vmx.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. static struct vmcs_descriptor {
  40. int size;
  41. int order;
  42. u32 revision_id;
  43. } vmcs_descriptor;
  44. #define VMX_SEGMENT_FIELD(seg) \
  45. [VCPU_SREG_##seg] = { \
  46. .selector = GUEST_##seg##_SELECTOR, \
  47. .base = GUEST_##seg##_BASE, \
  48. .limit = GUEST_##seg##_LIMIT, \
  49. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  50. }
  51. static struct kvm_vmx_segment_field {
  52. unsigned selector;
  53. unsigned base;
  54. unsigned limit;
  55. unsigned ar_bytes;
  56. } kvm_vmx_segment_fields[] = {
  57. VMX_SEGMENT_FIELD(CS),
  58. VMX_SEGMENT_FIELD(DS),
  59. VMX_SEGMENT_FIELD(ES),
  60. VMX_SEGMENT_FIELD(FS),
  61. VMX_SEGMENT_FIELD(GS),
  62. VMX_SEGMENT_FIELD(SS),
  63. VMX_SEGMENT_FIELD(TR),
  64. VMX_SEGMENT_FIELD(LDTR),
  65. };
  66. /*
  67. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  68. * away by decrementing the array size.
  69. */
  70. static const u32 vmx_msr_index[] = {
  71. #ifdef CONFIG_X86_64
  72. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  73. #endif
  74. MSR_EFER, MSR_K6_STAR,
  75. };
  76. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  77. #ifdef CONFIG_X86_64
  78. static unsigned msr_offset_kernel_gs_base;
  79. #define NR_64BIT_MSRS 4
  80. /*
  81. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  82. * mechanism (cpu bug AA24)
  83. */
  84. #define NR_BAD_MSRS 2
  85. #else
  86. #define NR_64BIT_MSRS 0
  87. #define NR_BAD_MSRS 0
  88. #endif
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return &vcpu->guest_msrs[i];
  112. return NULL;
  113. }
  114. static void vmcs_clear(struct vmcs *vmcs)
  115. {
  116. u64 phys_addr = __pa(vmcs);
  117. u8 error;
  118. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  119. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  120. : "cc", "memory");
  121. if (error)
  122. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  123. vmcs, phys_addr);
  124. }
  125. static void __vcpu_clear(void *arg)
  126. {
  127. struct kvm_vcpu *vcpu = arg;
  128. int cpu = raw_smp_processor_id();
  129. if (vcpu->cpu == cpu)
  130. vmcs_clear(vcpu->vmcs);
  131. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  132. per_cpu(current_vmcs, cpu) = NULL;
  133. }
  134. static void vcpu_clear(struct kvm_vcpu *vcpu)
  135. {
  136. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  137. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  138. else
  139. __vcpu_clear(vcpu);
  140. vcpu->launched = 0;
  141. }
  142. static unsigned long vmcs_readl(unsigned long field)
  143. {
  144. unsigned long value;
  145. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  146. : "=a"(value) : "d"(field) : "cc");
  147. return value;
  148. }
  149. static u16 vmcs_read16(unsigned long field)
  150. {
  151. return vmcs_readl(field);
  152. }
  153. static u32 vmcs_read32(unsigned long field)
  154. {
  155. return vmcs_readl(field);
  156. }
  157. static u64 vmcs_read64(unsigned long field)
  158. {
  159. #ifdef CONFIG_X86_64
  160. return vmcs_readl(field);
  161. #else
  162. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  163. #endif
  164. }
  165. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  166. {
  167. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  168. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  169. dump_stack();
  170. }
  171. static void vmcs_writel(unsigned long field, unsigned long value)
  172. {
  173. u8 error;
  174. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  175. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  176. if (unlikely(error))
  177. vmwrite_error(field, value);
  178. }
  179. static void vmcs_write16(unsigned long field, u16 value)
  180. {
  181. vmcs_writel(field, value);
  182. }
  183. static void vmcs_write32(unsigned long field, u32 value)
  184. {
  185. vmcs_writel(field, value);
  186. }
  187. static void vmcs_write64(unsigned long field, u64 value)
  188. {
  189. #ifdef CONFIG_X86_64
  190. vmcs_writel(field, value);
  191. #else
  192. vmcs_writel(field, value);
  193. asm volatile ("");
  194. vmcs_writel(field+1, value >> 32);
  195. #endif
  196. }
  197. static void vmcs_clear_bits(unsigned long field, u32 mask)
  198. {
  199. vmcs_writel(field, vmcs_readl(field) & ~mask);
  200. }
  201. static void vmcs_set_bits(unsigned long field, u32 mask)
  202. {
  203. vmcs_writel(field, vmcs_readl(field) | mask);
  204. }
  205. /*
  206. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  207. * vcpu mutex is already taken.
  208. */
  209. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  210. {
  211. u64 phys_addr = __pa(vcpu->vmcs);
  212. int cpu;
  213. cpu = get_cpu();
  214. if (vcpu->cpu != cpu)
  215. vcpu_clear(vcpu);
  216. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  217. u8 error;
  218. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  219. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  220. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  221. : "cc");
  222. if (error)
  223. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  224. vcpu->vmcs, phys_addr);
  225. }
  226. if (vcpu->cpu != cpu) {
  227. struct descriptor_table dt;
  228. unsigned long sysenter_esp;
  229. vcpu->cpu = cpu;
  230. /*
  231. * Linux uses per-cpu TSS and GDT, so set these when switching
  232. * processors.
  233. */
  234. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  235. get_gdt(&dt);
  236. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  237. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  238. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  239. }
  240. }
  241. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  242. {
  243. kvm_put_guest_fpu(vcpu);
  244. put_cpu();
  245. }
  246. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  247. {
  248. vcpu_clear(vcpu);
  249. }
  250. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  251. {
  252. return vmcs_readl(GUEST_RFLAGS);
  253. }
  254. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  255. {
  256. vmcs_writel(GUEST_RFLAGS, rflags);
  257. }
  258. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  259. {
  260. unsigned long rip;
  261. u32 interruptibility;
  262. rip = vmcs_readl(GUEST_RIP);
  263. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  264. vmcs_writel(GUEST_RIP, rip);
  265. /*
  266. * We emulated an instruction, so temporary interrupt blocking
  267. * should be removed, if set.
  268. */
  269. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  270. if (interruptibility & 3)
  271. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  272. interruptibility & ~3);
  273. vcpu->interrupt_window_open = 1;
  274. }
  275. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  276. {
  277. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  278. vmcs_readl(GUEST_RIP));
  279. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  280. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  281. GP_VECTOR |
  282. INTR_TYPE_EXCEPTION |
  283. INTR_INFO_DELIEVER_CODE_MASK |
  284. INTR_INFO_VALID_MASK);
  285. }
  286. /*
  287. * Set up the vmcs to automatically save and restore system
  288. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  289. * mode, as fiddling with msrs is very expensive.
  290. */
  291. static void setup_msrs(struct kvm_vcpu *vcpu)
  292. {
  293. int nr_skip, nr_good_msrs;
  294. if (is_long_mode(vcpu))
  295. nr_skip = NR_BAD_MSRS;
  296. else
  297. nr_skip = NR_64BIT_MSRS;
  298. nr_good_msrs = vcpu->nmsrs - nr_skip;
  299. /*
  300. * MSR_K6_STAR is only needed on long mode guests, and only
  301. * if efer.sce is enabled.
