nmi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. * Copyright (C) 2011 Don Zickus Red Hat, Inc.
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * Handle hardware traps and faults.
  11. */
  12. #include <linux/spinlock.h>
  13. #include <linux/kprobes.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/nmi.h>
  16. #include <linux/debugfs.h>
  17. #include <linux/delay.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/slab.h>
  20. #include <linux/export.h>
  21. #if defined(CONFIG_EDAC)
  22. #include <linux/edac.h>
  23. #endif
  24. #include <linux/atomic.h>
  25. #include <asm/traps.h>
  26. #include <asm/mach_traps.h>
  27. #include <asm/nmi.h>
  28. #include <asm/x86_init.h>
  29. #define CREATE_TRACE_POINTS
  30. #include <trace/events/nmi.h>
  31. struct nmi_desc {
  32. spinlock_t lock;
  33. struct list_head head;
  34. };
  35. static struct nmi_desc nmi_desc[NMI_MAX] =
  36. {
  37. {
  38. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  39. .head = LIST_HEAD_INIT(nmi_desc[0].head),
  40. },
  41. {
  42. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  43. .head = LIST_HEAD_INIT(nmi_desc[1].head),
  44. },
  45. {
  46. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  47. .head = LIST_HEAD_INIT(nmi_desc[2].head),
  48. },
  49. {
  50. .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  51. .head = LIST_HEAD_INIT(nmi_desc[3].head),
  52. },
  53. };
  54. struct nmi_stats {
  55. unsigned int normal;
  56. unsigned int unknown;
  57. unsigned int external;
  58. unsigned int swallow;
  59. };
  60. static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  61. static int ignore_nmis;
  62. int unknown_nmi_panic;
  63. /*
  64. * Prevent NMI reason port (0x61) being accessed simultaneously, can
  65. * only be used in NMI handler.
  66. */
  67. static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  68. static int __init setup_unknown_nmi_panic(char *str)
  69. {
  70. unknown_nmi_panic = 1;
  71. return 1;
  72. }
  73. __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  74. #define nmi_to_desc(type) (&nmi_desc[type])
  75. static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  76. static int __init nmi_warning_debugfs(void)
  77. {
  78. debugfs_create_u64("nmi_longest_ns", 0644,
  79. arch_debugfs_dir, &nmi_longest_ns);
  80. return 0;
  81. }
  82. fs_initcall(nmi_warning_debugfs);
  83. static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
  84. {
  85. struct nmi_desc *desc = nmi_to_desc(type);
  86. struct nmiaction *a;
  87. int handled=0;
  88. rcu_read_lock();
  89. /*
  90. * NMIs are edge-triggered, which means if you have enough
  91. * of them concurrently, you can lose some because only one
  92. * can be latched at any given time. Walk the whole list
  93. * to handle those situations.
  94. */
  95. list_for_each_entry_rcu(a, &desc->head, list) {
  96. u64 before, delta, whole_msecs;
  97. int decimal_msecs, thishandled;
  98. before = local_clock();
  99. thishandled = a->handler(type, regs);
  100. handled += thishandled;
  101. delta = local_clock() - before;
  102. trace_nmi_handler(a->handler, (int)delta, thishandled);
  103. if (delta < nmi_longest_ns)
  104. continue;
  105. nmi_longest_ns = delta;
  106. whole_msecs = do_div(delta, (1000 * 1000));
  107. decimal_msecs = do_div(delta, 1000) % 1000;
  108. printk_ratelimited(KERN_INFO
  109. "INFO: NMI handler (%ps) took too long to run: "
  110. "%lld.%03d msecs\n", a->handler, whole_msecs,
  111. decimal_msecs);
  112. }
  113. rcu_read_unlock();
  114. /* return total number of NMI events handled */
  115. return handled;
  116. }
  117. int __register_nmi_handler(unsigned int type, struct nmiaction *action)
  118. {
  119. struct nmi_desc *desc = nmi_to_desc(type);
  120. unsigned long flags;
  121. if (!action->handler)
  122. return -EINVAL;
  123. spin_lock_irqsave(&desc->lock, flags);
  124. /*
  125. * most handlers of type NMI_UNKNOWN never return because
  126. * they just assume the NMI is theirs. Just a sanity check
  127. * to manage expectations
  128. */
  129. WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
  130. WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
  131. WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
