disk-io.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. /*
  70. * end_io_wq structs are used to do processing in task context when an IO is
  71. * complete. This is used during reads to verify checksums, and it is used
  72. * by writes to insert metadata for new file extents after IO is complete.
  73. */
  74. struct end_io_wq {
  75. struct bio *bio;
  76. bio_end_io_t *end_io;
  77. void *private;
  78. struct btrfs_fs_info *info;
  79. int error;
  80. int metadata;
  81. struct list_head list;
  82. struct btrfs_work work;
  83. };
  84. /*
  85. * async submit bios are used to offload expensive checksumming
  86. * onto the worker threads. They checksum file and metadata bios
  87. * just before they are sent down the IO stack.
  88. */
  89. struct async_submit_bio {
  90. struct inode *inode;
  91. struct bio *bio;
  92. struct list_head list;
  93. extent_submit_bio_hook_t *submit_bio_start;
  94. extent_submit_bio_hook_t *submit_bio_done;
  95. int rw;
  96. int mirror_num;
  97. unsigned long bio_flags;
  98. /*
  99. * bio_offset is optional, can be used if the pages in the bio
  100. * can't tell us where in the file the bio should go
  101. */
  102. u64 bio_offset;
  103. struct btrfs_work work;
  104. int error;
  105. };
  106. /*
  107. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  108. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  109. * the level the eb occupies in the tree.
  110. *
  111. * Different roots are used for different purposes and may nest inside each
  112. * other and they require separate keysets. As lockdep keys should be
  113. * static, assign keysets according to the purpose of the root as indicated
  114. * by btrfs_root->objectid. This ensures that all special purpose roots
  115. * have separate keysets.
  116. *
  117. * Lock-nesting across peer nodes is always done with the immediate parent
  118. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  119. * subclass to avoid triggering lockdep warning in such cases.
  120. *
  121. * The key is set by the readpage_end_io_hook after the buffer has passed
  122. * csum validation but before the pages are unlocked. It is also set by
  123. * btrfs_init_new_buffer on freshly allocated blocks.
  124. *
  125. * We also add a check to make sure the highest level of the tree is the
  126. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  127. * needs update as well.
  128. */
  129. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  130. # if BTRFS_MAX_LEVEL != 8
  131. # error
  132. # endif
  133. static struct btrfs_lockdep_keyset {
  134. u64 id; /* root objectid */
  135. const char *name_stem; /* lock name stem */
  136. char names[BTRFS_MAX_LEVEL + 1][20];
  137. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  138. } btrfs_lockdep_keysets[] = {
  139. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  140. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  141. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  142. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  143. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  144. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  145. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  146. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  147. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  148. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  149. { .id = 0, .name_stem = "tree" },
  150. };
  151. void __init btrfs_init_lockdep(void)
  152. {
  153. int i, j;
  154. /* initialize lockdep class names */
  155. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  156. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  157. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  158. snprintf(ks->names[j], sizeof(ks->names[j]),
  159. "btrfs-%s-%02d", ks->name_stem, j);
  160. }
  161. }
  162. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  163. int level)
  164. {
  165. struct btrfs_lockdep_keyset *ks;
  166. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  167. /* find the matching keyset, id 0 is the default entry */
  168. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  169. if (ks->id == objectid)
  170. break;
  171. lockdep_set_class_and_name(&eb->lock,
  172. &ks->keys[level], ks->names[level]);
  173. }
  174. #endif
  175. /*
  176. * extents on the btree inode are pretty simple, there's one extent
  177. * that covers the entire device
  178. */
  179. static struct extent_map *btree_get_extent(struct inode *inode,
  180. struct page *page, size_t pg_offset, u64 start, u64 len,
  181. int create)
  182. {
  183. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  184. struct extent_map *em;
  185. int ret;
  186. read_lock(&em_tree->lock);
  187. em = lookup_extent_mapping(em_tree, start, len);
  188. if (em) {
  189. em->bdev =
  190. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  191. read_unlock(&em_tree->lock);
  192. goto out;
  193. }
  194. read_unlock(&em_tree->lock);
  195. em = alloc_extent_map();
  196. if (!em) {
  197. em = ERR_PTR(-ENOMEM);
  198. goto out;
  199. }
  200. em->start = 0;
  201. em->len = (u64)-1;
  202. em->block_len = (u64)-1;
  203. em->block_start = 0;
  204. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  205. write_lock(&em_tree->lock);
  206. ret = add_extent_mapping(em_tree, em, 0);
  207. if (ret == -EEXIST) {
  208. free_extent_map(em);
  209. em = lookup_extent_mapping(em_tree, start, len);
  210. if (!em)
  211. em = ERR_PTR(-EIO);
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = ERR_PTR(ret);
  215. }
  216. write_unlock(&em_tree->lock);
  217. out:
  218. return em;
  219. }
  220. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  221. {
  222. return crc32c(seed, data, len);
  223. }
  224. void btrfs_csum_final(u32 crc, char *result)
  225. {
  226. put_unaligned_le32(~crc, result);
  227. }
  228. /*
  229. * compute the csum for a btree block, and either verify it or write it
  230. * into the csum field of the block.
  231. */
  232. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  233. int verify)
  234. {
  235. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  236. char *result = NULL;
  237. unsigned long len;
  238. unsigned long cur_len;
  239. unsigned long offset = BTRFS_CSUM_SIZE;
  240. char *kaddr;
  241. unsigned long map_start;
  242. unsigned long map_len;
  243. int err;
  244. u32 crc = ~(u32)0;
  245. unsigned long inline_result;
  246. len = buf->len - offset;
  247. while (len > 0) {
  248. err = map_private_extent_buffer(buf, offset, 32,
  249. &kaddr, &map_start, &map_len);
  250. if (err)
  251. return 1;
  252. cur_len = min(len, map_len - (offset - map_start));
  253. crc = btrfs_csum_data(kaddr + offset - map_start,
  254. crc, cur_len);
  255. len -= cur_len;
  256. offset += cur_len;
  257. }
  258. if (csum_size > sizeof(inline_result)) {
  259. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  260. if (!result)
  261. return 1;
  262. } else {
  263. result = (char *)&inline_result;
  264. }
  265. btrfs_csum_final(crc, result);
  266. if (verify) {
  267. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  268. u32 val;
  269. u32 found = 0;
  270. memcpy(&found, result, csum_size);
  271. read_extent_buffer(buf, &val, 0, csum_size);
  272. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  273. "failed on %llu wanted %X found %X "
  274. "level %d\n",
  275. root->fs_info->sb->s_id,
  276. (unsigned long long)buf->start, val, found,
  277. btrfs_header_level(buf));
  278. if (result != (char *)&inline_result)
  279. kfree(result);
  280. return 1;
  281. }
  282. } else {
  283. write_extent_buffer(buf, result, 0, csum_size);
  284. }
  285. if (result != (char *)&inline_result)
  286. kfree(result);
  287. return 0;
  288. }
  289. /*
  290. * we can't consider a given block up to date unless the transid of the
  291. * block matches the transid in the parent node's pointer. This is how we
  292. * detect blocks that either didn't get written at all or got written
  293. * in the wrong place.
  294. */
  295. static int verify_parent_transid(struct extent_io_tree *io_tree,
  296. struct extent_buffer *eb, u64 parent_transid,
  297. int atomic)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. if (atomic)
  304. return -EAGAIN;
  305. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  306. 0, &cached_state);
  307. if (extent_buffer_uptodate(eb) &&
  308. btrfs_header_generation(eb) == parent_transid) {
  309. ret = 0;
  310. goto out;
  311. }
  312. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  313. "found %llu\n",
  314. (unsigned long long)eb->start,
  315. (unsigned long long)parent_transid,
  316. (unsigned long long)btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * helper to read a given tree block, doing retries as required when
  326. * the checksums don't match and we have alternate mirrors to try.
  327. */
  328. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  329. struct extent_buffer *eb,
  330. u64 start, u64 parent_transid)
  331. {
  332. struct extent_io_tree *io_tree;
  333. int failed = 0;
  334. int ret;
  335. int num_copies = 0;
  336. int mirror_num = 0;
  337. int failed_mirror = 0;
  338. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  339. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  340. while (1) {
  341. ret = read_extent_buffer_pages(io_tree, eb, start,
  342. WAIT_COMPLETE,
  343. btree_get_extent, mirror_num);
  344. if (!ret) {
  345. if (!verify_parent_transid(io_tree, eb,
  346. parent_transid, 0))
  347. break;
  348. else
  349. ret = -EIO;
  350. }
  351. /*
  352. * This buffer's crc is fine, but its contents are corrupted, so
  353. * there is no reason to read the other copies, they won't be
  354. * any less wrong.
  355. */
  356. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  357. break;
  358. num_copies = btrfs_num_copies(root->fs_info,
  359. eb->start, eb->len);
  360. if (num_copies == 1)
  361. break;
  362. if (!failed_mirror) {
  363. failed = 1;
  364. failed_mirror = eb->read_mirror;
  365. }
  366. mirror_num++;
  367. if (mirror_num == failed_mirror)
  368. mirror_num++;
  369. if (mirror_num > num_copies)
  370. break;
  371. }
  372. if (failed && !ret && failed_mirror)
  373. repair_eb_io_failure(root, eb, failed_mirror);
  374. return ret;
  375. }
  376. /*
  377. * checksum a dirty tree block before IO. This has extra checks to make sure
  378. * we only fill in the checksum field in the first page of a multi-page block
  379. */
  380. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  381. {
  382. struct extent_io_tree *tree;
  383. u64 start = page_offset(page);
  384. u64 found_start;
  385. struct extent_buffer *eb;
  386. tree = &BTRFS_I(page->mapping->host)->io_tree;
  387. eb = (struct extent_buffer *)page->private;
  388. if (page != eb->pages[0])
  389. return 0;
  390. found_start = btrfs_header_bytenr(eb);
  391. if (found_start != start) {
  392. WARN_ON(1);
  393. return 0;
  394. }
  395. if (!PageUptodate(page)) {
  396. WARN_ON(1);
  397. return 0;
  398. }
  399. csum_tree_block(root, eb, 0);
  400. return 0;
  401. }
  402. static int check_tree_block_fsid(struct btrfs_root *root,
  403. struct extent_buffer *eb)
  404. {
  405. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  406. u8 fsid[BTRFS_UUID_SIZE];
  407. int ret = 1;
  408. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  409. BTRFS_FSID_SIZE);
  410. while (fs_devices) {
  411. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  412. ret = 0;
  413. break;
  414. }
  415. fs_devices = fs_devices->seed;
  416. }
  417. return ret;
  418. }
  419. #define CORRUPT(reason, eb, root, slot) \
  420. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  421. "root=%llu, slot=%d\n", reason, \
  422. (unsigned long long)btrfs_header_bytenr(eb), \
  423. (unsigned long long)root->objectid, slot)
  424. static noinline int check_leaf(struct btrfs_root *root,
  425. struct extent_buffer *leaf)
  426. {
  427. struct btrfs_key key;
  428. struct btrfs_key leaf_key;
  429. u32 nritems = btrfs_header_nritems(leaf);
  430. int slot;
  431. if (nritems == 0)
  432. return 0;
  433. /* Check the 0 item */
  434. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  435. BTRFS_LEAF_DATA_SIZE(root)) {
  436. CORRUPT("invalid item offset size pair", leaf, root, 0);
  437. return -EIO;
  438. }
  439. /*
  440. * Check to make sure each items keys are in the correct order and their
  441. * offsets make sense. We only have to loop through nritems-1 because
  442. * we check the current slot against the next slot, which verifies the
  443. * next slot's offset+size makes sense and that the current's slot
  444. * offset is correct.
  445. */
  446. for (slot = 0; slot < nritems - 1; slot++) {
  447. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  448. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  449. /* Make sure the keys are in the right order */
  450. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  451. CORRUPT("bad key order", leaf, root, slot);
  452. return -EIO;
  453. }
  454. /*
  455. * Make sure the offset and ends are right, remember that the
  456. * item data starts at the end of the leaf and grows towards the
  457. * front.