  302. */
  303. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  304. --nr_good_msrs;
  305. #ifdef CONFIG_X86_64
  306. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  307. ++nr_good_msrs;
  308. #endif
  309. }
  310. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  311. virt_to_phys(vcpu->guest_msrs + nr_skip));
  312. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  313. virt_to_phys(vcpu->guest_msrs + nr_skip));
  314. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  315. virt_to_phys(vcpu->host_msrs + nr_skip));
  316. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  317. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  318. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  319. }
  320. /*
  321. * reads and returns guest's timestamp counter "register"
  322. * guest_tsc = host_tsc + tsc_offset -- 21.3
  323. */
  324. static u64 guest_read_tsc(void)
  325. {
  326. u64 host_tsc, tsc_offset;
  327. rdtscll(host_tsc);
  328. tsc_offset = vmcs_read64(TSC_OFFSET);
  329. return host_tsc + tsc_offset;
  330. }
  331. /*
  332. * writes 'guest_tsc' into guest's timestamp counter "register"
  333. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  334. */
  335. static void guest_write_tsc(u64 guest_tsc)
  336. {
  337. u64 host_tsc;
  338. rdtscll(host_tsc);
  339. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  340. }
  341. static void reload_tss(void)
  342. {
  343. #ifndef CONFIG_X86_64
  344. /*
  345. * VT restores TR but not its size. Useless.
  346. */
  347. struct descriptor_table gdt;
  348. struct segment_descriptor *descs;
  349. get_gdt(&gdt);
  350. descs = (void *)gdt.base;
  351. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  352. load_TR_desc();
  353. #endif
  354. }
  355. /*
  356. * Reads an msr value (of 'msr_index') into 'pdata'.
  357. * Returns 0 on success, non-0 otherwise.
  358. * Assumes vcpu_load() was already called.
  359. */
  360. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  361. {
  362. u64 data;
  363. struct vmx_msr_entry *msr;
  364. if (!pdata) {
  365. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  366. return -EINVAL;
  367. }
  368. switch (msr_index) {
  369. #ifdef CONFIG_X86_64
  370. case MSR_FS_BASE:
  371. data = vmcs_readl(GUEST_FS_BASE);
  372. break;
  373. case MSR_GS_BASE:
  374. data = vmcs_readl(GUEST_GS_BASE);
  375. break;
  376. case MSR_EFER:
  377. return kvm_get_msr_common(vcpu, msr_index, pdata);
  378. #endif
  379. case MSR_IA32_TIME_STAMP_COUNTER:
  380. data = guest_read_tsc();
  381. break;
  382. case MSR_IA32_SYSENTER_CS:
  383. data = vmcs_read32(GUEST_SYSENTER_CS);
  384. break;
  385. case MSR_IA32_SYSENTER_EIP:
  386. data = vmcs_readl(GUEST_SYSENTER_EIP);
  387. break;
  388. case MSR_IA32_SYSENTER_ESP:
  389. data = vmcs_readl(GUEST_SYSENTER_ESP);
  390. break;
  391. default:
  392. msr = find_msr_entry(vcpu, msr_index);
  393. if (msr) {
  394. data = msr->data;
  395. break;
  396. }
  397. return kvm_get_msr_common(vcpu, msr_index, pdata);
  398. }
  399. *pdata = data;
  400. return 0;
  401. }
  402. /*
  403. * Writes msr value into into the appropriate "register".
  404. * Returns 0 on success, non-0 otherwise.
  405. * Assumes vcpu_load() was already called.
  406. */
  407. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  408. {
  409. struct vmx_msr_entry *msr;
  410. switch (msr_index) {
  411. #ifdef CONFIG_X86_64
  412. case MSR_EFER:
  413. return kvm_set_msr_common(vcpu, msr_index, data);
  414. case MSR_FS_BASE:
  415. vmcs_writel(GUEST_FS_BASE, data);
  416. break;
  417. case MSR_GS_BASE:
  418. vmcs_writel(GUEST_GS_BASE, data);
  419. break;
  420. #endif
  421. case MSR_IA32_SYSENTER_CS:
  422. vmcs_write32(GUEST_SYSENTER_CS, data);
  423. break;
  424. case MSR_IA32_SYSENTER_EIP:
  425. vmcs_writel(GUEST_SYSENTER_EIP, data);
  426. break;
  427. case MSR_IA32_SYSENTER_ESP:
  428. vmcs_writel(GUEST_SYSENTER_ESP, data);
  429. break;
  430. case MSR_IA32_TIME_STAMP_COUNTER:
  431. guest_write_tsc(data);
  432. break;
  433. default:
  434. msr = find_msr_entry(vcpu, msr_index);
  435. if (msr) {
  436. msr->data = data;
  437. break;
  438. }
  439. return kvm_set_msr_common(vcpu, msr_index, data);
  440. msr->data = data;
  441. break;
  442. }
  443. return 0;
  444. }
  445. /*
  446. * Sync the rsp and rip registers into the vcpu structure. This allows
  447. * registers to be accessed by indexing vcpu->regs.
  448. */
  449. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  450. {
  451. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  452. vcpu->rip = vmcs_readl(GUEST_RIP);
  453. }
  454. /*
  455. * Syncs rsp and rip back into the vmcs. Should be called after possible
  456. * modification.
  457. */
  458. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  459. {
  460. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  461. vmcs_writel(GUEST_RIP, vcpu->rip);
  462. }
  463. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  464. {
  465. unsigned long dr7 = 0x400;
  466. u32 exception_bitmap;
  467. int old_singlestep;
  468. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  469. old_singlestep = vcpu->guest_debug.singlestep;
  470. vcpu->guest_debug.enabled = dbg->enabled;
  471. if (vcpu->guest_debug.enabled) {
  472. int i;
  473. dr7 |= 0x200; /* exact */
  474. for (i = 0; i < 4; ++i) {
  475. if (!dbg->breakpoints[i].enabled)
  476. continue;
  477. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  478. dr7 |= 2 << (i*2); /* global enable */
  479. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  480. }
  481. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  482. vcpu->guest_debug.singlestep = dbg->singlestep;
  483. } else {
  484. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  485. vcpu->guest_debug.singlestep = 0;
  486. }
  487. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  488. unsigned long flags;
  489. flags = vmcs_readl(GUEST_RFLAGS);
  490. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  491. vmcs_writel(GUEST_RFLAGS, flags);
  492. }
  493. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  494. vmcs_writel(GUEST_DR7, dr7);
  495. return 0;
  496. }
  497. static __init int cpu_has_kvm_support(void)
  498. {
  499. unsigned long ecx = cpuid_ecx(1);
  500. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  501. }
  502. static __init int vmx_disabled_by_bios(void)
  503. {
  504. u64 msr;
  505. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  506. return (msr & 5) == 1; /* locked but not enabled */
  507. }
  508. static void hardware_enable(void *garbage)
  509. {
  510. int cpu = raw_smp_processor_id();
  511. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  512. u64 old;
  513. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  514. if ((old & 5) != 5)
  515. /* enable and lock */
  516. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  517. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  518. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  519. : "memory", "cc");
  520. }
  521. static void hardware_disable(void *garbage)
  522. {
  523. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  524. }
  525. static __init void setup_vmcs_descriptor(void)
  526. {
  527. u32 vmx_msr_low, vmx_msr_high;
  528. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  529. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  530. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  531. vmcs_descriptor.revision_id = vmx_msr_low;
  532. }
  533. static struct vmcs *alloc_vmcs_cpu(int cpu)
  534. {
  535. int node = cpu_to_node(cpu);
  536. struct page *pages;
  537. struct vmcs *vmcs;
  538. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  539. if (!pages)
  540. return NULL;
  541. vmcs = page_address(pages);
  542. memset(vmcs, 0, vmcs_descriptor.size);
  543. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  544. return vmcs;
  545. }
  546. static struct vmcs *alloc_vmcs(void)
  547. {
  548. return alloc_vmcs_cpu(raw_smp_processor_id());
  549. }
  550. static void free_vmcs(struct vmcs *vmcs)
  551. {
  552. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  553. }
  554. static void free_kvm_area(void)
  555. {
  556. int cpu;
  557. for_each_online_cpu(cpu)
  558. free_vmcs(per_cpu(vmxarea, cpu));
  559. }
  560. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  561. static __init int alloc_kvm_area(void)
  562. {
  563. int cpu;
  564. for_each_online_cpu(cpu) {
  565. struct vmcs *vmcs;
  566. vmcs = alloc_vmcs_cpu(cpu);
  567. if (!vmcs) {
  568. free_kvm_area();
  569. return -ENOMEM;
  570. }
  571. per_cpu(vmxarea, cpu) = vmcs;
