inode.c 140 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  16. * (jj@sunsite.ms.mff.cuni.cz)
  17. *
  18. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19. */
  20. #include <linux/fs.h>
  21. #include <linux/time.h>
  22. #include <linux/jbd2.h>
  23. #include <linux/highuid.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/string.h>
  27. #include <linux/buffer_head.h>
  28. #include <linux/writeback.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/mpage.h>
  31. #include <linux/namei.h>
  32. #include <linux/uio.h>
  33. #include <linux/bio.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/kernel.h>
  36. #include <linux/printk.h>
  37. #include <linux/slab.h>
  38. #include <linux/ratelimit.h>
  39. #include "ext4_jbd2.h"
  40. #include "xattr.h"
  41. #include "acl.h"
  42. #include "truncate.h"
  43. #include <trace/events/ext4.h>
  44. #define MPAGE_DA_EXTENT_TAIL 0x01
  45. static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  46. struct ext4_inode_info *ei)
  47. {
  48. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  49. __u16 csum_lo;
  50. __u16 csum_hi = 0;
  51. __u32 csum;
  52. csum_lo = raw->i_checksum_lo;
  53. raw->i_checksum_lo = 0;
  54. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  55. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  56. csum_hi = raw->i_checksum_hi;
  57. raw->i_checksum_hi = 0;
  58. }
  59. csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  60. EXT4_INODE_SIZE(inode->i_sb));
  61. raw->i_checksum_lo = csum_lo;
  62. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  64. raw->i_checksum_hi = csum_hi;
  65. return csum;
  66. }
  67. static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  68. struct ext4_inode_info *ei)
  69. {
  70. __u32 provided, calculated;
  71. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  72. cpu_to_le32(EXT4_OS_LINUX) ||
  73. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  74. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  75. return 1;
  76. provided = le16_to_cpu(raw->i_checksum_lo);
  77. calculated = ext4_inode_csum(inode, raw, ei);
  78. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  79. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  80. provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  81. else
  82. calculated &= 0xFFFF;
  83. return provided == calculated;
  84. }
  85. static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  86. struct ext4_inode_info *ei)
  87. {
  88. __u32 csum;
  89. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90. cpu_to_le32(EXT4_OS_LINUX) ||
  91. !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  92. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  93. return;
  94. csum = ext4_inode_csum(inode, raw, ei);
  95. raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
  96. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97. EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98. raw->i_checksum_hi = cpu_to_le16(csum >> 16);
  99. }
  100. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  101. loff_t new_size)
  102. {
  103. trace_ext4_begin_ordered_truncate(inode, new_size);
  104. /*
  105. * If jinode is zero, then we never opened the file for
  106. * writing, so there's no need to call
  107. * jbd2_journal_begin_ordered_truncate() since there's no
  108. * outstanding writes we need to flush.
  109. */
  110. if (!EXT4_I(inode)->jinode)
  111. return 0;
  112. return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  113. EXT4_I(inode)->jinode,
  114. new_size);
  115. }
  116. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  117. static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  118. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  119. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  120. struct inode *inode, struct page *page, loff_t from,
  121. loff_t length, int flags);
  122. /*
  123. * Test whether an inode is a fast symlink.
  124. */
  125. static int ext4_inode_is_fast_symlink(struct inode *inode)
  126. {
  127. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  128. (inode->i_sb->s_blocksize >> 9) : 0;
  129. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  130. }
  131. /*
  132. * Restart the transaction associated with *handle. This does a commit,
  133. * so before we call here everything must be consistently dirtied against
  134. * this transaction.
  135. */
  136. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  137. int nblocks)
  138. {
  139. int ret;
  140. /*
  141. * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
  142. * moment, get_block can be called only for blocks inside i_size since
  143. * page cache has been already dropped and writes are blocked by
  144. * i_mutex. So we can safely drop the i_data_sem here.
  145. */
  146. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  147. jbd_debug(2, "restarting handle %p\n", handle);
  148. up_write(&EXT4_I(inode)->i_data_sem);
  149. ret = ext4_journal_restart(handle, nblocks);
  150. down_write(&EXT4_I(inode)->i_data_sem);
  151. ext4_discard_preallocations(inode);
  152. return ret;
  153. }
  154. /*
  155. * Called at the last iput() if i_nlink is zero.
  156. */
  157. void ext4_evict_inode(struct inode *inode)
  158. {
  159. handle_t *handle;
  160. int err;
  161. trace_ext4_evict_inode(inode);
  162. ext4_ioend_wait(inode);
  163. if (inode->i_nlink) {
  164. /*
  165. * When journalling data dirty buffers are tracked only in the
  166. * journal. So although mm thinks everything is clean and
  167. * ready for reaping the inode might still have some pages to
  168. * write in the running transaction or waiting to be
  169. * checkpointed. Thus calling jbd2_journal_invalidatepage()
  170. * (via truncate_inode_pages()) to discard these buffers can
  171. * cause data loss. Also even if we did not discard these
  172. * buffers, we would have no way to find them after the inode
  173. * is reaped and thus user could see stale data if he tries to
  174. * read them before the transaction is checkpointed. So be
  175. * careful and force everything to disk here... We use
  176. * ei->i_datasync_tid to store the newest transaction
  177. * containing inode's data.
  178. *
  179. * Note that directories do not have this problem because they
  180. * don't use page cache.
  181. */
  182. if (ext4_should_journal_data(inode) &&
  183. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  184. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  185. tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
  186. jbd2_log_start_commit(journal, commit_tid);
  187. jbd2_log_wait_commit(journal, commit_tid);
  188. filemap_write_and_wait(&inode->i_data);
  189. }
  190. truncate_inode_pages(&inode->i_data, 0);
  191. goto no_delete;
  192. }
  193. if (!is_bad_inode(inode))
  194. dquot_initialize(inode);
  195. if (ext4_should_order_data(inode))
  196. ext4_begin_ordered_truncate(inode, 0);
  197. truncate_inode_pages(&inode->i_data, 0);
  198. if (is_bad_inode(inode))
  199. goto no_delete;
  200. /*
  201. * Protect us against freezing - iput() caller didn't have to have any
  202. * protection against it
  203. */
  204. sb_start_intwrite(inode->i_sb);
  205. handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
  206. ext4_blocks_for_truncate(inode)+3);
  207. if (IS_ERR(handle)) {
  208. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  209. /*
  210. * If we're going to skip the normal cleanup, we still need to
  211. * make sure that the in-core orphan linked list is properly
  212. * cleaned up.
  213. */
  214. ext4_orphan_del(NULL, inode);
  215. sb_end_intwrite(inode->i_sb);
  216. goto no_delete;
  217. }
  218. if (IS_SYNC(inode))
  219. ext4_handle_sync(handle);
  220. inode->i_size = 0;
  221. err = ext4_mark_inode_dirty(handle, inode);
  222. if (err) {
  223. ext4_warning(inode->i_sb,
  224. "couldn't mark inode dirty (err %d)", err);
  225. goto stop_handle;
  226. }
  227. if (inode->i_blocks)
  228. ext4_truncate(inode);
  229. /*
  230. * ext4_ext_truncate() doesn't reserve any slop when it
  231. * restarts journal transactions; therefore there may not be
  232. * enough credits left in the handle to remove the inode from
  233. * the orphan list and set the dtime field.
  234. */
  235. if (!ext4_handle_has_enough_credits(handle, 3)) {
  236. err = ext4_journal_extend(handle, 3);
  237. if (err > 0)
  238. err = ext4_journal_restart(handle, 3);
  239. if (err != 0) {
  240. ext4_warning(inode->i_sb,
  241. "couldn't extend journal (err %d)", err);
  242. stop_handle:
  243. ext4_journal_stop(handle);
  244. ext4_orphan_del(NULL, inode);
  245. sb_end_intwrite(inode->i_sb);
  246. goto no_delete;
  247. }
  248. }
  249. /*
  250. * Kill off the orphan record which ext4_truncate created.
  251. * AKPM: I think this can be inside the above `if'.
  252. * Note that ext4_orphan_del() has to be able to cope with the
  253. * deletion of a non-existent orphan - this is because we don't
  254. * know if ext4_truncate() actually created an orphan record.
  255. * (Well, we could do this if we need to, but heck - it works)
  256. */
  257. ext4_orphan_del(handle, inode);
  258. EXT4_I(inode)->i_dtime = get_seconds();
  259. /*
  260. * One subtle ordering requirement: if anything has gone wrong
  261. * (transaction abort, IO errors, whatever), then we can still
  262. * do these next steps (the fs will already have been marked as
  263. * having errors), but we can't free the inode if the mark_dirty
  264. * fails.
  265. */
  266. if (ext4_mark_inode_dirty(handle, inode))
  267. /* If that failed, just do the required in-core inode clear. */
  268. ext4_clear_inode(inode);
  269. else
  270. ext4_free_inode(handle, inode);
  271. ext4_journal_stop(handle);
  272. sb_end_intwrite(inode->i_sb);
  273. return;
  274. no_delete:
  275. ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
  276. }
  277. #ifdef CONFIG_QUOTA
  278. qsize_t *ext4_get_reserved_space(struct inode *inode)
  279. {
  280. return &EXT4_I(inode)->i_reserved_quota;
  281. }
  282. #endif
  283. /*
  284. * Calculate the number of metadata blocks need to reserve
  285. * to allocate a block located at @lblock
  286. */
  287. static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
  288. {
  289. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  290. return ext4_ext_calc_metadata_amount(inode, lblock);
  291. return ext4_ind_calc_metadata_amount(inode, lblock);
  292. }
  293. /*
  294. * Called with i_data_sem down, which is important since we can call
  295. * ext4_discard_preallocations() from here.
  296. */
  297. void ext4_da_update_reserve_space(struct inode *inode,
  298. int used, int quota_claim)
  299. {
  300. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  301. struct ext4_inode_info *ei = EXT4_I(inode);
  302. spin_lock(&ei->i_block_reservation_lock);
  303. trace_ext4_da_update_reserve_space(inode, used, quota_claim);
  304. if (unlikely(used > ei->i_reserved_data_blocks)) {
  305. ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
  306. "with only %d reserved data blocks",
  307. __func__, inode->i_ino, used,
  308. ei->i_reserved_data_blocks);
  309. WARN_ON(1);
  310. used = ei->i_reserved_data_blocks;
  311. }
  312. if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
  313. ext4_warning(inode->i_sb, "ino %lu, allocated %d "
  314. "with only %d reserved metadata blocks "
  315. "(releasing %d blocks with reserved %d data blocks)",
  316. inode->i_ino, ei->i_allocated_meta_blocks,
  317. ei->i_reserved_meta_blocks, used,
  318. ei->i_reserved_data_blocks);
  319. WARN_ON(1);
  320. ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
  321. }
  322. /* Update per-inode reservations */
  323. ei->i_reserved_data_blocks -= used;
  324. ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
  325. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  326. used + ei->i_allocated_meta_blocks);
  327. ei->i_allocated_meta_blocks = 0;
  328. if (ei->i_reserved_data_blocks == 0) {
  329. /*
  330. * We can release all of the reserved metadata blocks
  331. * only when we have written all of the delayed
  332. * allocation blocks.
  333. */
  334. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  335. ei->i_reserved_meta_blocks);
  336. ei->i_reserved_meta_blocks = 0;
  337. ei->i_da_metadata_calc_len = 0;
  338. }
  339. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  340. /* Update quota subsystem for data blocks */
  341. if (quota_claim)
  342. dquot_claim_block(inode, EXT4_C2B(sbi, used));
  343. else {
  344. /*
  345. * We did fallocate with an offset that is already delayed
  346. * allocated. So on delayed allocated writeback we should
  347. * not re-claim the quota for fallocated blocks.
  348. */
  349. dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
  350. }
  351. /*
  352. * If we have done all the pending block allocations and if
  353. * there aren't any writers on the inode, we can discard the
  354. * inode's preallocations.
  355. */
  356. if ((ei->i_reserved_data_blocks == 0) &&
  357. (atomic_read(&inode->i_writecount) == 0))
  358. ext4_discard_preallocations(inode);
  359. }
  360. static int __check_block_validity(struct inode *inode, const char *func,
  361. unsigned int line,
  362. struct ext4_map_blocks *map)
  363. {
  364. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
  365. map->m_len)) {
  366. ext4_error_inode(inode, func, line, map->m_pblk,
  367. "lblock %lu mapped to illegal pblock "
  368. "(length %d)", (unsigned long) map->m_lblk,
  369. map->m_len);
  370. return -EIO;
  371. }
  372. return 0;
  373. }
  374. #define check_block_validity(inode, map) \
  375. __check_block_validity((inode), __func__, __LINE__, (map))
  376. /*
  377. * Return the number of contiguous dirty pages in a given inode
  378. * starting at page frame idx.
  379. */
  380. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  381. unsigned int max_pages)
  382. {
  383. struct address_space *mapping = inode->i_mapping;
  384. pgoff_t index;
  385. struct pagevec pvec;
  386. pgoff_t num = 0;
  387. int i, nr_pages, done = 0;
  388. if (max_pages == 0)
  389. return 0;
  390. pagevec_init(&pvec, 0);
  391. while (!done) {
  392. index = idx;
  393. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  394. PAGECACHE_TAG_DIRTY,
  395. (pgoff_t)PAGEVEC_SIZE);
  396. if (nr_pages == 0)
  397. break;
  398. for (i = 0; i < nr_pages; i++) {
  399. struct page *page = pvec.pages[i];
  400. struct buffer_head *bh, *head;
  401. lock_page(page);
  402. if (unlikely(page->mapping != mapping) ||
  403. !PageDirty(page) ||
  404. PageWriteback(page) ||
  405. page->index != idx) {
  406. done = 1;
  407. unlock_page(page);
  408. break;
  409. }
  410. if (page_has_buffers(page)) {
  411. bh = head = page_buffers(page);
  412. do {
  413. if (!buffer_delay(bh) &&
  414. !buffer_unwritten(bh))
  415. done = 1;
  416. bh = bh->b_this_page;
  417. } while (!done && (bh != head));
  418. }
  419. unlock_page(page);
  420. if (done)
  421. break;
  422. idx++;
  423. num++;
  424. if (num >= max_pages) {
  425. done = 1;
  426. break;
  427. }
  428. }
  429. pagevec_release(&pvec);
  430. }
  431. return num;
  432. }
  433. /*
  434. * The ext4_map_blocks() function tries to look up the requested blocks,
  435. * and returns if the blocks are already mapped.
  436. *
  437. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  438. * and store the allocated blocks in the result buffer head and mark it
  439. * mapped.
  440. *
  441. * If file type is extents based, it will call ext4_ext_map_blocks(),
  442. * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
  443. * based files
  444. *
  445. * On success, it returns the number of blocks being mapped or allocate.
  446. * if create==0 and the blocks are pre-allocated and uninitialized block,
  447. * the result buffer head is unmapped. If the create ==1, it will make sure
  448. * the buffer head is mapped.
  449. *
  450. * It returns 0 if plain look up failed (blocks have not been allocated), in
  451. * that case, buffer head is unmapped
  452. *
  453. * It returns the error in case of allocation failure.
  454. */
  455. int ext4_map_blocks(handle_t *handle, struct inode *inode,
  456. struct ext4_map_blocks *map, int flags)
  457. {
  458. int retval;
  459. map->m_flags = 0;
  460. ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
  461. "logical block %lu\n", inode->i_ino, flags, map->m_len,
  462. (unsigned long) map->m_lblk);
  463. /*
  464. * Try to see if we can get the block without requesting a new
  465. * file system block.
  466. */
  467. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  468. down_read((&EXT4_I(inode)->i_data_sem));
  469. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  470. retval = ext4_ext_map_blocks(handle, inode, map, flags &
  471. EXT4_GET_BLOCKS_KEEP_SIZE);
  472. } else {
  473. retval = ext4_ind_map_blocks(handle, inode, map, flags &
  474. EXT4_GET_BLOCKS_KEEP_SIZE);
  475. }
  476. if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
  477. up_read((&EXT4_I(inode)->i_data_sem));
  478. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  479. int ret;
  480. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
  481. /* delayed alloc may be allocated by fallocate and
  482. * coverted to initialized by directIO.
  483. * we need to handle delayed extent here.
  484. */
  485. down_write((&EXT4_I(inode)->i_data_sem));
  486. goto delayed_mapped;
  487. }
  488. ret = check_block_validity(inode, map);
  489. if (ret != 0)
  490. return ret;
  491. }
  492. /* If it is only a block(s) look up */
  493. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  494. return retval;
  495. /*
  496. * Returns if the blocks have already allocated
  497. *
  498. * Note that if blocks have been preallocated
  499. * ext4_ext_get_block() returns the create = 0
  500. * with buffer head unmapped.
  501. */
  502. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
  503. return retval;
  504. /*
  505. * When we call get_blocks without the create flag, the
  506. * BH_Unwritten flag could have gotten set if the blocks
  507. * requested were part of a uninitialized extent. We need to
  508. * clear this flag now that we are committed to convert all or
  509. * part of the uninitialized extent to be an initialized
  510. * extent. This is because we need to avoid the combination
  511. * of BH_Unwritten and BH_Mapped flags being simultaneously
  512. * set on the buffer_head.
  513. */
  514. map->m_flags &= ~EXT4_MAP_UNWRITTEN;
  515. /*
  516. * New blocks allocate and/or writing to uninitialized extent
  517. * will possibly result in updating i_data, so we take
  518. * the write lock of i_data_sem, and call get_blocks()
  519. * with create == 1 flag.
  520. */
  521. down_write((&EXT4_I(inode)->i_data_sem));
  522. /*
  523. * if the caller is from delayed allocation writeout path
  524. * we have already reserved fs blocks for allocation
  525. * let the underlying get_block() function know to
  526. * avoid double accounting
  527. */
  528. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  529. ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  530. /*
  531. * We need to check for EXT4 here because migrate
  532. * could have changed the inode type in between
  533. */
  534. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  535. retval = ext4_ext_map_blocks(handle, inode, map, flags);
  536. } else {
  537. retval = ext4_ind_map_blocks(handle, inode, map, flags);
  538. if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
  539. /*
  540. * We allocated new blocks which will result in
  541. * i_data's format changing. Force the migrate
  542. * to fail by clearing migrate flags
  543. */
  544. ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
  545. }
  546. /*
  547. * Update reserved blocks/metadata blocks after successful
  548. * block allocation which had been deferred till now. We don't
  549. * support fallocate for non extent files. So we can update
  550. * reserve space here.