  458. */
  459. if (btrfs_item_offset_nr(leaf, slot) !=
  460. btrfs_item_end_nr(leaf, slot + 1)) {
  461. CORRUPT("slot offset bad", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Check to make sure that we don't point outside of the leaf,
  466. * just incase all the items are consistent to eachother, but
  467. * all point outside of the leaf.
  468. */
  469. if (btrfs_item_end_nr(leaf, slot) >
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("slot end outside of leaf", leaf, root, slot);
  472. return -EIO;
  473. }
  474. }
  475. return 0;
  476. }
  477. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  478. struct page *page, int max_walk)
  479. {
  480. struct extent_buffer *eb;
  481. u64 start = page_offset(page);
  482. u64 target = start;
  483. u64 min_start;
  484. if (start < max_walk)
  485. min_start = 0;
  486. else
  487. min_start = start - max_walk;
  488. while (start >= min_start) {
  489. eb = find_extent_buffer(tree, start, 0);
  490. if (eb) {
  491. /*
  492. * we found an extent buffer and it contains our page
  493. * horray!
  494. */
  495. if (eb->start <= target &&
  496. eb->start + eb->len > target)
  497. return eb;
  498. /* we found an extent buffer that wasn't for us */
  499. free_extent_buffer(eb);
  500. return NULL;
  501. }
  502. if (start == 0)
  503. break;
  504. start -= PAGE_CACHE_SIZE;
  505. }
  506. return NULL;
  507. }
  508. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  509. struct extent_state *state, int mirror)
  510. {
  511. struct extent_io_tree *tree;
  512. u64 found_start;
  513. int found_level;
  514. struct extent_buffer *eb;
  515. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  516. int ret = 0;
  517. int reads_done;
  518. if (!page->private)
  519. goto out;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. eb = (struct extent_buffer *)page->private;
  522. /* the pending IO might have been the only thing that kept this buffer
  523. * in memory. Make sure we have a ref for all this other checks
  524. */
  525. extent_buffer_get(eb);
  526. reads_done = atomic_dec_and_test(&eb->io_pages);
  527. if (!reads_done)
  528. goto err;
  529. eb->read_mirror = mirror;
  530. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  531. ret = -EIO;
  532. goto err;
  533. }
  534. found_start = btrfs_header_bytenr(eb);
  535. if (found_start != eb->start) {
  536. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  537. "%llu %llu\n",
  538. (unsigned long long)found_start,
  539. (unsigned long long)eb->start);
  540. ret = -EIO;
  541. goto err;
  542. }
  543. if (check_tree_block_fsid(root, eb)) {
  544. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  545. (unsigned long long)eb->start);
  546. ret = -EIO;
  547. goto err;
  548. }
  549. found_level = btrfs_header_level(eb);
  550. if (found_level >= BTRFS_MAX_LEVEL) {
  551. btrfs_info(root->fs_info, "bad tree block level %d\n",
  552. (int)btrfs_header_level(eb));
  553. ret = -EIO;
  554. goto err;
  555. }
  556. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  557. eb, found_level);
  558. ret = csum_tree_block(root, eb, 1);
  559. if (ret) {
  560. ret = -EIO;
  561. goto err;
  562. }
  563. /*
  564. * If this is a leaf block and it is corrupt, set the corrupt bit so
  565. * that we don't try and read the other copies of this block, just
  566. * return -EIO.
  567. */
  568. if (found_level == 0 && check_leaf(root, eb)) {
  569. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  570. ret = -EIO;
  571. }
  572. if (!ret)
  573. set_extent_buffer_uptodate(eb);
  574. err:
  575. if (reads_done &&
  576. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  577. btree_readahead_hook(root, eb, eb->start, ret);
  578. if (ret) {
  579. /*
  580. * our io error hook is going to dec the io pages
  581. * again, we have to make sure it has something
  582. * to decrement
  583. */
  584. atomic_inc(&eb->io_pages);
  585. clear_extent_buffer_uptodate(eb);
  586. }
  587. free_extent_buffer(eb);
  588. out:
  589. return ret;
  590. }
  591. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  592. {
  593. struct extent_buffer *eb;
  594. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  595. eb = (struct extent_buffer *)page->private;
  596. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  597. eb->read_mirror = failed_mirror;
  598. atomic_dec(&eb->io_pages);
  599. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  600. btree_readahead_hook(root, eb, eb->start, -EIO);
  601. return -EIO; /* we fixed nothing */
  602. }
  603. static void end_workqueue_bio(struct bio *bio, int err)
  604. {
  605. struct end_io_wq *end_io_wq = bio->bi_private;
  606. struct btrfs_fs_info *fs_info;
  607. fs_info = end_io_wq->info;
  608. end_io_wq->error = err;
  609. end_io_wq->work.func = end_workqueue_fn;
  610. end_io_wq->work.flags = 0;
  611. if (bio->bi_rw & REQ_WRITE) {
  612. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  613. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  614. &end_io_wq->work);
  615. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  616. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  617. &end_io_wq->work);
  618. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  619. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  620. &end_io_wq->work);
  621. else
  622. btrfs_queue_worker(&fs_info->endio_write_workers,
  623. &end_io_wq->work);
  624. } else {
  625. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  626. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata)
  629. btrfs_queue_worker(&fs_info->endio_meta_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_worker(&fs_info->endio_workers,
  633. &end_io_wq->work);
  634. }
  635. }
  636. /*
  637. * For the metadata arg you want
  638. *
  639. * 0 - if data
  640. * 1 - if normal metadta
  641. * 2 - if writing to the free space cache area
  642. * 3 - raid parity work
  643. */
  644. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  645. int metadata)
  646. {
  647. struct end_io_wq *end_io_wq;
  648. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  649. if (!end_io_wq)
  650. return -ENOMEM;
  651. end_io_wq->private = bio->bi_private;
  652. end_io_wq->end_io = bio->bi_end_io;
  653. end_io_wq->info = info;
  654. end_io_wq->error = 0;
  655. end_io_wq->bio = bio;
  656. end_io_wq->metadata = metadata;
  657. bio->bi_private = end_io_wq;
  658. bio->bi_end_io = end_workqueue_bio;
  659. return 0;
  660. }
  661. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  662. {
  663. unsigned long limit = min_t(unsigned long,
  664. info->workers.max_workers,
  665. info->fs_devices->open_devices);
  666. return 256 * limit;
  667. }
  668. static void run_one_async_start(struct btrfs_work *work)
  669. {
  670. struct async_submit_bio *async;
  671. int ret;
  672. async = container_of(work, struct async_submit_bio, work);
  673. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  674. async->mirror_num, async->bio_flags,
  675. async->bio_offset);
  676. if (ret)
  677. async->error = ret;
  678. }
  679. static void run_one_async_done(struct btrfs_work *work)
  680. {
  681. struct btrfs_fs_info *fs_info;
  682. struct async_submit_bio *async;
  683. int limit;
  684. async = container_of(work, struct async_submit_bio, work);
  685. fs_info = BTRFS_I(async->inode)->root->fs_info;
  686. limit = btrfs_async_submit_limit(fs_info);
  687. limit = limit * 2 / 3;
  688. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  689. waitqueue_active(&fs_info->async_submit_wait))
  690. wake_up(&fs_info->async_submit_wait);
  691. /* If an error occured we just want to clean up the bio and move on */
  692. if (async->error) {
  693. bio_endio(async->bio, async->error);
  694. return;
  695. }
  696. async->submit_bio_done(async->inode, async->rw, async->bio,
  697. async->mirror_num, async->bio_flags,
  698. async->bio_offset);
  699. }
  700. static void run_one_async_free(struct btrfs_work *work)
  701. {
  702. struct async_submit_bio *async;
  703. async = container_of(work, struct async_submit_bio, work);
  704. kfree(async);
  705. }
  706. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  707. int rw, struct bio *bio, int mirror_num,
  708. unsigned long bio_flags,
  709. u64 bio_offset,
  710. extent_submit_bio_hook_t *submit_bio_start,
  711. extent_submit_bio_hook_t *submit_bio_done)
  712. {
  713. struct async_submit_bio *async;
  714. async = kmalloc(sizeof(*async), GFP_NOFS);
  715. if (!async)
  716. return -ENOMEM;
  717. async->inode = inode;
  718. async->rw = rw;
  719. async->bio = bio;
  720. async->mirror_num = mirror_num;
  721. async->submit_bio_start = submit_bio_start;
  722. async->submit_bio_done = submit_bio_done;
  723. async->work.func = run_one_async_start;
  724. async->work.ordered_func = run_one_async_done;
  725. async->work.ordered_free = run_one_async_free;
  726. async->work.flags = 0;
  727. async->bio_flags = bio_flags;
  728. async->bio_offset = bio_offset;
  729. async->error = 0;
  730. atomic_inc(&fs_info->nr_async_submits);
  731. if (rw & REQ_SYNC)
  732. btrfs_set_work_high_prio(&async->work);
  733. btrfs_queue_worker(&fs_info->workers, &async->work);
  734. while (atomic_read(&fs_info->async_submit_draining) &&
  735. atomic_read(&fs_info->nr_async_submits)) {
  736. wait_event(fs_info->async_submit_wait,
  737. (atomic_read(&fs_info->nr_async_submits) == 0));
  738. }
  739. return 0;
  740. }
  741. static int btree_csum_one_bio(struct bio *bio)
  742. {
  743. struct bio_vec *bvec = bio->bi_io_vec;
  744. int bio_index = 0;
  745. struct btrfs_root *root;
  746. int ret = 0;
  747. WARN_ON(bio->bi_vcnt <= 0);
  748. while (bio_index < bio->bi_vcnt) {
  749. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  750. ret = csum_dirty_buffer(root, bvec->bv_page);
  751. if (ret)
  752. break;
  753. bio_index++;
  754. bvec++;
  755. }
  756. return ret;
  757. }
  758. static int __btree_submit_bio_start(struct inode *inode, int rw,
  759. struct bio *bio, int mirror_num,
  760. unsigned long bio_flags,
  761. u64 bio_offset)
  762. {
  763. /*
  764. * when we're called for a write, we're already in the async
  765. * submission context. Just jump into btrfs_map_bio
  766. */
  767. return btree_csum_one_bio(bio);
  768. }
  769. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  770. int mirror_num, unsigned long bio_flags,
  771. u64 bio_offset)
  772. {
  773. int ret;
  774. /*
  775. * when we're called for a write, we're already in the async
  776. * submission context. Just jump into btrfs_map_bio
  777. */
  778. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  779. if (ret)
  780. bio_endio(bio, ret);
  781. return ret;
  782. }
  783. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  784. {
  785. if (bio_flags & EXTENT_BIO_TREE_LOG)
  786. return 0;
  787. #ifdef CONFIG_X86
  788. if (cpu_has_xmm4_2)
  789. return 0;
  790. #endif
  791. return 1;
  792. }
  793. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  794. int mirror_num, unsigned long bio_flags,
  795. u64 bio_offset)
  796. {
  797. int async = check_async_write(inode, bio_flags);
  798. int ret;
  799. if (!(rw & REQ_WRITE)) {
  800. /*
  801. * called for a read, do the setup so that checksum validation
  802. * can happen in the async kernel threads
  803. */
  804. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  805. bio, 1);
  806. if (ret)
  807. goto out_w_error;
  808. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  809. mirror_num, 0);
  810. } else if (!async) {
  811. ret = btree_csum_one_bio(bio);
  812. if (ret)
  813. goto out_w_error;
  814. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  815. mirror_num, 0);
  816. } else {
  817. /*
  818. * kthread helpers are used to submit writes so that
  819. * checksumming can happen in parallel across all CPUs
  820. */
  821. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  822. inode, rw, bio, mirror_num, 0,
  823. bio_offset,
  824. __btree_submit_bio_start,
  825. __btree_submit_bio_done);
  826. }
  827. if (ret) {
  828. out_w_error:
  829. bio_endio(bio, ret);
  830. }
  831. return ret;
  832. }
  833. #ifdef CONFIG_MIGRATION
  834. static int btree_migratepage(struct address_space *mapping,
  835. struct page *newpage, struct page *page,
  836. enum migrate_mode mode)
  837. {
  838. /*
  839. * we can't safely write a btree page from here,
  840. * we haven't done the locking hook
  841. */
  842. if (PageDirty(page))
  843. return -EAGAIN;
  844. /*
  845. * Buffers may be managed in a filesystem specific way.