  132. /*
  133. * some handlers need to be executed first otherwise a fake
  134. * event confuses some handlers (kdump uses this flag)
  135. */
  136. if (action->flags & NMI_FLAG_FIRST)
  137. list_add_rcu(&action->list, &desc->head);
  138. else
  139. list_add_tail_rcu(&action->list, &desc->head);
  140. spin_unlock_irqrestore(&desc->lock, flags);
  141. return 0;
  142. }
  143. EXPORT_SYMBOL(__register_nmi_handler);
  144. void unregister_nmi_handler(unsigned int type, const char *name)
  145. {
  146. struct nmi_desc *desc = nmi_to_desc(type);
  147. struct nmiaction *n;
  148. unsigned long flags;
  149. spin_lock_irqsave(&desc->lock, flags);
  150. list_for_each_entry_rcu(n, &desc->head, list) {
  151. /*
  152. * the name passed in to describe the nmi handler
  153. * is used as the lookup key
  154. */
  155. if (!strcmp(n->name, name)) {
  156. WARN(in_nmi(),
  157. "Trying to free NMI (%s) from NMI context!\n", n->name);
  158. list_del_rcu(&n->list);
  159. break;
  160. }
  161. }
  162. spin_unlock_irqrestore(&desc->lock, flags);
  163. synchronize_rcu();
  164. }
  165. EXPORT_SYMBOL_GPL(unregister_nmi_handler);
  166. static __kprobes void
  167. pci_serr_error(unsigned char reason, struct pt_regs *regs)
  168. {
  169. /* check to see if anyone registered against these types of errors */
  170. if (nmi_handle(NMI_SERR, regs, false))
  171. return;
  172. pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
  173. reason, smp_processor_id());
  174. /*
  175. * On some machines, PCI SERR line is used to report memory
  176. * errors. EDAC makes use of it.
  177. */
  178. #if defined(CONFIG_EDAC)
  179. if (edac_handler_set()) {
  180. edac_atomic_assert_error();
  181. return;
  182. }
  183. #endif
  184. if (panic_on_unrecovered_nmi)
  185. panic("NMI: Not continuing");
  186. pr_emerg("Dazed and confused, but trying to continue\n");
  187. /* Clear and disable the PCI SERR error line. */
  188. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
  189. outb(reason, NMI_REASON_PORT);
  190. }
  191. static __kprobes void
  192. io_check_error(unsigned char reason, struct pt_regs *regs)
  193. {
  194. unsigned long i;
  195. /* check to see if anyone registered against these types of errors */
  196. if (nmi_handle(NMI_IO_CHECK, regs, false))
  197. return;
  198. pr_emerg(
  199. "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
  200. reason, smp_processor_id());
  201. show_regs(regs);
  202. if (panic_on_io_nmi)
  203. panic("NMI IOCK error: Not continuing");
  204. /* Re-enable the IOCK line, wait for a few seconds */
  205. reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
  206. outb(reason, NMI_REASON_PORT);
  207. i = 20000;
  208. while (--i) {
  209. touch_nmi_watchdog();
  210. udelay(100);
  211. }
  212. reason &= ~NMI_REASON_CLEAR_IOCHK;
  213. outb(reason, NMI_REASON_PORT);
  214. }
  215. static __kprobes void
  216. unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
  217. {
  218. int handled;
  219. /*
  220. * Use 'false' as back-to-back NMIs are dealt with one level up.
  221. * Of course this makes having multiple 'unknown' handlers useless
  222. * as only the first one is ever run (unless it can actually determine
  223. * if it caused the NMI)
  224. */
  225. handled = nmi_handle(NMI_UNKNOWN, regs, false);
  226. if (handled) {
  227. __this_cpu_add(nmi_stats.unknown, handled);
  228. return;
  229. }
  230. __this_cpu_add(nmi_stats.unknown, 1);
  231. pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  232. reason, smp_processor_id());
  233. pr_emerg("Do you have a strange power saving mode enabled?\n");
  234. if (unknown_nmi_panic || panic_on_unrecovered_nmi)
  235. panic("NMI: Not continuing");
  236. pr_emerg("Dazed and confused, but trying to continue\n");
  237. }
  238. static DEFINE_PER_CPU(bool, swallow_nmi);
  239. static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
  240. static __kprobes void default_do_nmi(struct pt_regs *regs)
  241. {
  242. unsigned char reason = 0;
  243. int handled;
  244. bool b2b = false;
  245. /*
  246. * CPU-specific NMI must be processed before non-CPU-specific
  247. * NMI, otherwise we may lose it, because the CPU-specific
  248. * NMI can not be detected/processed on other CPUs.