  551. */
  552. if ((retval > 0) &&
  553. (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
  554. ext4_da_update_reserve_space(inode, retval, 1);
  555. }
  556. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
  557. ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  558. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  559. int ret;
  560. delayed_mapped:
  561. /* delayed allocation blocks has been allocated */
  562. ret = ext4_es_remove_extent(inode, map->m_lblk,
  563. map->m_len);
  564. if (ret < 0)
  565. retval = ret;
  566. }
  567. }
  568. up_write((&EXT4_I(inode)->i_data_sem));
  569. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  570. int ret = check_block_validity(inode, map);
  571. if (ret != 0)
  572. return ret;
  573. }
  574. return retval;
  575. }
  576. /* Maximum number of blocks we map for direct IO at once. */
  577. #define DIO_MAX_BLOCKS 4096
  578. static int _ext4_get_block(struct inode *inode, sector_t iblock,
  579. struct buffer_head *bh, int flags)
  580. {
  581. handle_t *handle = ext4_journal_current_handle();
  582. struct ext4_map_blocks map;
  583. int ret = 0, started = 0;
  584. int dio_credits;
  585. if (ext4_has_inline_data(inode))
  586. return -ERANGE;
  587. map.m_lblk = iblock;
  588. map.m_len = bh->b_size >> inode->i_blkbits;
  589. if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
  590. /* Direct IO write... */
  591. if (map.m_len > DIO_MAX_BLOCKS)
  592. map.m_len = DIO_MAX_BLOCKS;
  593. dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
  594. handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
  595. dio_credits);
  596. if (IS_ERR(handle)) {
  597. ret = PTR_ERR(handle);
  598. return ret;
  599. }
  600. started = 1;
  601. }
  602. ret = ext4_map_blocks(handle, inode, &map, flags);
  603. if (ret > 0) {
  604. map_bh(bh, inode->i_sb, map.m_pblk);
  605. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  606. bh->b_size = inode->i_sb->s_blocksize * map.m_len;
  607. ret = 0;
  608. }
  609. if (started)
  610. ext4_journal_stop(handle);
  611. return ret;
  612. }
  613. int ext4_get_block(struct inode *inode, sector_t iblock,
  614. struct buffer_head *bh, int create)
  615. {
  616. return _ext4_get_block(inode, iblock, bh,
  617. create ? EXT4_GET_BLOCKS_CREATE : 0);
  618. }
  619. /*
  620. * `handle' can be NULL if create is zero
  621. */
  622. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  623. ext4_lblk_t block, int create, int *errp)
  624. {
  625. struct ext4_map_blocks map;
  626. struct buffer_head *bh;
  627. int fatal = 0, err;
  628. J_ASSERT(handle != NULL || create == 0);
  629. map.m_lblk = block;
  630. map.m_len = 1;
  631. err = ext4_map_blocks(handle, inode, &map,
  632. create ? EXT4_GET_BLOCKS_CREATE : 0);
  633. /* ensure we send some value back into *errp */
  634. *errp = 0;
  635. if (create && err == 0)
  636. err = -ENOSPC; /* should never happen */
  637. if (err < 0)
  638. *errp = err;
  639. if (err <= 0)
  640. return NULL;
  641. bh = sb_getblk(inode->i_sb, map.m_pblk);
  642. if (unlikely(!bh)) {
  643. *errp = -ENOMEM;
  644. return NULL;
  645. }
  646. if (map.m_flags & EXT4_MAP_NEW) {
  647. J_ASSERT(create != 0);
  648. J_ASSERT(handle != NULL);
  649. /*
  650. * Now that we do not always journal data, we should
  651. * keep in mind whether this should always journal the
  652. * new buffer as metadata. For now, regular file
  653. * writes use ext4_get_block instead, so it's not a
  654. * problem.
  655. */
  656. lock_buffer(bh);
  657. BUFFER_TRACE(bh, "call get_create_access");
  658. fatal = ext4_journal_get_create_access(handle, bh);
  659. if (!fatal && !buffer_uptodate(bh)) {
  660. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  661. set_buffer_uptodate(bh);
  662. }
  663. unlock_buffer(bh);
  664. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  665. err = ext4_handle_dirty_metadata(handle, inode, bh);
  666. if (!fatal)
  667. fatal = err;
  668. } else {
  669. BUFFER_TRACE(bh, "not a new buffer");
  670. }
  671. if (fatal) {
  672. *errp = fatal;
  673. brelse(bh);
  674. bh = NULL;
  675. }
  676. return bh;
  677. }
  678. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  679. ext4_lblk_t block, int create, int *err)
  680. {
  681. struct buffer_head *bh;
  682. bh = ext4_getblk(handle, inode, block, create, err);
  683. if (!bh)
  684. return bh;
  685. if (buffer_uptodate(bh))
  686. return bh;
  687. ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
  688. wait_on_buffer(bh);
  689. if (buffer_uptodate(bh))
  690. return bh;
  691. put_bh(bh);
  692. *err = -EIO;
  693. return NULL;
  694. }
  695. int ext4_walk_page_buffers(handle_t *handle,
  696. struct buffer_head *head,
  697. unsigned from,
  698. unsigned to,
  699. int *partial,
  700. int (*fn)(handle_t *handle,
  701. struct buffer_head *bh))
  702. {
  703. struct buffer_head *bh;
  704. unsigned block_start, block_end;
  705. unsigned blocksize = head->b_size;
  706. int err, ret = 0;
  707. struct buffer_head *next;
  708. for (bh = head, block_start = 0;
  709. ret == 0 && (bh != head || !block_start);
  710. block_start = block_end, bh = next) {
  711. next = bh->b_this_page;
  712. block_end = block_start + blocksize;
  713. if (block_end <= from || block_start >= to) {
  714. if (partial && !buffer_uptodate(bh))
  715. *partial = 1;
  716. continue;
  717. }
  718. err = (*fn)(handle, bh);
  719. if (!ret)
  720. ret = err;
  721. }
  722. return ret;
  723. }
  724. /*
  725. * To preserve ordering, it is essential that the hole instantiation and
  726. * the data write be encapsulated in a single transaction. We cannot
  727. * close off a transaction and start a new one between the ext4_get_block()
  728. * and the commit_write(). So doing the jbd2_journal_start at the start of
  729. * prepare_write() is the right place.
  730. *
  731. * Also, this function can nest inside ext4_writepage(). In that case, we
  732. * *know* that ext4_writepage() has generated enough buffer credits to do the
  733. * whole page. So we won't block on the journal in that case, which is good,
  734. * because the caller may be PF_MEMALLOC.
  735. *
  736. * By accident, ext4 can be reentered when a transaction is open via
  737. * quota file writes. If we were to commit the transaction while thus
  738. * reentered, there can be a deadlock - we would be holding a quota
  739. * lock, and the commit would never complete if another thread had a
  740. * transaction open and was blocking on the quota lock - a ranking
  741. * violation.
  742. *
  743. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  744. * will _not_ run commit under these circumstances because handle->h_ref
  745. * is elevated. We'll still have enough credits for the tiny quotafile
  746. * write.
  747. */
  748. int do_journal_get_write_access(handle_t *handle,
  749. struct buffer_head *bh)
  750. {
  751. int dirty = buffer_dirty(bh);
  752. int ret;
  753. if (!buffer_mapped(bh) || buffer_freed(bh))
  754. return 0;
  755. /*
  756. * __block_write_begin() could have dirtied some buffers. Clean
  757. * the dirty bit as jbd2_journal_get_write_access() could complain
  758. * otherwise about fs integrity issues. Setting of the dirty bit
  759. * by __block_write_begin() isn't a real problem here as we clear
  760. * the bit before releasing a page lock and thus writeback cannot
  761. * ever write the buffer.
  762. */
  763. if (dirty)
  764. clear_buffer_dirty(bh);
  765. ret = ext4_journal_get_write_access(handle, bh);
  766. if (!ret && dirty)
  767. ret = ext4_handle_dirty_metadata(handle, NULL, bh);
  768. return ret;
  769. }
  770. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  771. struct buffer_head *bh_result, int create);
  772. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  773. loff_t pos, unsigned len, unsigned flags,
  774. struct page **pagep, void **fsdata)
  775. {
  776. struct inode *inode = mapping->host;
  777. int ret, needed_blocks;
  778. handle_t *handle;
  779. int retries = 0;
  780. struct page *page;
  781. pgoff_t index;
  782. unsigned from, to;
  783. trace_ext4_write_begin(inode, pos, len, flags);
  784. /*
  785. * Reserve one block more for addition to orphan list in case
  786. * we allocate blocks but write fails for some reason
  787. */
  788. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  789. index = pos >> PAGE_CACHE_SHIFT;
  790. from = pos & (PAGE_CACHE_SIZE - 1);
  791. to = from + len;
  792. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  793. ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
  794. flags, pagep);
  795. if (ret < 0)
  796. return ret;
  797. if (ret == 1)
  798. return 0;
  799. }
  800. /*
  801. * grab_cache_page_write_begin() can take a long time if the
  802. * system is thrashing due to memory pressure, or if the page
  803. * is being written back. So grab it first before we start
  804. * the transaction handle. This also allows us to allocate
  805. * the page (if needed) without using GFP_NOFS.
  806. */
  807. retry_grab:
  808. page = grab_cache_page_write_begin(mapping, index, flags);
  809. if (!page)
  810. return -ENOMEM;
  811. unlock_page(page);
  812. retry_journal:
  813. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
  814. if (IS_ERR(handle)) {
  815. page_cache_release(page);
  816. return PTR_ERR(handle);
  817. }
  818. lock_page(page);
  819. if (page->mapping != mapping) {
  820. /* The page got truncated from under us */
  821. unlock_page(page);
  822. page_cache_release(page);
  823. ext4_journal_stop(handle);
  824. goto retry_grab;
  825. }
  826. wait_on_page_writeback(page);
  827. if (ext4_should_dioread_nolock(inode))
  828. ret = __block_write_begin(page, pos, len, ext4_get_block_write);
  829. else
  830. ret = __block_write_begin(page, pos, len, ext4_get_block);
  831. if (!ret && ext4_should_journal_data(inode)) {
  832. ret = ext4_walk_page_buffers(handle, page_buffers(page),
  833. from, to, NULL,
  834. do_journal_get_write_access);
  835. }
  836. if (ret) {
  837. unlock_page(page);
  838. /*
  839. * __block_write_begin may have instantiated a few blocks
  840. * outside i_size. Trim these off again. Don't need
  841. * i_size_read because we hold i_mutex.
  842. *
  843. * Add inode to orphan list in case we crash before
  844. * truncate finishes
  845. */
  846. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  847. ext4_orphan_add(handle, inode);
  848. ext4_journal_stop(handle);
  849. if (pos + len > inode->i_size) {
  850. ext4_truncate_failed_write(inode);
  851. /*
  852. * If truncate failed early the inode might
  853. * still be on the orphan list; we need to
  854. * make sure the inode is removed from the
  855. * orphan list in that case.
  856. */
  857. if (inode->i_nlink)
  858. ext4_orphan_del(NULL, inode);
  859. }
  860. if (ret == -ENOSPC &&
  861. ext4_should_retry_alloc(inode->i_sb, &retries))
  862. goto retry_journal;
  863. page_cache_release(page);
  864. return ret;
  865. }
  866. *pagep = page;
  867. return ret;
  868. }
  869. /* For write_end() in data=journal mode */
  870. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  871. {
  872. if (!buffer_mapped(bh) || buffer_freed(bh))
  873. return 0;
  874. set_buffer_uptodate(bh);
  875. return ext4_handle_dirty_metadata(handle, NULL, bh);
  876. }
  877. static int ext4_generic_write_end(struct file *file,
  878. struct address_space *mapping,
  879. loff_t pos, unsigned len, unsigned copied,
  880. struct page *page, void *fsdata)
  881. {
  882. int i_size_changed = 0;
  883. struct inode *inode = mapping->host;
  884. handle_t *handle = ext4_journal_current_handle();
  885. if (ext4_has_inline_data(inode))
  886. copied = ext4_write_inline_data_end(inode, pos, len,
  887. copied, page);
  888. else
  889. copied = block_write_end(file, mapping, pos,
  890. len, copied, page, fsdata);
  891. /*
  892. * No need to use i_size_read() here, the i_size
  893. * cannot change under us because we hold i_mutex.
  894. *
  895. * But it's important to update i_size while still holding page lock:
  896. * page writeout could otherwise come in and zero beyond i_size.
  897. */
  898. if (pos + copied > inode->i_size) {
  899. i_size_write(inode, pos + copied);
  900. i_size_changed = 1;
  901. }
  902. if (pos + copied > EXT4_I(inode)->i_disksize) {
  903. /* We need to mark inode dirty even if
  904. * new_i_size is less that inode->i_size
  905. * bu greater than i_disksize.(hint delalloc)
  906. */
  907. ext4_update_i_disksize(inode, (pos + copied));
  908. i_size_changed = 1;
  909. }
  910. unlock_page(page);
  911. page_cache_release(page);
  912. /*
  913. * Don't mark the inode dirty under page lock. First, it unnecessarily
  914. * makes the holding time of page lock longer. Second, it forces lock
  915. * ordering of page lock and transaction start for journaling
  916. * filesystems.
  917. */
  918. if (i_size_changed)
  919. ext4_mark_inode_dirty(handle, inode);
  920. return copied;
  921. }
  922. /*
  923. * We need to pick up the new inode size which generic_commit_write gave us
  924. * `file' can be NULL - eg, when called from page_symlink().
  925. *
  926. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  927. * buffers are managed internally.
  928. */
  929. static int ext4_ordered_write_end(struct file *file,
  930. struct address_space *mapping,
  931. loff_t pos, unsigned len, unsigned copied,
  932. struct page *page, void *fsdata)
  933. {
  934. handle_t *handle = ext4_journal_current_handle();
  935. struct inode *inode = mapping->host;
  936. int ret = 0, ret2;
  937. trace_ext4_ordered_write_end(inode, pos, len, copied);
  938. ret = ext4_jbd2_file_inode(handle, inode);
  939. if (ret == 0) {
  940. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  941. page, fsdata);
  942. copied = ret2;
  943. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  944. /* if we have allocated more blocks and copied
  945. * less. We will have blocks allocated outside
  946. * inode->i_size. So truncate them
  947. */
  948. ext4_orphan_add(handle, inode);
  949. if (ret2 < 0)
  950. ret = ret2;
  951. } else {
  952. unlock_page(page);
  953. page_cache_release(page);
  954. }
  955. ret2 = ext4_journal_stop(handle);
  956. if (!ret)
  957. ret = ret2;
  958. if (pos + len > inode->i_size) {
  959. ext4_truncate_failed_write(inode);
  960. /*
  961. * If truncate failed early the inode might still be
  962. * on the orphan list; we need to make sure the inode
  963. * is removed from the orphan list in that case.
  964. */
  965. if (inode->i_nlink)
  966. ext4_orphan_del(NULL, inode);
  967. }
  968. return ret ? ret : copied;
  969. }
  970. static int ext4_writeback_write_end(struct file *file,
  971. struct address_space *mapping,
  972. loff_t pos, unsigned len, unsigned copied,
  973. struct page *page, void *fsdata)
  974. {
  975. handle_t *handle = ext4_journal_current_handle();
  976. struct inode *inode = mapping->host;
  977. int ret = 0, ret2;
  978. trace_ext4_writeback_write_end(inode, pos, len, copied);
  979. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  980. page, fsdata);
  981. copied = ret2;
  982. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  983. /* if we have allocated more blocks and copied
  984. * less. We will have blocks allocated outside
  985. * inode->i_size. So truncate them
  986. */
  987. ext4_orphan_add(handle, inode);
  988. if (ret2 < 0)
  989. ret = ret2;
  990. ret2 = ext4_journal_stop(handle);
  991. if (!ret)
  992. ret = ret2;
  993. if (pos + len > inode->i_size) {
  994. ext4_truncate_failed_write(inode);
  995. /*
  996. * If truncate failed early the inode might still be
  997. * on the orphan list; we need to make sure the inode
  998. * is removed from the orphan list in that case.
  999. */
  1000. if (inode->i_nlink)
  1001. ext4_orphan_del(NULL, inode);
  1002. }
  1003. return ret ? ret : copied;
  1004. }
  1005. static int ext4_journalled_write_end(struct file *file,
  1006. struct address_space *mapping,
  1007. loff_t pos, unsigned len, unsigned copied,
  1008. struct page *page, void *fsdata)
  1009. {
  1010. handle_t *handle = ext4_journal_current_handle();
  1011. struct inode *inode = mapping->host;
  1012. int ret = 0, ret2;
  1013. int partial = 0;
  1014. unsigned from, to;
  1015. loff_t new_i_size;
  1016. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1017. from = pos & (PAGE_CACHE_SIZE - 1);
  1018. to = from + len;
  1019. BUG_ON(!ext4_handle_valid(handle));
  1020. if (ext4_has_inline_data(inode))
  1021. copied = ext4_write_inline_data_end(inode, pos, len,
  1022. copied, page);
  1023. else {
  1024. if (copied < len) {
  1025. if (!PageUptodate(page))
  1026. copied = 0;
  1027. page_zero_new_buffers(page, from+copied, to);
  1028. }
  1029. ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
  1030. to, &partial, write_end_fn);
  1031. if (!partial)
  1032. SetPageUptodate(page);
  1033. }
  1034. new_i_size = pos + copied;
  1035. if (new_i_size > inode->i_size)
  1036. i_size_write(inode, pos+copied);
  1037. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1038. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1039. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1040. ext4_update_i_disksize(inode, new_i_size);
  1041. ret2 = ext4_mark_inode_dirty(handle, inode);
  1042. if (!ret)
  1043. ret = ret2;
  1044. }
  1045. unlock_page(page);
  1046. page_cache_release(page);
  1047. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1048. /* if we have allocated more blocks and copied
  1049. * less. We will have blocks allocated outside
  1050. * inode->i_size. So truncate them
  1051. */
  1052. ext4_orphan_add(handle, inode);
  1053. ret2 = ext4_journal_stop(handle);
  1054. if (!ret)
  1055. ret = ret2;
  1056. if (pos + len > inode->i_size) {
  1057. ext4_truncate_failed_write(inode);
  1058. /*
  1059. * If truncate failed early the inode might still be
  1060. * on the orphan list; we need to make sure the inode
  1061. * is removed from the orphan list in that case.
  1062. */
  1063. if (inode->i_nlink)
  1064. ext4_orphan_del(NULL, inode);
  1065. }
  1066. return ret ? ret : copied;
  1067. }
  1068. /*
  1069. * Reserve a single cluster located at lblock
  1070. */
  1071. static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
  1072. {
  1073. int retries = 0;
  1074. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1075. struct ext4_inode_info *ei = EXT4_I(inode);
  1076. unsigned int md_needed;
  1077. int ret;
  1078. ext4_lblk_t save_last_lblock;
  1079. int save_len;
  1080. /*
  1081. * We will charge metadata quota at writeout time; this saves
  1082. * us from metadata over-estimation, though we may go over by
  1083. * a small amount in the end. Here we just reserve for data.
  1084. */
  1085. ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
  1086. if (ret)
  1087. return ret;
  1088. /*
  1089. * recalculate the amount of metadata blocks to reserve
  1090. * in order to allocate nrblocks
  1091. * worse case is one extent per block
  1092. */
  1093. repeat:
  1094. spin_lock(&ei->i_block_reservation_lock);
  1095. /*
  1096. * ext4_calc_metadata_amount() has side effects, which we have
  1097. * to be prepared undo if we fail to claim space.
  1098. */
  1099. save_len = ei->i_da_metadata_calc_len;
  1100. save_last_lblock = ei->i_da_metadata_calc_last_lblock;
  1101. md_needed = EXT4_NUM_B2C(sbi,
  1102. ext4_calc_metadata_amount(inode, lblock));
  1103. trace_ext4_da_reserve_space(inode, md_needed);
  1104. /*
  1105. * We do still charge estimated metadata to the sb though;
  1106. * we cannot afford to run out of free blocks.
  1107. */
  1108. if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
  1109. ei->i_da_metadata_calc_len = save_len;
  1110. ei->i_da_metadata_calc_last_lblock = save_last_lblock;
  1111. spin_unlock(&ei->i_block_reservation_lock);
  1112. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1113. yield();
  1114. goto repeat;
  1115. }
  1116. dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
  1117. return -ENOSPC;
  1118. }
  1119. ei->i_reserved_data_blocks++;
  1120. ei->i_reserved_meta_blocks += md_needed;
  1121. spin_unlock(&ei->i_block_reservation_lock);
  1122. return 0; /* success */
  1123. }
  1124. static void ext4_da_release_space(struct inode *inode, int to_free)
  1125. {
  1126. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1127. struct ext4_inode_info *ei = EXT4_I(inode);
  1128. if (!to_free)
  1129. return; /* Nothing to release, exit */
  1130. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1131. trace_ext4_da_release_space(inode, to_free);
  1132. if (unlikely(to_free > ei->i_reserved_data_blocks)) {
  1133. /*
  1134. * if there aren't enough reserved blocks, then the
  1135. * counter is messed up somewhere. Since this
  1136. * function is called from invalidate page, it's
  1137. * harmless to return without any action.
  1138. */
  1139. ext4_warning(inode->i_sb, "ext4_da_release_space: "
  1140. "ino %lu, to_free %d with only %d reserved "
  1141. "data blocks", inode->i_ino, to_free,
  1142. ei->i_reserved_data_blocks);
  1143. WARN_ON(1);
  1144. to_free = ei->i_reserved_data_blocks;
  1145. }
  1146. ei->i_reserved_data_blocks -= to_free;
  1147. if (ei->i_reserved_data_blocks == 0) {
  1148. /*
  1149. * We can release all of the reserved metadata blocks
  1150. * only when we have written all of the delayed
  1151. * allocation blocks.