  572. }
  573. return 0;
  574. }
  575. static __init int hardware_setup(void)
  576. {
  577. setup_vmcs_descriptor();
  578. return alloc_kvm_area();
  579. }
  580. static __exit void hardware_unsetup(void)
  581. {
  582. free_kvm_area();
  583. }
  584. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  585. {
  586. if (vcpu->rmode.active)
  587. vmcs_write32(EXCEPTION_BITMAP, ~0);
  588. else
  589. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  590. }
  591. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  592. {
  593. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  594. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  595. vmcs_write16(sf->selector, save->selector);
  596. vmcs_writel(sf->base, save->base);
  597. vmcs_write32(sf->limit, save->limit);
  598. vmcs_write32(sf->ar_bytes, save->ar);
  599. } else {
  600. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  601. << AR_DPL_SHIFT;
  602. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  603. }
  604. }
  605. static void enter_pmode(struct kvm_vcpu *vcpu)
  606. {
  607. unsigned long flags;
  608. vcpu->rmode.active = 0;
  609. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  610. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  611. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  612. flags = vmcs_readl(GUEST_RFLAGS);
  613. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  614. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  615. vmcs_writel(GUEST_RFLAGS, flags);
  616. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  617. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  618. update_exception_bitmap(vcpu);
  619. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  620. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  621. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  622. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  623. vmcs_write16(GUEST_SS_SELECTOR, 0);
  624. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  625. vmcs_write16(GUEST_CS_SELECTOR,
  626. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  627. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  628. }
  629. static int rmode_tss_base(struct kvm* kvm)
  630. {
  631. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  632. return base_gfn << PAGE_SHIFT;
  633. }
  634. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  635. {
  636. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  637. save->selector = vmcs_read16(sf->selector);
  638. save->base = vmcs_readl(sf->base);
  639. save->limit = vmcs_read32(sf->limit);
  640. save->ar = vmcs_read32(sf->ar_bytes);
  641. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  642. vmcs_write32(sf->limit, 0xffff);
  643. vmcs_write32(sf->ar_bytes, 0xf3);
  644. }
  645. static void enter_rmode(struct kvm_vcpu *vcpu)
  646. {
  647. unsigned long flags;
  648. vcpu->rmode.active = 1;
  649. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  650. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  651. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  652. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  653. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  654. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  655. flags = vmcs_readl(GUEST_RFLAGS);
  656. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  657. flags |= IOPL_MASK | X86_EFLAGS_VM;
  658. vmcs_writel(GUEST_RFLAGS, flags);
  659. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  660. update_exception_bitmap(vcpu);
  661. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  662. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  663. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  664. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  665. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  666. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  667. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  668. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  669. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  670. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  671. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  672. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  673. }
  674. #ifdef CONFIG_X86_64
  675. static void enter_lmode(struct kvm_vcpu *vcpu)
  676. {
  677. u32 guest_tr_ar;
  678. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  679. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  680. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  681. __FUNCTION__);
  682. vmcs_write32(GUEST_TR_AR_BYTES,
  683. (guest_tr_ar & ~AR_TYPE_MASK)
  684. | AR_TYPE_BUSY_64_TSS);
  685. }
  686. vcpu->shadow_efer |= EFER_LMA;
  687. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  688. vmcs_write32(VM_ENTRY_CONTROLS,
  689. vmcs_read32(VM_ENTRY_CONTROLS)
  690. | VM_ENTRY_CONTROLS_IA32E_MASK);
  691. }
  692. static void exit_lmode(struct kvm_vcpu *vcpu)
  693. {
  694. vcpu->shadow_efer &= ~EFER_LMA;
  695. vmcs_write32(VM_ENTRY_CONTROLS,
  696. vmcs_read32(VM_ENTRY_CONTROLS)
  697. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  698. }
  699. #endif
  700. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  701. {
  702. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  703. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  704. }
  705. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  706. {
  707. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  708. enter_pmode(vcpu);
  709. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  710. enter_rmode(vcpu);
  711. #ifdef CONFIG_X86_64
  712. if (vcpu->shadow_efer & EFER_LME) {
  713. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  714. enter_lmode(vcpu);
  715. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  716. exit_lmode(vcpu);
  717. }
  718. #endif
  719. if (!(cr0 & CR0_TS_MASK)) {
  720. vcpu->fpu_active = 1;
  721. vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
  722. }
  723. vmcs_writel(CR0_READ_SHADOW, cr0);
  724. vmcs_writel(GUEST_CR0,
  725. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  726. vcpu->cr0 = cr0;
  727. }
  728. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  729. {
  730. vmcs_writel(GUEST_CR3, cr3);
  731. if (!(vcpu->cr0 & CR0_TS_MASK)) {
  732. vcpu->fpu_active = 0;
  733. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  734. vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  735. }
  736. }
  737. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  738. {
  739. vmcs_writel(CR4_READ_SHADOW, cr4);
  740. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  741. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  742. vcpu->cr4 = cr4;
  743. }
  744. #ifdef CONFIG_X86_64
  745. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  746. {
  747. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  748. vcpu->shadow_efer = efer;
  749. if (efer & EFER_LMA) {
  750. vmcs_write32(VM_ENTRY_CONTROLS,
  751. vmcs_read32(VM_ENTRY_CONTROLS) |
  752. VM_ENTRY_CONTROLS_IA32E_MASK);
  753. msr->data = efer;
  754. } else {
  755. vmcs_write32(VM_ENTRY_CONTROLS,
  756. vmcs_read32(VM_ENTRY_CONTROLS) &
  757. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  758. msr->data = efer & ~EFER_LME;
  759. }
  760. setup_msrs(vcpu);
  761. }
  762. #endif
  763. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  764. {
  765. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  766. return vmcs_readl(sf->base);
  767. }
  768. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  769. struct kvm_segment *var, int seg)
  770. {
  771. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  772. u32 ar;
  773. var->base = vmcs_readl(sf->base);
  774. var->limit = vmcs_read32(sf->limit);
  775. var->selector = vmcs_read16(sf->selector);
  776. ar = vmcs_read32(sf->ar_bytes);
  777. if (ar & AR_UNUSABLE_MASK)
  778. ar = 0;
  779. var->type = ar & 15;
  780. var->s = (ar >> 4) & 1;
  781. var->dpl = (ar >> 5) & 3;
  782. var->present = (ar >> 7) & 1;
  783. var->avl = (ar >> 12) & 1;
  784. var->l = (ar >> 13) & 1;
  785. var->db = (ar >> 14) & 1;
  786. var->g = (ar >> 15) & 1;
  787. var->unusable = (ar >> 16) & 1;
  788. }
  789. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  790. struct kvm_segment *var, int seg)
  791. {
  792. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  793. u32 ar;
  794. vmcs_writel(sf->base, var->base);
  795. vmcs_write32(sf->limit, var->limit);
  796. vmcs_write16(sf->selector, var->selector);
  797. if (vcpu->rmode.active && var->s) {
  798. /*
  799. * Hack real-mode segments into vm86 compatibility.
