direct.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/nfs_fs.h>
  47. #include <linux/nfs_page.h>
  48. #include <linux/sunrpc/clnt.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/atomic.h>
  52. #include "internal.h"
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static struct kmem_cache *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /**
  90. * nfs_direct_IO - NFS address space operation for direct I/O
  91. * @rw: direction (read or write)
  92. * @iocb: target I/O control block
  93. * @iov: array of vectors that define I/O buffer
  94. * @pos: offset in file to begin the operation
  95. * @nr_segs: size of iovec array
  96. *
  97. * The presence of this routine in the address space ops vector means
  98. * the NFS client supports direct I/O. However, we shunt off direct
  99. * read and write requests before the VFS gets them, so this method
  100. * should never be called.
  101. */
  102. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  103. {
  104. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  105. iocb->ki_filp->f_path.dentry->d_name.name,
  106. (long long) pos, nr_segs);
  107. return -EINVAL;
  108. }
  109. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  110. {
  111. unsigned int npages;
  112. unsigned int i;
  113. if (count == 0)
  114. return;
  115. pages += (pgbase >> PAGE_SHIFT);
  116. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  117. for (i = 0; i < npages; i++) {
  118. struct page *page = pages[i];
  119. if (!PageCompound(page))
  120. set_page_dirty(page);
  121. }
  122. }
  123. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  124. {
  125. unsigned int i;
  126. for (i = 0; i < npages; i++)
  127. page_cache_release(pages[i]);
  128. }
  129. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  130. {
  131. struct nfs_direct_req *dreq;
  132. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  133. if (!dreq)
  134. return NULL;
  135. kref_init(&dreq->kref);
  136. kref_get(&dreq->kref);
  137. init_completion(&dreq->completion);
  138. INIT_LIST_HEAD(&dreq->rewrite_list);
  139. dreq->iocb = NULL;
  140. dreq->ctx = NULL;
  141. spin_lock_init(&dreq->lock);
  142. atomic_set(&dreq->io_count, 0);
  143. dreq->count = 0;
  144. dreq->error = 0;
  145. dreq->flags = 0;
  146. return dreq;
  147. }
  148. static void nfs_direct_req_free(struct kref *kref)
  149. {
  150. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  151. if (dreq->ctx != NULL)
  152. put_nfs_open_context(dreq->ctx);
  153. kmem_cache_free(nfs_direct_cachep, dreq);
  154. }
  155. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  156. {
  157. kref_put(&dreq->kref, nfs_direct_req_free);
  158. }
  159. /*
  160. * Collects and returns the final error value/byte-count.
  161. */
  162. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  163. {
  164. ssize_t result = -EIOCBQUEUED;
  165. /* Async requests don't wait here */
  166. if (dreq->iocb)
  167. goto out;
  168. result = wait_for_completion_killable(&dreq->completion);
  169. if (!result)
  170. result = dreq->error;
  171. if (!result)
  172. result = dreq->count;
  173. out:
  174. return (ssize_t) result;
  175. }
  176. /*
  177. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  178. * the iocb is still valid here if this is a synchronous request.