  1152. * Note that in case of bigalloc, i_reserved_meta_blocks,
  1153. * i_reserved_data_blocks, etc. refer to number of clusters.
  1154. */
  1155. percpu_counter_sub(&sbi->s_dirtyclusters_counter,
  1156. ei->i_reserved_meta_blocks);
  1157. ei->i_reserved_meta_blocks = 0;
  1158. ei->i_da_metadata_calc_len = 0;
  1159. }
  1160. /* update fs dirty data blocks counter */
  1161. percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
  1162. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1163. dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
  1164. }
  1165. static void ext4_da_page_release_reservation(struct page *page,
  1166. unsigned long offset)
  1167. {
  1168. int to_release = 0;
  1169. struct buffer_head *head, *bh;
  1170. unsigned int curr_off = 0;
  1171. struct inode *inode = page->mapping->host;
  1172. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1173. int num_clusters;
  1174. ext4_fsblk_t lblk;
  1175. head = page_buffers(page);
  1176. bh = head;
  1177. do {
  1178. unsigned int next_off = curr_off + bh->b_size;
  1179. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1180. to_release++;
  1181. clear_buffer_delay(bh);
  1182. }
  1183. curr_off = next_off;
  1184. } while ((bh = bh->b_this_page) != head);
  1185. if (to_release) {
  1186. lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1187. ext4_es_remove_extent(inode, lblk, to_release);
  1188. }
  1189. /* If we have released all the blocks belonging to a cluster, then we
  1190. * need to release the reserved space for that cluster. */
  1191. num_clusters = EXT4_NUM_B2C(sbi, to_release);
  1192. while (num_clusters > 0) {
  1193. lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
  1194. ((num_clusters - 1) << sbi->s_cluster_bits);
  1195. if (sbi->s_cluster_ratio == 1 ||
  1196. !ext4_find_delalloc_cluster(inode, lblk))
  1197. ext4_da_release_space(inode, 1);
  1198. num_clusters--;
  1199. }
  1200. }
  1201. /*
  1202. * Delayed allocation stuff
  1203. */
  1204. /*
  1205. * mpage_da_submit_io - walks through extent of pages and try to write
  1206. * them with writepage() call back
  1207. *
  1208. * @mpd->inode: inode
  1209. * @mpd->first_page: first page of the extent
  1210. * @mpd->next_page: page after the last page of the extent
  1211. *
  1212. * By the time mpage_da_submit_io() is called we expect all blocks
  1213. * to be allocated. this may be wrong if allocation failed.
  1214. *
  1215. * As pages are already locked by write_cache_pages(), we can't use it
  1216. */
  1217. static int mpage_da_submit_io(struct mpage_da_data *mpd,
  1218. struct ext4_map_blocks *map)
  1219. {
  1220. struct pagevec pvec;
  1221. unsigned long index, end;
  1222. int ret = 0, err, nr_pages, i;
  1223. struct inode *inode = mpd->inode;
  1224. struct address_space *mapping = inode->i_mapping;
  1225. loff_t size = i_size_read(inode);
  1226. unsigned int len, block_start;
  1227. struct buffer_head *bh, *page_bufs = NULL;
  1228. sector_t pblock = 0, cur_logical = 0;
  1229. struct ext4_io_submit io_submit;
  1230. BUG_ON(mpd->next_page <= mpd->first_page);
  1231. memset(&io_submit, 0, sizeof(io_submit));
  1232. /*
  1233. * We need to start from the first_page to the next_page - 1
  1234. * to make sure we also write the mapped dirty buffer_heads.
  1235. * If we look at mpd->b_blocknr we would only be looking
  1236. * at the currently mapped buffer_heads.
  1237. */
  1238. index = mpd->first_page;
  1239. end = mpd->next_page - 1;
  1240. pagevec_init(&pvec, 0);
  1241. while (index <= end) {
  1242. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1243. if (nr_pages == 0)
  1244. break;
  1245. for (i = 0; i < nr_pages; i++) {
  1246. int skip_page = 0;
  1247. struct page *page = pvec.pages[i];
  1248. index = page->index;
  1249. if (index > end)
  1250. break;
  1251. if (index == size >> PAGE_CACHE_SHIFT)
  1252. len = size & ~PAGE_CACHE_MASK;
  1253. else
  1254. len = PAGE_CACHE_SIZE;
  1255. if (map) {
  1256. cur_logical = index << (PAGE_CACHE_SHIFT -
  1257. inode->i_blkbits);
  1258. pblock = map->m_pblk + (cur_logical -
  1259. map->m_lblk);
  1260. }
  1261. index++;
  1262. BUG_ON(!PageLocked(page));
  1263. BUG_ON(PageWriteback(page));
  1264. bh = page_bufs = page_buffers(page);
  1265. block_start = 0;
  1266. do {
  1267. if (map && (cur_logical >= map->m_lblk) &&
  1268. (cur_logical <= (map->m_lblk +
  1269. (map->m_len - 1)))) {
  1270. if (buffer_delay(bh)) {
  1271. clear_buffer_delay(bh);
  1272. bh->b_blocknr = pblock;
  1273. }
  1274. if (buffer_unwritten(bh) ||
  1275. buffer_mapped(bh))
  1276. BUG_ON(bh->b_blocknr != pblock);
  1277. if (map->m_flags & EXT4_MAP_UNINIT)
  1278. set_buffer_uninit(bh);
  1279. clear_buffer_unwritten(bh);
  1280. }
  1281. /*
  1282. * skip page if block allocation undone and
  1283. * block is dirty
  1284. */
  1285. if (ext4_bh_delay_or_unwritten(NULL, bh))
  1286. skip_page = 1;
  1287. bh = bh->b_this_page;
  1288. block_start += bh->b_size;
  1289. cur_logical++;
  1290. pblock++;
  1291. } while (bh != page_bufs);
  1292. if (skip_page) {
  1293. unlock_page(page);
  1294. continue;
  1295. }
  1296. clear_page_dirty_for_io(page);
  1297. err = ext4_bio_write_page(&io_submit, page, len,
  1298. mpd->wbc);
  1299. if (!err)
  1300. mpd->pages_written++;
  1301. /*
  1302. * In error case, we have to continue because
  1303. * remaining pages are still locked
  1304. */
  1305. if (ret == 0)
  1306. ret = err;
  1307. }
  1308. pagevec_release(&pvec);
  1309. }
  1310. ext4_io_submit(&io_submit);
  1311. return ret;
  1312. }
  1313. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
  1314. {
  1315. int nr_pages, i;
  1316. pgoff_t index, end;
  1317. struct pagevec pvec;
  1318. struct inode *inode = mpd->inode;
  1319. struct address_space *mapping = inode->i_mapping;
  1320. ext4_lblk_t start, last;
  1321. index = mpd->first_page;
  1322. end = mpd->next_page - 1;
  1323. start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1324. last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1325. ext4_es_remove_extent(inode, start, last - start + 1);
  1326. pagevec_init(&pvec, 0);
  1327. while (index <= end) {
  1328. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1329. if (nr_pages == 0)
  1330. break;
  1331. for (i = 0; i < nr_pages; i++) {
  1332. struct page *page = pvec.pages[i];
  1333. if (page->index > end)
  1334. break;
  1335. BUG_ON(!PageLocked(page));
  1336. BUG_ON(PageWriteback(page));
  1337. block_invalidatepage(page, 0);
  1338. ClearPageUptodate(page);
  1339. unlock_page(page);
  1340. }
  1341. index = pvec.pages[nr_pages - 1]->index + 1;
  1342. pagevec_release(&pvec);
  1343. }
  1344. return;
  1345. }
  1346. static void ext4_print_free_blocks(struct inode *inode)
  1347. {
  1348. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1349. struct super_block *sb = inode->i_sb;
  1350. ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
  1351. EXT4_C2B(EXT4_SB(inode->i_sb),
  1352. ext4_count_free_clusters(inode->i_sb)));
  1353. ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
  1354. ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
  1355. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1356. percpu_counter_sum(&sbi->s_freeclusters_counter)));
  1357. ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
  1358. (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
  1359. percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
  1360. ext4_msg(sb, KERN_CRIT, "Block reservation details");
  1361. ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
  1362. EXT4_I(inode)->i_reserved_data_blocks);
  1363. ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
  1364. EXT4_I(inode)->i_reserved_meta_blocks);
  1365. return;
  1366. }
  1367. /*
  1368. * mpage_da_map_and_submit - go through given space, map them
  1369. * if necessary, and then submit them for I/O
  1370. *
  1371. * @mpd - bh describing space
  1372. *
  1373. * The function skips space we know is already mapped to disk blocks.
  1374. *
  1375. */
  1376. static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
  1377. {
  1378. int err, blks, get_blocks_flags;
  1379. struct ext4_map_blocks map, *mapp = NULL;
  1380. sector_t next = mpd->b_blocknr;
  1381. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1382. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1383. handle_t *handle = NULL;
  1384. /*
  1385. * If the blocks are mapped already, or we couldn't accumulate
  1386. * any blocks, then proceed immediately to the submission stage.
  1387. */
  1388. if ((mpd->b_size == 0) ||
  1389. ((mpd->b_state & (1 << BH_Mapped)) &&
  1390. !(mpd->b_state & (1 << BH_Delay)) &&
  1391. !(mpd->b_state & (1 << BH_Unwritten))))
  1392. goto submit_io;
  1393. handle = ext4_journal_current_handle();
  1394. BUG_ON(!handle);
  1395. /*
  1396. * Call ext4_map_blocks() to allocate any delayed allocation
  1397. * blocks, or to convert an uninitialized extent to be
  1398. * initialized (in the case where we have written into
  1399. * one or more preallocated blocks).
  1400. *
  1401. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1402. * indicate that we are on the delayed allocation path. This
  1403. * affects functions in many different parts of the allocation
  1404. * call path. This flag exists primarily because we don't
  1405. * want to change *many* call functions, so ext4_map_blocks()
  1406. * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
  1407. * inode's allocation semaphore is taken.
  1408. *
  1409. * If the blocks in questions were delalloc blocks, set
  1410. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1411. * variables are updated after the blocks have been allocated.
  1412. */
  1413. map.m_lblk = next;
  1414. map.m_len = max_blocks;
  1415. get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
  1416. if (ext4_should_dioread_nolock(mpd->inode))
  1417. get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
  1418. if (mpd->b_state & (1 << BH_Delay))
  1419. get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
  1420. blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
  1421. if (blks < 0) {
  1422. struct super_block *sb = mpd->inode->i_sb;
  1423. err = blks;
  1424. /*
  1425. * If get block returns EAGAIN or ENOSPC and there
  1426. * appears to be free blocks we will just let
  1427. * mpage_da_submit_io() unlock all of the pages.
  1428. */
  1429. if (err == -EAGAIN)
  1430. goto submit_io;
  1431. if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
  1432. mpd->retval = err;
  1433. goto submit_io;
  1434. }
  1435. /*
  1436. * get block failure will cause us to loop in
  1437. * writepages, because a_ops->writepage won't be able
  1438. * to make progress. The page will be redirtied by
  1439. * writepage and writepages will again try to write
  1440. * the same.
  1441. */
  1442. if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
  1443. ext4_msg(sb, KERN_CRIT,
  1444. "delayed block allocation failed for inode %lu "
  1445. "at logical offset %llu with max blocks %zd "
  1446. "with error %d", mpd->inode->i_ino,
  1447. (unsigned long long) next,
  1448. mpd->b_size >> mpd->inode->i_blkbits, err);
  1449. ext4_msg(sb, KERN_CRIT,
  1450. "This should not happen!! Data will be lost");
  1451. if (err == -ENOSPC)
  1452. ext4_print_free_blocks(mpd->inode);
  1453. }
  1454. /* invalidate all the pages */
  1455. ext4_da_block_invalidatepages(mpd);
  1456. /* Mark this page range as having been completed */
  1457. mpd->io_done = 1;
  1458. return;
  1459. }
  1460. BUG_ON(blks == 0);
  1461. mapp = &map;
  1462. if (map.m_flags & EXT4_MAP_NEW) {
  1463. struct block_device *bdev = mpd->inode->i_sb->s_bdev;
  1464. int i;
  1465. for (i = 0; i < map.m_len; i++)
  1466. unmap_underlying_metadata(bdev, map.m_pblk + i);
  1467. }
  1468. /*
  1469. * Update on-disk size along with block allocation.
  1470. */
  1471. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  1472. if (disksize > i_size_read(mpd->inode))
  1473. disksize = i_size_read(mpd->inode);
  1474. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  1475. ext4_update_i_disksize(mpd->inode, disksize);
  1476. err = ext4_mark_inode_dirty(handle, mpd->inode);
  1477. if (err)
  1478. ext4_error(mpd->inode->i_sb,
  1479. "Failed to mark inode %lu dirty",
  1480. mpd->inode->i_ino);
  1481. }
  1482. submit_io:
  1483. mpage_da_submit_io(mpd, mapp);
  1484. mpd->io_done = 1;
  1485. }
  1486. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  1487. (1 << BH_Delay) | (1 << BH_Unwritten))
  1488. /*
  1489. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  1490. *
  1491. * @mpd->lbh - extent of blocks
  1492. * @logical - logical number of the block in the file
  1493. * @b_state - b_state of the buffer head added
  1494. *
  1495. * the function is used to collect contig. blocks in same state
  1496. */
  1497. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
  1498. unsigned long b_state)
  1499. {
  1500. sector_t next;
  1501. int blkbits = mpd->inode->i_blkbits;
  1502. int nrblocks = mpd->b_size >> blkbits;
  1503. /*
  1504. * XXX Don't go larger than mballoc is willing to allocate
  1505. * This is a stopgap solution. We eventually need to fold
  1506. * mpage_da_submit_io() into this function and then call
  1507. * ext4_map_blocks() multiple times in a loop
  1508. */
  1509. if (nrblocks >= (8*1024*1024 >> blkbits))
  1510. goto flush_it;
  1511. /* check if the reserved journal credits might overflow */
  1512. if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
  1513. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  1514. /*
  1515. * With non-extent format we are limited by the journal
  1516. * credit available. Total credit needed to insert
  1517. * nrblocks contiguous blocks is dependent on the
  1518. * nrblocks. So limit nrblocks.
  1519. */
  1520. goto flush_it;
  1521. }
  1522. }
  1523. /*
  1524. * First block in the extent
  1525. */
  1526. if (mpd->b_size == 0) {
  1527. mpd->b_blocknr = logical;
  1528. mpd->b_size = 1 << blkbits;
  1529. mpd->b_state = b_state & BH_FLAGS;
  1530. return;
  1531. }
  1532. next = mpd->b_blocknr + nrblocks;
  1533. /*
  1534. * Can we merge the block to our big extent?
  1535. */
  1536. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  1537. mpd->b_size += 1 << blkbits;
  1538. return;
  1539. }
  1540. flush_it:
  1541. /*
  1542. * We couldn't merge the block to our extent, so we
  1543. * need to flush current extent and start new one
  1544. */
  1545. mpage_da_map_and_submit(mpd);
  1546. return;
  1547. }
  1548. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  1549. {
  1550. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  1551. }
  1552. /*
  1553. * This function is grabs code from the very beginning of
  1554. * ext4_map_blocks, but assumes that the caller is from delayed write
  1555. * time. This function looks up the requested blocks and sets the
  1556. * buffer delay bit under the protection of i_data_sem.
  1557. */
  1558. static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
  1559. struct ext4_map_blocks *map,
  1560. struct buffer_head *bh)
  1561. {
  1562. int retval;
  1563. sector_t invalid_block = ~((sector_t) 0xffff);
  1564. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  1565. invalid_block = ~0;
  1566. map->m_flags = 0;
  1567. ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
  1568. "logical block %lu\n", inode->i_ino, map->m_len,
  1569. (unsigned long) map->m_lblk);
  1570. /*
  1571. * Try to see if we can get the block without requesting a new
  1572. * file system block.
  1573. */
  1574. down_read((&EXT4_I(inode)->i_data_sem));
  1575. if (ext4_has_inline_data(inode)) {
  1576. /*
  1577. * We will soon create blocks for this page, and let
  1578. * us pretend as if the blocks aren't allocated yet.
  1579. * In case of clusters, we have to handle the work
  1580. * of mapping from cluster so that the reserved space
  1581. * is calculated properly.
  1582. */
  1583. if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
  1584. ext4_find_delalloc_cluster(inode, map->m_lblk))
  1585. map->m_flags |= EXT4_MAP_FROM_CLUSTER;
  1586. retval = 0;
  1587. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  1588. retval = ext4_ext_map_blocks(NULL, inode, map, 0);
  1589. else
  1590. retval = ext4_ind_map_blocks(NULL, inode, map, 0);
  1591. if (retval == 0) {
  1592. /*
  1593. * XXX: __block_prepare_write() unmaps passed block,
  1594. * is it OK?
  1595. */
  1596. /* If the block was allocated from previously allocated cluster,
  1597. * then we dont need to reserve it again. */
  1598. if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
  1599. retval = ext4_da_reserve_space(inode, iblock);
  1600. if (retval)
  1601. /* not enough space to reserve */
  1602. goto out_unlock;
  1603. }
  1604. retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
  1605. ~0, EXTENT_STATUS_DELAYED);
  1606. if (retval)
  1607. goto out_unlock;
  1608. /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
  1609. * and it should not appear on the bh->b_state.
  1610. */
  1611. map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
  1612. map_bh(bh, inode->i_sb, invalid_block);
  1613. set_buffer_new(bh);
  1614. set_buffer_delay(bh);
  1615. }
  1616. out_unlock:
  1617. up_read((&EXT4_I(inode)->i_data_sem));
  1618. return retval;
  1619. }
  1620. /*
  1621. * This is a special get_blocks_t callback which is used by
  1622. * ext4_da_write_begin(). It will either return mapped block or
  1623. * reserve space for a single block.
  1624. *
  1625. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  1626. * We also have b_blocknr = -1 and b_bdev initialized properly
  1627. *
  1628. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  1629. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  1630. * initialized properly.
  1631. */
  1632. int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  1633. struct buffer_head *bh, int create)
  1634. {
  1635. struct ext4_map_blocks map;
  1636. int ret = 0;
  1637. BUG_ON(create == 0);
  1638. BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
  1639. map.m_lblk = iblock;
  1640. map.m_len = 1;
  1641. /*
  1642. * first, we need to know whether the block is allocated already
  1643. * preallocated blocks are unmapped but should treated
  1644. * the same as allocated blocks.
  1645. */
  1646. ret = ext4_da_map_blocks(inode, iblock, &map, bh);
  1647. if (ret <= 0)
  1648. return ret;
  1649. map_bh(bh, inode->i_sb, map.m_pblk);
  1650. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  1651. if (buffer_unwritten(bh)) {
  1652. /* A delayed write to unwritten bh should be marked
  1653. * new and mapped. Mapped ensures that we don't do
  1654. * get_block multiple times when we write to the same
  1655. * offset and new ensures that we do proper zero out
  1656. * for partial write.