  800. */
  801. if (var->base == 0xffff0000 && var->selector == 0xf000)
  802. vmcs_writel(sf->base, 0xf0000);
  803. ar = 0xf3;
  804. } else if (var->unusable)
  805. ar = 1 << 16;
  806. else {
  807. ar = var->type & 15;
  808. ar |= (var->s & 1) << 4;
  809. ar |= (var->dpl & 3) << 5;
  810. ar |= (var->present & 1) << 7;
  811. ar |= (var->avl & 1) << 12;
  812. ar |= (var->l & 1) << 13;
  813. ar |= (var->db & 1) << 14;
  814. ar |= (var->g & 1) << 15;
  815. }
  816. if (ar == 0) /* a 0 value means unusable */
  817. ar = AR_UNUSABLE_MASK;
  818. vmcs_write32(sf->ar_bytes, ar);
  819. }
  820. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  821. {
  822. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  823. *db = (ar >> 14) & 1;
  824. *l = (ar >> 13) & 1;
  825. }
  826. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  827. {
  828. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  829. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  830. }
  831. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  832. {
  833. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  834. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  835. }
  836. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  837. {
  838. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  839. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  840. }
  841. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  842. {
  843. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  844. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  845. }
  846. static int init_rmode_tss(struct kvm* kvm)
  847. {
  848. struct page *p1, *p2, *p3;
  849. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  850. char *page;
  851. p1 = gfn_to_page(kvm, fn++);
  852. p2 = gfn_to_page(kvm, fn++);
  853. p3 = gfn_to_page(kvm, fn);
  854. if (!p1 || !p2 || !p3) {
  855. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  856. return 0;
  857. }
  858. page = kmap_atomic(p1, KM_USER0);
  859. memset(page, 0, PAGE_SIZE);
  860. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  861. kunmap_atomic(page, KM_USER0);
  862. page = kmap_atomic(p2, KM_USER0);
  863. memset(page, 0, PAGE_SIZE);
  864. kunmap_atomic(page, KM_USER0);
  865. page = kmap_atomic(p3, KM_USER0);
  866. memset(page, 0, PAGE_SIZE);
  867. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  868. kunmap_atomic(page, KM_USER0);
  869. return 1;
  870. }
  871. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  872. {
  873. u32 msr_high, msr_low;
  874. rdmsr(msr, msr_low, msr_high);
  875. val &= msr_high;
  876. val |= msr_low;
  877. vmcs_write32(vmcs_field, val);
  878. }
  879. static void seg_setup(int seg)
  880. {
  881. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  882. vmcs_write16(sf->selector, 0);
  883. vmcs_writel(sf->base, 0);
  884. vmcs_write32(sf->limit, 0xffff);
  885. vmcs_write32(sf->ar_bytes, 0x93);
  886. }
  887. /*
  888. * Sets up the vmcs for emulated real mode.
  889. */
  890. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  891. {
  892. u32 host_sysenter_cs;
  893. u32 junk;
  894. unsigned long a;
  895. struct descriptor_table dt;
  896. int i;
  897. int ret = 0;
  898. extern asmlinkage void kvm_vmx_return(void);
  899. if (!init_rmode_tss(vcpu->kvm)) {
  900. ret = -ENOMEM;
  901. goto out;
  902. }
  903. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  904. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  905. vcpu->cr8 = 0;
  906. vcpu->apic_base = 0xfee00000 |
  907. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  908. MSR_IA32_APICBASE_ENABLE;
  909. fx_init(vcpu);
  910. /*
  911. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  912. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  913. */
  914. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  915. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  916. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  917. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  918. seg_setup(VCPU_SREG_DS);
  919. seg_setup(VCPU_SREG_ES);
  920. seg_setup(VCPU_SREG_FS);
  921. seg_setup(VCPU_SREG_GS);
  922. seg_setup(VCPU_SREG_SS);
  923. vmcs_write16(GUEST_TR_SELECTOR, 0);
  924. vmcs_writel(GUEST_TR_BASE, 0);
  925. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  926. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  927. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  928. vmcs_writel(GUEST_LDTR_BASE, 0);
  929. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  930. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  931. vmcs_write32(GUEST_SYSENTER_CS, 0);
  932. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  933. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  934. vmcs_writel(GUEST_RFLAGS, 0x02);
  935. vmcs_writel(GUEST_RIP, 0xfff0);
  936. vmcs_writel(GUEST_RSP, 0);
  937. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  938. vmcs_writel(GUEST_DR7, 0x400);
  939. vmcs_writel(GUEST_GDTR_BASE, 0);
  940. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  941. vmcs_writel(GUEST_IDTR_BASE, 0);
  942. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  943. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  944. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  945. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  946. /* I/O */
  947. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  948. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  949. guest_write_tsc(0);
  950. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  951. /* Special registers */
  952. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  953. /* Control */
  954. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  955. PIN_BASED_VM_EXEC_CONTROL,
  956. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  957. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  958. );
  959. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  960. CPU_BASED_VM_EXEC_CONTROL,
  961. CPU_BASED_HLT_EXITING /* 20.6.2 */
  962. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  963. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  964. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  965. | CPU_BASED_MOV_DR_EXITING
  966. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  967. );
  968. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  969. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  970. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  971. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  972. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  973. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  974. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  975. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  976. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  977. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  978. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  979. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  980. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  981. #ifdef CONFIG_X86_64
  982. rdmsrl(MSR_FS_BASE, a);
  983. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  984. rdmsrl(MSR_GS_BASE, a);
  985. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  986. #else
  987. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  988. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  989. #endif
  990. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  991. get_idt(&dt);
  992. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  993. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  994. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  995. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  996. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  997. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  998. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  999. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1000. for (i = 0; i < NR_VMX_MSR; ++i) {
  1001. u32 index = vmx_msr_index[i];
  1002. u32 data_low, data_high;
  1003. u64 data;
  1004. int j = vcpu->nmsrs;
  1005. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1006. continue;
  1007. if (wrmsr_safe(index, data_low, data_high) < 0)
  1008. continue;
  1009. data = data_low | ((u64)data_high << 32);
  1010. vcpu->host_msrs[j].index = index;
  1011. vcpu->host_msrs[j].reserved = 0;
  1012. vcpu->host_msrs[j].data = data;
  1013. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1014. #ifdef CONFIG_X86_64
  1015. if (index == MSR_KERNEL_GS_BASE)
  1016. msr_offset_kernel_gs_base = j;
  1017. #endif
  1018. ++vcpu->nmsrs;