  249. */
  250. /*
  251. * Back-to-back NMIs are interesting because they can either
  252. * be two NMI or more than two NMIs (any thing over two is dropped
  253. * due to NMI being edge-triggered). If this is the second half
  254. * of the back-to-back NMI, assume we dropped things and process
  255. * more handlers. Otherwise reset the 'swallow' NMI behaviour
  256. */
  257. if (regs->ip == __this_cpu_read(last_nmi_rip))
  258. b2b = true;
  259. else
  260. __this_cpu_write(swallow_nmi, false);
  261. __this_cpu_write(last_nmi_rip, regs->ip);
  262. handled = nmi_handle(NMI_LOCAL, regs, b2b);
  263. __this_cpu_add(nmi_stats.normal, handled);
  264. if (handled) {
  265. /*
  266. * There are cases when a NMI handler handles multiple
  267. * events in the current NMI. One of these events may
  268. * be queued for in the next NMI. Because the event is
  269. * already handled, the next NMI will result in an unknown
  270. * NMI. Instead lets flag this for a potential NMI to
  271. * swallow.
  272. */
  273. if (handled > 1)
  274. __this_cpu_write(swallow_nmi, true);
  275. return;
  276. }
  277. /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
  278. raw_spin_lock(&nmi_reason_lock);
  279. reason = x86_platform.get_nmi_reason();
  280. if (reason & NMI_REASON_MASK) {
  281. if (reason & NMI_REASON_SERR)
  282. pci_serr_error(reason, regs);
  283. else if (reason & NMI_REASON_IOCHK)
  284. io_check_error(reason, regs);
  285. #ifdef CONFIG_X86_32
  286. /*
  287. * Reassert NMI in case it became active
  288. * meanwhile as it's edge-triggered:
  289. */
  290. reassert_nmi();
  291. #endif
  292. __this_cpu_add(nmi_stats.external, 1);
  293. raw_spin_unlock(&nmi_reason_lock);
  294. return;
  295. }
  296. raw_spin_unlock(&nmi_reason_lock);
  297. /*
  298. * Only one NMI can be latched at a time. To handle
  299. * this we may process multiple nmi handlers at once to
  300. * cover the case where an NMI is dropped. The downside
  301. * to this approach is we may process an NMI prematurely,
  302. * while its real NMI is sitting latched. This will cause
  303. * an unknown NMI on the next run of the NMI processing.
  304. *
  305. * We tried to flag that condition above, by setting the
  306. * swallow_nmi flag when we process more than one event.
  307. * This condition is also only present on the second half
  308. * of a back-to-back NMI, so we flag that condition too.
  309. *
  310. * If both are true, we assume we already processed this
  311. * NMI previously and we swallow it. Otherwise we reset
  312. * the logic.
  313. *
  314. * There are scenarios where we may accidentally swallow
  315. * a 'real' unknown NMI. For example, while processing
  316. * a perf NMI another perf NMI comes in along with a
  317. * 'real' unknown NMI. These two NMIs get combined into
  318. * one (as descibed above). When the next NMI gets
  319. * processed, it will be flagged by perf as handled, but
  320. * noone will know that there was a 'real' unknown NMI sent
  321. * also. As a result it gets swallowed. Or if the first
  322. * perf NMI returns two events handled then the second
  323. * NMI will get eaten by the logic below, again losing a
  324. * 'real' unknown NMI. But this is the best we can do
  325. * for now.
  326. */
  327. if (b2b && __this_cpu_read(swallow_nmi))
  328. __this_cpu_add(nmi_stats.swallow, 1);
  329. else
  330. unknown_nmi_error(reason, regs);
  331. }
  332. /*
  333. * NMIs can hit breakpoints which will cause it to lose its
  334. * NMI context with the CPU when the breakpoint does an iret.
  335. */
  336. #ifdef CONFIG_X86_32
  337. /*
  338. * For i386, NMIs use the same stack as the kernel, and we can
  339. * add a workaround to the iret problem in C (preventing nested
  340. * NMIs if an NMI takes a trap). Simply have 3 states the NMI
  341. * can be in:
  342. *
  343. * 1) not running
  344. * 2) executing
  345. * 3) latched
  346. *
  347. * When no NMI is in progress, it is in the "not running" state.
  348. * When an NMI comes in, it goes into the "executing" state.
  349. * Normally, if another NMI is triggered, it does not interrupt
  350. * the running NMI and the HW will simply latch it so that when
  351. * the first NMI finishes, it will restart the second NMI.
  352. * (Note, the latch is binary, thus multiple NMIs triggering,
  353. * when one is running, are ignored. Only one NMI is restarted.)
  354. *
  355. * If an NMI hits a breakpoint that executes an iret, another
  356. * NMI can preempt it. We do not want to allow this new NMI
  357. * to run, but we want to execute it when the first one finishes.
  358. * We set the state to "latched", and the exit of the first NMI will
  359. * perform a dec_return, if the result is zero (NOT_RUNNING), then
  360. * it will simply exit the NMI handler. If not, the dec_return
  361. * would have set the state to NMI_EXECUTING (what we want it to
  362. * be when we are running). In this case, we simply jump back
  363. * to rerun the NMI handler again, and restart the 'latched' NMI.