  846. * We must have no buffers or drop them.
  847. */
  848. if (page_has_private(page) &&
  849. !try_to_release_page(page, GFP_KERNEL))
  850. return -EAGAIN;
  851. return migrate_page(mapping, newpage, page, mode);
  852. }
  853. #endif
  854. static int btree_writepages(struct address_space *mapping,
  855. struct writeback_control *wbc)
  856. {
  857. struct extent_io_tree *tree;
  858. struct btrfs_fs_info *fs_info;
  859. int ret;
  860. tree = &BTRFS_I(mapping->host)->io_tree;
  861. if (wbc->sync_mode == WB_SYNC_NONE) {
  862. if (wbc->for_kupdate)
  863. return 0;
  864. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  865. /* this is a bit racy, but that's ok */
  866. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  867. BTRFS_DIRTY_METADATA_THRESH);
  868. if (ret < 0)
  869. return 0;
  870. }
  871. return btree_write_cache_pages(mapping, wbc);
  872. }
  873. static int btree_readpage(struct file *file, struct page *page)
  874. {
  875. struct extent_io_tree *tree;
  876. tree = &BTRFS_I(page->mapping->host)->io_tree;
  877. return extent_read_full_page(tree, page, btree_get_extent, 0);
  878. }
  879. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  880. {
  881. if (PageWriteback(page) || PageDirty(page))
  882. return 0;
  883. /*
  884. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  885. * slab allocation from alloc_extent_state down the callchain where
  886. * it'd hit a BUG_ON as those flags are not allowed.
  887. */
  888. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  889. return try_release_extent_buffer(page, gfp_flags);
  890. }
  891. static void btree_invalidatepage(struct page *page, unsigned long offset)
  892. {
  893. struct extent_io_tree *tree;
  894. tree = &BTRFS_I(page->mapping->host)->io_tree;
  895. extent_invalidatepage(tree, page, offset);
  896. btree_releasepage(page, GFP_NOFS);
  897. if (PagePrivate(page)) {
  898. printk(KERN_WARNING "btrfs warning page private not zero "
  899. "on page %llu\n", (unsigned long long)page_offset(page));
  900. ClearPagePrivate(page);
  901. set_page_private(page, 0);
  902. page_cache_release(page);
  903. }
  904. }
  905. static int btree_set_page_dirty(struct page *page)
  906. {
  907. #ifdef DEBUG
  908. struct extent_buffer *eb;
  909. BUG_ON(!PagePrivate(page));
  910. eb = (struct extent_buffer *)page->private;
  911. BUG_ON(!eb);
  912. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  913. BUG_ON(!atomic_read(&eb->refs));
  914. btrfs_assert_tree_locked(eb);
  915. #endif
  916. return __set_page_dirty_nobuffers(page);
  917. }
  918. static const struct address_space_operations btree_aops = {
  919. .readpage = btree_readpage,
  920. .writepages = btree_writepages,
  921. .releasepage = btree_releasepage,
  922. .invalidatepage = btree_invalidatepage,
  923. #ifdef CONFIG_MIGRATION
  924. .migratepage = btree_migratepage,
  925. #endif
  926. .set_page_dirty = btree_set_page_dirty,
  927. };
  928. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. u64 parent_transid)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. int ret = 0;
  934. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  935. if (!buf)
  936. return 0;
  937. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  938. buf, 0, WAIT_NONE, btree_get_extent, 0);
  939. free_extent_buffer(buf);
  940. return ret;
  941. }
  942. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  943. int mirror_num, struct extent_buffer **eb)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  948. int ret;
  949. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  950. if (!buf)
  951. return 0;
  952. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  953. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  954. btree_get_extent, mirror_num);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ret;
  958. }
  959. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  960. free_extent_buffer(buf);
  961. return -EIO;
  962. } else if (extent_buffer_uptodate(buf)) {
  963. *eb = buf;
  964. } else {
  965. free_extent_buffer(buf);
  966. }
  967. return 0;
  968. }
  969. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  970. u64 bytenr, u32 blocksize)
  971. {
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_buffer *eb;
  974. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  975. bytenr, blocksize);
  976. return eb;
  977. }
  978. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  979. u64 bytenr, u32 blocksize)
  980. {
  981. struct inode *btree_inode = root->fs_info->btree_inode;
  982. struct extent_buffer *eb;
  983. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  984. bytenr, blocksize);
  985. return eb;
  986. }
  987. int btrfs_write_tree_block(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  990. buf->start + buf->len - 1);
  991. }
  992. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawait_range(buf->pages[0]->mapping,
  995. buf->start, buf->start + buf->len - 1);
  996. }
  997. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  998. u32 blocksize, u64 parent_transid)
  999. {
  1000. struct extent_buffer *buf = NULL;
  1001. int ret;
  1002. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1003. if (!buf)
  1004. return NULL;
  1005. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1006. return buf;
  1007. }
  1008. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1009. struct extent_buffer *buf)
  1010. {
  1011. struct btrfs_fs_info *fs_info = root->fs_info;
  1012. if (btrfs_header_generation(buf) ==
  1013. fs_info->running_transaction->transid) {
  1014. btrfs_assert_tree_locked(buf);
  1015. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1016. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1017. -buf->len,
  1018. fs_info->dirty_metadata_batch);
  1019. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1020. btrfs_set_lock_blocking(buf);
  1021. clear_extent_buffer_dirty(buf);
  1022. }
  1023. }
  1024. }
  1025. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1026. u32 stripesize, struct btrfs_root *root,
  1027. struct btrfs_fs_info *fs_info,
  1028. u64 objectid)
  1029. {
  1030. root->node = NULL;
  1031. root->commit_root = NULL;
  1032. root->sectorsize = sectorsize;
  1033. root->nodesize = nodesize;
  1034. root->leafsize = leafsize;
  1035. root->stripesize = stripesize;
  1036. root->ref_cows = 0;
  1037. root->track_dirty = 0;
  1038. root->in_radix = 0;
  1039. root->orphan_item_inserted = 0;
  1040. root->orphan_cleanup_state = 0;
  1041. root->objectid = objectid;
  1042. root->last_trans = 0;
  1043. root->highest_objectid = 0;
  1044. root->name = NULL;
  1045. root->inode_tree = RB_ROOT;
  1046. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1047. root->block_rsv = NULL;
  1048. root->orphan_block_rsv = NULL;
  1049. INIT_LIST_HEAD(&root->dirty_list);
  1050. INIT_LIST_HEAD(&root->root_list);
  1051. INIT_LIST_HEAD(&root->logged_list[0]);
  1052. INIT_LIST_HEAD(&root->logged_list[1]);
  1053. spin_lock_init(&root->orphan_lock);
  1054. spin_lock_init(&root->inode_lock);
  1055. spin_lock_init(&root->accounting_lock);
  1056. spin_lock_init(&root->log_extents_lock[0]);
  1057. spin_lock_init(&root->log_extents_lock[1]);
  1058. mutex_init(&root->objectid_mutex);
  1059. mutex_init(&root->log_mutex);
  1060. init_waitqueue_head(&root->log_writer_wait);
  1061. init_waitqueue_head(&root->log_commit_wait[0]);
  1062. init_waitqueue_head(&root->log_commit_wait[1]);
  1063. atomic_set(&root->log_commit[0], 0);
  1064. atomic_set(&root->log_commit[1], 0);
  1065. atomic_set(&root->log_writers, 0);
  1066. atomic_set(&root->log_batch, 0);
  1067. atomic_set(&root->orphan_inodes, 0);
  1068. root->log_transid = 0;
  1069. root->last_log_commit = 0;
  1070. extent_io_tree_init(&root->dirty_log_pages,
  1071. fs_info->btree_inode->i_mapping);
  1072. memset(&root->root_key, 0, sizeof(root->root_key));
  1073. memset(&root->root_item, 0, sizeof(root->root_item));
  1074. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1075. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1076. root->defrag_trans_start = fs_info->generation;
  1077. init_completion(&root->kobj_unregister);
  1078. root->defrag_running = 0;
  1079. root->root_key.objectid = objectid;
  1080. root->anon_dev = 0;
  1081. spin_lock_init(&root->root_item_lock);
  1082. }
  1083. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1084. struct btrfs_fs_info *fs_info,
  1085. u64 objectid,
  1086. struct btrfs_root *root)
  1087. {
  1088. int ret;
  1089. u32 blocksize;
  1090. u64 generation;
  1091. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1092. tree_root->sectorsize, tree_root->stripesize,
  1093. root, fs_info, objectid);
  1094. ret = btrfs_find_last_root(tree_root, objectid,
  1095. &root->root_item, &root->root_key);
  1096. if (ret > 0)
  1097. return -ENOENT;
  1098. else if (ret < 0)
  1099. return ret;
  1100. generation = btrfs_root_generation(&root->root_item);
  1101. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1102. root->commit_root = NULL;
  1103. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1104. blocksize, generation);
  1105. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1106. free_extent_buffer(root->node);
  1107. root->node = NULL;
  1108. return -EIO;
  1109. }
  1110. root->commit_root = btrfs_root_node(root);
  1111. return 0;
  1112. }
  1113. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1114. {
  1115. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1116. if (root)
  1117. root->fs_info = fs_info;
  1118. return root;
  1119. }
  1120. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1121. struct btrfs_fs_info *fs_info,
  1122. u64 objectid)
  1123. {
  1124. struct extent_buffer *leaf;
  1125. struct btrfs_root *tree_root = fs_info->tree_root;
  1126. struct btrfs_root *root;
  1127. struct btrfs_key key;
  1128. int ret = 0;
  1129. u64 bytenr;
  1130. root = btrfs_alloc_root(fs_info);
  1131. if (!root)
  1132. return ERR_PTR(-ENOMEM);
  1133. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1134. tree_root->sectorsize, tree_root->stripesize,
  1135. root, fs_info, objectid);
  1136. root->root_key.objectid = objectid;
  1137. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1138. root->root_key.offset = 0;
  1139. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1140. 0, objectid, NULL, 0, 0, 0);
  1141. if (IS_ERR(leaf)) {
  1142. ret = PTR_ERR(leaf);
  1143. leaf = NULL;
  1144. goto fail;
  1145. }
  1146. bytenr = leaf->start;
  1147. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1148. btrfs_set_header_bytenr(leaf, leaf->start);
  1149. btrfs_set_header_generation(leaf, trans->transid);
  1150. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1151. btrfs_set_header_owner(leaf, objectid);
  1152. root->node = leaf;
  1153. write_extent_buffer(leaf, fs_info->fsid,
  1154. (unsigned long)btrfs_header_fsid(leaf),
  1155. BTRFS_FSID_SIZE);
  1156. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1157. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1158. BTRFS_UUID_SIZE);
  1159. btrfs_mark_buffer_dirty(leaf);
  1160. root->commit_root = btrfs_root_node(root);
  1161. root->track_dirty = 1;
  1162. root->root_item.flags = 0;
  1163. root->root_item.byte_limit = 0;
  1164. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1165. btrfs_set_root_generation(&root->root_item, trans->transid);
  1166. btrfs_set_root_level(&root->root_item, 0);
  1167. btrfs_set_root_refs(&root->root_item, 1);
  1168. btrfs_set_root_used(&root->root_item, leaf->len);
  1169. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1170. btrfs_set_root_dirid(&root->root_item, 0);
  1171. root->root_item.drop_level = 0;
  1172. key.objectid = objectid;
  1173. key.type = BTRFS_ROOT_ITEM_KEY;
  1174. key.offset = 0;
  1175. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1176. if (ret)
  1177. goto fail;
  1178. btrfs_tree_unlock(leaf);
  1179. return root;
  1180. fail:
  1181. if (leaf) {
  1182. btrfs_tree_unlock(leaf);
  1183. free_extent_buffer(leaf);
  1184. }
  1185. kfree(root);
  1186. return ERR_PTR(ret);
  1187. }
  1188. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1189. struct btrfs_fs_info *fs_info)
  1190. {
  1191. struct btrfs_root *root;
  1192. struct btrfs_root *tree_root = fs_info->tree_root;
  1193. struct extent_buffer *leaf;
  1194. root = btrfs_alloc_root(fs_info);
  1195. if (!root)
  1196. return ERR_PTR(-ENOMEM);
  1197. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1198. tree_root->sectorsize, tree_root->stripesize,
  1199. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1200. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1201. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1202. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1203. /*
  1204. * log trees do not get reference counted because they go away
  1205. * before a real commit is actually done. They do store pointers
  1206. * to file data extents, and those reference counts still get
  1207. * updated (along with back refs to the log tree).