  1019. }
  1020. setup_msrs(vcpu);
  1021. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1022. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1023. /* 22.2.1, 20.8.1 */
  1024. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1025. VM_ENTRY_CONTROLS, 0);
  1026. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1027. #ifdef CONFIG_X86_64
  1028. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1029. vmcs_writel(TPR_THRESHOLD, 0);
  1030. #endif
  1031. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1032. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1033. vcpu->cr0 = 0x60000010;
  1034. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1035. vmx_set_cr4(vcpu, 0);
  1036. #ifdef CONFIG_X86_64
  1037. vmx_set_efer(vcpu, 0);
  1038. #endif
  1039. return 0;
  1040. out:
  1041. return ret;
  1042. }
  1043. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1044. {
  1045. u16 ent[2];
  1046. u16 cs;
  1047. u16 ip;
  1048. unsigned long flags;
  1049. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1050. u16 sp = vmcs_readl(GUEST_RSP);
  1051. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1052. if (sp > ss_limit || sp < 6 ) {
  1053. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1054. __FUNCTION__,
  1055. vmcs_readl(GUEST_RSP),
  1056. vmcs_readl(GUEST_SS_BASE),
  1057. vmcs_read32(GUEST_SS_LIMIT));
  1058. return;
  1059. }
  1060. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1061. sizeof(ent)) {
  1062. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1063. return;
  1064. }
  1065. flags = vmcs_readl(GUEST_RFLAGS);
  1066. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1067. ip = vmcs_readl(GUEST_RIP);
  1068. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1069. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1070. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1071. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1072. return;
  1073. }
  1074. vmcs_writel(GUEST_RFLAGS, flags &
  1075. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1076. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1077. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1078. vmcs_writel(GUEST_RIP, ent[0]);
  1079. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1080. }
  1081. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1082. {
  1083. int word_index = __ffs(vcpu->irq_summary);
  1084. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1085. int irq = word_index * BITS_PER_LONG + bit_index;
  1086. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1087. if (!vcpu->irq_pending[word_index])
  1088. clear_bit(word_index, &vcpu->irq_summary);
  1089. if (vcpu->rmode.active) {
  1090. inject_rmode_irq(vcpu, irq);
  1091. return;
  1092. }
  1093. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1094. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1095. }
  1096. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1097. struct kvm_run *kvm_run)
  1098. {
  1099. u32 cpu_based_vm_exec_control;
  1100. vcpu->interrupt_window_open =
  1101. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1102. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1103. if (vcpu->interrupt_window_open &&
  1104. vcpu->irq_summary &&
  1105. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1106. /*
  1107. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1108. */
  1109. kvm_do_inject_irq(vcpu);
  1110. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1111. if (!vcpu->interrupt_window_open &&
  1112. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1113. /*
  1114. * Interrupts blocked. Wait for unblock.
  1115. */
  1116. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1117. else
  1118. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1119. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1120. }
  1121. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1122. {
  1123. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1124. set_debugreg(dbg->bp[0], 0);
  1125. set_debugreg(dbg->bp[1], 1);
  1126. set_debugreg(dbg->bp[2], 2);
  1127. set_debugreg(dbg->bp[3], 3);
  1128. if (dbg->singlestep) {
  1129. unsigned long flags;
  1130. flags = vmcs_readl(GUEST_RFLAGS);
  1131. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1132. vmcs_writel(GUEST_RFLAGS, flags);
  1133. }
  1134. }
  1135. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1136. int vec, u32 err_code)
  1137. {
  1138. if (!vcpu->rmode.active)
  1139. return 0;
  1140. if (vec == GP_VECTOR && err_code == 0)
  1141. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1142. return 1;
  1143. return 0;
  1144. }
  1145. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1146. {
  1147. u32 intr_info, error_code;
  1148. unsigned long cr2, rip;
  1149. u32 vect_info;
  1150. enum emulation_result er;
  1151. int r;
  1152. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1153. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1154. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1155. !is_page_fault(intr_info)) {
  1156. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1157. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1158. }
  1159. if (is_external_interrupt(vect_info)) {
  1160. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1161. set_bit(irq, vcpu->irq_pending);
  1162. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1163. }
  1164. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1165. asm ("int $2");
  1166. return 1;
  1167. }
  1168. if (is_no_device(intr_info)) {
  1169. vcpu->fpu_active = 1;
  1170. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1171. if (!(vcpu->cr0 & CR0_TS_MASK))
  1172. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1173. return 1;
  1174. }
  1175. error_code = 0;
  1176. rip = vmcs_readl(GUEST_RIP);
  1177. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1178. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1179. if (is_page_fault(intr_info)) {
  1180. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1181. spin_lock(&vcpu->kvm->lock);
  1182. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1183. if (r < 0) {
  1184. spin_unlock(&vcpu->kvm->lock);
  1185. return r;
  1186. }
  1187. if (!r) {
  1188. spin_unlock(&vcpu->kvm->lock);
  1189. return 1;
  1190. }
  1191. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1192. spin_unlock(&vcpu->kvm->lock);
  1193. switch (er) {
  1194. case EMULATE_DONE:
  1195. return 1;
  1196. case EMULATE_DO_MMIO:
  1197. ++vcpu->stat.mmio_exits;
  1198. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1199. return 0;
  1200. case EMULATE_FAIL:
  1201. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1202. break;
  1203. default:
  1204. BUG();
  1205. }
  1206. }
  1207. if (vcpu->rmode.active &&
  1208. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1209. error_code))
  1210. return 1;
  1211. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1212. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1213. return 0;
  1214. }
  1215. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1216. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1217. kvm_run->ex.error_code = error_code;
  1218. return 0;
  1219. }
  1220. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1221. struct kvm_run *kvm_run)
  1222. {
  1223. ++vcpu->stat.irq_exits;
  1224. return 1;
  1225. }
  1226. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1227. {
  1228. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1229. return 0;
  1230. }
  1231. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1232. {
  1233. u64 inst;
  1234. gva_t rip;
  1235. int countr_size;
  1236. int i, n;
  1237. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1238. countr_size = 2;
  1239. } else {
  1240. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1241. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1242. (cs_ar & AR_DB_MASK) ? 4: 2;
  1243. }
  1244. rip = vmcs_readl(GUEST_RIP);
  1245. if (countr_size != 8)
  1246. rip += vmcs_readl(GUEST_CS_BASE);
  1247. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1248. for (i = 0; i < n; i++) {
  1249. switch (((u8*)&inst)[i]) {
  1250. case 0xf0:
  1251. case 0xf2:
  1252. case 0xf3:
  1253. case 0x2e:
  1254. case 0x36:
  1255. case 0x3e:
  1256. case 0x26:
  1257. case 0x64:
  1258. case 0x65:
  1259. case 0x66:
  1260. break;
  1261. case 0x67:
  1262. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1263. default:
  1264. goto done;
  1265. }
  1266. }
  1267. return 0;
  1268. done:
  1269. countr_size *= 8;
  1270. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1271. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1272. return 1;