  179. */
  180. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  181. {
  182. if (dreq->iocb) {
  183. long res = (long) dreq->error;
  184. if (!res)
  185. res = (long) dreq->count;
  186. aio_complete(dreq->iocb, res, 0);
  187. }
  188. complete_all(&dreq->completion);
  189. nfs_direct_req_release(dreq);
  190. }
  191. /*
  192. * We must hold a reference to all the pages in this direct read request
  193. * until the RPCs complete. This could be long *after* we are woken up in
  194. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  195. */
  196. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  197. {
  198. struct nfs_read_data *data = calldata;
  199. nfs_readpage_result(task, data);
  200. }
  201. static void nfs_direct_read_release(void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  205. int status = data->task.tk_status;
  206. spin_lock(&dreq->lock);
  207. if (unlikely(status < 0)) {
  208. dreq->error = status;
  209. spin_unlock(&dreq->lock);
  210. } else {
  211. dreq->count += data->res.count;
  212. spin_unlock(&dreq->lock);
  213. nfs_direct_dirty_pages(data->pagevec,
  214. data->args.pgbase,
  215. data->res.count);
  216. }
  217. nfs_direct_release_pages(data->pagevec, data->npages);
  218. if (put_dreq(dreq))
  219. nfs_direct_complete(dreq);
  220. nfs_readdata_release(calldata);
  221. }
  222. static const struct rpc_call_ops nfs_read_direct_ops = {
  223. .rpc_call_done = nfs_direct_read_result,
  224. .rpc_release = nfs_direct_read_release,
  225. };
  226. /*
  227. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  228. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  229. * bail and stop sending more reads. Read length accounting is
  230. * handled automatically by nfs_direct_read_result(). Otherwise, if
  231. * no requests have been sent, just return an error.
  232. */
  233. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  234. const struct iovec *iov,
  235. loff_t pos)
  236. {
  237. struct nfs_open_context *ctx = dreq->ctx;
  238. struct inode *inode = ctx->path.dentry->d_inode;
  239. unsigned long user_addr = (unsigned long)iov->iov_base;
  240. size_t count = iov->iov_len;
  241. size_t rsize = NFS_SERVER(inode)->rsize;
  242. struct rpc_task *task;
  243. struct rpc_message msg = {
  244. .rpc_cred = ctx->cred,
  245. };
  246. struct rpc_task_setup task_setup_data = {
  247. .rpc_client = NFS_CLIENT(inode),
  248. .rpc_message = &msg,
  249. .callback_ops = &nfs_read_direct_ops,
  250. .workqueue = nfsiod_workqueue,
  251. .flags = RPC_TASK_ASYNC,
  252. };
  253. unsigned int pgbase;
  254. int result;
  255. ssize_t started = 0;
  256. do {
  257. struct nfs_read_data *data;
  258. size_t bytes;
  259. pgbase = user_addr & ~PAGE_MASK;
  260. bytes = min(rsize,count);
  261. result = -ENOMEM;
  262. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  263. if (unlikely(!data))
  264. break;
  265. down_read(&current->mm->mmap_sem);
  266. result = get_user_pages(current, current->mm, user_addr,
  267. data->npages, 1, 0, data->pagevec, NULL);
  268. up_read(&current->mm->mmap_sem);
  269. if (result < 0) {
  270. nfs_readdata_release(data);
  271. break;
  272. }
  273. if ((unsigned)result < data->npages) {
  274. bytes = result * PAGE_SIZE;
  275. if (bytes <= pgbase) {
  276. nfs_direct_release_pages(data->pagevec, result);
  277. nfs_readdata_release(data);
  278. break;
  279. }
  280. bytes -= pgbase;
  281. data->npages = result;
  282. }
  283. get_dreq(dreq);
  284. data->req = (struct nfs_page *) dreq;
  285. data->inode = inode;
  286. data->cred = msg.rpc_cred;
  287. data->args.fh = NFS_FH(inode);
  288. data->args.context = get_nfs_open_context(ctx);
  289. data->args.offset = pos;
  290. data->args.pgbase = pgbase;
  291. data->args.pages = data->pagevec;
  292. data->args.count = bytes;
  293. data->res.fattr = &data->fattr;
  294. data->res.eof = 0;
  295. data->res.count = bytes;
  296. msg.rpc_argp = &data->args;
  297. msg.rpc_resp = &data->res;