  1657. */
  1658. set_buffer_new(bh);
  1659. set_buffer_mapped(bh);
  1660. }
  1661. return 0;
  1662. }
  1663. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1664. {
  1665. get_bh(bh);
  1666. return 0;
  1667. }
  1668. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1669. {
  1670. put_bh(bh);
  1671. return 0;
  1672. }
  1673. static int __ext4_journalled_writepage(struct page *page,
  1674. unsigned int len)
  1675. {
  1676. struct address_space *mapping = page->mapping;
  1677. struct inode *inode = mapping->host;
  1678. struct buffer_head *page_bufs = NULL;
  1679. handle_t *handle = NULL;
  1680. int ret = 0, err = 0;
  1681. int inline_data = ext4_has_inline_data(inode);
  1682. struct buffer_head *inode_bh = NULL;
  1683. ClearPageChecked(page);
  1684. if (inline_data) {
  1685. BUG_ON(page->index != 0);
  1686. BUG_ON(len > ext4_get_max_inline_size(inode));
  1687. inode_bh = ext4_journalled_write_inline_data(inode, len, page);
  1688. if (inode_bh == NULL)
  1689. goto out;
  1690. } else {
  1691. page_bufs = page_buffers(page);
  1692. if (!page_bufs) {
  1693. BUG();
  1694. goto out;
  1695. }
  1696. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1697. NULL, bget_one);
  1698. }
  1699. /* As soon as we unlock the page, it can go away, but we have
  1700. * references to buffers so we are safe */
  1701. unlock_page(page);
  1702. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  1703. ext4_writepage_trans_blocks(inode));
  1704. if (IS_ERR(handle)) {
  1705. ret = PTR_ERR(handle);
  1706. goto out;
  1707. }
  1708. BUG_ON(!ext4_handle_valid(handle));
  1709. if (inline_data) {
  1710. ret = ext4_journal_get_write_access(handle, inode_bh);
  1711. err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
  1712. } else {
  1713. ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1714. do_journal_get_write_access);
  1715. err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1716. write_end_fn);
  1717. }
  1718. if (ret == 0)
  1719. ret = err;
  1720. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1721. err = ext4_journal_stop(handle);
  1722. if (!ret)
  1723. ret = err;
  1724. if (!ext4_has_inline_data(inode))
  1725. ext4_walk_page_buffers(handle, page_bufs, 0, len,
  1726. NULL, bput_one);
  1727. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1728. out:
  1729. brelse(inode_bh);
  1730. return ret;
  1731. }
  1732. /*
  1733. * Note that we don't need to start a transaction unless we're journaling data
  1734. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  1735. * need to file the inode to the transaction's list in ordered mode because if
  1736. * we are writing back data added by write(), the inode is already there and if
  1737. * we are writing back data modified via mmap(), no one guarantees in which
  1738. * transaction the data will hit the disk. In case we are journaling data, we
  1739. * cannot start transaction directly because transaction start ranks above page
  1740. * lock so we have to do some magic.
  1741. *
  1742. * This function can get called via...
  1743. * - ext4_da_writepages after taking page lock (have journal handle)
  1744. * - journal_submit_inode_data_buffers (no journal handle)
  1745. * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
  1746. * - grab_page_cache when doing write_begin (have journal handle)
  1747. *
  1748. * We don't do any block allocation in this function. If we have page with
  1749. * multiple blocks we need to write those buffer_heads that are mapped. This
  1750. * is important for mmaped based write. So if we do with blocksize 1K
  1751. * truncate(f, 1024);
  1752. * a = mmap(f, 0, 4096);
  1753. * a[0] = 'a';
  1754. * truncate(f, 4096);
  1755. * we have in the page first buffer_head mapped via page_mkwrite call back
  1756. * but other buffer_heads would be unmapped but dirty (dirty done via the
  1757. * do_wp_page). So writepage should write the first block. If we modify
  1758. * the mmap area beyond 1024 we will again get a page_fault and the
  1759. * page_mkwrite callback will do the block allocation and mark the
  1760. * buffer_heads mapped.
  1761. *
  1762. * We redirty the page if we have any buffer_heads that is either delay or
  1763. * unwritten in the page.
  1764. *
  1765. * We can get recursively called as show below.
  1766. *
  1767. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1768. * ext4_writepage()
  1769. *
  1770. * But since we don't do any block allocation we should not deadlock.
  1771. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  1772. */
  1773. static int ext4_writepage(struct page *page,
  1774. struct writeback_control *wbc)
  1775. {
  1776. int ret = 0;
  1777. loff_t size;
  1778. unsigned int len;
  1779. struct buffer_head *page_bufs = NULL;
  1780. struct inode *inode = page->mapping->host;
  1781. struct ext4_io_submit io_submit;
  1782. trace_ext4_writepage(page);
  1783. size = i_size_read(inode);
  1784. if (page->index == size >> PAGE_CACHE_SHIFT)
  1785. len = size & ~PAGE_CACHE_MASK;
  1786. else
  1787. len = PAGE_CACHE_SIZE;
  1788. page_bufs = page_buffers(page);
  1789. /*
  1790. * We cannot do block allocation or other extent handling in this
  1791. * function. If there are buffers needing that, we have to redirty
  1792. * the page. But we may reach here when we do a journal commit via
  1793. * journal_submit_inode_data_buffers() and in that case we must write
  1794. * allocated buffers to achieve data=ordered mode guarantees.
  1795. */
  1796. if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  1797. ext4_bh_delay_or_unwritten)) {
  1798. redirty_page_for_writepage(wbc, page);
  1799. if (current->flags & PF_MEMALLOC) {
  1800. /*
  1801. * For memory cleaning there's no point in writing only
  1802. * some buffers. So just bail out. Warn if we came here
  1803. * from direct reclaim.
  1804. */
  1805. WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
  1806. == PF_MEMALLOC);
  1807. unlock_page(page);
  1808. return 0;
  1809. }
  1810. }
  1811. if (PageChecked(page) && ext4_should_journal_data(inode))
  1812. /*
  1813. * It's mmapped pagecache. Add buffers and journal it. There
  1814. * doesn't seem much point in redirtying the page here.
  1815. */
  1816. return __ext4_journalled_writepage(page, len);
  1817. memset(&io_submit, 0, sizeof(io_submit));
  1818. ret = ext4_bio_write_page(&io_submit, page, len, wbc);
  1819. ext4_io_submit(&io_submit);
  1820. return ret;
  1821. }
  1822. /*
  1823. * This is called via ext4_da_writepages() to
  1824. * calculate the total number of credits to reserve to fit
  1825. * a single extent allocation into a single transaction,
  1826. * ext4_da_writpeages() will loop calling this before
  1827. * the block allocation.
  1828. */
  1829. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  1830. {
  1831. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  1832. /*
  1833. * With non-extent format the journal credit needed to
  1834. * insert nrblocks contiguous block is dependent on
  1835. * number of contiguous block. So we will limit
  1836. * number of contiguous block to a sane value
  1837. */
  1838. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
  1839. (max_blocks > EXT4_MAX_TRANS_DATA))
  1840. max_blocks = EXT4_MAX_TRANS_DATA;
  1841. return ext4_chunk_trans_blocks(inode, max_blocks);
  1842. }
  1843. /*
  1844. * write_cache_pages_da - walk the list of dirty pages of the given
  1845. * address space and accumulate pages that need writing, and call
  1846. * mpage_da_map_and_submit to map a single contiguous memory region
  1847. * and then write them.
  1848. */
  1849. static int write_cache_pages_da(handle_t *handle,
  1850. struct address_space *mapping,
  1851. struct writeback_control *wbc,
  1852. struct mpage_da_data *mpd,
  1853. pgoff_t *done_index)
  1854. {
  1855. struct buffer_head *bh, *head;
  1856. struct inode *inode = mapping->host;
  1857. struct pagevec pvec;
  1858. unsigned int nr_pages;
  1859. sector_t logical;
  1860. pgoff_t index, end;
  1861. long nr_to_write = wbc->nr_to_write;
  1862. int i, tag, ret = 0;
  1863. memset(mpd, 0, sizeof(struct mpage_da_data));
  1864. mpd->wbc = wbc;
  1865. mpd->inode = inode;
  1866. pagevec_init(&pvec, 0);
  1867. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1868. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1869. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1870. tag = PAGECACHE_TAG_TOWRITE;
  1871. else
  1872. tag = PAGECACHE_TAG_DIRTY;
  1873. *done_index = index;
  1874. while (index <= end) {
  1875. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1876. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1877. if (nr_pages == 0)
  1878. return 0;
  1879. for (i = 0; i < nr_pages; i++) {
  1880. struct page *page = pvec.pages[i];
  1881. /*
  1882. * At this point, the page may be truncated or
  1883. * invalidated (changing page->mapping to NULL), or
  1884. * even swizzled back from swapper_space to tmpfs file
  1885. * mapping. However, page->index will not change
  1886. * because we have a reference on the page.
  1887. */
  1888. if (page->index > end)
  1889. goto out;
  1890. *done_index = page->index + 1;
  1891. /*
  1892. * If we can't merge this page, and we have
  1893. * accumulated an contiguous region, write it
  1894. */
  1895. if ((mpd->next_page != page->index) &&
  1896. (mpd->next_page != mpd->first_page)) {
  1897. mpage_da_map_and_submit(mpd);
  1898. goto ret_extent_tail;
  1899. }
  1900. lock_page(page);
  1901. /*
  1902. * If the page is no longer dirty, or its
  1903. * mapping no longer corresponds to inode we
  1904. * are writing (which means it has been
  1905. * truncated or invalidated), or the page is
  1906. * already under writeback and we are not
  1907. * doing a data integrity writeback, skip the page
  1908. */
  1909. if (!PageDirty(page) ||
  1910. (PageWriteback(page) &&
  1911. (wbc->sync_mode == WB_SYNC_NONE)) ||
  1912. unlikely(page->mapping != mapping)) {
  1913. unlock_page(page);
  1914. continue;
  1915. }
  1916. wait_on_page_writeback(page);
  1917. BUG_ON(PageWriteback(page));
  1918. /*
  1919. * If we have inline data and arrive here, it means that
  1920. * we will soon create the block for the 1st page, so
  1921. * we'd better clear the inline data here.
  1922. */
  1923. if (ext4_has_inline_data(inode)) {
  1924. BUG_ON(ext4_test_inode_state(inode,
  1925. EXT4_STATE_MAY_INLINE_DATA));
  1926. ext4_destroy_inline_data(handle, inode);
  1927. }
  1928. if (mpd->next_page != page->index)
  1929. mpd->first_page = page->index;
  1930. mpd->next_page = page->index + 1;
  1931. logical = (sector_t) page->index <<
  1932. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1933. /* Add all dirty buffers to mpd */
  1934. head = page_buffers(page);
  1935. bh = head;
  1936. do {
  1937. BUG_ON(buffer_locked(bh));
  1938. /*
  1939. * We need to try to allocate unmapped blocks
  1940. * in the same page. Otherwise we won't make
  1941. * progress with the page in ext4_writepage
  1942. */
  1943. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  1944. mpage_add_bh_to_extent(mpd, logical,
  1945. bh->b_state);
  1946. if (mpd->io_done)
  1947. goto ret_extent_tail;
  1948. } else if (buffer_dirty(bh) &&
  1949. buffer_mapped(bh)) {
  1950. /*
  1951. * mapped dirty buffer. We need to
  1952. * update the b_state because we look
  1953. * at b_state in mpage_da_map_blocks.
  1954. * We don't update b_size because if we
  1955. * find an unmapped buffer_head later
  1956. * we need to use the b_state flag of
  1957. * that buffer_head.
  1958. */
  1959. if (mpd->b_size == 0)
  1960. mpd->b_state =
  1961. bh->b_state & BH_FLAGS;
  1962. }
  1963. logical++;
  1964. } while ((bh = bh->b_this_page) != head);
  1965. if (nr_to_write > 0) {
  1966. nr_to_write--;
  1967. if (nr_to_write == 0 &&
  1968. wbc->sync_mode == WB_SYNC_NONE)
  1969. /*
  1970. * We stop writing back only if we are
  1971. * not doing integrity sync. In case of
  1972. * integrity sync we have to keep going
  1973. * because someone may be concurrently
  1974. * dirtying pages, and we might have
  1975. * synced a lot of newly appeared dirty
  1976. * pages, but have not synced all of the
  1977. * old dirty pages.
  1978. */
  1979. goto out;
  1980. }
  1981. }
  1982. pagevec_release(&pvec);
  1983. cond_resched();
  1984. }
  1985. return 0;
  1986. ret_extent_tail:
  1987. ret = MPAGE_DA_EXTENT_TAIL;
  1988. out:
  1989. pagevec_release(&pvec);
  1990. cond_resched();
  1991. return ret;
  1992. }
  1993. static int ext4_da_writepages(struct address_space *mapping,
  1994. struct writeback_control *wbc)
  1995. {
  1996. pgoff_t index;
  1997. int range_whole = 0;
  1998. handle_t *handle = NULL;
  1999. struct mpage_da_data mpd;
  2000. struct inode *inode = mapping->host;
  2001. int pages_written = 0;
  2002. unsigned int max_pages;
  2003. int range_cyclic, cycled = 1, io_done = 0;
  2004. int needed_blocks, ret = 0;
  2005. long desired_nr_to_write, nr_to_writebump = 0;
  2006. loff_t range_start = wbc->range_start;
  2007. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2008. pgoff_t done_index = 0;
  2009. pgoff_t end;
  2010. struct blk_plug plug;
  2011. trace_ext4_da_writepages(inode, wbc);
  2012. /*
  2013. * No pages to write? This is mainly a kludge to avoid starting
  2014. * a transaction for special inodes like journal inode on last iput()
  2015. * because that could violate lock ordering on umount
  2016. */
  2017. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2018. return 0;
  2019. /*
  2020. * If the filesystem has aborted, it is read-only, so return
  2021. * right away instead of dumping stack traces later on that
  2022. * will obscure the real source of the problem. We test
  2023. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2024. * the latter could be true if the filesystem is mounted
  2025. * read-only, and in that case, ext4_da_writepages should
  2026. * *never* be called, so if that ever happens, we would want
  2027. * the stack trace.
  2028. */
  2029. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2030. return -EROFS;
  2031. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2032. range_whole = 1;
  2033. range_cyclic = wbc->range_cyclic;
  2034. if (wbc->range_cyclic) {
  2035. index = mapping->writeback_index;
  2036. if (index)
  2037. cycled = 0;
  2038. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2039. wbc->range_end = LLONG_MAX;
  2040. wbc->range_cyclic = 0;
  2041. end = -1;
  2042. } else {
  2043. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2044. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2045. }
  2046. /*
  2047. * This works around two forms of stupidity. The first is in
  2048. * the writeback code, which caps the maximum number of pages
  2049. * written to be 1024 pages. This is wrong on multiple
  2050. * levels; different architectues have a different page size,
  2051. * which changes the maximum amount of data which gets
  2052. * written. Secondly, 4 megabytes is way too small. XFS
  2053. * forces this value to be 16 megabytes by multiplying
  2054. * nr_to_write parameter by four, and then relies on its
  2055. * allocator to allocate larger extents to make them
  2056. * contiguous. Unfortunately this brings us to the second
  2057. * stupidity, which is that ext4's mballoc code only allocates
  2058. * at most 2048 blocks. So we force contiguous writes up to
  2059. * the number of dirty blocks in the inode, or
  2060. * sbi->max_writeback_mb_bump whichever is smaller.
  2061. */
  2062. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2063. if (!range_cyclic && range_whole) {
  2064. if (wbc->nr_to_write == LONG_MAX)
  2065. desired_nr_to_write = wbc->nr_to_write;
  2066. else
  2067. desired_nr_to_write = wbc->nr_to_write * 8;
  2068. } else
  2069. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2070. max_pages);
  2071. if (desired_nr_to_write > max_pages)
  2072. desired_nr_to_write = max_pages;
  2073. if (wbc->nr_to_write < desired_nr_to_write) {
  2074. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2075. wbc->nr_to_write = desired_nr_to_write;
  2076. }
  2077. retry:
  2078. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  2079. tag_pages_for_writeback(mapping, index, end);
  2080. blk_start_plug(&plug);
  2081. while (!ret && wbc->nr_to_write > 0) {
  2082. /*
  2083. * we insert one extent at a time. So we need
  2084. * credit needed for single extent allocation.
  2085. * journalled mode is currently not supported
  2086. * by delalloc
  2087. */
  2088. BUG_ON(ext4_should_journal_data(inode));
  2089. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2090. /* start a new transaction*/
  2091. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  2092. needed_blocks);
  2093. if (IS_ERR(handle)) {
  2094. ret = PTR_ERR(handle);
  2095. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2096. "%ld pages, ino %lu; err %d", __func__,
  2097. wbc->nr_to_write, inode->i_ino, ret);
  2098. blk_finish_plug(&plug);
  2099. goto out_writepages;
  2100. }
  2101. /*
  2102. * Now call write_cache_pages_da() to find the next
  2103. * contiguous region of logical blocks that need
  2104. * blocks to be allocated by ext4 and submit them.
  2105. */
  2106. ret = write_cache_pages_da(handle, mapping,
  2107. wbc, &mpd, &done_index);
  2108. /*
  2109. * If we have a contiguous extent of pages and we
  2110. * haven't done the I/O yet, map the blocks and submit
  2111. * them for I/O.
  2112. */
  2113. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2114. mpage_da_map_and_submit(&mpd);
  2115. ret = MPAGE_DA_EXTENT_TAIL;
  2116. }
  2117. trace_ext4_da_write_pages(inode, &mpd);
  2118. wbc->nr_to_write -= mpd.pages_written;
  2119. ext4_journal_stop(handle);
  2120. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2121. /* commit the transaction which would
  2122. * free blocks released in the transaction
  2123. * and try again
  2124. */
  2125. jbd2_journal_force_commit_nested(sbi->s_journal);
  2126. ret = 0;
  2127. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2128. /*
  2129. * Got one extent now try with rest of the pages.
  2130. * If mpd.retval is set -EIO, journal is aborted.
  2131. * So we don't need to write any more.
  2132. */
  2133. pages_written += mpd.pages_written;
  2134. ret = mpd.retval;
  2135. io_done = 1;
  2136. } else if (wbc->nr_to_write)
  2137. /*
  2138. * There is no more writeout needed
  2139. * or we requested for a noblocking writeout
  2140. * and we found the device congested
  2141. */
  2142. break;
  2143. }
  2144. blk_finish_plug(&plug);
  2145. if (!io_done && !cycled) {
  2146. cycled = 1;
  2147. index = 0;
  2148. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2149. wbc->range_end = mapping->writeback_index - 1;
  2150. goto retry;
  2151. }
  2152. /* Update index */
  2153. wbc->range_cyclic = range_cyclic;
  2154. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2155. /*
  2156. * set the writeback_index so that range_cyclic
  2157. * mode will write it back later
  2158. */
  2159. mapping->writeback_index = done_index;
  2160. out_writepages:
  2161. wbc->nr_to_write -= nr_to_writebump;
  2162. wbc->range_start = range_start;
  2163. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2164. return ret;
  2165. }
  2166. static int ext4_nonda_switch(struct super_block *sb)
  2167. {
  2168. s64 free_blocks, dirty_blocks;
  2169. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2170. /*
  2171. * switch to non delalloc mode if we are running low
  2172. * on free block. The free block accounting via percpu
  2173. * counters can get slightly wrong with percpu_counter_batch getting
  2174. * accumulated on each CPU without updating global counters
  2175. * Delalloc need an accurate free block accounting. So switch
  2176. * to non delalloc when we are near to error range.
  2177. */
  2178. free_blocks = EXT4_C2B(sbi,
  2179. percpu_counter_read_positive(&sbi->s_freeclusters_counter));
  2180. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
  2181. /*
  2182. * Start pushing delalloc when 1/2 of free blocks are dirty.
  2183. */
  2184. if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
  2185. !writeback_in_progress(sb->s_bdi) &&
  2186. down_read_trylock(&sb->s_umount)) {
  2187. writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
  2188. up_read(&sb->s_umount);
  2189. }
  2190. if (2 * free_blocks < 3 * dirty_blocks ||
  2191. free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
  2192. /*
  2193. * free block count is less than 150% of dirty blocks
  2194. * or free blocks is less than watermark
  2195. */
  2196. return 1;
  2197. }
  2198. return 0;
  2199. }
  2200. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2201. loff_t pos, unsigned len, unsigned flags,
  2202. struct page **pagep, void **fsdata)
  2203. {
  2204. int ret, retries = 0;
  2205. struct page *page;
  2206. pgoff_t index;
  2207. struct inode *inode = mapping->host;
  2208. handle_t *handle;
  2209. index = pos >> PAGE_CACHE_SHIFT;
  2210. if (ext4_nonda_switch(inode->i_sb)) {
  2211. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2212. return ext4_write_begin(file, mapping, pos,
  2213. len, flags, pagep, fsdata);
  2214. }
  2215. *fsdata = (void *)0;
  2216. trace_ext4_da_write_begin(inode, pos, len, flags);
  2217. if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
  2218. ret = ext4_da_write_inline_data_begin(mapping, inode,
  2219. pos, len, flags,
  2220. pagep, fsdata);
  2221. if (ret < 0)
  2222. return ret;
  2223. if (ret == 1)
  2224. return 0;
  2225. }
  2226. /*
  2227. * grab_cache_page_write_begin() can take a long time if the
  2228. * system is thrashing due to memory pressure, or if the page
  2229. * is being written back. So grab it first before we start
  2230. * the transaction handle. This also allows us to allocate
  2231. * the page (if needed) without using GFP_NOFS.