  1208. */
  1209. root->ref_cows = 0;
  1210. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1211. BTRFS_TREE_LOG_OBJECTID, NULL,
  1212. 0, 0, 0);
  1213. if (IS_ERR(leaf)) {
  1214. kfree(root);
  1215. return ERR_CAST(leaf);
  1216. }
  1217. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1218. btrfs_set_header_bytenr(leaf, leaf->start);
  1219. btrfs_set_header_generation(leaf, trans->transid);
  1220. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1221. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1222. root->node = leaf;
  1223. write_extent_buffer(root->node, root->fs_info->fsid,
  1224. (unsigned long)btrfs_header_fsid(root->node),
  1225. BTRFS_FSID_SIZE);
  1226. btrfs_mark_buffer_dirty(root->node);
  1227. btrfs_tree_unlock(root->node);
  1228. return root;
  1229. }
  1230. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1231. struct btrfs_fs_info *fs_info)
  1232. {
  1233. struct btrfs_root *log_root;
  1234. log_root = alloc_log_tree(trans, fs_info);
  1235. if (IS_ERR(log_root))
  1236. return PTR_ERR(log_root);
  1237. WARN_ON(fs_info->log_root_tree);
  1238. fs_info->log_root_tree = log_root;
  1239. return 0;
  1240. }
  1241. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1242. struct btrfs_root *root)
  1243. {
  1244. struct btrfs_root *log_root;
  1245. struct btrfs_inode_item *inode_item;
  1246. log_root = alloc_log_tree(trans, root->fs_info);
  1247. if (IS_ERR(log_root))
  1248. return PTR_ERR(log_root);
  1249. log_root->last_trans = trans->transid;
  1250. log_root->root_key.offset = root->root_key.objectid;
  1251. inode_item = &log_root->root_item.inode;
  1252. inode_item->generation = cpu_to_le64(1);
  1253. inode_item->size = cpu_to_le64(3);
  1254. inode_item->nlink = cpu_to_le32(1);
  1255. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1256. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1257. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1258. WARN_ON(root->log_root);
  1259. root->log_root = log_root;
  1260. root->log_transid = 0;
  1261. root->last_log_commit = 0;
  1262. return 0;
  1263. }
  1264. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1265. struct btrfs_key *location)
  1266. {
  1267. struct btrfs_root *root;
  1268. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1269. struct btrfs_path *path;
  1270. struct extent_buffer *l;
  1271. u64 generation;
  1272. u32 blocksize;
  1273. int ret = 0;
  1274. int slot;
  1275. root = btrfs_alloc_root(fs_info);
  1276. if (!root)
  1277. return ERR_PTR(-ENOMEM);
  1278. if (location->offset == (u64)-1) {
  1279. ret = find_and_setup_root(tree_root, fs_info,
  1280. location->objectid, root);
  1281. if (ret) {
  1282. kfree(root);
  1283. return ERR_PTR(ret);
  1284. }
  1285. goto out;
  1286. }
  1287. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1288. tree_root->sectorsize, tree_root->stripesize,
  1289. root, fs_info, location->objectid);
  1290. path = btrfs_alloc_path();
  1291. if (!path) {
  1292. kfree(root);
  1293. return ERR_PTR(-ENOMEM);
  1294. }
  1295. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1296. if (ret == 0) {
  1297. l = path->nodes[0];
  1298. slot = path->slots[0];
  1299. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1300. memcpy(&root->root_key, location, sizeof(*location));
  1301. }
  1302. btrfs_free_path(path);
  1303. if (ret) {
  1304. kfree(root);
  1305. if (ret > 0)
  1306. ret = -ENOENT;
  1307. return ERR_PTR(ret);
  1308. }
  1309. generation = btrfs_root_generation(&root->root_item);
  1310. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1311. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1312. blocksize, generation);
  1313. if (!root->node || !extent_buffer_uptodate(root->node)) {
  1314. ret = (!root->node) ? -ENOMEM : -EIO;
  1315. free_extent_buffer(root->node);
  1316. kfree(root);
  1317. return ERR_PTR(ret);
  1318. }
  1319. root->commit_root = btrfs_root_node(root);
  1320. BUG_ON(!root->node); /* -ENOMEM */
  1321. out:
  1322. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1323. root->ref_cows = 1;
  1324. btrfs_check_and_init_root_item(&root->root_item);
  1325. }
  1326. return root;
  1327. }
  1328. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1329. struct btrfs_key *location)
  1330. {
  1331. struct btrfs_root *root;
  1332. int ret;
  1333. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1334. return fs_info->tree_root;
  1335. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1336. return fs_info->extent_root;
  1337. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1338. return fs_info->chunk_root;
  1339. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1340. return fs_info->dev_root;
  1341. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1342. return fs_info->csum_root;
  1343. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1344. return fs_info->quota_root ? fs_info->quota_root :
  1345. ERR_PTR(-ENOENT);
  1346. again:
  1347. spin_lock(&fs_info->fs_roots_radix_lock);
  1348. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1349. (unsigned long)location->objectid);
  1350. spin_unlock(&fs_info->fs_roots_radix_lock);
  1351. if (root)
  1352. return root;
  1353. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1354. if (IS_ERR(root))
  1355. return root;
  1356. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1357. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1358. GFP_NOFS);
  1359. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1360. ret = -ENOMEM;
  1361. goto fail;
  1362. }
  1363. btrfs_init_free_ino_ctl(root);
  1364. mutex_init(&root->fs_commit_mutex);
  1365. spin_lock_init(&root->cache_lock);
  1366. init_waitqueue_head(&root->cache_wait);
  1367. ret = get_anon_bdev(&root->anon_dev);
  1368. if (ret)
  1369. goto fail;
  1370. if (btrfs_root_refs(&root->root_item) == 0) {
  1371. ret = -ENOENT;
  1372. goto fail;
  1373. }
  1374. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1375. if (ret < 0)
  1376. goto fail;
  1377. if (ret == 0)
  1378. root->orphan_item_inserted = 1;
  1379. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1380. if (ret)
  1381. goto fail;
  1382. spin_lock(&fs_info->fs_roots_radix_lock);
  1383. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1384. (unsigned long)root->root_key.objectid,
  1385. root);
  1386. if (ret == 0)
  1387. root->in_radix = 1;
  1388. spin_unlock(&fs_info->fs_roots_radix_lock);
  1389. radix_tree_preload_end();
  1390. if (ret) {
  1391. if (ret == -EEXIST) {
  1392. free_fs_root(root);
  1393. goto again;
  1394. }
  1395. goto fail;
  1396. }
  1397. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1398. root->root_key.objectid);
  1399. WARN_ON(ret);
  1400. return root;
  1401. fail:
  1402. free_fs_root(root);
  1403. return ERR_PTR(ret);
  1404. }
  1405. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1406. {
  1407. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1408. int ret = 0;
  1409. struct btrfs_device *device;
  1410. struct backing_dev_info *bdi;
  1411. rcu_read_lock();
  1412. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1413. if (!device->bdev)
  1414. continue;
  1415. bdi = blk_get_backing_dev_info(device->bdev);
  1416. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1417. ret = 1;
  1418. break;
  1419. }
  1420. }
  1421. rcu_read_unlock();
  1422. return ret;
  1423. }
  1424. /*
  1425. * If this fails, caller must call bdi_destroy() to get rid of the
  1426. * bdi again.
  1427. */
  1428. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1429. {
  1430. int err;
  1431. bdi->capabilities = BDI_CAP_MAP_COPY;
  1432. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1433. if (err)
  1434. return err;
  1435. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1436. bdi->congested_fn = btrfs_congested_fn;
  1437. bdi->congested_data = info;
  1438. return 0;
  1439. }
  1440. /*
  1441. * called by the kthread helper functions to finally call the bio end_io
  1442. * functions. This is where read checksum verification actually happens
  1443. */
  1444. static void end_workqueue_fn(struct btrfs_work *work)
  1445. {
  1446. struct bio *bio;
  1447. struct end_io_wq *end_io_wq;
  1448. struct btrfs_fs_info *fs_info;
  1449. int error;
  1450. end_io_wq = container_of(work, struct end_io_wq, work);
  1451. bio = end_io_wq->bio;
  1452. fs_info = end_io_wq->info;
  1453. error = end_io_wq->error;
  1454. bio->bi_private = end_io_wq->private;
  1455. bio->bi_end_io = end_io_wq->end_io;
  1456. kfree(end_io_wq);
  1457. bio_endio(bio, error);
  1458. }
  1459. static int cleaner_kthread(void *arg)
  1460. {
  1461. struct btrfs_root *root = arg;
  1462. do {
  1463. int again = 0;
  1464. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1465. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1466. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1467. btrfs_run_delayed_iputs(root);
  1468. again = btrfs_clean_one_deleted_snapshot(root);
  1469. mutex_unlock(&root->fs_info->cleaner_mutex);
  1470. }
  1471. btrfs_run_defrag_inodes(root->fs_info);
  1472. up_read(&root->fs_info->sb->s_umount);
  1473. }
  1474. if (!try_to_freeze() && !again) {
  1475. set_current_state(TASK_INTERRUPTIBLE);
  1476. if (!kthread_should_stop())
  1477. schedule();
  1478. __set_current_state(TASK_RUNNING);
  1479. }
  1480. } while (!kthread_should_stop());
  1481. return 0;
  1482. }
  1483. static int transaction_kthread(void *arg)
  1484. {
  1485. struct btrfs_root *root = arg;
  1486. struct btrfs_trans_handle *trans;
  1487. struct btrfs_transaction *cur;
  1488. u64 transid;
  1489. unsigned long now;
  1490. unsigned long delay;
  1491. bool cannot_commit;
  1492. do {
  1493. cannot_commit = false;
  1494. delay = HZ * 30;
  1495. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1496. spin_lock(&root->fs_info->trans_lock);
  1497. cur = root->fs_info->running_transaction;
  1498. if (!cur) {
  1499. spin_unlock(&root->fs_info->trans_lock);
  1500. goto sleep;
  1501. }
  1502. now = get_seconds();
  1503. if (!cur->blocked &&
  1504. (now < cur->start_time || now - cur->start_time < 30)) {
  1505. spin_unlock(&root->fs_info->trans_lock);
  1506. delay = HZ * 5;
  1507. goto sleep;
  1508. }
  1509. transid = cur->transid;
  1510. spin_unlock(&root->fs_info->trans_lock);
  1511. /* If the file system is aborted, this will always fail. */
  1512. trans = btrfs_attach_transaction(root);
  1513. if (IS_ERR(trans)) {
  1514. if (PTR_ERR(trans) != -ENOENT)
  1515. cannot_commit = true;
  1516. goto sleep;
  1517. }
  1518. if (transid == trans->transid) {
  1519. btrfs_commit_transaction(trans, root);
  1520. } else {
  1521. btrfs_end_transaction(trans, root);
  1522. }
  1523. sleep:
  1524. wake_up_process(root->fs_info->cleaner_kthread);
  1525. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1526. if (!try_to_freeze()) {
  1527. set_current_state(TASK_INTERRUPTIBLE);
  1528. if (!kthread_should_stop() &&
  1529. (!btrfs_transaction_blocked(root->fs_info) ||
  1530. cannot_commit))
  1531. schedule_timeout(delay);
  1532. __set_current_state(TASK_RUNNING);
  1533. }
  1534. } while (!kthread_should_stop());
  1535. return 0;
  1536. }
  1537. /*
  1538. * this will find the highest generation in the array of
  1539. * root backups. The index of the highest array is returned,
  1540. * or -1 if we can't find anything.