  298. task_setup_data.task = &data->task;
  299. task_setup_data.callback_data = data;
  300. NFS_PROTO(inode)->read_setup(data, &msg);
  301. task = rpc_run_task(&task_setup_data);
  302. if (!IS_ERR(task))
  303. rpc_put_task(task);
  304. dprintk("NFS: %5u initiated direct read call "
  305. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  306. data->task.tk_pid,
  307. inode->i_sb->s_id,
  308. (long long)NFS_FILEID(inode),
  309. bytes,
  310. (unsigned long long)data->args.offset);
  311. started += bytes;
  312. user_addr += bytes;
  313. pos += bytes;
  314. /* FIXME: Remove this unnecessary math from final patch */
  315. pgbase += bytes;
  316. pgbase &= ~PAGE_MASK;
  317. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  318. count -= bytes;
  319. } while (count != 0);
  320. if (started)
  321. return started;
  322. return result < 0 ? (ssize_t) result : -EFAULT;
  323. }
  324. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  325. const struct iovec *iov,
  326. unsigned long nr_segs,
  327. loff_t pos)
  328. {
  329. ssize_t result = -EINVAL;
  330. size_t requested_bytes = 0;
  331. unsigned long seg;
  332. get_dreq(dreq);
  333. for (seg = 0; seg < nr_segs; seg++) {
  334. const struct iovec *vec = &iov[seg];
  335. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  336. if (result < 0)
  337. break;
  338. requested_bytes += result;
  339. if ((size_t)result < vec->iov_len)
  340. break;
  341. pos += vec->iov_len;
  342. }
  343. if (put_dreq(dreq))
  344. nfs_direct_complete(dreq);
  345. if (requested_bytes != 0)
  346. return 0;
  347. if (result < 0)
  348. return result;
  349. return -EIO;
  350. }
  351. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  352. unsigned long nr_segs, loff_t pos)
  353. {
  354. ssize_t result = 0;
  355. struct inode *inode = iocb->ki_filp->f_mapping->host;
  356. struct nfs_direct_req *dreq;
  357. dreq = nfs_direct_req_alloc();
  358. if (!dreq)
  359. return -ENOMEM;
  360. dreq->inode = inode;
  361. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  362. if (!is_sync_kiocb(iocb))
  363. dreq->iocb = iocb;
  364. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  365. if (!result)
  366. result = nfs_direct_wait(dreq);
  367. nfs_direct_req_release(dreq);
  368. return result;
  369. }
  370. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  371. {
  372. while (!list_empty(&dreq->rewrite_list)) {
  373. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  374. list_del(&data->pages);
  375. nfs_direct_release_pages(data->pagevec, data->npages);
  376. nfs_writedata_release(data);
  377. }
  378. }
  379. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  380. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  381. {
  382. struct inode *inode = dreq->inode;
  383. struct list_head *p;
  384. struct nfs_write_data *data;
  385. struct rpc_task *task;
  386. struct rpc_message msg = {
  387. .rpc_cred = dreq->ctx->cred,
  388. };
  389. struct rpc_task_setup task_setup_data = {
  390. .rpc_client = NFS_CLIENT(inode),
  391. .callback_ops = &nfs_write_direct_ops,
  392. .workqueue = nfsiod_workqueue,
  393. .flags = RPC_TASK_ASYNC,
  394. };
  395. dreq->count = 0;
  396. get_dreq(dreq);
  397. list_for_each(p, &dreq->rewrite_list) {
  398. data = list_entry(p, struct nfs_write_data, pages);
  399. get_dreq(dreq);
  400. /* Use stable writes */
  401. data->args.stable = NFS_FILE_SYNC;
  402. /*
  403. * Reset data->res.
  404. */
  405. nfs_fattr_init(&data->fattr);
  406. data->res.count = data->args.count;
  407. memset(&data->verf, 0, sizeof(data->verf));
  408. /*
  409. * Reuse data->task; data->args should not have changed
  410. * since the original request was sent.
  411. */
  412. task_setup_data.task = &data->task;
  413. task_setup_data.callback_data = data;
  414. msg.rpc_argp = &data->args;
  415. msg.rpc_resp = &data->res;
  416. NFS_PROTO(inode)->write_setup(data, &msg);
  417. /*
  418. * We're called via an RPC callback, so BKL is already held.