  1273. }
  1274. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1275. {
  1276. u64 exit_qualification;
  1277. int size, down, in, string, rep;
  1278. unsigned port;
  1279. unsigned long count;
  1280. gva_t address;
  1281. ++vcpu->stat.io_exits;
  1282. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1283. in = (exit_qualification & 8) != 0;
  1284. size = (exit_qualification & 7) + 1;
  1285. string = (exit_qualification & 16) != 0;
  1286. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1287. count = 1;
  1288. rep = (exit_qualification & 32) != 0;
  1289. port = exit_qualification >> 16;
  1290. address = 0;
  1291. if (string) {
  1292. if (rep && !get_io_count(vcpu, &count))
  1293. return 1;
  1294. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1295. }
  1296. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1297. address, rep, port);
  1298. }
  1299. static void
  1300. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1301. {
  1302. /*
  1303. * Patch in the VMCALL instruction:
  1304. */
  1305. hypercall[0] = 0x0f;
  1306. hypercall[1] = 0x01;
  1307. hypercall[2] = 0xc1;
  1308. hypercall[3] = 0xc3;
  1309. }
  1310. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1311. {
  1312. u64 exit_qualification;
  1313. int cr;
  1314. int reg;
  1315. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1316. cr = exit_qualification & 15;
  1317. reg = (exit_qualification >> 8) & 15;
  1318. switch ((exit_qualification >> 4) & 3) {
  1319. case 0: /* mov to cr */
  1320. switch (cr) {
  1321. case 0:
  1322. vcpu_load_rsp_rip(vcpu);
  1323. set_cr0(vcpu, vcpu->regs[reg]);
  1324. skip_emulated_instruction(vcpu);
  1325. return 1;
  1326. case 3:
  1327. vcpu_load_rsp_rip(vcpu);
  1328. set_cr3(vcpu, vcpu->regs[reg]);
  1329. skip_emulated_instruction(vcpu);
  1330. return 1;
  1331. case 4:
  1332. vcpu_load_rsp_rip(vcpu);
  1333. set_cr4(vcpu, vcpu->regs[reg]);
  1334. skip_emulated_instruction(vcpu);
  1335. return 1;
  1336. case 8:
  1337. vcpu_load_rsp_rip(vcpu);
  1338. set_cr8(vcpu, vcpu->regs[reg]);
  1339. skip_emulated_instruction(vcpu);
  1340. return 1;
  1341. };
  1342. break;
  1343. case 2: /* clts */
  1344. vcpu_load_rsp_rip(vcpu);
  1345. vcpu->fpu_active = 1;
  1346. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1347. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1348. vcpu->cr0 &= ~CR0_TS_MASK;
  1349. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1350. skip_emulated_instruction(vcpu);
  1351. return 1;
  1352. case 1: /*mov from cr*/
  1353. switch (cr) {
  1354. case 3:
  1355. vcpu_load_rsp_rip(vcpu);
  1356. vcpu->regs[reg] = vcpu->cr3;
  1357. vcpu_put_rsp_rip(vcpu);
  1358. skip_emulated_instruction(vcpu);
  1359. return 1;
  1360. case 8:
  1361. vcpu_load_rsp_rip(vcpu);
  1362. vcpu->regs[reg] = vcpu->cr8;
  1363. vcpu_put_rsp_rip(vcpu);
  1364. skip_emulated_instruction(vcpu);
  1365. return 1;
  1366. }
  1367. break;
  1368. case 3: /* lmsw */
  1369. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1370. skip_emulated_instruction(vcpu);
  1371. return 1;
  1372. default:
  1373. break;
  1374. }
  1375. kvm_run->exit_reason = 0;
  1376. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1377. (int)(exit_qualification >> 4) & 3, cr);
  1378. return 0;
  1379. }
  1380. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1381. {
  1382. u64 exit_qualification;
  1383. unsigned long val;
  1384. int dr, reg;
  1385. /*
  1386. * FIXME: this code assumes the host is debugging the guest.
  1387. * need to deal with guest debugging itself too.
  1388. */
  1389. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1390. dr = exit_qualification & 7;
  1391. reg = (exit_qualification >> 8) & 15;
  1392. vcpu_load_rsp_rip(vcpu);
  1393. if (exit_qualification & 16) {
  1394. /* mov from dr */
  1395. switch (dr) {
  1396. case 6:
  1397. val = 0xffff0ff0;
  1398. break;
  1399. case 7:
  1400. val = 0x400;
  1401. break;
  1402. default:
  1403. val = 0;
  1404. }
  1405. vcpu->regs[reg] = val;
  1406. } else {
  1407. /* mov to dr */
  1408. }
  1409. vcpu_put_rsp_rip(vcpu);
  1410. skip_emulated_instruction(vcpu);
  1411. return 1;
  1412. }
  1413. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1414. {
  1415. kvm_emulate_cpuid(vcpu);
  1416. return 1;
  1417. }
  1418. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1419. {
  1420. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1421. u64 data;
  1422. if (vmx_get_msr(vcpu, ecx, &data)) {
  1423. vmx_inject_gp(vcpu, 0);
  1424. return 1;
  1425. }
  1426. /* FIXME: handling of bits 32:63 of rax, rdx */
  1427. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1428. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1429. skip_emulated_instruction(vcpu);
  1430. return 1;
  1431. }
  1432. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1433. {
  1434. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1435. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1436. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1437. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1438. vmx_inject_gp(vcpu, 0);
  1439. return 1;
  1440. }
  1441. skip_emulated_instruction(vcpu);
  1442. return 1;
  1443. }
  1444. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1445. struct kvm_run *kvm_run)
  1446. {
  1447. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1448. kvm_run->cr8 = vcpu->cr8;
  1449. kvm_run->apic_base = vcpu->apic_base;
  1450. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1451. vcpu->irq_summary == 0);
  1452. }
  1453. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1454. struct kvm_run *kvm_run)
  1455. {
  1456. /*
  1457. * If the user space waits to inject interrupts, exit as soon as
  1458. * possible
  1459. */
  1460. if (kvm_run->request_interrupt_window &&
  1461. !vcpu->irq_summary) {
  1462. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1463. ++vcpu->stat.irq_window_exits;
  1464. return 0;
  1465. }
  1466. return 1;
  1467. }
  1468. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1469. {
  1470. skip_emulated_instruction(vcpu);
  1471. if (vcpu->irq_summary)
  1472. return 1;
  1473. kvm_run->exit_reason = KVM_EXIT_HLT;
  1474. ++vcpu->stat.halt_exits;
  1475. return 0;
  1476. }
  1477. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1478. {
  1479. skip_emulated_instruction(vcpu);
  1480. return kvm_hypercall(vcpu, kvm_run);
  1481. }
  1482. /*
  1483. * The exit handlers return 1 if the exit was handled fully and guest execution
  1484. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1485. * to be done to userspace and return 0.
  1486. */
  1487. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1488. struct kvm_run *kvm_run) = {
  1489. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1490. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1491. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1492. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1493. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1494. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1495. [EXIT_REASON_CPUID] = handle_cpuid,
  1496. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1497. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1498. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1499. [EXIT_REASON_HLT] = handle_halt,
  1500. [EXIT_REASON_VMCALL] = handle_vmcall,
  1501. };
  1502. static const int kvm_vmx_max_exit_handlers =
  1503. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1504. /*
  1505. * The guest has exited. See if we can fix it or if we need userspace
  1506. * assistance.
  1507. */
  1508. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1509. {
  1510. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1511. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1512. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1513. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1514. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1515. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1516. if (exit_reason < kvm_vmx_max_exit_handlers
  1517. && kvm_vmx_exit_handlers[exit_reason])
  1518. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1519. else {
  1520. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1521. kvm_run->hw.hardware_exit_reason = exit_reason;
  1522. }
  1523. return 0;
  1524. }
  1525. /*
  1526. * Check if userspace requested an interrupt window, and that the
  1527. * interrupt window is open.
  1528. *
  1529. * No need to exit to userspace if we already have an interrupt queued.