  1541. *
  1542. * We check to make sure the array is valid by comparing the
  1543. * generation of the latest root in the array with the generation
  1544. * in the super block. If they don't match we pitch it.
  1545. */
  1546. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1547. {
  1548. u64 cur;
  1549. int newest_index = -1;
  1550. struct btrfs_root_backup *root_backup;
  1551. int i;
  1552. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1553. root_backup = info->super_copy->super_roots + i;
  1554. cur = btrfs_backup_tree_root_gen(root_backup);
  1555. if (cur == newest_gen)
  1556. newest_index = i;
  1557. }
  1558. /* check to see if we actually wrapped around */
  1559. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1560. root_backup = info->super_copy->super_roots;
  1561. cur = btrfs_backup_tree_root_gen(root_backup);
  1562. if (cur == newest_gen)
  1563. newest_index = 0;
  1564. }
  1565. return newest_index;
  1566. }
  1567. /*
  1568. * find the oldest backup so we know where to store new entries
  1569. * in the backup array. This will set the backup_root_index
  1570. * field in the fs_info struct
  1571. */
  1572. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1573. u64 newest_gen)
  1574. {
  1575. int newest_index = -1;
  1576. newest_index = find_newest_super_backup(info, newest_gen);
  1577. /* if there was garbage in there, just move along */
  1578. if (newest_index == -1) {
  1579. info->backup_root_index = 0;
  1580. } else {
  1581. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1582. }
  1583. }
  1584. /*
  1585. * copy all the root pointers into the super backup array.
  1586. * this will bump the backup pointer by one when it is
  1587. * done
  1588. */
  1589. static void backup_super_roots(struct btrfs_fs_info *info)
  1590. {
  1591. int next_backup;
  1592. struct btrfs_root_backup *root_backup;
  1593. int last_backup;
  1594. next_backup = info->backup_root_index;
  1595. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1596. BTRFS_NUM_BACKUP_ROOTS;
  1597. /*
  1598. * just overwrite the last backup if we're at the same generation
  1599. * this happens only at umount
  1600. */
  1601. root_backup = info->super_for_commit->super_roots + last_backup;
  1602. if (btrfs_backup_tree_root_gen(root_backup) ==
  1603. btrfs_header_generation(info->tree_root->node))
  1604. next_backup = last_backup;
  1605. root_backup = info->super_for_commit->super_roots + next_backup;
  1606. /*
  1607. * make sure all of our padding and empty slots get zero filled
  1608. * regardless of which ones we use today
  1609. */
  1610. memset(root_backup, 0, sizeof(*root_backup));
  1611. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1612. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1613. btrfs_set_backup_tree_root_gen(root_backup,
  1614. btrfs_header_generation(info->tree_root->node));
  1615. btrfs_set_backup_tree_root_level(root_backup,
  1616. btrfs_header_level(info->tree_root->node));
  1617. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1618. btrfs_set_backup_chunk_root_gen(root_backup,
  1619. btrfs_header_generation(info->chunk_root->node));
  1620. btrfs_set_backup_chunk_root_level(root_backup,
  1621. btrfs_header_level(info->chunk_root->node));
  1622. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1623. btrfs_set_backup_extent_root_gen(root_backup,
  1624. btrfs_header_generation(info->extent_root->node));
  1625. btrfs_set_backup_extent_root_level(root_backup,
  1626. btrfs_header_level(info->extent_root->node));
  1627. /*
  1628. * we might commit during log recovery, which happens before we set
  1629. * the fs_root. Make sure it is valid before we fill it in.
  1630. */
  1631. if (info->fs_root && info->fs_root->node) {
  1632. btrfs_set_backup_fs_root(root_backup,
  1633. info->fs_root->node->start);
  1634. btrfs_set_backup_fs_root_gen(root_backup,
  1635. btrfs_header_generation(info->fs_root->node));
  1636. btrfs_set_backup_fs_root_level(root_backup,
  1637. btrfs_header_level(info->fs_root->node));
  1638. }
  1639. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1640. btrfs_set_backup_dev_root_gen(root_backup,
  1641. btrfs_header_generation(info->dev_root->node));
  1642. btrfs_set_backup_dev_root_level(root_backup,
  1643. btrfs_header_level(info->dev_root->node));
  1644. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1645. btrfs_set_backup_csum_root_gen(root_backup,
  1646. btrfs_header_generation(info->csum_root->node));
  1647. btrfs_set_backup_csum_root_level(root_backup,
  1648. btrfs_header_level(info->csum_root->node));
  1649. btrfs_set_backup_total_bytes(root_backup,
  1650. btrfs_super_total_bytes(info->super_copy));
  1651. btrfs_set_backup_bytes_used(root_backup,
  1652. btrfs_super_bytes_used(info->super_copy));
  1653. btrfs_set_backup_num_devices(root_backup,
  1654. btrfs_super_num_devices(info->super_copy));
  1655. /*
  1656. * if we don't copy this out to the super_copy, it won't get remembered
  1657. * for the next commit
  1658. */
  1659. memcpy(&info->super_copy->super_roots,
  1660. &info->super_for_commit->super_roots,
  1661. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1662. }
  1663. /*
  1664. * this copies info out of the root backup array and back into
  1665. * the in-memory super block. It is meant to help iterate through
  1666. * the array, so you send it the number of backups you've already
  1667. * tried and the last backup index you used.
  1668. *
  1669. * this returns -1 when it has tried all the backups
  1670. */
  1671. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1672. struct btrfs_super_block *super,
  1673. int *num_backups_tried, int *backup_index)
  1674. {
  1675. struct btrfs_root_backup *root_backup;
  1676. int newest = *backup_index;
  1677. if (*num_backups_tried == 0) {
  1678. u64 gen = btrfs_super_generation(super);
  1679. newest = find_newest_super_backup(info, gen);
  1680. if (newest == -1)
  1681. return -1;
  1682. *backup_index = newest;
  1683. *num_backups_tried = 1;
  1684. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1685. /* we've tried all the backups, all done */
  1686. return -1;
  1687. } else {
  1688. /* jump to the next oldest backup */
  1689. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1690. BTRFS_NUM_BACKUP_ROOTS;
  1691. *backup_index = newest;
  1692. *num_backups_tried += 1;
  1693. }
  1694. root_backup = super->super_roots + newest;
  1695. btrfs_set_super_generation(super,
  1696. btrfs_backup_tree_root_gen(root_backup));
  1697. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1698. btrfs_set_super_root_level(super,
  1699. btrfs_backup_tree_root_level(root_backup));
  1700. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1701. /*
  1702. * fixme: the total bytes and num_devices need to match or we should
  1703. * need a fsck
  1704. */
  1705. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1706. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1707. return 0;
  1708. }
  1709. /* helper to cleanup workers */
  1710. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1711. {
  1712. btrfs_stop_workers(&fs_info->generic_worker);
  1713. btrfs_stop_workers(&fs_info->fixup_workers);
  1714. btrfs_stop_workers(&fs_info->delalloc_workers);
  1715. btrfs_stop_workers(&fs_info->workers);
  1716. btrfs_stop_workers(&fs_info->endio_workers);
  1717. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1718. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1719. btrfs_stop_workers(&fs_info->rmw_workers);
  1720. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1721. btrfs_stop_workers(&fs_info->endio_write_workers);
  1722. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1723. btrfs_stop_workers(&fs_info->submit_workers);
  1724. btrfs_stop_workers(&fs_info->delayed_workers);
  1725. btrfs_stop_workers(&fs_info->caching_workers);
  1726. btrfs_stop_workers(&fs_info->readahead_workers);
  1727. btrfs_stop_workers(&fs_info->flush_workers);
  1728. }
  1729. /* helper to cleanup tree roots */
  1730. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1731. {
  1732. free_extent_buffer(info->tree_root->node);
  1733. free_extent_buffer(info->tree_root->commit_root);
  1734. free_extent_buffer(info->dev_root->node);
  1735. free_extent_buffer(info->dev_root->commit_root);
  1736. free_extent_buffer(info->extent_root->node);
  1737. free_extent_buffer(info->extent_root->commit_root);
  1738. free_extent_buffer(info->csum_root->node);
  1739. free_extent_buffer(info->csum_root->commit_root);
  1740. if (info->quota_root) {
  1741. free_extent_buffer(info->quota_root->node);
  1742. free_extent_buffer(info->quota_root->commit_root);
  1743. }
  1744. info->tree_root->node = NULL;
  1745. info->tree_root->commit_root = NULL;
  1746. info->dev_root->node = NULL;
  1747. info->dev_root->commit_root = NULL;
  1748. info->extent_root->node = NULL;
  1749. info->extent_root->commit_root = NULL;
  1750. info->csum_root->node = NULL;
  1751. info->csum_root->commit_root = NULL;
  1752. if (info->quota_root) {
  1753. info->quota_root->node = NULL;
  1754. info->quota_root->commit_root = NULL;
  1755. }
  1756. if (chunk_root) {
  1757. free_extent_buffer(info->chunk_root->node);
  1758. free_extent_buffer(info->chunk_root->commit_root);
  1759. info->chunk_root->node = NULL;
  1760. info->chunk_root->commit_root = NULL;
  1761. }
  1762. }
  1763. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1764. {
  1765. int ret;
  1766. struct btrfs_root *gang[8];
  1767. int i;
  1768. while (!list_empty(&fs_info->dead_roots)) {
  1769. gang[0] = list_entry(fs_info->dead_roots.next,
  1770. struct btrfs_root, root_list);
  1771. list_del(&gang[0]->root_list);
  1772. if (gang[0]->in_radix) {
  1773. btrfs_free_fs_root(fs_info, gang[0]);
  1774. } else {
  1775. free_extent_buffer(gang[0]->node);
  1776. free_extent_buffer(gang[0]->commit_root);
  1777. kfree(gang[0]);
  1778. }
  1779. }
  1780. while (1) {
  1781. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1782. (void **)gang, 0,
  1783. ARRAY_SIZE(gang));
  1784. if (!ret)
  1785. break;
  1786. for (i = 0; i < ret; i++)
  1787. btrfs_free_fs_root(fs_info, gang[i]);
  1788. }
  1789. }
  1790. int open_ctree(struct super_block *sb,
  1791. struct btrfs_fs_devices *fs_devices,
  1792. char *options)
  1793. {
  1794. u32 sectorsize;
  1795. u32 nodesize;
  1796. u32 leafsize;
  1797. u32 blocksize;
  1798. u32 stripesize;
  1799. u64 generation;
  1800. u64 features;
  1801. struct btrfs_key location;
  1802. struct buffer_head *bh;
  1803. struct btrfs_super_block *disk_super;
  1804. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1805. struct btrfs_root *tree_root;
  1806. struct btrfs_root *extent_root;
  1807. struct btrfs_root *csum_root;
  1808. struct btrfs_root *chunk_root;
  1809. struct btrfs_root *dev_root;
  1810. struct btrfs_root *quota_root;
  1811. struct btrfs_root *log_tree_root;
  1812. int ret;
  1813. int err = -EINVAL;
  1814. int num_backups_tried = 0;
  1815. int backup_index = 0;
  1816. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1817. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1818. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1819. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1820. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1821. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1822. if (!tree_root || !extent_root || !csum_root ||
  1823. !chunk_root || !dev_root || !quota_root) {
  1824. err = -ENOMEM;
  1825. goto fail;
  1826. }
  1827. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1828. if (ret) {
  1829. err = ret;
  1830. goto fail;
  1831. }
  1832. ret = setup_bdi(fs_info, &fs_info->bdi);
  1833. if (ret) {
  1834. err = ret;
  1835. goto fail_srcu;
  1836. }
  1837. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1838. if (ret) {
  1839. err = ret;
  1840. goto fail_bdi;
  1841. }
  1842. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1843. (1 + ilog2(nr_cpu_ids));
  1844. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1845. if (ret) {
  1846. err = ret;
  1847. goto fail_dirty_metadata_bytes;
  1848. }
  1849. fs_info->btree_inode = new_inode(sb);
  1850. if (!fs_info->btree_inode) {
  1851. err = -ENOMEM;
  1852. goto fail_delalloc_bytes;
  1853. }
  1854. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1855. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1856. INIT_LIST_HEAD(&fs_info->trans_list);
  1857. INIT_LIST_HEAD(&fs_info->dead_roots);
  1858. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1859. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1860. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1861. spin_lock_init(&fs_info->delalloc_lock);
  1862. spin_lock_init(&fs_info->trans_lock);
  1863. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1864. spin_lock_init(&fs_info->delayed_iput_lock);
  1865. spin_lock_init(&fs_info->defrag_inodes_lock);
  1866. spin_lock_init(&fs_info->free_chunk_lock);
  1867. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1868. spin_lock_init(&fs_info->super_lock);
  1869. rwlock_init(&fs_info->tree_mod_log_lock);
  1870. mutex_init(&fs_info->reloc_mutex);
  1871. seqlock_init(&fs_info->profiles_lock);
  1872. init_completion(&fs_info->kobj_unregister);