  419. */
  420. task = rpc_run_task(&task_setup_data);
  421. if (!IS_ERR(task))
  422. rpc_put_task(task);
  423. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  424. data->task.tk_pid,
  425. inode->i_sb->s_id,
  426. (long long)NFS_FILEID(inode),
  427. data->args.count,
  428. (unsigned long long)data->args.offset);
  429. }
  430. if (put_dreq(dreq))
  431. nfs_direct_write_complete(dreq, inode);
  432. }
  433. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  434. {
  435. struct nfs_write_data *data = calldata;
  436. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  437. /* Call the NFS version-specific code */
  438. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  439. return;
  440. if (unlikely(task->tk_status < 0)) {
  441. dprintk("NFS: %5u commit failed with error %d.\n",
  442. task->tk_pid, task->tk_status);
  443. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  444. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  445. dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
  446. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  447. }
  448. dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
  449. nfs_direct_write_complete(dreq, data->inode);
  450. }
  451. static const struct rpc_call_ops nfs_commit_direct_ops = {
  452. .rpc_call_done = nfs_direct_commit_result,
  453. .rpc_release = nfs_commit_release,
  454. };
  455. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  456. {
  457. struct nfs_write_data *data = dreq->commit_data;
  458. struct rpc_task *task;
  459. struct rpc_message msg = {
  460. .rpc_argp = &data->args,
  461. .rpc_resp = &data->res,
  462. .rpc_cred = dreq->ctx->cred,
  463. };
  464. struct rpc_task_setup task_setup_data = {
  465. .task = &data->task,
  466. .rpc_client = NFS_CLIENT(dreq->inode),
  467. .rpc_message = &msg,
  468. .callback_ops = &nfs_commit_direct_ops,
  469. .callback_data = data,
  470. .workqueue = nfsiod_workqueue,
  471. .flags = RPC_TASK_ASYNC,
  472. };
  473. data->inode = dreq->inode;
  474. data->cred = msg.rpc_cred;
  475. data->args.fh = NFS_FH(data->inode);
  476. data->args.offset = 0;
  477. data->args.count = 0;
  478. data->args.context = get_nfs_open_context(dreq->ctx);
  479. data->res.count = 0;
  480. data->res.fattr = &data->fattr;
  481. data->res.verf = &data->verf;
  482. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  483. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  484. dreq->commit_data = NULL;
  485. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  486. task = rpc_run_task(&task_setup_data);
  487. if (!IS_ERR(task))
  488. rpc_put_task(task);
  489. }
  490. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  491. {
  492. int flags = dreq->flags;
  493. dreq->flags = 0;
  494. switch (flags) {
  495. case NFS_ODIRECT_DO_COMMIT:
  496. nfs_direct_commit_schedule(dreq);
  497. break;
  498. case NFS_ODIRECT_RESCHED_WRITES:
  499. nfs_direct_write_reschedule(dreq);
  500. break;
  501. default:
  502. if (dreq->commit_data != NULL)
  503. nfs_commit_free(dreq->commit_data);
  504. nfs_direct_free_writedata(dreq);
  505. nfs_zap_mapping(inode, inode->i_mapping);
  506. nfs_direct_complete(dreq);
  507. }
  508. }
  509. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  510. {
  511. dreq->commit_data = nfs_commit_alloc();
  512. if (dreq->commit_data != NULL)
  513. dreq->commit_data->req = (struct nfs_page *) dreq;
  514. }
  515. #else
  516. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  517. {
  518. dreq->commit_data = NULL;
  519. }
  520. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  521. {
  522. nfs_direct_free_writedata(dreq);
  523. nfs_zap_mapping(inode, inode->i_mapping);
  524. nfs_direct_complete(dreq);
  525. }
  526. #endif
  527. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  528. {
  529. struct nfs_write_data *data = calldata;
  530. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  531. int status = task->tk_status;
  532. if (nfs_writeback_done(task, data) != 0)
  533. return;
  534. spin_lock(&dreq->lock);
  535. if (unlikely(status < 0)) {
  536. /* An error has occurred, so we should not commit */
  537. dreq->flags = 0;
  538. dreq->error = status;
  539. }
  540. if (unlikely(dreq->error != 0))
  541. goto out_unlock;
  542. dreq->count += data->res.count;
  543. if (data->res.verf->committed != NFS_FILE_SYNC) {
  544. switch (dreq->flags) {
  545. case 0:
  546. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  547. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  548. break;
  549. case NFS_ODIRECT_DO_COMMIT:
  550. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  551. dprintk("NFS: %5u write verify failed\n", task->tk_pid);
  552. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  553. }
  554. }
  555. }
  556. out_unlock:
  557. spin_unlock(&dreq->lock);
  558. }
  559. /*
  560. * NB: Return the value of the first error return code. Subsequent
  561. * errors after the first one are ignored.