  2232. */
  2233. retry_grab:
  2234. page = grab_cache_page_write_begin(mapping, index, flags);
  2235. if (!page)
  2236. return -ENOMEM;
  2237. unlock_page(page);
  2238. /*
  2239. * With delayed allocation, we don't log the i_disksize update
  2240. * if there is delayed block allocation. But we still need
  2241. * to journalling the i_disksize update if writes to the end
  2242. * of file which has an already mapped buffer.
  2243. */
  2244. retry_journal:
  2245. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
  2246. if (IS_ERR(handle)) {
  2247. page_cache_release(page);
  2248. return PTR_ERR(handle);
  2249. }
  2250. lock_page(page);
  2251. if (page->mapping != mapping) {
  2252. /* The page got truncated from under us */
  2253. unlock_page(page);
  2254. page_cache_release(page);
  2255. ext4_journal_stop(handle);
  2256. goto retry_grab;
  2257. }
  2258. /* In case writeback began while the page was unlocked */
  2259. wait_on_page_writeback(page);
  2260. ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
  2261. if (ret < 0) {
  2262. unlock_page(page);
  2263. ext4_journal_stop(handle);
  2264. /*
  2265. * block_write_begin may have instantiated a few blocks
  2266. * outside i_size. Trim these off again. Don't need
  2267. * i_size_read because we hold i_mutex.
  2268. */
  2269. if (pos + len > inode->i_size)
  2270. ext4_truncate_failed_write(inode);
  2271. if (ret == -ENOSPC &&
  2272. ext4_should_retry_alloc(inode->i_sb, &retries))
  2273. goto retry_journal;
  2274. page_cache_release(page);
  2275. return ret;
  2276. }
  2277. *pagep = page;
  2278. return ret;
  2279. }
  2280. /*
  2281. * Check if we should update i_disksize
  2282. * when write to the end of file but not require block allocation
  2283. */
  2284. static int ext4_da_should_update_i_disksize(struct page *page,
  2285. unsigned long offset)
  2286. {
  2287. struct buffer_head *bh;
  2288. struct inode *inode = page->mapping->host;
  2289. unsigned int idx;
  2290. int i;
  2291. bh = page_buffers(page);
  2292. idx = offset >> inode->i_blkbits;
  2293. for (i = 0; i < idx; i++)
  2294. bh = bh->b_this_page;
  2295. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2296. return 0;
  2297. return 1;
  2298. }
  2299. static int ext4_da_write_end(struct file *file,
  2300. struct address_space *mapping,
  2301. loff_t pos, unsigned len, unsigned copied,
  2302. struct page *page, void *fsdata)
  2303. {
  2304. struct inode *inode = mapping->host;
  2305. int ret = 0, ret2;
  2306. handle_t *handle = ext4_journal_current_handle();
  2307. loff_t new_i_size;
  2308. unsigned long start, end;
  2309. int write_mode = (int)(unsigned long)fsdata;
  2310. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2311. switch (ext4_inode_journal_mode(inode)) {
  2312. case EXT4_INODE_ORDERED_DATA_MODE:
  2313. return ext4_ordered_write_end(file, mapping, pos,
  2314. len, copied, page, fsdata);
  2315. case EXT4_INODE_WRITEBACK_DATA_MODE:
  2316. return ext4_writeback_write_end(file, mapping, pos,
  2317. len, copied, page, fsdata);
  2318. default:
  2319. BUG();
  2320. }
  2321. }
  2322. trace_ext4_da_write_end(inode, pos, len, copied);
  2323. start = pos & (PAGE_CACHE_SIZE - 1);
  2324. end = start + copied - 1;
  2325. /*
  2326. * generic_write_end() will run mark_inode_dirty() if i_size
  2327. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2328. * into that.
  2329. */
  2330. new_i_size = pos + copied;
  2331. if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
  2332. if (ext4_has_inline_data(inode) ||
  2333. ext4_da_should_update_i_disksize(page, end)) {
  2334. down_write(&EXT4_I(inode)->i_data_sem);
  2335. if (new_i_size > EXT4_I(inode)->i_disksize)
  2336. EXT4_I(inode)->i_disksize = new_i_size;
  2337. up_write(&EXT4_I(inode)->i_data_sem);
  2338. /* We need to mark inode dirty even if
  2339. * new_i_size is less that inode->i_size
  2340. * bu greater than i_disksize.(hint delalloc)
  2341. */
  2342. ext4_mark_inode_dirty(handle, inode);
  2343. }
  2344. }
  2345. if (write_mode != CONVERT_INLINE_DATA &&
  2346. ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
  2347. ext4_has_inline_data(inode))
  2348. ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
  2349. page);
  2350. else
  2351. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2352. page, fsdata);
  2353. copied = ret2;
  2354. if (ret2 < 0)
  2355. ret = ret2;
  2356. ret2 = ext4_journal_stop(handle);
  2357. if (!ret)
  2358. ret = ret2;
  2359. return ret ? ret : copied;
  2360. }
  2361. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2362. {
  2363. /*
  2364. * Drop reserved blocks
  2365. */
  2366. BUG_ON(!PageLocked(page));
  2367. if (!page_has_buffers(page))
  2368. goto out;
  2369. ext4_da_page_release_reservation(page, offset);
  2370. out:
  2371. ext4_invalidatepage(page, offset);
  2372. return;
  2373. }
  2374. /*
  2375. * Force all delayed allocation blocks to be allocated for a given inode.
  2376. */
  2377. int ext4_alloc_da_blocks(struct inode *inode)
  2378. {
  2379. trace_ext4_alloc_da_blocks(inode);
  2380. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2381. !EXT4_I(inode)->i_reserved_meta_blocks)
  2382. return 0;
  2383. /*
  2384. * We do something simple for now. The filemap_flush() will
  2385. * also start triggering a write of the data blocks, which is
  2386. * not strictly speaking necessary (and for users of
  2387. * laptop_mode, not even desirable). However, to do otherwise
  2388. * would require replicating code paths in:
  2389. *
  2390. * ext4_da_writepages() ->
  2391. * write_cache_pages() ---> (via passed in callback function)
  2392. * __mpage_da_writepage() -->
  2393. * mpage_add_bh_to_extent()
  2394. * mpage_da_map_blocks()
  2395. *
  2396. * The problem is that write_cache_pages(), located in
  2397. * mm/page-writeback.c, marks pages clean in preparation for
  2398. * doing I/O, which is not desirable if we're not planning on
  2399. * doing I/O at all.
  2400. *
  2401. * We could call write_cache_pages(), and then redirty all of
  2402. * the pages by calling redirty_page_for_writepage() but that
  2403. * would be ugly in the extreme. So instead we would need to
  2404. * replicate parts of the code in the above functions,
  2405. * simplifying them because we wouldn't actually intend to
  2406. * write out the pages, but rather only collect contiguous
  2407. * logical block extents, call the multi-block allocator, and
  2408. * then update the buffer heads with the block allocations.
  2409. *
  2410. * For now, though, we'll cheat by calling filemap_flush(),
  2411. * which will map the blocks, and start the I/O, but not
  2412. * actually wait for the I/O to complete.
  2413. */
  2414. return filemap_flush(inode->i_mapping);
  2415. }
  2416. /*
  2417. * bmap() is special. It gets used by applications such as lilo and by
  2418. * the swapper to find the on-disk block of a specific piece of data.
  2419. *
  2420. * Naturally, this is dangerous if the block concerned is still in the
  2421. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2422. * filesystem and enables swap, then they may get a nasty shock when the
  2423. * data getting swapped to that swapfile suddenly gets overwritten by
  2424. * the original zero's written out previously to the journal and
  2425. * awaiting writeback in the kernel's buffer cache.
  2426. *
  2427. * So, if we see any bmap calls here on a modified, data-journaled file,
  2428. * take extra steps to flush any blocks which might be in the cache.
  2429. */
  2430. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2431. {
  2432. struct inode *inode = mapping->host;
  2433. journal_t *journal;
  2434. int err;
  2435. /*
  2436. * We can get here for an inline file via the FIBMAP ioctl
  2437. */
  2438. if (ext4_has_inline_data(inode))
  2439. return 0;
  2440. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2441. test_opt(inode->i_sb, DELALLOC)) {
  2442. /*
  2443. * With delalloc we want to sync the file
  2444. * so that we can make sure we allocate
  2445. * blocks for file
  2446. */
  2447. filemap_write_and_wait(mapping);
  2448. }
  2449. if (EXT4_JOURNAL(inode) &&
  2450. ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
  2451. /*
  2452. * This is a REALLY heavyweight approach, but the use of
  2453. * bmap on dirty files is expected to be extremely rare:
  2454. * only if we run lilo or swapon on a freshly made file
  2455. * do we expect this to happen.
  2456. *
  2457. * (bmap requires CAP_SYS_RAWIO so this does not
  2458. * represent an unprivileged user DOS attack --- we'd be
  2459. * in trouble if mortal users could trigger this path at
  2460. * will.)
  2461. *
  2462. * NB. EXT4_STATE_JDATA is not set on files other than
  2463. * regular files. If somebody wants to bmap a directory
  2464. * or symlink and gets confused because the buffer
  2465. * hasn't yet been flushed to disk, they deserve
  2466. * everything they get.
  2467. */
  2468. ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
  2469. journal = EXT4_JOURNAL(inode);
  2470. jbd2_journal_lock_updates(journal);
  2471. err = jbd2_journal_flush(journal);
  2472. jbd2_journal_unlock_updates(journal);
  2473. if (err)
  2474. return 0;
  2475. }
  2476. return generic_block_bmap(mapping, block, ext4_get_block);
  2477. }
  2478. static int ext4_readpage(struct file *file, struct page *page)
  2479. {
  2480. int ret = -EAGAIN;
  2481. struct inode *inode = page->mapping->host;
  2482. trace_ext4_readpage(page);
  2483. if (ext4_has_inline_data(inode))
  2484. ret = ext4_readpage_inline(inode, page);
  2485. if (ret == -EAGAIN)
  2486. return mpage_readpage(page, ext4_get_block);
  2487. return ret;
  2488. }
  2489. static int
  2490. ext4_readpages(struct file *file, struct address_space *mapping,
  2491. struct list_head *pages, unsigned nr_pages)
  2492. {
  2493. struct inode *inode = mapping->host;
  2494. /* If the file has inline data, no need to do readpages. */
  2495. if (ext4_has_inline_data(inode))
  2496. return 0;
  2497. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2498. }
  2499. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2500. {
  2501. trace_ext4_invalidatepage(page, offset);
  2502. /* No journalling happens on data buffers when this function is used */
  2503. WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
  2504. block_invalidatepage(page, offset);
  2505. }
  2506. static int __ext4_journalled_invalidatepage(struct page *page,
  2507. unsigned long offset)
  2508. {
  2509. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2510. trace_ext4_journalled_invalidatepage(page, offset);
  2511. /*
  2512. * If it's a full truncate we just forget about the pending dirtying
  2513. */
  2514. if (offset == 0)
  2515. ClearPageChecked(page);
  2516. return jbd2_journal_invalidatepage(journal, page, offset);
  2517. }
  2518. /* Wrapper for aops... */
  2519. static void ext4_journalled_invalidatepage(struct page *page,
  2520. unsigned long offset)
  2521. {
  2522. WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
  2523. }
  2524. static int ext4_releasepage(struct page *page, gfp_t wait)
  2525. {
  2526. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2527. trace_ext4_releasepage(page);
  2528. WARN_ON(PageChecked(page));
  2529. if (!page_has_buffers(page))
  2530. return 0;
  2531. if (journal)
  2532. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2533. else
  2534. return try_to_free_buffers(page);
  2535. }
  2536. /*
  2537. * ext4_get_block used when preparing for a DIO write or buffer write.
  2538. * We allocate an uinitialized extent if blocks haven't been allocated.
  2539. * The extent will be converted to initialized after the IO is complete.
  2540. */
  2541. int ext4_get_block_write(struct inode *inode, sector_t iblock,
  2542. struct buffer_head *bh_result, int create)
  2543. {
  2544. ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
  2545. inode->i_ino, create);
  2546. return _ext4_get_block(inode, iblock, bh_result,
  2547. EXT4_GET_BLOCKS_IO_CREATE_EXT);
  2548. }
  2549. static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
  2550. struct buffer_head *bh_result, int create)
  2551. {
  2552. ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
  2553. inode->i_ino, create);
  2554. return _ext4_get_block(inode, iblock, bh_result,
  2555. EXT4_GET_BLOCKS_NO_LOCK);
  2556. }
  2557. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  2558. ssize_t size, void *private, int ret,
  2559. bool is_async)
  2560. {
  2561. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  2562. ext4_io_end_t *io_end = iocb->private;
  2563. /* if not async direct IO or dio with 0 bytes write, just return */
  2564. if (!io_end || !size)
  2565. goto out;
  2566. ext_debug("ext4_end_io_dio(): io_end 0x%p "
  2567. "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
  2568. iocb->private, io_end->inode->i_ino, iocb, offset,
  2569. size);
  2570. iocb->private = NULL;
  2571. /* if not aio dio with unwritten extents, just free io and return */
  2572. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  2573. ext4_free_io_end(io_end);
  2574. out:
  2575. inode_dio_done(inode);
  2576. if (is_async)
  2577. aio_complete(iocb, ret, 0);
  2578. return;
  2579. }
  2580. io_end->offset = offset;
  2581. io_end->size = size;
  2582. if (is_async) {
  2583. io_end->iocb = iocb;
  2584. io_end->result = ret;
  2585. }
  2586. ext4_add_complete_io(io_end);
  2587. }
  2588. /*
  2589. * For ext4 extent files, ext4 will do direct-io write to holes,
  2590. * preallocated extents, and those write extend the file, no need to
  2591. * fall back to buffered IO.
  2592. *
  2593. * For holes, we fallocate those blocks, mark them as uninitialized
  2594. * If those blocks were preallocated, we mark sure they are split, but
  2595. * still keep the range to write as uninitialized.
  2596. *
  2597. * The unwritten extents will be converted to written when DIO is completed.
  2598. * For async direct IO, since the IO may still pending when return, we
  2599. * set up an end_io call back function, which will do the conversion
  2600. * when async direct IO completed.
  2601. *
  2602. * If the O_DIRECT write will extend the file then add this inode to the
  2603. * orphan list. So recovery will truncate it back to the original size
  2604. * if the machine crashes during the write.
  2605. *
  2606. */
  2607. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  2608. const struct iovec *iov, loff_t offset,
  2609. unsigned long nr_segs)
  2610. {
  2611. struct file *file = iocb->ki_filp;
  2612. struct inode *inode = file->f_mapping->host;
  2613. ssize_t ret;
  2614. size_t count = iov_length(iov, nr_segs);
  2615. int overwrite = 0;
  2616. get_block_t *get_block_func = NULL;
  2617. int dio_flags = 0;
  2618. loff_t final_size = offset + count;
  2619. /* Use the old path for reads and writes beyond i_size. */
  2620. if (rw != WRITE || final_size > inode->i_size)
  2621. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2622. BUG_ON(iocb->private == NULL);
  2623. /* If we do a overwrite dio, i_mutex locking can be released */
  2624. overwrite = *((int *)iocb->private);
  2625. if (overwrite) {
  2626. atomic_inc(&inode->i_dio_count);
  2627. down_read(&EXT4_I(inode)->i_data_sem);
  2628. mutex_unlock(&inode->i_mutex);
  2629. }
  2630. /*
  2631. * We could direct write to holes and fallocate.
  2632. *
  2633. * Allocated blocks to fill the hole are marked as
  2634. * uninitialized to prevent parallel buffered read to expose
  2635. * the stale data before DIO complete the data IO.
  2636. *
  2637. * As to previously fallocated extents, ext4 get_block will
  2638. * just simply mark the buffer mapped but still keep the
  2639. * extents uninitialized.
  2640. *
  2641. * For non AIO case, we will convert those unwritten extents
  2642. * to written after return back from blockdev_direct_IO.
  2643. *
  2644. * For async DIO, the conversion needs to be deferred when the
  2645. * IO is completed. The ext4 end_io callback function will be
  2646. * called to take care of the conversion work. Here for async
  2647. * case, we allocate an io_end structure to hook to the iocb.
  2648. */
  2649. iocb->private = NULL;
  2650. ext4_inode_aio_set(inode, NULL);
  2651. if (!is_sync_kiocb(iocb)) {
  2652. ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
  2653. if (!io_end) {
  2654. ret = -ENOMEM;
  2655. goto retake_lock;
  2656. }
  2657. io_end->flag |= EXT4_IO_END_DIRECT;
  2658. iocb->private = io_end;
  2659. /*
  2660. * we save the io structure for current async direct
  2661. * IO, so that later ext4_map_blocks() could flag the
  2662. * io structure whether there is a unwritten extents
  2663. * needs to be converted when IO is completed.
  2664. */
  2665. ext4_inode_aio_set(inode, io_end);
  2666. }
  2667. if (overwrite) {
  2668. get_block_func = ext4_get_block_write_nolock;
  2669. } else {
  2670. get_block_func = ext4_get_block_write;
  2671. dio_flags = DIO_LOCKING;
  2672. }
  2673. ret = __blockdev_direct_IO(rw, iocb, inode,
  2674. inode->i_sb->s_bdev, iov,
  2675. offset, nr_segs,
  2676. get_block_func,
  2677. ext4_end_io_dio,
  2678. NULL,
  2679. dio_flags);
  2680. if (iocb->private)
  2681. ext4_inode_aio_set(inode, NULL);
  2682. /*
  2683. * The io_end structure takes a reference to the inode, that
  2684. * structure needs to be destroyed and the reference to the
  2685. * inode need to be dropped, when IO is complete, even with 0
  2686. * byte write, or failed.
  2687. *
  2688. * In the successful AIO DIO case, the io_end structure will
  2689. * be destroyed and the reference to the inode will be dropped
  2690. * after the end_io call back function is called.
  2691. *
  2692. * In the case there is 0 byte write, or error case, since VFS
  2693. * direct IO won't invoke the end_io call back function, we
  2694. * need to free the end_io structure here.
  2695. */
  2696. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  2697. ext4_free_io_end(iocb->private);
  2698. iocb->private = NULL;
  2699. } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
  2700. EXT4_STATE_DIO_UNWRITTEN)) {
  2701. int err;
  2702. /*
  2703. * for non AIO case, since the IO is already
  2704. * completed, we could do the conversion right here
  2705. */
  2706. err = ext4_convert_unwritten_extents(inode,
  2707. offset, ret);
  2708. if (err < 0)
  2709. ret = err;
  2710. ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
  2711. }
  2712. retake_lock:
  2713. /* take i_mutex locking again if we do a ovewrite dio */
  2714. if (overwrite) {
  2715. inode_dio_done(inode);
  2716. up_read(&EXT4_I(inode)->i_data_sem);
  2717. mutex_lock(&inode->i_mutex);
  2718. }
  2719. return ret;
  2720. }
  2721. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  2722. const struct iovec *iov, loff_t offset,
  2723. unsigned long nr_segs)
  2724. {
  2725. struct file *file = iocb->ki_filp;
  2726. struct inode *inode = file->f_mapping->host;
  2727. ssize_t ret;
  2728. /*
  2729. * If we are doing data journalling we don't support O_DIRECT
  2730. */
  2731. if (ext4_should_journal_data(inode))
  2732. return 0;
  2733. /* Let buffer I/O handle the inline data case. */
  2734. if (ext4_has_inline_data(inode))
  2735. return 0;
  2736. trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  2737. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  2738. ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  2739. else
  2740. ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2741. trace_ext4_direct_IO_exit(inode, offset,
  2742. iov_length(iov, nr_segs), rw, ret);
  2743. return ret;
  2744. }
  2745. /*
  2746. * Pages can be marked dirty completely asynchronously from ext4's journalling
  2747. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  2748. * much here because ->set_page_dirty is called under VFS locks. The page is
  2749. * not necessarily locked.