  1873. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1874. INIT_LIST_HEAD(&fs_info->space_info);
  1875. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1876. btrfs_mapping_init(&fs_info->mapping_tree);
  1877. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1878. BTRFS_BLOCK_RSV_GLOBAL);
  1879. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1880. BTRFS_BLOCK_RSV_DELALLOC);
  1881. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1882. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1883. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1884. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1885. BTRFS_BLOCK_RSV_DELOPS);
  1886. atomic_set(&fs_info->nr_async_submits, 0);
  1887. atomic_set(&fs_info->async_delalloc_pages, 0);
  1888. atomic_set(&fs_info->async_submit_draining, 0);
  1889. atomic_set(&fs_info->nr_async_bios, 0);
  1890. atomic_set(&fs_info->defrag_running, 0);
  1891. atomic_set(&fs_info->tree_mod_seq, 0);
  1892. fs_info->sb = sb;
  1893. fs_info->max_inline = 8192 * 1024;
  1894. fs_info->metadata_ratio = 0;
  1895. fs_info->defrag_inodes = RB_ROOT;
  1896. fs_info->trans_no_join = 0;
  1897. fs_info->free_chunk_space = 0;
  1898. fs_info->tree_mod_log = RB_ROOT;
  1899. /* readahead state */
  1900. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1901. spin_lock_init(&fs_info->reada_lock);
  1902. fs_info->thread_pool_size = min_t(unsigned long,
  1903. num_online_cpus() + 2, 8);
  1904. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1905. spin_lock_init(&fs_info->ordered_extent_lock);
  1906. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1907. GFP_NOFS);
  1908. if (!fs_info->delayed_root) {
  1909. err = -ENOMEM;
  1910. goto fail_iput;
  1911. }
  1912. btrfs_init_delayed_root(fs_info->delayed_root);
  1913. mutex_init(&fs_info->scrub_lock);
  1914. atomic_set(&fs_info->scrubs_running, 0);
  1915. atomic_set(&fs_info->scrub_pause_req, 0);
  1916. atomic_set(&fs_info->scrubs_paused, 0);
  1917. atomic_set(&fs_info->scrub_cancel_req, 0);
  1918. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1919. init_rwsem(&fs_info->scrub_super_lock);
  1920. fs_info->scrub_workers_refcnt = 0;
  1921. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1922. fs_info->check_integrity_print_mask = 0;
  1923. #endif
  1924. spin_lock_init(&fs_info->balance_lock);
  1925. mutex_init(&fs_info->balance_mutex);
  1926. atomic_set(&fs_info->balance_running, 0);
  1927. atomic_set(&fs_info->balance_pause_req, 0);
  1928. atomic_set(&fs_info->balance_cancel_req, 0);
  1929. fs_info->balance_ctl = NULL;
  1930. init_waitqueue_head(&fs_info->balance_wait_q);
  1931. sb->s_blocksize = 4096;
  1932. sb->s_blocksize_bits = blksize_bits(4096);
  1933. sb->s_bdi = &fs_info->bdi;
  1934. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1935. set_nlink(fs_info->btree_inode, 1);
  1936. /*
  1937. * we set the i_size on the btree inode to the max possible int.
  1938. * the real end of the address space is determined by all of
  1939. * the devices in the system
  1940. */
  1941. fs_info->btree_inode->i_size = OFFSET_MAX;
  1942. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1943. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1944. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1945. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1946. fs_info->btree_inode->i_mapping);
  1947. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1948. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1949. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1950. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1951. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1952. sizeof(struct btrfs_key));
  1953. set_bit(BTRFS_INODE_DUMMY,
  1954. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1955. insert_inode_hash(fs_info->btree_inode);
  1956. spin_lock_init(&fs_info->block_group_cache_lock);
  1957. fs_info->block_group_cache_tree = RB_ROOT;
  1958. fs_info->first_logical_byte = (u64)-1;
  1959. extent_io_tree_init(&fs_info->freed_extents[0],
  1960. fs_info->btree_inode->i_mapping);
  1961. extent_io_tree_init(&fs_info->freed_extents[1],
  1962. fs_info->btree_inode->i_mapping);
  1963. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1964. fs_info->do_barriers = 1;
  1965. mutex_init(&fs_info->ordered_operations_mutex);
  1966. mutex_init(&fs_info->tree_log_mutex);
  1967. mutex_init(&fs_info->chunk_mutex);
  1968. mutex_init(&fs_info->transaction_kthread_mutex);
  1969. mutex_init(&fs_info->cleaner_mutex);
  1970. mutex_init(&fs_info->volume_mutex);
  1971. init_rwsem(&fs_info->extent_commit_sem);
  1972. init_rwsem(&fs_info->cleanup_work_sem);
  1973. init_rwsem(&fs_info->subvol_sem);
  1974. fs_info->dev_replace.lock_owner = 0;
  1975. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1976. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1977. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1978. mutex_init(&fs_info->dev_replace.lock);
  1979. spin_lock_init(&fs_info->qgroup_lock);
  1980. mutex_init(&fs_info->qgroup_ioctl_lock);
  1981. fs_info->qgroup_tree = RB_ROOT;
  1982. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1983. fs_info->qgroup_seq = 1;
  1984. fs_info->quota_enabled = 0;
  1985. fs_info->pending_quota_state = 0;
  1986. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1987. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1988. init_waitqueue_head(&fs_info->transaction_throttle);
  1989. init_waitqueue_head(&fs_info->transaction_wait);
  1990. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1991. init_waitqueue_head(&fs_info->async_submit_wait);
  1992. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1993. if (ret) {
  1994. err = ret;
  1995. goto fail_alloc;
  1996. }
  1997. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1998. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1999. invalidate_bdev(fs_devices->latest_bdev);
  2000. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2001. if (!bh) {
  2002. err = -EINVAL;
  2003. goto fail_alloc;
  2004. }
  2005. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2006. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2007. sizeof(*fs_info->super_for_commit));
  2008. brelse(bh);
  2009. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2010. disk_super = fs_info->super_copy;
  2011. if (!btrfs_super_root(disk_super))
  2012. goto fail_alloc;
  2013. /* check FS state, whether FS is broken. */
  2014. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2015. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2016. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2017. if (ret) {
  2018. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2019. err = ret;
  2020. goto fail_alloc;
  2021. }
  2022. /*
  2023. * run through our array of backup supers and setup
  2024. * our ring pointer to the oldest one
  2025. */
  2026. generation = btrfs_super_generation(disk_super);
  2027. find_oldest_super_backup(fs_info, generation);
  2028. /*
  2029. * In the long term, we'll store the compression type in the super
  2030. * block, and it'll be used for per file compression control.
  2031. */
  2032. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2033. ret = btrfs_parse_options(tree_root, options);
  2034. if (ret) {
  2035. err = ret;
  2036. goto fail_alloc;
  2037. }
  2038. features = btrfs_super_incompat_flags(disk_super) &
  2039. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2040. if (features) {
  2041. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2042. "unsupported optional features (%Lx).\n",
  2043. (unsigned long long)features);
  2044. err = -EINVAL;
  2045. goto fail_alloc;
  2046. }
  2047. if (btrfs_super_leafsize(disk_super) !=
  2048. btrfs_super_nodesize(disk_super)) {
  2049. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2050. "blocksizes don't match. node %d leaf %d\n",
  2051. btrfs_super_nodesize(disk_super),
  2052. btrfs_super_leafsize(disk_super));
  2053. err = -EINVAL;
  2054. goto fail_alloc;
  2055. }
  2056. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2057. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2058. "blocksize (%d) was too large\n",
  2059. btrfs_super_leafsize(disk_super));
  2060. err = -EINVAL;
  2061. goto fail_alloc;
  2062. }
  2063. features = btrfs_super_incompat_flags(disk_super);
  2064. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2065. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2066. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2067. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2068. printk(KERN_ERR "btrfs: has skinny extents\n");
  2069. /*
  2070. * flag our filesystem as having big metadata blocks if
  2071. * they are bigger than the page size
  2072. */
  2073. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2074. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2075. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2076. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2077. }
  2078. nodesize = btrfs_super_nodesize(disk_super);
  2079. leafsize = btrfs_super_leafsize(disk_super);
  2080. sectorsize = btrfs_super_sectorsize(disk_super);
  2081. stripesize = btrfs_super_stripesize(disk_super);
  2082. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2083. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2084. /*
  2085. * mixed block groups end up with duplicate but slightly offset
  2086. * extent buffers for the same range. It leads to corruptions
  2087. */
  2088. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2089. (sectorsize != leafsize)) {
  2090. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2091. "are not allowed for mixed block groups on %s\n",
  2092. sb->s_id);
  2093. goto fail_alloc;
  2094. }
  2095. /*
  2096. * Needn't use the lock because there is no other task which will
  2097. * update the flag.
  2098. */
  2099. btrfs_set_super_incompat_flags(disk_super, features);
  2100. features = btrfs_super_compat_ro_flags(disk_super) &
  2101. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2102. if (!(sb->s_flags & MS_RDONLY) && features) {
  2103. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2104. "unsupported option features (%Lx).\n",
  2105. (unsigned long long)features);
  2106. err = -EINVAL;
  2107. goto fail_alloc;
  2108. }
  2109. btrfs_init_workers(&fs_info->generic_worker,
  2110. "genwork", 1, NULL);
  2111. btrfs_init_workers(&fs_info->workers, "worker",
  2112. fs_info->thread_pool_size,
  2113. &fs_info->generic_worker);
  2114. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2115. fs_info->thread_pool_size,
  2116. &fs_info->generic_worker);
  2117. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2118. fs_info->thread_pool_size,
  2119. &fs_info->generic_worker);
  2120. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2121. min_t(u64, fs_devices->num_devices,
  2122. fs_info->thread_pool_size),
  2123. &fs_info->generic_worker);
  2124. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2125. 2, &fs_info->generic_worker);
  2126. /* a higher idle thresh on the submit workers makes it much more
  2127. * likely that bios will be send down in a sane order to the
  2128. * devices
  2129. */
  2130. fs_info->submit_workers.idle_thresh = 64;
  2131. fs_info->workers.idle_thresh = 16;
  2132. fs_info->workers.ordered = 1;
  2133. fs_info->delalloc_workers.idle_thresh = 2;
  2134. fs_info->delalloc_workers.ordered = 1;
  2135. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2136. &fs_info->generic_worker);
  2137. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2138. fs_info->thread_pool_size,
  2139. &fs_info->generic_worker);
  2140. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2141. fs_info->thread_pool_size,
  2142. &fs_info->generic_worker);
  2143. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2144. "endio-meta-write", fs_info->thread_pool_size,
  2145. &fs_info->generic_worker);
  2146. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2147. "endio-raid56", fs_info->thread_pool_size,
  2148. &fs_info->generic_worker);
  2149. btrfs_init_workers(&fs_info->rmw_workers,
  2150. "rmw", fs_info->thread_pool_size,
  2151. &fs_info->generic_worker);
  2152. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2153. fs_info->thread_pool_size,
  2154. &fs_info->generic_worker);
  2155. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2156. 1, &fs_info->generic_worker);
  2157. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2158. fs_info->thread_pool_size,
  2159. &fs_info->generic_worker);
  2160. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2161. fs_info->thread_pool_size,
  2162. &fs_info->generic_worker);
  2163. /*
  2164. * endios are largely parallel and should have a very
  2165. * low idle thresh
  2166. */
  2167. fs_info->endio_workers.idle_thresh = 4;
  2168. fs_info->endio_meta_workers.idle_thresh = 4;
  2169. fs_info->endio_raid56_workers.idle_thresh = 4;
  2170. fs_info->rmw_workers.idle_thresh = 2;
  2171. fs_info->endio_write_workers.idle_thresh = 2;
  2172. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2173. fs_info->readahead_workers.idle_thresh = 2;
  2174. /*
  2175. * btrfs_start_workers can really only fail because of ENOMEM so just
  2176. * return -ENOMEM if any of these fail.