  562. */
  563. static void nfs_direct_write_release(void *calldata)
  564. {
  565. struct nfs_write_data *data = calldata;
  566. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  567. if (put_dreq(dreq))
  568. nfs_direct_write_complete(dreq, data->inode);
  569. }
  570. static const struct rpc_call_ops nfs_write_direct_ops = {
  571. .rpc_call_done = nfs_direct_write_result,
  572. .rpc_release = nfs_direct_write_release,
  573. };
  574. /*
  575. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  576. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  577. * bail and stop sending more writes. Write length accounting is
  578. * handled automatically by nfs_direct_write_result(). Otherwise, if
  579. * no requests have been sent, just return an error.
  580. */
  581. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  582. const struct iovec *iov,
  583. loff_t pos, int sync)
  584. {
  585. struct nfs_open_context *ctx = dreq->ctx;
  586. struct inode *inode = ctx->path.dentry->d_inode;
  587. unsigned long user_addr = (unsigned long)iov->iov_base;
  588. size_t count = iov->iov_len;
  589. struct rpc_task *task;
  590. struct rpc_message msg = {
  591. .rpc_cred = ctx->cred,
  592. };
  593. struct rpc_task_setup task_setup_data = {
  594. .rpc_client = NFS_CLIENT(inode),
  595. .rpc_message = &msg,
  596. .callback_ops = &nfs_write_direct_ops,
  597. .workqueue = nfsiod_workqueue,
  598. .flags = RPC_TASK_ASYNC,
  599. };
  600. size_t wsize = NFS_SERVER(inode)->wsize;
  601. unsigned int pgbase;
  602. int result;
  603. ssize_t started = 0;
  604. do {
  605. struct nfs_write_data *data;
  606. size_t bytes;
  607. pgbase = user_addr & ~PAGE_MASK;
  608. bytes = min(wsize,count);
  609. result = -ENOMEM;
  610. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  611. if (unlikely(!data))
  612. break;
  613. down_read(&current->mm->mmap_sem);
  614. result = get_user_pages(current, current->mm, user_addr,
  615. data->npages, 0, 0, data->pagevec, NULL);
  616. up_read(&current->mm->mmap_sem);
  617. if (result < 0) {
  618. nfs_writedata_release(data);
  619. break;
  620. }
  621. if ((unsigned)result < data->npages) {
  622. bytes = result * PAGE_SIZE;
  623. if (bytes <= pgbase) {
  624. nfs_direct_release_pages(data->pagevec, result);
  625. nfs_writedata_release(data);
  626. break;
  627. }
  628. bytes -= pgbase;
  629. data->npages = result;
  630. }
  631. get_dreq(dreq);
  632. list_move_tail(&data->pages, &dreq->rewrite_list);
  633. data->req = (struct nfs_page *) dreq;
  634. data->inode = inode;
  635. data->cred = msg.rpc_cred;
  636. data->args.fh = NFS_FH(inode);
  637. data->args.context = get_nfs_open_context(ctx);
  638. data->args.offset = pos;
  639. data->args.pgbase = pgbase;
  640. data->args.pages = data->pagevec;
  641. data->args.count = bytes;
  642. data->args.stable = sync;
  643. data->res.fattr = &data->fattr;
  644. data->res.count = bytes;
  645. data->res.verf = &data->verf;
  646. task_setup_data.task = &data->task;
  647. task_setup_data.callback_data = data;
  648. msg.rpc_argp = &data->args;
  649. msg.rpc_resp = &data->res;
  650. NFS_PROTO(inode)->write_setup(data, &msg);
  651. task = rpc_run_task(&task_setup_data);