  2750. *
  2751. * We cannot just dirty the page and leave attached buffers clean, because the
  2752. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  2753. * or jbddirty because all the journalling code will explode.
  2754. *
  2755. * So what we do is to mark the page "pending dirty" and next time writepage
  2756. * is called, propagate that into the buffers appropriately.
  2757. */
  2758. static int ext4_journalled_set_page_dirty(struct page *page)
  2759. {
  2760. SetPageChecked(page);
  2761. return __set_page_dirty_nobuffers(page);
  2762. }
  2763. static const struct address_space_operations ext4_ordered_aops = {
  2764. .readpage = ext4_readpage,
  2765. .readpages = ext4_readpages,
  2766. .writepage = ext4_writepage,
  2767. .write_begin = ext4_write_begin,
  2768. .write_end = ext4_ordered_write_end,
  2769. .bmap = ext4_bmap,
  2770. .invalidatepage = ext4_invalidatepage,
  2771. .releasepage = ext4_releasepage,
  2772. .direct_IO = ext4_direct_IO,
  2773. .migratepage = buffer_migrate_page,
  2774. .is_partially_uptodate = block_is_partially_uptodate,
  2775. .error_remove_page = generic_error_remove_page,
  2776. };
  2777. static const struct address_space_operations ext4_writeback_aops = {
  2778. .readpage = ext4_readpage,
  2779. .readpages = ext4_readpages,
  2780. .writepage = ext4_writepage,
  2781. .write_begin = ext4_write_begin,
  2782. .write_end = ext4_writeback_write_end,
  2783. .bmap = ext4_bmap,
  2784. .invalidatepage = ext4_invalidatepage,
  2785. .releasepage = ext4_releasepage,
  2786. .direct_IO = ext4_direct_IO,
  2787. .migratepage = buffer_migrate_page,
  2788. .is_partially_uptodate = block_is_partially_uptodate,
  2789. .error_remove_page = generic_error_remove_page,
  2790. };
  2791. static const struct address_space_operations ext4_journalled_aops = {
  2792. .readpage = ext4_readpage,
  2793. .readpages = ext4_readpages,
  2794. .writepage = ext4_writepage,
  2795. .write_begin = ext4_write_begin,
  2796. .write_end = ext4_journalled_write_end,
  2797. .set_page_dirty = ext4_journalled_set_page_dirty,
  2798. .bmap = ext4_bmap,
  2799. .invalidatepage = ext4_journalled_invalidatepage,
  2800. .releasepage = ext4_releasepage,
  2801. .direct_IO = ext4_direct_IO,
  2802. .is_partially_uptodate = block_is_partially_uptodate,
  2803. .error_remove_page = generic_error_remove_page,
  2804. };
  2805. static const struct address_space_operations ext4_da_aops = {
  2806. .readpage = ext4_readpage,
  2807. .readpages = ext4_readpages,
  2808. .writepage = ext4_writepage,
  2809. .writepages = ext4_da_writepages,
  2810. .write_begin = ext4_da_write_begin,
  2811. .write_end = ext4_da_write_end,
  2812. .bmap = ext4_bmap,
  2813. .invalidatepage = ext4_da_invalidatepage,
  2814. .releasepage = ext4_releasepage,
  2815. .direct_IO = ext4_direct_IO,
  2816. .migratepage = buffer_migrate_page,
  2817. .is_partially_uptodate = block_is_partially_uptodate,
  2818. .error_remove_page = generic_error_remove_page,
  2819. };
  2820. void ext4_set_aops(struct inode *inode)
  2821. {
  2822. switch (ext4_inode_journal_mode(inode)) {
  2823. case EXT4_INODE_ORDERED_DATA_MODE:
  2824. if (test_opt(inode->i_sb, DELALLOC))
  2825. inode->i_mapping->a_ops = &ext4_da_aops;
  2826. else
  2827. inode->i_mapping->a_ops = &ext4_ordered_aops;
  2828. break;
  2829. case EXT4_INODE_WRITEBACK_DATA_MODE:
  2830. if (test_opt(inode->i_sb, DELALLOC))
  2831. inode->i_mapping->a_ops = &ext4_da_aops;
  2832. else
  2833. inode->i_mapping->a_ops = &ext4_writeback_aops;
  2834. break;
  2835. case EXT4_INODE_JOURNAL_DATA_MODE:
  2836. inode->i_mapping->a_ops = &ext4_journalled_aops;
  2837. break;
  2838. default:
  2839. BUG();
  2840. }
  2841. }
  2842. /*
  2843. * ext4_discard_partial_page_buffers()
  2844. * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
  2845. * This function finds and locks the page containing the offset
  2846. * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
  2847. * Calling functions that already have the page locked should call
  2848. * ext4_discard_partial_page_buffers_no_lock directly.
  2849. */
  2850. int ext4_discard_partial_page_buffers(handle_t *handle,
  2851. struct address_space *mapping, loff_t from,
  2852. loff_t length, int flags)
  2853. {
  2854. struct inode *inode = mapping->host;
  2855. struct page *page;
  2856. int err = 0;
  2857. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  2858. mapping_gfp_mask(mapping) & ~__GFP_FS);
  2859. if (!page)
  2860. return -ENOMEM;
  2861. err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
  2862. from, length, flags);
  2863. unlock_page(page);
  2864. page_cache_release(page);
  2865. return err;
  2866. }
  2867. /*
  2868. * ext4_discard_partial_page_buffers_no_lock()
  2869. * Zeros a page range of length 'length' starting from offset 'from'.
  2870. * Buffer heads that correspond to the block aligned regions of the
  2871. * zeroed range will be unmapped. Unblock aligned regions
  2872. * will have the corresponding buffer head mapped if needed so that
  2873. * that region of the page can be updated with the partial zero out.
  2874. *
  2875. * This function assumes that the page has already been locked. The
  2876. * The range to be discarded must be contained with in the given page.
  2877. * If the specified range exceeds the end of the page it will be shortened
  2878. * to the end of the page that corresponds to 'from'. This function is
  2879. * appropriate for updating a page and it buffer heads to be unmapped and
  2880. * zeroed for blocks that have been either released, or are going to be
  2881. * released.
  2882. *
  2883. * handle: The journal handle
  2884. * inode: The files inode
  2885. * page: A locked page that contains the offset "from"
  2886. * from: The starting byte offset (from the beginning of the file)
  2887. * to begin discarding
  2888. * len: The length of bytes to discard
  2889. * flags: Optional flags that may be used:
  2890. *
  2891. * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
  2892. * Only zero the regions of the page whose buffer heads
  2893. * have already been unmapped. This flag is appropriate
  2894. * for updating the contents of a page whose blocks may
  2895. * have already been released, and we only want to zero
  2896. * out the regions that correspond to those released blocks.
  2897. *
  2898. * Returns zero on success or negative on failure.
  2899. */
  2900. static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
  2901. struct inode *inode, struct page *page, loff_t from,
  2902. loff_t length, int flags)
  2903. {
  2904. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  2905. unsigned int offset = from & (PAGE_CACHE_SIZE-1);
  2906. unsigned int blocksize, max, pos;
  2907. ext4_lblk_t iblock;
  2908. struct buffer_head *bh;
  2909. int err = 0;
  2910. blocksize = inode->i_sb->s_blocksize;
  2911. max = PAGE_CACHE_SIZE - offset;
  2912. if (index != page->index)
  2913. return -EINVAL;
  2914. /*
  2915. * correct length if it does not fall between
  2916. * 'from' and the end of the page
  2917. */
  2918. if (length > max || length < 0)
  2919. length = max;
  2920. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  2921. if (!page_has_buffers(page))
  2922. create_empty_buffers(page, blocksize, 0);
  2923. /* Find the buffer that contains "offset" */
  2924. bh = page_buffers(page);
  2925. pos = blocksize;
  2926. while (offset >= pos) {
  2927. bh = bh->b_this_page;
  2928. iblock++;
  2929. pos += blocksize;
  2930. }
  2931. pos = offset;
  2932. while (pos < offset + length) {
  2933. unsigned int end_of_block, range_to_discard;
  2934. err = 0;
  2935. /* The length of space left to zero and unmap */
  2936. range_to_discard = offset + length - pos;
  2937. /* The length of space until the end of the block */
  2938. end_of_block = blocksize - (pos & (blocksize-1));
  2939. /*
  2940. * Do not unmap or zero past end of block
  2941. * for this buffer head
  2942. */
  2943. if (range_to_discard > end_of_block)
  2944. range_to_discard = end_of_block;
  2945. /*
  2946. * Skip this buffer head if we are only zeroing unampped
  2947. * regions of the page
  2948. */
  2949. if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
  2950. buffer_mapped(bh))
  2951. goto next;
  2952. /* If the range is block aligned, unmap */
  2953. if (range_to_discard == blocksize) {
  2954. clear_buffer_dirty(bh);
  2955. bh->b_bdev = NULL;
  2956. clear_buffer_mapped(bh);
  2957. clear_buffer_req(bh);
  2958. clear_buffer_new(bh);
  2959. clear_buffer_delay(bh);
  2960. clear_buffer_unwritten(bh);
  2961. clear_buffer_uptodate(bh);
  2962. zero_user(page, pos, range_to_discard);
  2963. BUFFER_TRACE(bh, "Buffer discarded");
  2964. goto next;
  2965. }
  2966. /*
  2967. * If this block is not completely contained in the range
  2968. * to be discarded, then it is not going to be released. Because
  2969. * we need to keep this block, we need to make sure this part
  2970. * of the page is uptodate before we modify it by writeing
  2971. * partial zeros on it.
  2972. */
  2973. if (!buffer_mapped(bh)) {
  2974. /*
  2975. * Buffer head must be mapped before we can read
  2976. * from the block
  2977. */
  2978. BUFFER_TRACE(bh, "unmapped");
  2979. ext4_get_block(inode, iblock, bh, 0);
  2980. /* unmapped? It's a hole - nothing to do */
  2981. if (!buffer_mapped(bh)) {
  2982. BUFFER_TRACE(bh, "still unmapped");
  2983. goto next;
  2984. }
  2985. }
  2986. /* Ok, it's mapped. Make sure it's up-to-date */
  2987. if (PageUptodate(page))
  2988. set_buffer_uptodate(bh);
  2989. if (!buffer_uptodate(bh)) {
  2990. err = -EIO;
  2991. ll_rw_block(READ, 1, &bh);
  2992. wait_on_buffer(bh);
  2993. /* Uhhuh. Read error. Complain and punt.*/
  2994. if (!buffer_uptodate(bh))
  2995. goto next;
  2996. }
  2997. if (ext4_should_journal_data(inode)) {
  2998. BUFFER_TRACE(bh, "get write access");
  2999. err = ext4_journal_get_write_access(handle, bh);
  3000. if (err)
  3001. goto next;
  3002. }
  3003. zero_user(page, pos, range_to_discard);
  3004. err = 0;
  3005. if (ext4_should_journal_data(inode)) {
  3006. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3007. } else
  3008. mark_buffer_dirty(bh);
  3009. BUFFER_TRACE(bh, "Partial buffer zeroed");
  3010. next:
  3011. bh = bh->b_this_page;
  3012. iblock++;
  3013. pos += range_to_discard;
  3014. }
  3015. return err;
  3016. }
  3017. int ext4_can_truncate(struct inode *inode)
  3018. {
  3019. if (S_ISREG(inode->i_mode))
  3020. return 1;
  3021. if (S_ISDIR(inode->i_mode))
  3022. return 1;
  3023. if (S_ISLNK(inode->i_mode))
  3024. return !ext4_inode_is_fast_symlink(inode);
  3025. return 0;
  3026. }
  3027. /*
  3028. * ext4_punch_hole: punches a hole in a file by releaseing the blocks
  3029. * associated with the given offset and length
  3030. *
  3031. * @inode: File inode
  3032. * @offset: The offset where the hole will begin
  3033. * @len: The length of the hole
  3034. *
  3035. * Returns: 0 on success or negative on failure
  3036. */
  3037. int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
  3038. {
  3039. struct inode *inode = file->f_path.dentry->d_inode;
  3040. if (!S_ISREG(inode->i_mode))
  3041. return -EOPNOTSUPP;
  3042. if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3043. return ext4_ind_punch_hole(file, offset, length);
  3044. if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
  3045. /* TODO: Add support for bigalloc file systems */
  3046. return -EOPNOTSUPP;
  3047. }
  3048. trace_ext4_punch_hole(inode, offset, length);
  3049. return ext4_ext_punch_hole(file, offset, length);
  3050. }
  3051. /*
  3052. * ext4_truncate()
  3053. *
  3054. * We block out ext4_get_block() block instantiations across the entire
  3055. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3056. * simultaneously on behalf of the same inode.
  3057. *
  3058. * As we work through the truncate and commit bits of it to the journal there
  3059. * is one core, guiding principle: the file's tree must always be consistent on
  3060. * disk. We must be able to restart the truncate after a crash.
  3061. *
  3062. * The file's tree may be transiently inconsistent in memory (although it
  3063. * probably isn't), but whenever we close off and commit a journal transaction,
  3064. * the contents of (the filesystem + the journal) must be consistent and
  3065. * restartable. It's pretty simple, really: bottom up, right to left (although
  3066. * left-to-right works OK too).
  3067. *
  3068. * Note that at recovery time, journal replay occurs *before* the restart of
  3069. * truncate against the orphan inode list.
  3070. *
  3071. * The committed inode has the new, desired i_size (which is the same as
  3072. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3073. * that this inode's truncate did not complete and it will again call
  3074. * ext4_truncate() to have another go. So there will be instantiated blocks
  3075. * to the right of the truncation point in a crashed ext4 filesystem. But
  3076. * that's fine - as long as they are linked from the inode, the post-crash
  3077. * ext4_truncate() run will find them and release them.
  3078. */
  3079. void ext4_truncate(struct inode *inode)
  3080. {
  3081. trace_ext4_truncate_enter(inode);
  3082. if (!ext4_can_truncate(inode))
  3083. return;
  3084. ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
  3085. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3086. ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  3087. if (ext4_has_inline_data(inode)) {
  3088. int has_inline = 1;
  3089. ext4_inline_data_truncate(inode, &has_inline);
  3090. if (has_inline)
  3091. return;
  3092. }
  3093. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3094. ext4_ext_truncate(inode);
  3095. else
  3096. ext4_ind_truncate(inode);
  3097. trace_ext4_truncate_exit(inode);
  3098. }
  3099. /*
  3100. * ext4_get_inode_loc returns with an extra refcount against the inode's
  3101. * underlying buffer_head on success. If 'in_mem' is true, we have all
  3102. * data in memory that is needed to recreate the on-disk version of this
  3103. * inode.
  3104. */
  3105. static int __ext4_get_inode_loc(struct inode *inode,
  3106. struct ext4_iloc *iloc, int in_mem)
  3107. {
  3108. struct ext4_group_desc *gdp;
  3109. struct buffer_head *bh;
  3110. struct super_block *sb = inode->i_sb;
  3111. ext4_fsblk_t block;
  3112. int inodes_per_block, inode_offset;
  3113. iloc->bh = NULL;
  3114. if (!ext4_valid_inum(sb, inode->i_ino))
  3115. return -EIO;
  3116. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  3117. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  3118. if (!gdp)
  3119. return -EIO;
  3120. /*
  3121. * Figure out the offset within the block group inode table
  3122. */
  3123. inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
  3124. inode_offset = ((inode->i_ino - 1) %
  3125. EXT4_INODES_PER_GROUP(sb));
  3126. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  3127. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  3128. bh = sb_getblk(sb, block);
  3129. if (unlikely(!bh))
  3130. return -ENOMEM;
  3131. if (!buffer_uptodate(bh)) {
  3132. lock_buffer(bh);
  3133. /*
  3134. * If the buffer has the write error flag, we have failed
  3135. * to write out another inode in the same block. In this
  3136. * case, we don't have to read the block because we may
  3137. * read the old inode data successfully.
  3138. */
  3139. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  3140. set_buffer_uptodate(bh);
  3141. if (buffer_uptodate(bh)) {
  3142. /* someone brought it uptodate while we waited */
  3143. unlock_buffer(bh);
  3144. goto has_buffer;
  3145. }
  3146. /*
  3147. * If we have all information of the inode in memory and this
  3148. * is the only valid inode in the block, we need not read the
  3149. * block.
  3150. */
  3151. if (in_mem) {
  3152. struct buffer_head *bitmap_bh;
  3153. int i, start;
  3154. start = inode_offset & ~(inodes_per_block - 1);
  3155. /* Is the inode bitmap in cache? */
  3156. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  3157. if (unlikely(!bitmap_bh))
  3158. goto make_io;
  3159. /*
  3160. * If the inode bitmap isn't in cache then the
  3161. * optimisation may end up performing two reads instead
  3162. * of one, so skip it.
  3163. */
  3164. if (!buffer_uptodate(bitmap_bh)) {
  3165. brelse(bitmap_bh);
  3166. goto make_io;
  3167. }
  3168. for (i = start; i < start + inodes_per_block; i++) {
  3169. if (i == inode_offset)
  3170. continue;
  3171. if (ext4_test_bit(i, bitmap_bh->b_data))
  3172. break;
  3173. }
  3174. brelse(bitmap_bh);
  3175. if (i == start + inodes_per_block) {
  3176. /* all other inodes are free, so skip I/O */
  3177. memset(bh->b_data, 0, bh->b_size);
  3178. set_buffer_uptodate(bh);
  3179. unlock_buffer(bh);
  3180. goto has_buffer;
  3181. }
  3182. }
  3183. make_io:
  3184. /*
  3185. * If we need to do any I/O, try to pre-readahead extra
  3186. * blocks from the inode table.
  3187. */
  3188. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  3189. ext4_fsblk_t b, end, table;
  3190. unsigned num;
  3191. table = ext4_inode_table(sb, gdp);
  3192. /* s_inode_readahead_blks is always a power of 2 */
  3193. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  3194. if (table > b)
  3195. b = table;
  3196. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  3197. num = EXT4_INODES_PER_GROUP(sb);
  3198. if (ext4_has_group_desc_csum(sb))
  3199. num -= ext4_itable_unused_count(sb, gdp);
  3200. table += num / inodes_per_block;
  3201. if (end > table)
  3202. end = table;
  3203. while (b <= end)
  3204. sb_breadahead(sb, b++);
  3205. }
  3206. /*
  3207. * There are other valid inodes in the buffer, this inode
  3208. * has in-inode xattrs, or we don't have this inode in memory.
  3209. * Read the block from disk.