  2177. */
  2178. ret = btrfs_start_workers(&fs_info->workers);
  2179. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2180. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2181. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2182. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2183. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2184. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2185. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2186. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2187. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2188. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2189. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2190. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2191. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2192. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2193. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2194. if (ret) {
  2195. err = -ENOMEM;
  2196. goto fail_sb_buffer;
  2197. }
  2198. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2199. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2200. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2201. tree_root->nodesize = nodesize;
  2202. tree_root->leafsize = leafsize;
  2203. tree_root->sectorsize = sectorsize;
  2204. tree_root->stripesize = stripesize;
  2205. sb->s_blocksize = sectorsize;
  2206. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2207. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2208. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2209. goto fail_sb_buffer;
  2210. }
  2211. if (sectorsize != PAGE_SIZE) {
  2212. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2213. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2214. goto fail_sb_buffer;
  2215. }
  2216. mutex_lock(&fs_info->chunk_mutex);
  2217. ret = btrfs_read_sys_array(tree_root);
  2218. mutex_unlock(&fs_info->chunk_mutex);
  2219. if (ret) {
  2220. printk(KERN_WARNING "btrfs: failed to read the system "
  2221. "array on %s\n", sb->s_id);
  2222. goto fail_sb_buffer;
  2223. }
  2224. blocksize = btrfs_level_size(tree_root,
  2225. btrfs_super_chunk_root_level(disk_super));
  2226. generation = btrfs_super_chunk_root_generation(disk_super);
  2227. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2228. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2229. chunk_root->node = read_tree_block(chunk_root,
  2230. btrfs_super_chunk_root(disk_super),
  2231. blocksize, generation);
  2232. if (!chunk_root->node ||
  2233. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2234. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2235. sb->s_id);
  2236. goto fail_tree_roots;
  2237. }
  2238. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2239. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2240. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2241. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2242. BTRFS_UUID_SIZE);
  2243. ret = btrfs_read_chunk_tree(chunk_root);
  2244. if (ret) {
  2245. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2246. sb->s_id);
  2247. goto fail_tree_roots;
  2248. }
  2249. /*
  2250. * keep the device that is marked to be the target device for the
  2251. * dev_replace procedure
  2252. */
  2253. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2254. if (!fs_devices->latest_bdev) {
  2255. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2256. sb->s_id);
  2257. goto fail_tree_roots;
  2258. }
  2259. retry_root_backup:
  2260. blocksize = btrfs_level_size(tree_root,
  2261. btrfs_super_root_level(disk_super));
  2262. generation = btrfs_super_generation(disk_super);
  2263. tree_root->node = read_tree_block(tree_root,
  2264. btrfs_super_root(disk_super),
  2265. blocksize, generation);
  2266. if (!tree_root->node ||
  2267. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2268. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2269. sb->s_id);
  2270. goto recovery_tree_root;
  2271. }
  2272. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2273. tree_root->commit_root = btrfs_root_node(tree_root);
  2274. ret = find_and_setup_root(tree_root, fs_info,
  2275. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2276. if (ret)
  2277. goto recovery_tree_root;
  2278. extent_root->track_dirty = 1;
  2279. ret = find_and_setup_root(tree_root, fs_info,
  2280. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2281. if (ret)
  2282. goto recovery_tree_root;
  2283. dev_root->track_dirty = 1;
  2284. ret = find_and_setup_root(tree_root, fs_info,
  2285. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2286. if (ret)
  2287. goto recovery_tree_root;
  2288. csum_root->track_dirty = 1;
  2289. ret = find_and_setup_root(tree_root, fs_info,
  2290. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2291. if (ret) {
  2292. kfree(quota_root);
  2293. quota_root = fs_info->quota_root = NULL;
  2294. } else {
  2295. quota_root->track_dirty = 1;
  2296. fs_info->quota_enabled = 1;
  2297. fs_info->pending_quota_state = 1;
  2298. }
  2299. fs_info->generation = generation;
  2300. fs_info->last_trans_committed = generation;
  2301. ret = btrfs_recover_balance(fs_info);
  2302. if (ret) {
  2303. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2304. goto fail_block_groups;
  2305. }
  2306. ret = btrfs_init_dev_stats(fs_info);
  2307. if (ret) {
  2308. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2309. ret);
  2310. goto fail_block_groups;
  2311. }
  2312. ret = btrfs_init_dev_replace(fs_info);
  2313. if (ret) {
  2314. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2315. goto fail_block_groups;
  2316. }
  2317. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2318. ret = btrfs_init_space_info(fs_info);
  2319. if (ret) {
  2320. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2321. goto fail_block_groups;
  2322. }
  2323. ret = btrfs_read_block_groups(extent_root);
  2324. if (ret) {
  2325. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2326. goto fail_block_groups;
  2327. }
  2328. fs_info->num_tolerated_disk_barrier_failures =
  2329. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2330. if (fs_info->fs_devices->missing_devices >
  2331. fs_info->num_tolerated_disk_barrier_failures &&
  2332. !(sb->s_flags & MS_RDONLY)) {
  2333. printk(KERN_WARNING
  2334. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2335. goto fail_block_groups;
  2336. }
  2337. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2338. "btrfs-cleaner");
  2339. if (IS_ERR(fs_info->cleaner_kthread))
  2340. goto fail_block_groups;
  2341. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2342. tree_root,
  2343. "btrfs-transaction");
  2344. if (IS_ERR(fs_info->transaction_kthread))
  2345. goto fail_cleaner;
  2346. if (!btrfs_test_opt(tree_root, SSD) &&
  2347. !btrfs_test_opt(tree_root, NOSSD) &&
  2348. !fs_info->fs_devices->rotating) {
  2349. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2350. "mode\n");
  2351. btrfs_set_opt(fs_info->mount_opt, SSD);
  2352. }
  2353. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2354. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2355. ret = btrfsic_mount(tree_root, fs_devices,
  2356. btrfs_test_opt(tree_root,
  2357. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2358. 1 : 0,
  2359. fs_info->check_integrity_print_mask);
  2360. if (ret)
  2361. printk(KERN_WARNING "btrfs: failed to initialize"
  2362. " integrity check module %s\n", sb->s_id);
  2363. }
  2364. #endif
  2365. ret = btrfs_read_qgroup_config(fs_info);
  2366. if (ret)
  2367. goto fail_trans_kthread;
  2368. /* do not make disk changes in broken FS */
  2369. if (btrfs_super_log_root(disk_super) != 0) {
  2370. u64 bytenr = btrfs_super_log_root(disk_super);
  2371. if (fs_devices->rw_devices == 0) {
  2372. printk(KERN_WARNING "Btrfs log replay required "
  2373. "on RO media\n");
  2374. err = -EIO;
  2375. goto fail_qgroup;
  2376. }
  2377. blocksize =
  2378. btrfs_level_size(tree_root,
  2379. btrfs_super_log_root_level(disk_super));
  2380. log_tree_root = btrfs_alloc_root(fs_info);
  2381. if (!log_tree_root) {
  2382. err = -ENOMEM;
  2383. goto fail_qgroup;
  2384. }
  2385. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2386. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2387. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2388. blocksize,
  2389. generation + 1);
  2390. if (!log_tree_root->node ||
  2391. !extent_buffer_uptodate(log_tree_root->node)) {
  2392. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2393. free_extent_buffer(log_tree_root->node);
  2394. kfree(log_tree_root);
  2395. goto fail_trans_kthread;
  2396. }
  2397. /* returns with log_tree_root freed on success */
  2398. ret = btrfs_recover_log_trees(log_tree_root);
  2399. if (ret) {
  2400. btrfs_error(tree_root->fs_info, ret,
  2401. "Failed to recover log tree");
  2402. free_extent_buffer(log_tree_root->node);
  2403. kfree(log_tree_root);
  2404. goto fail_trans_kthread;
  2405. }
  2406. if (sb->s_flags & MS_RDONLY) {
  2407. ret = btrfs_commit_super(tree_root);
  2408. if (ret)
  2409. goto fail_trans_kthread;
  2410. }
  2411. }
  2412. ret = btrfs_find_orphan_roots(tree_root);
  2413. if (ret)
  2414. goto fail_trans_kthread;
  2415. if (!(sb->s_flags & MS_RDONLY)) {
  2416. ret = btrfs_cleanup_fs_roots(fs_info);
  2417. if (ret)
  2418. goto fail_trans_kthread;
  2419. ret = btrfs_recover_relocation(tree_root);
  2420. if (ret < 0) {
  2421. printk(KERN_WARNING
  2422. "btrfs: failed to recover relocation\n");
  2423. err = -EINVAL;
  2424. goto fail_qgroup;
  2425. }
  2426. }
  2427. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2428. location.type = BTRFS_ROOT_ITEM_KEY;
  2429. location.offset = (u64)-1;
  2430. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2431. if (!fs_info->fs_root)
  2432. goto fail_qgroup;
  2433. if (IS_ERR(fs_info->fs_root)) {
  2434. err = PTR_ERR(fs_info->fs_root);
  2435. goto fail_qgroup;
  2436. }
  2437. if (sb->s_flags & MS_RDONLY)
  2438. return 0;
  2439. down_read(&fs_info->cleanup_work_sem);
  2440. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2441. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2442. up_read(&fs_info->cleanup_work_sem);
  2443. close_ctree(tree_root);
  2444. return ret;
  2445. }
  2446. up_read(&fs_info->cleanup_work_sem);
  2447. ret = btrfs_resume_balance_async(fs_info);
  2448. if (ret) {
  2449. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2450. close_ctree(tree_root);
  2451. return ret;
  2452. }
  2453. ret = btrfs_resume_dev_replace_async(fs_info);
  2454. if (ret) {
  2455. pr_warn("btrfs: failed to resume dev_replace\n");
  2456. close_ctree(tree_root);
  2457. return ret;
  2458. }
  2459. return 0;
  2460. fail_qgroup:
  2461. btrfs_free_qgroup_config(fs_info);
  2462. fail_trans_kthread:
  2463. kthread_stop(fs_info->transaction_kthread);
  2464. del_fs_roots(fs_info);
  2465. fail_cleaner:
  2466. kthread_stop(fs_info->cleaner_kthread);
  2467. /*
  2468. * make sure we're done with the btree inode before we stop our
  2469. * kthreads
  2470. */
  2471. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2472. fail_block_groups:
  2473. btrfs_free_block_groups(fs_info);
  2474. fail_tree_roots:
  2475. free_root_pointers(fs_info, 1);
  2476. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2477. fail_sb_buffer:
  2478. btrfs_stop_all_workers(fs_info);
  2479. fail_alloc:
  2480. fail_iput:
  2481. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2482. iput(fs_info->btree_inode);
  2483. fail_delalloc_bytes:
  2484. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2485. fail_dirty_metadata_bytes:
  2486. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2487. fail_bdi:
  2488. bdi_destroy(&fs_info->bdi);
  2489. fail_srcu:
  2490. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2491. fail:
  2492. btrfs_free_stripe_hash_table(fs_info);
  2493. btrfs_close_devices(fs_info->fs_devices);
  2494. return err;
  2495. recovery_tree_root:
  2496. if (!btrfs_test_opt(tree_root, RECOVERY))
  2497. goto fail_tree_roots;
  2498. free_root_pointers(fs_info, 0);
  2499. /* don't use the log in recovery mode, it won't be valid */
  2500. btrfs_set_super_log_root(disk_super, 0);
  2501. /* we can't trust the free space cache either */
  2502. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2503. ret = next_root_backup(fs_info, fs_info->super_copy,
  2504. &num_backups_tried, &backup_index);
  2505. if (ret == -1)
  2506. goto fail_block_groups;
  2507. goto retry_root_backup;
  2508. }
  2509. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2510. {
  2511. if (uptodate) {
  2512. set_buffer_uptodate(bh);
  2513. } else {
  2514. struct btrfs_device *device = (struct btrfs_device *)
  2515. bh->b_private;
  2516. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2517. "I/O error on %s\n",
  2518. rcu_str_deref(device->name));
  2519. /* note, we dont' set_buffer_write_io_error because we have
  2520. * our own ways of dealing with the IO errors
  2521. */
  2522. clear_buffer_uptodate(bh);
  2523. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2524. }
  2525. unlock_buffer(bh);
  2526. put_bh(bh);
  2527. }
  2528. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2529. {
  2530. struct buffer_head *bh;
  2531. struct buffer_head *latest = NULL;
  2532. struct btrfs_super_block *super;
  2533. int i;
  2534. u64 transid = 0;
  2535. u64 bytenr;
  2536. /* we would like to check all the supers, but that would make
  2537. * a btrfs mount succeed after a mkfs from a different FS.