  1530. */
  1531. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1532. struct kvm_run *kvm_run)
  1533. {
  1534. return (!vcpu->irq_summary &&
  1535. kvm_run->request_interrupt_window &&
  1536. vcpu->interrupt_window_open &&
  1537. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1538. }
  1539. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1540. {
  1541. u8 fail;
  1542. u16 fs_sel, gs_sel, ldt_sel;
  1543. int fs_gs_ldt_reload_needed;
  1544. int r;
  1545. again:
  1546. /*
  1547. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1548. * allow segment selectors with cpl > 0 or ti == 1.
  1549. */
  1550. fs_sel = read_fs();
  1551. gs_sel = read_gs();
  1552. ldt_sel = read_ldt();
  1553. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1554. if (!fs_gs_ldt_reload_needed) {
  1555. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1556. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1557. } else {
  1558. vmcs_write16(HOST_FS_SELECTOR, 0);
  1559. vmcs_write16(HOST_GS_SELECTOR, 0);
  1560. }
  1561. #ifdef CONFIG_X86_64
  1562. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1563. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1564. #else
  1565. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1566. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1567. #endif
  1568. if (!vcpu->mmio_read_completed)
  1569. do_interrupt_requests(vcpu, kvm_run);
  1570. if (vcpu->guest_debug.enabled)
  1571. kvm_guest_debug_pre(vcpu);
  1572. kvm_load_guest_fpu(vcpu);
  1573. /*
  1574. * Loading guest fpu may have cleared host cr0.ts
  1575. */
  1576. vmcs_writel(HOST_CR0, read_cr0());
  1577. #ifdef CONFIG_X86_64
  1578. if (is_long_mode(vcpu)) {
  1579. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  1580. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1581. }
  1582. #endif
  1583. asm (
  1584. /* Store host registers */
  1585. "pushf \n\t"
  1586. #ifdef CONFIG_X86_64
  1587. "push %%rax; push %%rbx; push %%rdx;"
  1588. "push %%rsi; push %%rdi; push %%rbp;"
  1589. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1590. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1591. "push %%rcx \n\t"
  1592. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1593. #else
  1594. "pusha; push %%ecx \n\t"
  1595. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1596. #endif
  1597. /* Check if vmlaunch of vmresume is needed */
  1598. "cmp $0, %1 \n\t"
  1599. /* Load guest registers. Don't clobber flags. */
  1600. #ifdef CONFIG_X86_64
  1601. "mov %c[cr2](%3), %%rax \n\t"
  1602. "mov %%rax, %%cr2 \n\t"
  1603. "mov %c[rax](%3), %%rax \n\t"
  1604. "mov %c[rbx](%3), %%rbx \n\t"
  1605. "mov %c[rdx](%3), %%rdx \n\t"
  1606. "mov %c[rsi](%3), %%rsi \n\t"
  1607. "mov %c[rdi](%3), %%rdi \n\t"
  1608. "mov %c[rbp](%3), %%rbp \n\t"
  1609. "mov %c[r8](%3), %%r8 \n\t"
  1610. "mov %c[r9](%3), %%r9 \n\t"
  1611. "mov %c[r10](%3), %%r10 \n\t"
  1612. "mov %c[r11](%3), %%r11 \n\t"
  1613. "mov %c[r12](%3), %%r12 \n\t"
  1614. "mov %c[r13](%3), %%r13 \n\t"
  1615. "mov %c[r14](%3), %%r14 \n\t"
  1616. "mov %c[r15](%3), %%r15 \n\t"
  1617. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1618. #else
  1619. "mov %c[cr2](%3), %%eax \n\t"
  1620. "mov %%eax, %%cr2 \n\t"
  1621. "mov %c[rax](%3), %%eax \n\t"
  1622. "mov %c[rbx](%3), %%ebx \n\t"
  1623. "mov %c[rdx](%3), %%edx \n\t"
  1624. "mov %c[rsi](%3), %%esi \n\t"
  1625. "mov %c[rdi](%3), %%edi \n\t"
  1626. "mov %c[rbp](%3), %%ebp \n\t"
  1627. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1628. #endif
  1629. /* Enter guest mode */
  1630. "jne launched \n\t"
  1631. ASM_VMX_VMLAUNCH "\n\t"
  1632. "jmp kvm_vmx_return \n\t"
  1633. "launched: " ASM_VMX_VMRESUME "\n\t"
  1634. ".globl kvm_vmx_return \n\t"
  1635. "kvm_vmx_return: "
  1636. /* Save guest registers, load host registers, keep flags */
  1637. #ifdef CONFIG_X86_64
  1638. "xchg %3, (%%rsp) \n\t"
  1639. "mov %%rax, %c[rax](%3) \n\t"
  1640. "mov %%rbx, %c[rbx](%3) \n\t"
  1641. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1642. "mov %%rdx, %c[rdx](%3) \n\t"
  1643. "mov %%rsi, %c[rsi](%3) \n\t"
  1644. "mov %%rdi, %c[rdi](%3) \n\t"
  1645. "mov %%rbp, %c[rbp](%3) \n\t"
  1646. "mov %%r8, %c[r8](%3) \n\t"
  1647. "mov %%r9, %c[r9](%3) \n\t"
  1648. "mov %%r10, %c[r10](%3) \n\t"
  1649. "mov %%r11, %c[r11](%3) \n\t"
  1650. "mov %%r12, %c[r12](%3) \n\t"
  1651. "mov %%r13, %c[r13](%3) \n\t"
  1652. "mov %%r14, %c[r14](%3) \n\t"
  1653. "mov %%r15, %c[r15](%3) \n\t"
  1654. "mov %%cr2, %%rax \n\t"
  1655. "mov %%rax, %c[cr2](%3) \n\t"
  1656. "mov (%%rsp), %3 \n\t"
  1657. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1658. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1659. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1660. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1661. #else
  1662. "xchg %3, (%%esp) \n\t"
  1663. "mov %%eax, %c[rax](%3) \n\t"
  1664. "mov %%ebx, %c[rbx](%3) \n\t"
  1665. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1666. "mov %%edx, %c[rdx](%3) \n\t"
  1667. "mov %%esi, %c[rsi](%3) \n\t"
  1668. "mov %%edi, %c[rdi](%3) \n\t"
  1669. "mov %%ebp, %c[rbp](%3) \n\t"
  1670. "mov %%cr2, %%eax \n\t"
  1671. "mov %%eax, %c[cr2](%3) \n\t"
  1672. "mov (%%esp), %3 \n\t"
  1673. "pop %%ecx; popa \n\t"
  1674. #endif
  1675. "setbe %0 \n\t"
  1676. "popf \n\t"
  1677. : "=q" (fail)
  1678. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1679. "c"(vcpu),
  1680. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1681. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1682. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1683. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1684. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1685. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1686. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1687. #ifdef CONFIG_X86_64
  1688. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1689. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1690. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1691. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1692. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1693. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1694. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1695. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1696. #endif
  1697. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1698. : "cc", "memory" );
  1699. /*
  1700. * Reload segment selectors ASAP. (it's needed for a functional
  1701. * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
  1702. * relies on having 0 in %gs for the CPU PDA to work.)
  1703. */
  1704. if (fs_gs_ldt_reload_needed) {
  1705. load_ldt(ldt_sel);
  1706. load_fs(fs_sel);
  1707. /*
  1708. * If we have to reload gs, we must take care to
  1709. * preserve our gs base.