  652. if (!IS_ERR(task))
  653. rpc_put_task(task);
  654. dprintk("NFS: %5u initiated direct write call "
  655. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  656. data->task.tk_pid,
  657. inode->i_sb->s_id,
  658. (long long)NFS_FILEID(inode),
  659. bytes,
  660. (unsigned long long)data->args.offset);
  661. started += bytes;
  662. user_addr += bytes;
  663. pos += bytes;
  664. /* FIXME: Remove this useless math from the final patch */
  665. pgbase += bytes;
  666. pgbase &= ~PAGE_MASK;
  667. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  668. count -= bytes;
  669. } while (count != 0);
  670. if (started)
  671. return started;
  672. return result < 0 ? (ssize_t) result : -EFAULT;
  673. }
  674. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  675. const struct iovec *iov,
  676. unsigned long nr_segs,
  677. loff_t pos, int sync)
  678. {
  679. ssize_t result = 0;
  680. size_t requested_bytes = 0;
  681. unsigned long seg;
  682. get_dreq(dreq);
  683. for (seg = 0; seg < nr_segs; seg++) {
  684. const struct iovec *vec = &iov[seg];
  685. result = nfs_direct_write_schedule_segment(dreq, vec,
  686. pos, sync);
  687. if (result < 0)
  688. break;
  689. requested_bytes += result;
  690. if ((size_t)result < vec->iov_len)
  691. break;
  692. pos += vec->iov_len;
  693. }
  694. if (put_dreq(dreq))
  695. nfs_direct_write_complete(dreq, dreq->inode);
  696. if (requested_bytes != 0)
  697. return 0;
  698. if (result < 0)
  699. return result;
  700. return -EIO;
  701. }
  702. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  703. unsigned long nr_segs, loff_t pos,
  704. size_t count)
  705. {
  706. ssize_t result = 0;
  707. struct inode *inode = iocb->ki_filp->f_mapping->host;
  708. struct nfs_direct_req *dreq;
  709. size_t wsize = NFS_SERVER(inode)->wsize;
  710. int sync = NFS_UNSTABLE;
  711. dreq = nfs_direct_req_alloc();
  712. if (!dreq)
  713. return -ENOMEM;
  714. nfs_alloc_commit_data(dreq);
  715. if (dreq->commit_data == NULL || count < wsize)
  716. sync = NFS_FILE_SYNC;
  717. dreq->inode = inode;
  718. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  719. if (!is_sync_kiocb(iocb))
  720. dreq->iocb = iocb;
  721. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  722. if (!result)
  723. result = nfs_direct_wait(dreq);
  724. nfs_direct_req_release(dreq);
  725. return result;
  726. }
  727. /**
  728. * nfs_file_direct_read - file direct read operation for NFS files
  729. * @iocb: target I/O control block
  730. * @iov: vector of user buffers into which to read data
  731. * @nr_segs: size of iov vector
  732. * @pos: byte offset in file where reading starts
  733. *
  734. * We use this function for direct reads instead of calling
  735. * generic_file_aio_read() in order to avoid gfar's check to see if
  736. * the request starts before the end of the file. For that check
  737. * to work, we must generate a GETATTR before each direct read, and
  738. * even then there is a window between the GETATTR and the subsequent
  739. * READ where the file size could change. Our preference is simply
  740. * to do all reads the application wants, and the server will take
  741. * care of managing the end of file boundary.
