static struct platform_driver mxc_rtc_driver = {
  382. .driver = {
  383. .name = "mxc_rtc",
  384. .owner = THIS_MODULE,
  385. },
  386. .remove = __exit_p(mxc_rtc_remove),
  387. };
  388. static int __init mxc_rtc_init(void)
  389. {
  390. return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
  391. }
  392. static void __exit mxc_rtc_exit(void)
  393. {
  394. platform_driver_unregister(&mxc_rtc_driver);
  395. }
  396. module_init(mxc_rtc_init);
  397. module_exit(mxc_rtc_exit);
  398. MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
  399. MODULE_DESCRIPTION("RTC driver for Freescale MXC");
  400. MODULE_LICENSE("GPL");