  3210. */
  3211. trace_ext4_load_inode(inode);
  3212. get_bh(bh);
  3213. bh->b_end_io = end_buffer_read_sync;
  3214. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  3215. wait_on_buffer(bh);
  3216. if (!buffer_uptodate(bh)) {
  3217. EXT4_ERROR_INODE_BLOCK(inode, block,
  3218. "unable to read itable block");
  3219. brelse(bh);
  3220. return -EIO;
  3221. }
  3222. }
  3223. has_buffer:
  3224. iloc->bh = bh;
  3225. return 0;
  3226. }
  3227. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  3228. {
  3229. /* We have all inode data except xattrs in memory here. */
  3230. return __ext4_get_inode_loc(inode, iloc,
  3231. !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
  3232. }
  3233. void ext4_set_inode_flags(struct inode *inode)
  3234. {
  3235. unsigned int flags = EXT4_I(inode)->i_flags;
  3236. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  3237. if (flags & EXT4_SYNC_FL)
  3238. inode->i_flags |= S_SYNC;
  3239. if (flags & EXT4_APPEND_FL)
  3240. inode->i_flags |= S_APPEND;
  3241. if (flags & EXT4_IMMUTABLE_FL)
  3242. inode->i_flags |= S_IMMUTABLE;
  3243. if (flags & EXT4_NOATIME_FL)
  3244. inode->i_flags |= S_NOATIME;
  3245. if (flags & EXT4_DIRSYNC_FL)
  3246. inode->i_flags |= S_DIRSYNC;
  3247. }
  3248. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3249. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3250. {
  3251. unsigned int vfs_fl;
  3252. unsigned long old_fl, new_fl;
  3253. do {
  3254. vfs_fl = ei->vfs_inode.i_flags;
  3255. old_fl = ei->i_flags;
  3256. new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3257. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
  3258. EXT4_DIRSYNC_FL);
  3259. if (vfs_fl & S_SYNC)
  3260. new_fl |= EXT4_SYNC_FL;
  3261. if (vfs_fl & S_APPEND)
  3262. new_fl |= EXT4_APPEND_FL;
  3263. if (vfs_fl & S_IMMUTABLE)
  3264. new_fl |= EXT4_IMMUTABLE_FL;
  3265. if (vfs_fl & S_NOATIME)
  3266. new_fl |= EXT4_NOATIME_FL;
  3267. if (vfs_fl & S_DIRSYNC)
  3268. new_fl |= EXT4_DIRSYNC_FL;
  3269. } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
  3270. }
  3271. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3272. struct ext4_inode_info *ei)
  3273. {
  3274. blkcnt_t i_blocks ;
  3275. struct inode *inode = &(ei->vfs_inode);
  3276. struct super_block *sb = inode->i_sb;
  3277. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3278. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3279. /* we are using combined 48 bit field */
  3280. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3281. le32_to_cpu(raw_inode->i_blocks_lo);
  3282. if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
  3283. /* i_blocks represent file system block size */
  3284. return i_blocks << (inode->i_blkbits - 9);
  3285. } else {
  3286. return i_blocks;
  3287. }
  3288. } else {
  3289. return le32_to_cpu(raw_inode->i_blocks_lo);
  3290. }
  3291. }
  3292. static inline void ext4_iget_extra_inode(struct inode *inode,
  3293. struct ext4_inode *raw_inode,
  3294. struct ext4_inode_info *ei)
  3295. {
  3296. __le32 *magic = (void *)raw_inode +
  3297. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
  3298. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3299. ext4_set_inode_state(inode, EXT4_STATE_XATTR);
  3300. ext4_find_inline_data_nolock(inode);
  3301. } else
  3302. EXT4_I(inode)->i_inline_off = 0;
  3303. }
  3304. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  3305. {
  3306. struct ext4_iloc iloc;
  3307. struct ext4_inode *raw_inode;
  3308. struct ext4_inode_info *ei;
  3309. struct inode *inode;
  3310. journal_t *journal = EXT4_SB(sb)->s_journal;
  3311. long ret;
  3312. int block;
  3313. uid_t i_uid;
  3314. gid_t i_gid;
  3315. inode = iget_locked(sb, ino);
  3316. if (!inode)
  3317. return ERR_PTR(-ENOMEM);
  3318. if (!(inode->i_state & I_NEW))
  3319. return inode;
  3320. ei = EXT4_I(inode);
  3321. iloc.bh = NULL;
  3322. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  3323. if (ret < 0)
  3324. goto bad_inode;
  3325. raw_inode = ext4_raw_inode(&iloc);
  3326. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3327. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  3328. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  3329. EXT4_INODE_SIZE(inode->i_sb)) {
  3330. EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
  3331. EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
  3332. EXT4_INODE_SIZE(inode->i_sb));
  3333. ret = -EIO;
  3334. goto bad_inode;
  3335. }
  3336. } else
  3337. ei->i_extra_isize = 0;
  3338. /* Precompute checksum seed for inode metadata */
  3339. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3340. EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
  3341. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3342. __u32 csum;
  3343. __le32 inum = cpu_to_le32(inode->i_ino);
  3344. __le32 gen = raw_inode->i_generation;
  3345. csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
  3346. sizeof(inum));
  3347. ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
  3348. sizeof(gen));
  3349. }
  3350. if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
  3351. EXT4_ERROR_INODE(inode, "checksum invalid");
  3352. ret = -EIO;
  3353. goto bad_inode;
  3354. }
  3355. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  3356. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  3357. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  3358. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3359. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  3360. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  3361. }
  3362. i_uid_write(inode, i_uid);
  3363. i_gid_write(inode, i_gid);
  3364. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  3365. ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
  3366. ei->i_inline_off = 0;
  3367. ei->i_dir_start_lookup = 0;
  3368. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  3369. /* We now have enough fields to check if the inode was active or not.
  3370. * This is needed because nfsd might try to access dead inodes
  3371. * the test is that same one that e2fsck uses
  3372. * NeilBrown 1999oct15
  3373. */
  3374. if (inode->i_nlink == 0) {
  3375. if (inode->i_mode == 0 ||
  3376. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  3377. /* this inode is deleted */
  3378. ret = -ESTALE;
  3379. goto bad_inode;
  3380. }
  3381. /* The only unlinked inodes we let through here have
  3382. * valid i_mode and are being read by the orphan
  3383. * recovery code: that's fine, we're about to complete
  3384. * the process of deleting those. */
  3385. }
  3386. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  3387. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  3388. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  3389. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  3390. ei->i_file_acl |=
  3391. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  3392. inode->i_size = ext4_isize(raw_inode);
  3393. ei->i_disksize = inode->i_size;
  3394. #ifdef CONFIG_QUOTA
  3395. ei->i_reserved_quota = 0;
  3396. #endif
  3397. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  3398. ei->i_block_group = iloc.block_group;
  3399. ei->i_last_alloc_group = ~0;
  3400. /*
  3401. * NOTE! The in-memory inode i_data array is in little-endian order
  3402. * even on big-endian machines: we do NOT byteswap the block numbers!
  3403. */
  3404. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3405. ei->i_data[block] = raw_inode->i_block[block];
  3406. INIT_LIST_HEAD(&ei->i_orphan);
  3407. /*
  3408. * Set transaction id's of transactions that have to be committed
  3409. * to finish f[data]sync. We set them to currently running transaction
  3410. * as we cannot be sure that the inode or some of its metadata isn't
  3411. * part of the transaction - the inode could have been reclaimed and
  3412. * now it is reread from disk.
  3413. */
  3414. if (journal) {
  3415. transaction_t *transaction;
  3416. tid_t tid;
  3417. read_lock(&journal->j_state_lock);
  3418. if (journal->j_running_transaction)
  3419. transaction = journal->j_running_transaction;
  3420. else
  3421. transaction = journal->j_committing_transaction;
  3422. if (transaction)
  3423. tid = transaction->t_tid;
  3424. else
  3425. tid = journal->j_commit_sequence;
  3426. read_unlock(&journal->j_state_lock);
  3427. ei->i_sync_tid = tid;
  3428. ei->i_datasync_tid = tid;
  3429. }
  3430. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3431. if (ei->i_extra_isize == 0) {
  3432. /* The extra space is currently unused. Use it. */
  3433. ei->i_extra_isize = sizeof(struct ext4_inode) -
  3434. EXT4_GOOD_OLD_INODE_SIZE;
  3435. } else {
  3436. ext4_iget_extra_inode(inode, raw_inode, ei);
  3437. }
  3438. }
  3439. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  3440. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  3441. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  3442. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  3443. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  3444. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3445. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3446. inode->i_version |=
  3447. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  3448. }
  3449. ret = 0;
  3450. if (ei->i_file_acl &&
  3451. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  3452. EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
  3453. ei->i_file_acl);
  3454. ret = -EIO;
  3455. goto bad_inode;
  3456. } else if (!ext4_has_inline_data(inode)) {
  3457. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  3458. if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3459. (S_ISLNK(inode->i_mode) &&
  3460. !ext4_inode_is_fast_symlink(inode))))
  3461. /* Validate extent which is part of inode */
  3462. ret = ext4_ext_check_inode(inode);
  3463. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3464. (S_ISLNK(inode->i_mode) &&
  3465. !ext4_inode_is_fast_symlink(inode))) {
  3466. /* Validate block references which are part of inode */
  3467. ret = ext4_ind_check_inode(inode);
  3468. }
  3469. }
  3470. if (ret)
  3471. goto bad_inode;
  3472. if (S_ISREG(inode->i_mode)) {
  3473. inode->i_op = &ext4_file_inode_operations;
  3474. inode->i_fop = &ext4_file_operations;
  3475. ext4_set_aops(inode);
  3476. } else if (S_ISDIR(inode->i_mode)) {
  3477. inode->i_op = &ext4_dir_inode_operations;
  3478. inode->i_fop = &ext4_dir_operations;
  3479. } else if (S_ISLNK(inode->i_mode)) {
  3480. if (ext4_inode_is_fast_symlink(inode)) {
  3481. inode->i_op = &ext4_fast_symlink_inode_operations;
  3482. nd_terminate_link(ei->i_data, inode->i_size,
  3483. sizeof(ei->i_data) - 1);
  3484. } else {
  3485. inode->i_op = &ext4_symlink_inode_operations;
  3486. ext4_set_aops(inode);
  3487. }
  3488. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  3489. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  3490. inode->i_op = &ext4_special_inode_operations;
  3491. if (raw_inode->i_block[0])
  3492. init_special_inode(inode, inode->i_mode,
  3493. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  3494. else
  3495. init_special_inode(inode, inode->i_mode,
  3496. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  3497. } else {
  3498. ret = -EIO;
  3499. EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
  3500. goto bad_inode;
  3501. }
  3502. brelse(iloc.bh);
  3503. ext4_set_inode_flags(inode);
  3504. unlock_new_inode(inode);
  3505. return inode;
  3506. bad_inode:
  3507. brelse(iloc.bh);
  3508. iget_failed(inode);
  3509. return ERR_PTR(ret);
  3510. }
  3511. static int ext4_inode_blocks_set(handle_t *handle,
  3512. struct ext4_inode *raw_inode,
  3513. struct ext4_inode_info *ei)
  3514. {
  3515. struct inode *inode = &(ei->vfs_inode);
  3516. u64 i_blocks = inode->i_blocks;
  3517. struct super_block *sb = inode->i_sb;
  3518. if (i_blocks <= ~0U) {
  3519. /*
  3520. * i_blocks can be represented in a 32 bit variable
  3521. * as multiple of 512 bytes
  3522. */
  3523. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3524. raw_inode->i_blocks_high = 0;
  3525. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3526. return 0;
  3527. }
  3528. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  3529. return -EFBIG;
  3530. if (i_blocks <= 0xffffffffffffULL) {
  3531. /*
  3532. * i_blocks can be represented in a 48 bit variable
  3533. * as multiple of 512 bytes
  3534. */
  3535. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3536. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3537. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3538. } else {
  3539. ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3540. /* i_block is stored in file system block size */
  3541. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  3542. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3543. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3544. }
  3545. return 0;
  3546. }
  3547. /*
  3548. * Post the struct inode info into an on-disk inode location in the
  3549. * buffer-cache. This gobbles the caller's reference to the
  3550. * buffer_head in the inode location struct.
  3551. *
  3552. * The caller must have write access to iloc->bh.
  3553. */
  3554. static int ext4_do_update_inode(handle_t *handle,
  3555. struct inode *inode,
  3556. struct ext4_iloc *iloc)
  3557. {
  3558. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  3559. struct ext4_inode_info *ei = EXT4_I(inode);
  3560. struct buffer_head *bh = iloc->bh;
  3561. int err = 0, rc, block;
  3562. int need_datasync = 0;
  3563. uid_t i_uid;
  3564. gid_t i_gid;
  3565. /* For fields not not tracking in the in-memory inode,
  3566. * initialise them to zero for new inodes. */
  3567. if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
  3568. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  3569. ext4_get_inode_flags(ei);
  3570. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  3571. i_uid = i_uid_read(inode);
  3572. i_gid = i_gid_read(inode);
  3573. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3574. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  3575. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  3576. /*
  3577. * Fix up interoperability with old kernels. Otherwise, old inodes get
  3578. * re-used with the upper 16 bits of the uid/gid intact
  3579. */
  3580. if (!ei->i_dtime) {
  3581. raw_inode->i_uid_high =
  3582. cpu_to_le16(high_16_bits(i_uid));
  3583. raw_inode->i_gid_high =
  3584. cpu_to_le16(high_16_bits(i_gid));
  3585. } else {
  3586. raw_inode->i_uid_high = 0;
  3587. raw_inode->i_gid_high = 0;
  3588. }
  3589. } else {
  3590. raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
  3591. raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
  3592. raw_inode->i_uid_high = 0;
  3593. raw_inode->i_gid_high = 0;
  3594. }
  3595. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  3596. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  3597. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  3598. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  3599. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  3600. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  3601. goto out_brelse;
  3602. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  3603. raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
  3604. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  3605. cpu_to_le32(EXT4_OS_HURD))
  3606. raw_inode->i_file_acl_high =
  3607. cpu_to_le16(ei->i_file_acl >> 32);
  3608. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  3609. if (ei->i_disksize != ext4_isize(raw_inode)) {
  3610. ext4_isize_set(raw_inode, ei->i_disksize);
  3611. need_datasync = 1;
  3612. }
  3613. if (ei->i_disksize > 0x7fffffffULL) {
  3614. struct super_block *sb = inode->i_sb;
  3615. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3616. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  3617. EXT4_SB(sb)->s_es->s_rev_level ==
  3618. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  3619. /* If this is the first large file
  3620. * created, add a flag to the superblock.
  3621. */
  3622. err = ext4_journal_get_write_access(handle,
  3623. EXT4_SB(sb)->s_sbh);
  3624. if (err)
  3625. goto out_brelse;
  3626. ext4_update_dynamic_rev(sb);
  3627. EXT4_SET_RO_COMPAT_FEATURE(sb,
  3628. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  3629. ext4_handle_sync(handle);
  3630. err = ext4_handle_dirty_super(handle, sb);
  3631. }
  3632. }
  3633. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  3634. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  3635. if (old_valid_dev(inode->i_rdev)) {
  3636. raw_inode->i_block[0] =
  3637. cpu_to_le32(old_encode_dev(inode->i_rdev));
  3638. raw_inode->i_block[1] = 0;
  3639. } else {
  3640. raw_inode->i_block[0] = 0;
  3641. raw_inode->i_block[1] =
  3642. cpu_to_le32(new_encode_dev(inode->i_rdev));
  3643. raw_inode->i_block[2] = 0;
  3644. }
  3645. } else if (!ext4_has_inline_data(inode)) {
  3646. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3647. raw_inode->i_block[block] = ei->i_data[block];
  3648. }
  3649. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  3650. if (ei->i_extra_isize) {
  3651. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3652. raw_inode->i_version_hi =
  3653. cpu_to_le32(inode->i_version >> 32);
  3654. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  3655. }
  3656. ext4_inode_csum_set(inode, raw_inode, ei);
  3657. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3658. rc = ext4_handle_dirty_metadata(handle, NULL, bh);
  3659. if (!err)
  3660. err = rc;
  3661. ext4_clear_inode_state(inode, EXT4_STATE_NEW);
  3662. ext4_update_inode_fsync_trans(handle, inode, need_datasync);
  3663. out_brelse:
  3664. brelse(bh);
  3665. ext4_std_error(inode->i_sb, err);
  3666. return err;
  3667. }
  3668. /*
  3669. * ext4_write_inode()
  3670. *
  3671. * We are called from a few places:
  3672. *
  3673. * - Within generic_file_write() for O_SYNC files.
  3674. * Here, there will be no transaction running. We wait for any running
  3675. * transaction to commit.
  3676. *
  3677. * - Within sys_sync(), kupdate and such.
  3678. * We wait on commit, if tol to.
  3679. *
  3680. * - Within prune_icache() (PF_MEMALLOC == true)
  3681. * Here we simply return. We can't afford to block kswapd on the
  3682. * journal commit.
  3683. *
  3684. * In all cases it is actually safe for us to return without doing anything,
  3685. * because the inode has been copied into a raw inode buffer in
  3686. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  3687. * knfsd.
  3688. *
  3689. * Note that we are absolutely dependent upon all inode dirtiers doing the
  3690. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  3691. * which we are interested.
  3692. *
  3693. * It would be a bug for them to not do this. The code:
  3694. *
  3695. * mark_inode_dirty(inode)
  3696. * stuff();
  3697. * inode->i_size = expr;
  3698. *
  3699. * is in error because a kswapd-driven write_inode() could occur while
  3700. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  3701. * will no longer be on the superblock's dirty inode list.
  3702. */
  3703. int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
  3704. {
  3705. int err;
  3706. if (current->flags & PF_MEMALLOC)
  3707. return 0;
  3708. if (EXT4_SB(inode->i_sb)->s_journal) {
  3709. if (ext4_journal_current_handle()) {
  3710. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  3711. dump_stack();
  3712. return -EIO;
  3713. }
  3714. if (wbc->sync_mode != WB_SYNC_ALL)
  3715. return 0;
  3716. err = ext4_force_commit(inode->i_sb);
  3717. } else {
  3718. struct ext4_iloc iloc;
  3719. err = __ext4_get_inode_loc(inode, &iloc, 0);
  3720. if (err)
  3721. return err;
  3722. if (wbc->sync_mode == WB_SYNC_ALL)
  3723. sync_dirty_buffer(iloc.bh);
  3724. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  3725. EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
  3726. "IO error syncing inode");
  3727. err = -EIO;
  3728. }
  3729. brelse(iloc.bh);
  3730. }
  3731. return err;
  3732. }
  3733. /*
  3734. * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
  3735. * buffers that are attached to a page stradding i_size and are undergoing
  3736. * commit. In that case we have to wait for commit to finish and try again.
  3737. */
  3738. static void ext4_wait_for_tail_page_commit(struct inode *inode)
  3739. {
  3740. struct page *page;
  3741. unsigned offset;
  3742. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  3743. tid_t commit_tid = 0;
  3744. int ret;
  3745. offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
  3746. /*
  3747. * All buffers in the last page remain valid? Then there's nothing to
  3748. * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
  3749. * blocksize case
  3750. */
  3751. if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
  3752. return;
  3753. while (1) {
  3754. page = find_lock_page(inode->i_mapping,
  3755. inode->i_size >> PAGE_CACHE_SHIFT);
  3756. if (!page)
  3757. return;
  3758. ret = __ext4_journalled_invalidatepage(page, offset);
  3759. unlock_page(page);
  3760. page_cache_release(page);
  3761. if (ret != -EBUSY)
  3762. return;
  3763. commit_tid = 0;
  3764. read_lock(&journal->j_state_lock);
  3765. if (journal->j_committing_transaction)
  3766. commit_tid = journal->j_committing_transaction->t_tid;
  3767. read_unlock(&journal->j_state_lock);
  3768. if (commit_tid)
  3769. jbd2_log_wait_commit(journal, commit_tid);
  3770. }
  3771. }
  3772. /*
  3773. * ext4_setattr()
  3774. *
  3775. * Called from notify_change.
  3776. *
  3777. * We want to trap VFS attempts to truncate the file as soon as
  3778. * possible. In particular, we want to make sure that when the VFS
  3779. * shrinks i_size, we put the inode on the orphan list and modify
  3780. * i_disksize immediately, so that during the subsequent flushing of
  3781. * dirty pages and freeing of disk blocks, we can guarantee that any
  3782. * commit will leave the blocks being flushed in an unused state on
  3783. * disk. (On recovery, the inode will get truncated and the blocks will
  3784. * be freed, so we have a strong guarantee that no future commit will
  3785. * leave these blocks visible to the user.)
  3786. *
  3787. * Another thing we have to assure is that if we are in ordered mode
  3788. * and inode is still attached to the committing transaction, we must
  3789. * we start writeout of all the dirty pages which are being truncated.
  3790. * This way we are sure that all the data written in the previous
  3791. * transaction are already on disk (truncate waits for pages under
  3792. * writeback).
  3793. *
  3794. * Called with inode->i_mutex down.