  742. *
  743. * This function also eliminates unnecessarily updating the file's
  744. * atime locally, as the NFS server sets the file's atime, and this
  745. * client must read the updated atime from the server back into its
  746. * cache.
  747. */
  748. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  749. unsigned long nr_segs, loff_t pos)
  750. {
  751. ssize_t retval = -EINVAL;
  752. struct file *file = iocb->ki_filp;
  753. struct address_space *mapping = file->f_mapping;
  754. size_t count;
  755. count = iov_length(iov, nr_segs);
  756. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  757. dprintk("nfs: direct read(%s/%s, %zd@%Ld)\n",
  758. file->f_path.dentry->d_parent->d_name.name,
  759. file->f_path.dentry->d_name.name,
  760. count, (long long) pos);
  761. retval = 0;
  762. if (!count)
  763. goto out;
  764. retval = nfs_sync_mapping(mapping);
  765. if (retval)
  766. goto out;
  767. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  768. if (retval > 0)
  769. iocb->ki_pos = pos + retval;
  770. out:
  771. return retval;
  772. }
  773. /**
  774. * nfs_file_direct_write - file direct write operation for NFS files
  775. * @iocb: target I/O control block
  776. * @iov: vector of user buffers from which to write data
  777. * @nr_segs: size of iov vector
  778. * @pos: byte offset in file where writing starts
  779. *
  780. * We use this function for direct writes instead of calling
  781. * generic_file_aio_write() in order to avoid taking the inode
  782. * semaphore and updating the i_size. The NFS server will set
  783. * the new i_size and this client must read the updated size
  784. * back into its cache. We let the server do generic write
  785. * parameter checking and report problems.
  786. *
  787. * We also avoid an unnecessary invocation of generic_osync_inode(),
  788. * as it is fairly meaningless to sync the metadata of an NFS file.
  789. *
  790. * We eliminate local atime updates, see direct read above.
  791. *
  792. * We avoid unnecessary page cache invalidations for normal cached
  793. * readers of this file.
  794. *
  795. * Note that O_APPEND is not supported for NFS direct writes, as there
  796. * is no atomic O_APPEND write facility in the NFS protocol.
  797. */
  798. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  799. unsigned long nr_segs, loff_t pos)
  800. {
  801. ssize_t retval = -EINVAL;
  802. struct file *file = iocb->ki_filp;
  803. struct address_space *mapping = file->f_mapping;
  804. size_t count;
  805. count = iov_length(iov, nr_segs);
  806. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  807. dfprintk(VFS, "nfs: direct write(%s/%s, %zd@%Ld)\n",
  808. file->f_path.dentry->d_parent->d_name.name,
  809. file->f_path.dentry->d_name.name,
  810. count, (long long) pos);
  811. retval = generic_write_checks(file, &pos, &count, 0);
  812. if (retval)
  813. goto out;
  814. retval = -EINVAL;
  815. if ((ssize_t) count < 0)
  816. goto out;
  817. retval = 0;
  818. if (!count)
  819. goto out;
  820. retval = nfs_sync_mapping(mapping);
  821. if (retval)
  822. goto out;
  823. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  824. if (retval > 0)
  825. iocb->ki_pos = pos + retval;
  826. out:
  827. return retval;
  828. }
  829. /**
  830. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  831. *
  832. */
  833. int __init nfs_init_directcache(void)
  834. {
  835. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  836. sizeof(struct nfs_direct_req),
  837. 0, (SLAB_RECLAIM_ACCOUNT|
  838. SLAB_MEM_SPREAD),
  839. NULL);
  840. if (nfs_direct_cachep == NULL)
  841. return -ENOMEM;
  842. return 0;
  843. }
  844. /**
  845. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  846. *
  847. */
  848. void nfs_destroy_directcache(void)
  849. {
  850. kmem_cache_destroy(nfs_direct_cachep);
  851. }