  364. *
  365. * No trap (breakpoint or page fault) should be hit before nmi_restart,
  366. * thus there is no race between the first check of state for NOT_RUNNING
  367. * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
  368. * at this point.
  369. *
  370. * In case the NMI takes a page fault, we need to save off the CR2
  371. * because the NMI could have preempted another page fault and corrupt
  372. * the CR2 that is about to be read. As nested NMIs must be restarted
  373. * and they can not take breakpoints or page faults, the update of the
  374. * CR2 must be done before converting the nmi state back to NOT_RUNNING.
  375. * Otherwise, there would be a race of another nested NMI coming in
  376. * after setting state to NOT_RUNNING but before updating the nmi_cr2.
  377. */
  378. enum nmi_states {
  379. NMI_NOT_RUNNING = 0,
  380. NMI_EXECUTING,
  381. NMI_LATCHED,
  382. };
  383. static DEFINE_PER_CPU(enum nmi_states, nmi_state);
  384. static DEFINE_PER_CPU(unsigned long, nmi_cr2);
  385. #define nmi_nesting_preprocess(regs) \
  386. do { \
  387. if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
  388. this_cpu_write(nmi_state, NMI_LATCHED); \
  389. return; \
  390. } \
  391. this_cpu_write(nmi_state, NMI_EXECUTING); \
  392. this_cpu_write(nmi_cr2, read_cr2()); \
  393. } while (0); \
  394. nmi_restart:
  395. #define nmi_nesting_postprocess() \
  396. do { \
  397. if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
  398. write_cr2(this_cpu_read(nmi_cr2)); \
  399. if (this_cpu_dec_return(nmi_state)) \
  400. goto nmi_restart; \
  401. } while (0)
  402. #else /* x86_64 */
  403. /*
  404. * In x86_64 things are a bit more difficult. This has the same problem
  405. * where an NMI hitting a breakpoint that calls iret will remove the
  406. * NMI context, allowing a nested NMI to enter. What makes this more
  407. * difficult is that both NMIs and breakpoints have their own stack.
  408. * When a new NMI or breakpoint is executed, the stack is set to a fixed
  409. * point. If an NMI is nested, it will have its stack set at that same
  410. * fixed address that the first NMI had, and will start corrupting the
  411. * stack. This is handled in entry_64.S, but the same problem exists with
  412. * the breakpoint stack.
  413. *
  414. * If a breakpoint is being processed, and the debug stack is being used,
  415. * if an NMI comes in and also hits a breakpoint, the stack pointer
  416. * will be set to the same fixed address as the breakpoint that was
  417. * interrupted, causing that stack to be corrupted. To handle this case,
  418. * check if the stack that was interrupted is the debug stack, and if
  419. * so, change the IDT so that new breakpoints will use the current stack
  420. * and not switch to the fixed address. On return of the NMI, switch back
  421. * to the original IDT.
  422. */
  423. static DEFINE_PER_CPU(int, update_debug_stack);
  424. static inline void nmi_nesting_preprocess(struct pt_regs *regs)
  425. {
  426. /*
  427. * If we interrupted a breakpoint, it is possible that
  428. * the nmi handler will have breakpoints too. We need to
  429. * change the IDT such that breakpoints that happen here
  430. * continue to use the NMI stack.
  431. */
  432. if (unlikely(is_debug_stack(regs->sp))) {
  433. debug_stack_set_zero();
  434. this_cpu_write(update_debug_stack, 1);
  435. }
  436. }
  437. static inline void nmi_nesting_postprocess(void)
  438. {
  439. if (unlikely(this_cpu_read(update_debug_stack))) {
  440. debug_stack_reset();
  441. this_cpu_write(update_debug_stack, 0);
  442. }
  443. }
  444. #endif
  445. dotraplinkage notrace __kprobes void
  446. do_nmi(struct pt_regs *regs, long error_code)
  447. {
  448. nmi_nesting_preprocess(regs);
  449. nmi_enter();
  450. inc_irq_stat(__nmi_count);
  451. if (!ignore_nmis)
  452. default_do_nmi(regs);
  453. nmi_exit();
  454. /* On i386, may loop back to preprocess */
  455. nmi_nesting_postprocess();
  456. }
  457. void stop_nmi(void)
  458. {
  459. ignore_nmis++;
  460. }
  461. void restart_nmi(void)
  462. {
  463. ignore_nmis--;
  464. }
  465. /* reset the back-to-back NMI logic */
  466. void local_touch_nmi(void)
  467. {
  468. __this_cpu_write(last_nmi_rip, 0);
  469. }
  470. EXPORT_SYMBOL_GPL(local_touch_nmi);