  1710. */
  1711. local_irq_disable();
  1712. load_gs(gs_sel);
  1713. #ifdef CONFIG_X86_64
  1714. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1715. #endif
  1716. local_irq_enable();
  1717. reload_tss();
  1718. }
  1719. ++vcpu->stat.exits;
  1720. #ifdef CONFIG_X86_64
  1721. if (is_long_mode(vcpu)) {
  1722. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1723. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1724. }
  1725. #endif
  1726. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1727. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1728. if (fail) {
  1729. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1730. kvm_run->fail_entry.hardware_entry_failure_reason
  1731. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1732. r = 0;
  1733. } else {
  1734. /*
  1735. * Profile KVM exit RIPs:
  1736. */
  1737. if (unlikely(prof_on == KVM_PROFILING))
  1738. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1739. vcpu->launched = 1;
  1740. r = kvm_handle_exit(kvm_run, vcpu);
  1741. if (r > 0) {
  1742. /* Give scheduler a change to reschedule. */
  1743. if (signal_pending(current)) {
  1744. ++vcpu->stat.signal_exits;
  1745. post_kvm_run_save(vcpu, kvm_run);
  1746. kvm_run->exit_reason = KVM_EXIT_INTR;
  1747. return -EINTR;
  1748. }
  1749. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1750. ++vcpu->stat.request_irq_exits;
  1751. post_kvm_run_save(vcpu, kvm_run);
  1752. kvm_run->exit_reason = KVM_EXIT_INTR;
  1753. return -EINTR;
  1754. }
  1755. kvm_resched(vcpu);
  1756. goto again;
  1757. }
  1758. }
  1759. post_kvm_run_save(vcpu, kvm_run);
  1760. return r;
  1761. }
  1762. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1763. {
  1764. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1765. }
  1766. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1767. unsigned long addr,
  1768. u32 err_code)
  1769. {
  1770. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1771. ++vcpu->stat.pf_guest;
  1772. if (is_page_fault(vect_info)) {
  1773. printk(KERN_DEBUG "inject_page_fault: "
  1774. "double fault 0x%lx @ 0x%lx\n",
  1775. addr, vmcs_readl(GUEST_RIP));
  1776. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1777. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1778. DF_VECTOR |
  1779. INTR_TYPE_EXCEPTION |
  1780. INTR_INFO_DELIEVER_CODE_MASK |
  1781. INTR_INFO_VALID_MASK);
  1782. return;
  1783. }
  1784. vcpu->cr2 = addr;
  1785. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1786. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1787. PF_VECTOR |
  1788. INTR_TYPE_EXCEPTION |
  1789. INTR_INFO_DELIEVER_CODE_MASK |
  1790. INTR_INFO_VALID_MASK);
  1791. }
  1792. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1793. {
  1794. if (vcpu->vmcs) {
  1795. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1796. free_vmcs(vcpu->vmcs);
  1797. vcpu->vmcs = NULL;
  1798. }
  1799. }
  1800. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1801. {
  1802. vmx_free_vmcs(vcpu);
  1803. }
  1804. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1805. {
  1806. struct vmcs *vmcs;
  1807. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1808. if (!vcpu->guest_msrs)
  1809. return -ENOMEM;
  1810. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1811. if (!vcpu->host_msrs)
  1812. goto out_free_guest_msrs;
  1813. vmcs = alloc_vmcs();
  1814. if (!vmcs)
  1815. goto out_free_msrs;
  1816. vmcs_clear(vmcs);
  1817. vcpu->vmcs = vmcs;
  1818. vcpu->launched = 0;
  1819. vcpu->fpu_active = 1;
  1820. return 0;
  1821. out_free_msrs:
  1822. kfree(vcpu->host_msrs);
  1823. vcpu->host_msrs = NULL;
  1824. out_free_guest_msrs:
  1825. kfree(vcpu->guest_msrs);
  1826. vcpu->guest_msrs = NULL;
  1827. return -ENOMEM;
  1828. }
  1829. static struct kvm_arch_ops vmx_arch_ops = {
  1830. .cpu_has_kvm_support = cpu_has_kvm_support,
  1831. .disabled_by_bios = vmx_disabled_by_bios,
  1832. .hardware_setup = hardware_setup,
  1833. .hardware_unsetup = hardware_unsetup,
  1834. .hardware_enable = hardware_enable,
  1835. .hardware_disable = hardware_disable,
  1836. .vcpu_create = vmx_create_vcpu,
  1837. .vcpu_free = vmx_free_vcpu,
  1838. .vcpu_load = vmx_vcpu_load,
  1839. .vcpu_put = vmx_vcpu_put,
  1840. .vcpu_decache = vmx_vcpu_decache,
  1841. .set_guest_debug = set_guest_debug,
  1842. .get_msr = vmx_get_msr,
  1843. .set_msr = vmx_set_msr,
  1844. .get_segment_base = vmx_get_segment_base,
  1845. .get_segment = vmx_get_segment,
  1846. .set_segment = vmx_set_segment,
  1847. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1848. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1849. .set_cr0 = vmx_set_cr0,
  1850. .set_cr3 = vmx_set_cr3,
  1851. .set_cr4 = vmx_set_cr4,
  1852. #ifdef CONFIG_X86_64
  1853. .set_efer = vmx_set_efer,
  1854. #endif
  1855. .get_idt = vmx_get_idt,
  1856. .set_idt = vmx_set_idt,
  1857. .get_gdt = vmx_get_gdt,
  1858. .set_gdt = vmx_set_gdt,
  1859. .cache_regs = vcpu_load_rsp_rip,
  1860. .decache_regs = vcpu_put_rsp_rip,
  1861. .get_rflags = vmx_get_rflags,
  1862. .set_rflags = vmx_set_rflags,
  1863. .tlb_flush = vmx_flush_tlb,
  1864. .inject_page_fault = vmx_inject_page_fault,
  1865. .inject_gp = vmx_inject_gp,
  1866. .run = vmx_vcpu_run,
  1867. .skip_emulated_instruction = skip_emulated_instruction,
  1868. .vcpu_setup = vmx_vcpu_setup,
  1869. .patch_hypercall = vmx_patch_hypercall,
  1870. };
  1871. static int __init vmx_init(void)
  1872. {
  1873. void *iova;
  1874. int r;
  1875. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1876. if (!vmx_io_bitmap_a)
  1877. return -ENOMEM;
  1878. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1879. if (!vmx_io_bitmap_b) {
  1880. r = -ENOMEM;
  1881. goto out;
  1882. }
  1883. /*
  1884. * Allow direct access to the PC debug port (it is often used for I/O
  1885. * delays, but the vmexits simply slow things down).
  1886. */
  1887. iova = kmap(vmx_io_bitmap_a);
  1888. memset(iova, 0xff, PAGE_SIZE);
  1889. clear_bit(0x80, iova);
  1890. kunmap(iova);
  1891. iova = kmap(vmx_io_bitmap_b);
  1892. memset(iova, 0xff, PAGE_SIZE);
  1893. kunmap(iova);
  1894. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1895. if (r)
  1896. goto out1;
  1897. return 0;
  1898. out1:
  1899. __free_page(vmx_io_bitmap_b);
  1900. out:
  1901. __free_page(vmx_io_bitmap_a);
  1902. return r;
  1903. }
  1904. static void __exit vmx_exit(void)
  1905. {
  1906. __free_page(vmx_io_bitmap_b);
  1907. __free_page(vmx_io_bitmap_a);
  1908. kvm_exit_arch();
  1909. }
  1910. module_init(vmx_init)
  1911. module_exit(vmx_exit)