  3795. */
  3796. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  3797. {
  3798. struct inode *inode = dentry->d_inode;
  3799. int error, rc = 0;
  3800. int orphan = 0;
  3801. const unsigned int ia_valid = attr->ia_valid;
  3802. error = inode_change_ok(inode, attr);
  3803. if (error)
  3804. return error;
  3805. if (is_quota_modification(inode, attr))
  3806. dquot_initialize(inode);
  3807. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  3808. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  3809. handle_t *handle;
  3810. /* (user+group)*(old+new) structure, inode write (sb,
  3811. * inode block, ? - but truncate inode update has it) */
  3812. handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
  3813. (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
  3814. EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
  3815. if (IS_ERR(handle)) {
  3816. error = PTR_ERR(handle);
  3817. goto err_out;
  3818. }
  3819. error = dquot_transfer(inode, attr);
  3820. if (error) {
  3821. ext4_journal_stop(handle);
  3822. return error;
  3823. }
  3824. /* Update corresponding info in inode so that everything is in
  3825. * one transaction */
  3826. if (attr->ia_valid & ATTR_UID)
  3827. inode->i_uid = attr->ia_uid;
  3828. if (attr->ia_valid & ATTR_GID)
  3829. inode->i_gid = attr->ia_gid;
  3830. error = ext4_mark_inode_dirty(handle, inode);
  3831. ext4_journal_stop(handle);
  3832. }
  3833. if (attr->ia_valid & ATTR_SIZE) {
  3834. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  3835. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3836. if (attr->ia_size > sbi->s_bitmap_maxbytes)
  3837. return -EFBIG;
  3838. }
  3839. }
  3840. if (S_ISREG(inode->i_mode) &&
  3841. attr->ia_valid & ATTR_SIZE &&
  3842. (attr->ia_size < inode->i_size)) {
  3843. handle_t *handle;
  3844. handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
  3845. if (IS_ERR(handle)) {
  3846. error = PTR_ERR(handle);
  3847. goto err_out;
  3848. }
  3849. if (ext4_handle_valid(handle)) {
  3850. error = ext4_orphan_add(handle, inode);
  3851. orphan = 1;
  3852. }
  3853. EXT4_I(inode)->i_disksize = attr->ia_size;
  3854. rc = ext4_mark_inode_dirty(handle, inode);
  3855. if (!error)
  3856. error = rc;
  3857. ext4_journal_stop(handle);
  3858. if (ext4_should_order_data(inode)) {
  3859. error = ext4_begin_ordered_truncate(inode,
  3860. attr->ia_size);
  3861. if (error) {
  3862. /* Do as much error cleanup as possible */
  3863. handle = ext4_journal_start(inode,
  3864. EXT4_HT_INODE, 3);
  3865. if (IS_ERR(handle)) {
  3866. ext4_orphan_del(NULL, inode);
  3867. goto err_out;
  3868. }
  3869. ext4_orphan_del(handle, inode);
  3870. orphan = 0;
  3871. ext4_journal_stop(handle);
  3872. goto err_out;
  3873. }
  3874. }
  3875. }
  3876. if (attr->ia_valid & ATTR_SIZE) {
  3877. if (attr->ia_size != inode->i_size) {
  3878. loff_t oldsize = inode->i_size;
  3879. i_size_write(inode, attr->ia_size);
  3880. /*
  3881. * Blocks are going to be removed from the inode. Wait
  3882. * for dio in flight. Temporarily disable
  3883. * dioread_nolock to prevent livelock.
  3884. */
  3885. if (orphan) {
  3886. if (!ext4_should_journal_data(inode)) {
  3887. ext4_inode_block_unlocked_dio(inode);
  3888. inode_dio_wait(inode);
  3889. ext4_inode_resume_unlocked_dio(inode);
  3890. } else
  3891. ext4_wait_for_tail_page_commit(inode);
  3892. }
  3893. /*
  3894. * Truncate pagecache after we've waited for commit
  3895. * in data=journal mode to make pages freeable.
  3896. */
  3897. truncate_pagecache(inode, oldsize, inode->i_size);
  3898. }
  3899. ext4_truncate(inode);
  3900. }
  3901. if (!rc) {
  3902. setattr_copy(inode, attr);
  3903. mark_inode_dirty(inode);
  3904. }
  3905. /*
  3906. * If the call to ext4_truncate failed to get a transaction handle at
  3907. * all, we need to clean up the in-core orphan list manually.
  3908. */
  3909. if (orphan && inode->i_nlink)
  3910. ext4_orphan_del(NULL, inode);
  3911. if (!rc && (ia_valid & ATTR_MODE))
  3912. rc = ext4_acl_chmod(inode);
  3913. err_out:
  3914. ext4_std_error(inode->i_sb, error);
  3915. if (!error)
  3916. error = rc;
  3917. return error;
  3918. }
  3919. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  3920. struct kstat *stat)
  3921. {
  3922. struct inode *inode;
  3923. unsigned long delalloc_blocks;
  3924. inode = dentry->d_inode;
  3925. generic_fillattr(inode, stat);
  3926. /*
  3927. * We can't update i_blocks if the block allocation is delayed
  3928. * otherwise in the case of system crash before the real block
  3929. * allocation is done, we will have i_blocks inconsistent with
  3930. * on-disk file blocks.
  3931. * We always keep i_blocks updated together with real
  3932. * allocation. But to not confuse with user, stat
  3933. * will return the blocks that include the delayed allocation
  3934. * blocks for this file.
  3935. */
  3936. delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
  3937. EXT4_I(inode)->i_reserved_data_blocks);
  3938. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  3939. return 0;
  3940. }
  3941. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  3942. {
  3943. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  3944. return ext4_ind_trans_blocks(inode, nrblocks, chunk);
  3945. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  3946. }
  3947. /*
  3948. * Account for index blocks, block groups bitmaps and block group
  3949. * descriptor blocks if modify datablocks and index blocks
  3950. * worse case, the indexs blocks spread over different block groups
  3951. *
  3952. * If datablocks are discontiguous, they are possible to spread over
  3953. * different block groups too. If they are contiguous, with flexbg,
  3954. * they could still across block group boundary.
  3955. *
  3956. * Also account for superblock, inode, quota and xattr blocks
  3957. */
  3958. static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  3959. {
  3960. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  3961. int gdpblocks;
  3962. int idxblocks;
  3963. int ret = 0;
  3964. /*
  3965. * How many index blocks need to touch to modify nrblocks?
  3966. * The "Chunk" flag indicating whether the nrblocks is
  3967. * physically contiguous on disk
  3968. *
  3969. * For Direct IO and fallocate, they calls get_block to allocate
  3970. * one single extent at a time, so they could set the "Chunk" flag
  3971. */
  3972. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  3973. ret = idxblocks;
  3974. /*
  3975. * Now let's see how many group bitmaps and group descriptors need
  3976. * to account
  3977. */
  3978. groups = idxblocks;
  3979. if (chunk)
  3980. groups += 1;
  3981. else
  3982. groups += nrblocks;
  3983. gdpblocks = groups;
  3984. if (groups > ngroups)
  3985. groups = ngroups;
  3986. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  3987. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  3988. /* bitmaps and block group descriptor blocks */
  3989. ret += groups + gdpblocks;
  3990. /* Blocks for super block, inode, quota and xattr blocks */
  3991. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  3992. return ret;
  3993. }
  3994. /*
  3995. * Calculate the total number of credits to reserve to fit
  3996. * the modification of a single pages into a single transaction,
  3997. * which may include multiple chunks of block allocations.
  3998. *
  3999. * This could be called via ext4_write_begin()
  4000. *
  4001. * We need to consider the worse case, when
  4002. * one new block per extent.
  4003. */
  4004. int ext4_writepage_trans_blocks(struct inode *inode)
  4005. {
  4006. int bpp = ext4_journal_blocks_per_page(inode);
  4007. int ret;
  4008. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4009. /* Account for data blocks for journalled mode */
  4010. if (ext4_should_journal_data(inode))
  4011. ret += bpp;
  4012. return ret;
  4013. }
  4014. /*
  4015. * Calculate the journal credits for a chunk of data modification.
  4016. *
  4017. * This is called from DIO, fallocate or whoever calling
  4018. * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
  4019. *
  4020. * journal buffers for data blocks are not included here, as DIO
  4021. * and fallocate do no need to journal data buffers.
  4022. */
  4023. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4024. {
  4025. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4026. }
  4027. /*
  4028. * The caller must have previously called ext4_reserve_inode_write().
  4029. * Give this, we know that the caller already has write access to iloc->bh.
  4030. */
  4031. int ext4_mark_iloc_dirty(handle_t *handle,
  4032. struct inode *inode, struct ext4_iloc *iloc)
  4033. {
  4034. int err = 0;
  4035. if (IS_I_VERSION(inode))
  4036. inode_inc_iversion(inode);
  4037. /* the do_update_inode consumes one bh->b_count */
  4038. get_bh(iloc->bh);
  4039. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4040. err = ext4_do_update_inode(handle, inode, iloc);
  4041. put_bh(iloc->bh);
  4042. return err;
  4043. }
  4044. /*
  4045. * On success, We end up with an outstanding reference count against
  4046. * iloc->bh. This _must_ be cleaned up later.
  4047. */
  4048. int
  4049. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4050. struct ext4_iloc *iloc)
  4051. {
  4052. int err;
  4053. err = ext4_get_inode_loc(inode, iloc);
  4054. if (!err) {
  4055. BUFFER_TRACE(iloc->bh, "get_write_access");
  4056. err = ext4_journal_get_write_access(handle, iloc->bh);
  4057. if (err) {
  4058. brelse(iloc->bh);
  4059. iloc->bh = NULL;
  4060. }
  4061. }
  4062. ext4_std_error(inode->i_sb, err);
  4063. return err;
  4064. }
  4065. /*
  4066. * Expand an inode by new_extra_isize bytes.
  4067. * Returns 0 on success or negative error number on failure.
  4068. */
  4069. static int ext4_expand_extra_isize(struct inode *inode,
  4070. unsigned int new_extra_isize,
  4071. struct ext4_iloc iloc,
  4072. handle_t *handle)
  4073. {
  4074. struct ext4_inode *raw_inode;
  4075. struct ext4_xattr_ibody_header *header;
  4076. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4077. return 0;
  4078. raw_inode = ext4_raw_inode(&iloc);
  4079. header = IHDR(inode, raw_inode);
  4080. /* No extended attributes present */
  4081. if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
  4082. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4083. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4084. new_extra_isize);
  4085. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4086. return 0;
  4087. }
  4088. /* try to expand with EAs present */
  4089. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4090. raw_inode, handle);
  4091. }
  4092. /*
  4093. * What we do here is to mark the in-core inode as clean with respect to inode
  4094. * dirtiness (it may still be data-dirty).
  4095. * This means that the in-core inode may be reaped by prune_icache
  4096. * without having to perform any I/O. This is a very good thing,
  4097. * because *any* task may call prune_icache - even ones which
  4098. * have a transaction open against a different journal.
  4099. *
  4100. * Is this cheating? Not really. Sure, we haven't written the
  4101. * inode out, but prune_icache isn't a user-visible syncing function.
  4102. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4103. * we start and wait on commits.
  4104. */
  4105. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4106. {
  4107. struct ext4_iloc iloc;
  4108. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4109. static unsigned int mnt_count;
  4110. int err, ret;
  4111. might_sleep();
  4112. trace_ext4_mark_inode_dirty(inode, _RET_IP_);
  4113. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4114. if (ext4_handle_valid(handle) &&
  4115. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4116. !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
  4117. /*
  4118. * We need extra buffer credits since we may write into EA block
  4119. * with this same handle. If journal_extend fails, then it will
  4120. * only result in a minor loss of functionality for that inode.
  4121. * If this is felt to be critical, then e2fsck should be run to
  4122. * force a large enough s_min_extra_isize.
  4123. */
  4124. if ((jbd2_journal_extend(handle,
  4125. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  4126. ret = ext4_expand_extra_isize(inode,
  4127. sbi->s_want_extra_isize,
  4128. iloc, handle);
  4129. if (ret) {
  4130. ext4_set_inode_state(inode,
  4131. EXT4_STATE_NO_EXPAND);
  4132. if (mnt_count !=
  4133. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  4134. ext4_warning(inode->i_sb,
  4135. "Unable to expand inode %lu. Delete"
  4136. " some EAs or run e2fsck.",
  4137. inode->i_ino);
  4138. mnt_count =
  4139. le16_to_cpu(sbi->s_es->s_mnt_count);
  4140. }
  4141. }
  4142. }
  4143. }
  4144. if (!err)
  4145. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  4146. return err;
  4147. }
  4148. /*
  4149. * ext4_dirty_inode() is called from __mark_inode_dirty()
  4150. *
  4151. * We're really interested in the case where a file is being extended.
  4152. * i_size has been changed by generic_commit_write() and we thus need
  4153. * to include the updated inode in the current transaction.
  4154. *
  4155. * Also, dquot_alloc_block() will always dirty the inode when blocks
  4156. * are allocated to the file.
  4157. *
  4158. * If the inode is marked synchronous, we don't honour that here - doing
  4159. * so would cause a commit on atime updates, which we don't bother doing.
  4160. * We handle synchronous inodes at the highest possible level.
  4161. */
  4162. void ext4_dirty_inode(struct inode *inode, int flags)
  4163. {
  4164. handle_t *handle;
  4165. handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
  4166. if (IS_ERR(handle))
  4167. goto out;
  4168. ext4_mark_inode_dirty(handle, inode);
  4169. ext4_journal_stop(handle);
  4170. out:
  4171. return;
  4172. }
  4173. #if 0
  4174. /*
  4175. * Bind an inode's backing buffer_head into this transaction, to prevent
  4176. * it from being flushed to disk early. Unlike
  4177. * ext4_reserve_inode_write, this leaves behind no bh reference and
  4178. * returns no iloc structure, so the caller needs to repeat the iloc
  4179. * lookup to mark the inode dirty later.
  4180. */
  4181. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  4182. {
  4183. struct ext4_iloc iloc;
  4184. int err = 0;
  4185. if (handle) {
  4186. err = ext4_get_inode_loc(inode, &iloc);
  4187. if (!err) {
  4188. BUFFER_TRACE(iloc.bh, "get_write_access");
  4189. err = jbd2_journal_get_write_access(handle, iloc.bh);
  4190. if (!err)
  4191. err = ext4_handle_dirty_metadata(handle,
  4192. NULL,
  4193. iloc.bh);
  4194. brelse(iloc.bh);
  4195. }
  4196. }
  4197. ext4_std_error(inode->i_sb, err);
  4198. return err;
  4199. }
  4200. #endif
  4201. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  4202. {
  4203. journal_t *journal;
  4204. handle_t *handle;
  4205. int err;
  4206. /*
  4207. * We have to be very careful here: changing a data block's
  4208. * journaling status dynamically is dangerous. If we write a
  4209. * data block to the journal, change the status and then delete
  4210. * that block, we risk forgetting to revoke the old log record
  4211. * from the journal and so a subsequent replay can corrupt data.
  4212. * So, first we make sure that the journal is empty and that
  4213. * nobody is changing anything.
  4214. */
  4215. journal = EXT4_JOURNAL(inode);
  4216. if (!journal)
  4217. return 0;
  4218. if (is_journal_aborted(journal))
  4219. return -EROFS;
  4220. /* We have to allocate physical blocks for delalloc blocks
  4221. * before flushing journal. otherwise delalloc blocks can not
  4222. * be allocated any more. even more truncate on delalloc blocks
  4223. * could trigger BUG by flushing delalloc blocks in journal.
  4224. * There is no delalloc block in non-journal data mode.
  4225. */
  4226. if (val && test_opt(inode->i_sb, DELALLOC)) {
  4227. err = ext4_alloc_da_blocks(inode);
  4228. if (err < 0)
  4229. return err;
  4230. }
  4231. /* Wait for all existing dio workers */
  4232. ext4_inode_block_unlocked_dio(inode);
  4233. inode_dio_wait(inode);
  4234. jbd2_journal_lock_updates(journal);
  4235. /*
  4236. * OK, there are no updates running now, and all cached data is
  4237. * synced to disk. We are now in a completely consistent state
  4238. * which doesn't have anything in the journal, and we know that
  4239. * no filesystem updates are running, so it is safe to modify
  4240. * the inode's in-core data-journaling state flag now.
  4241. */
  4242. if (val)
  4243. ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4244. else {
  4245. jbd2_journal_flush(journal);
  4246. ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  4247. }
  4248. ext4_set_aops(inode);
  4249. jbd2_journal_unlock_updates(journal);
  4250. ext4_inode_resume_unlocked_dio(inode);
  4251. /* Finally we can mark the inode as dirty. */
  4252. handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
  4253. if (IS_ERR(handle))
  4254. return PTR_ERR(handle);
  4255. err = ext4_mark_inode_dirty(handle, inode);
  4256. ext4_handle_sync(handle);
  4257. ext4_journal_stop(handle);
  4258. ext4_std_error(inode->i_sb, err);
  4259. return err;
  4260. }
  4261. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  4262. {
  4263. return !buffer_mapped(bh);
  4264. }
  4265. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  4266. {
  4267. struct page *page = vmf->page;
  4268. loff_t size;
  4269. unsigned long len;
  4270. int ret;
  4271. struct file *file = vma->vm_file;
  4272. struct inode *inode = file->f_path.dentry->d_inode;
  4273. struct address_space *mapping = inode->i_mapping;
  4274. handle_t *handle;
  4275. get_block_t *get_block;
  4276. int retries = 0;
  4277. sb_start_pagefault(inode->i_sb);
  4278. file_update_time(vma->vm_file);
  4279. /* Delalloc case is easy... */
  4280. if (test_opt(inode->i_sb, DELALLOC) &&
  4281. !ext4_should_journal_data(inode) &&
  4282. !ext4_nonda_switch(inode->i_sb)) {
  4283. do {
  4284. ret = __block_page_mkwrite(vma, vmf,
  4285. ext4_da_get_block_prep);
  4286. } while (ret == -ENOSPC &&
  4287. ext4_should_retry_alloc(inode->i_sb, &retries));
  4288. goto out_ret;
  4289. }
  4290. lock_page(page);
  4291. size = i_size_read(inode);
  4292. /* Page got truncated from under us? */
  4293. if (page->mapping != mapping || page_offset(page) > size) {
  4294. unlock_page(page);
  4295. ret = VM_FAULT_NOPAGE;
  4296. goto out;
  4297. }
  4298. if (page->index == size >> PAGE_CACHE_SHIFT)
  4299. len = size & ~PAGE_CACHE_MASK;
  4300. else
  4301. len = PAGE_CACHE_SIZE;
  4302. /*
  4303. * Return if we have all the buffers mapped. This avoids the need to do
  4304. * journal_start/journal_stop which can block and take a long time
  4305. */
  4306. if (page_has_buffers(page)) {
  4307. if (!ext4_walk_page_buffers(NULL, page_buffers(page),
  4308. 0, len, NULL,
  4309. ext4_bh_unmapped)) {
  4310. /* Wait so that we don't change page under IO */
  4311. wait_on_page_writeback(page);
  4312. ret = VM_FAULT_LOCKED;
  4313. goto out;
  4314. }
  4315. }
  4316. unlock_page(page);
  4317. /* OK, we need to fill the hole... */
  4318. if (ext4_should_dioread_nolock(inode))
  4319. get_block = ext4_get_block_write;
  4320. else
  4321. get_block = ext4_get_block;
  4322. retry_alloc:
  4323. handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
  4324. ext4_writepage_trans_blocks(inode));
  4325. if (IS_ERR(handle)) {
  4326. ret = VM_FAULT_SIGBUS;
  4327. goto out;
  4328. }
  4329. ret = __block_page_mkwrite(vma, vmf, get_block);
  4330. if (!ret && ext4_should_journal_data(inode)) {
  4331. if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
  4332. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
  4333. unlock_page(page);
  4334. ret = VM_FAULT_SIGBUS;
  4335. ext4_journal_stop(handle);
  4336. goto out;
  4337. }
  4338. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  4339. }
  4340. ext4_journal_stop(handle);
  4341. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  4342. goto retry_alloc;
  4343. out_ret:
  4344. ret = block_page_mkwrite_return(ret);
  4345. out:
  4346. sb_end_pagefault(inode->i_sb);
  4347. return ret;
  4348. }