  2538. * So, we need to add a special mount option to scan for
  2539. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2540. */
  2541. for (i = 0; i < 1; i++) {
  2542. bytenr = btrfs_sb_offset(i);
  2543. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2544. break;
  2545. bh = __bread(bdev, bytenr / 4096, 4096);
  2546. if (!bh)
  2547. continue;
  2548. super = (struct btrfs_super_block *)bh->b_data;
  2549. if (btrfs_super_bytenr(super) != bytenr ||
  2550. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2551. brelse(bh);
  2552. continue;
  2553. }
  2554. if (!latest || btrfs_super_generation(super) > transid) {
  2555. brelse(latest);
  2556. latest = bh;
  2557. transid = btrfs_super_generation(super);
  2558. } else {
  2559. brelse(bh);
  2560. }
  2561. }
  2562. return latest;
  2563. }
  2564. /*
  2565. * this should be called twice, once with wait == 0 and
  2566. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2567. * we write are pinned.
  2568. *
  2569. * They are released when wait == 1 is done.
  2570. * max_mirrors must be the same for both runs, and it indicates how
  2571. * many supers on this one device should be written.
  2572. *
  2573. * max_mirrors == 0 means to write them all.
  2574. */
  2575. static int write_dev_supers(struct btrfs_device *device,
  2576. struct btrfs_super_block *sb,
  2577. int do_barriers, int wait, int max_mirrors)
  2578. {
  2579. struct buffer_head *bh;
  2580. int i;
  2581. int ret;
  2582. int errors = 0;
  2583. u32 crc;
  2584. u64 bytenr;
  2585. if (max_mirrors == 0)
  2586. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2587. for (i = 0; i < max_mirrors; i++) {
  2588. bytenr = btrfs_sb_offset(i);
  2589. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2590. break;
  2591. if (wait) {
  2592. bh = __find_get_block(device->bdev, bytenr / 4096,
  2593. BTRFS_SUPER_INFO_SIZE);
  2594. BUG_ON(!bh);
  2595. wait_on_buffer(bh);
  2596. if (!buffer_uptodate(bh))
  2597. errors++;
  2598. /* drop our reference */
  2599. brelse(bh);
  2600. /* drop the reference from the wait == 0 run */
  2601. brelse(bh);
  2602. continue;
  2603. } else {
  2604. btrfs_set_super_bytenr(sb, bytenr);
  2605. crc = ~(u32)0;
  2606. crc = btrfs_csum_data((char *)sb +
  2607. BTRFS_CSUM_SIZE, crc,
  2608. BTRFS_SUPER_INFO_SIZE -
  2609. BTRFS_CSUM_SIZE);
  2610. btrfs_csum_final(crc, sb->csum);
  2611. /*
  2612. * one reference for us, and we leave it for the
  2613. * caller
  2614. */
  2615. bh = __getblk(device->bdev, bytenr / 4096,
  2616. BTRFS_SUPER_INFO_SIZE);
  2617. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2618. /* one reference for submit_bh */
  2619. get_bh(bh);
  2620. set_buffer_uptodate(bh);
  2621. lock_buffer(bh);
  2622. bh->b_end_io = btrfs_end_buffer_write_sync;
  2623. bh->b_private = device;
  2624. }
  2625. /*
  2626. * we fua the first super. The others we allow
  2627. * to go down lazy.
  2628. */
  2629. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2630. if (ret)
  2631. errors++;
  2632. }
  2633. return errors < i ? 0 : -1;
  2634. }
  2635. /*
  2636. * endio for the write_dev_flush, this will wake anyone waiting
  2637. * for the barrier when it is done
  2638. */
  2639. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2640. {
  2641. if (err) {
  2642. if (err == -EOPNOTSUPP)
  2643. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2644. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2645. }
  2646. if (bio->bi_private)
  2647. complete(bio->bi_private);
  2648. bio_put(bio);
  2649. }
  2650. /*
  2651. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2652. * sent down. With wait == 1, it waits for the previous flush.
  2653. *
  2654. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2655. * capable
  2656. */
  2657. static int write_dev_flush(struct btrfs_device *device, int wait)
  2658. {
  2659. struct bio *bio;
  2660. int ret = 0;
  2661. if (device->nobarriers)
  2662. return 0;
  2663. if (wait) {
  2664. bio = device->flush_bio;
  2665. if (!bio)
  2666. return 0;
  2667. wait_for_completion(&device->flush_wait);
  2668. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2669. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2670. rcu_str_deref(device->name));
  2671. device->nobarriers = 1;
  2672. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2673. ret = -EIO;
  2674. btrfs_dev_stat_inc_and_print(device,
  2675. BTRFS_DEV_STAT_FLUSH_ERRS);
  2676. }
  2677. /* drop the reference from the wait == 0 run */
  2678. bio_put(bio);
  2679. device->flush_bio = NULL;
  2680. return ret;
  2681. }
  2682. /*
  2683. * one reference for us, and we leave it for the
  2684. * caller
  2685. */
  2686. device->flush_bio = NULL;
  2687. bio = bio_alloc(GFP_NOFS, 0);
  2688. if (!bio)
  2689. return -ENOMEM;
  2690. bio->bi_end_io = btrfs_end_empty_barrier;
  2691. bio->bi_bdev = device->bdev;
  2692. init_completion(&device->flush_wait);
  2693. bio->bi_private = &device->flush_wait;
  2694. device->flush_bio = bio;
  2695. bio_get(bio);
  2696. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2697. return 0;
  2698. }
  2699. /*
  2700. * send an empty flush down to each device in parallel,
  2701. * then wait for them
  2702. */
  2703. static int barrier_all_devices(struct btrfs_fs_info *info)
  2704. {
  2705. struct list_head *head;
  2706. struct btrfs_device *dev;
  2707. int errors_send = 0;
  2708. int errors_wait = 0;
  2709. int ret;
  2710. /* send down all the barriers */
  2711. head = &info->fs_devices->devices;
  2712. list_for_each_entry_rcu(dev, head, dev_list) {
  2713. if (!dev->bdev) {
  2714. errors_send++;
  2715. continue;
  2716. }
  2717. if (!dev->in_fs_metadata || !dev->writeable)
  2718. continue;
  2719. ret = write_dev_flush(dev, 0);
  2720. if (ret)
  2721. errors_send++;
  2722. }
  2723. /* wait for all the barriers */
  2724. list_for_each_entry_rcu(dev, head, dev_list) {
  2725. if (!dev->bdev) {
  2726. errors_wait++;
  2727. continue;
  2728. }
  2729. if (!dev->in_fs_metadata || !dev->writeable)
  2730. continue;
  2731. ret = write_dev_flush(dev, 1);
  2732. if (ret)
  2733. errors_wait++;
  2734. }
  2735. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2736. errors_wait > info->num_tolerated_disk_barrier_failures)
  2737. return -EIO;
  2738. return 0;
  2739. }
  2740. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2741. struct btrfs_fs_info *fs_info)
  2742. {
  2743. struct btrfs_ioctl_space_info space;
  2744. struct btrfs_space_info *sinfo;
  2745. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2746. BTRFS_BLOCK_GROUP_SYSTEM,
  2747. BTRFS_BLOCK_GROUP_METADATA,
  2748. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2749. int num_types = 4;
  2750. int i;
  2751. int c;
  2752. int num_tolerated_disk_barrier_failures =
  2753. (int)fs_info->fs_devices->num_devices;
  2754. for (i = 0; i < num_types; i++) {
  2755. struct btrfs_space_info *tmp;
  2756. sinfo = NULL;
  2757. rcu_read_lock();
  2758. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2759. if (tmp->flags == types[i]) {
  2760. sinfo = tmp;
  2761. break;
  2762. }
  2763. }
  2764. rcu_read_unlock();
  2765. if (!sinfo)
  2766. continue;
  2767. down_read(&sinfo->groups_sem);
  2768. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2769. if (!list_empty(&sinfo->block_groups[c])) {
  2770. u64 flags;
  2771. btrfs_get_block_group_info(
  2772. &sinfo->block_groups[c], &space);
  2773. if (space.total_bytes == 0 ||
  2774. space.used_bytes == 0)
  2775. continue;
  2776. flags = space.flags;
  2777. /*
  2778. * return
  2779. * 0: if dup, single or RAID0 is configured for
  2780. * any of metadata, system or data, else
  2781. * 1: if RAID5 is configured, or if RAID1 or
  2782. * RAID10 is configured and only two mirrors
  2783. * are used, else
  2784. * 2: if RAID6 is configured, else
  2785. * num_mirrors - 1: if RAID1 or RAID10 is
  2786. * configured and more than
  2787. * 2 mirrors are used.
  2788. */
  2789. if (num_tolerated_disk_barrier_failures > 0 &&
  2790. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2791. BTRFS_BLOCK_GROUP_RAID0)) ||
  2792. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2793. == 0)))
  2794. num_tolerated_disk_barrier_failures = 0;
  2795. else if (num_tolerated_disk_barrier_failures > 1) {
  2796. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2797. BTRFS_BLOCK_GROUP_RAID5 |
  2798. BTRFS_BLOCK_GROUP_RAID10)) {
  2799. num_tolerated_disk_barrier_failures = 1;
  2800. } else if (flags &
  2801. BTRFS_BLOCK_GROUP_RAID5) {
  2802. num_tolerated_disk_barrier_failures = 2;
  2803. }
  2804. }
  2805. }
  2806. }
  2807. up_read(&sinfo->groups_sem);
  2808. }
  2809. return num_tolerated_disk_barrier_failures;
  2810. }
  2811. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2812. {
  2813. struct list_head *head;
  2814. struct btrfs_device *dev;
  2815. struct btrfs_super_block *sb;
  2816. struct btrfs_dev_item *dev_item;
  2817. int ret;
  2818. int do_barriers;
  2819. int max_errors;
  2820. int total_errors = 0;
  2821. u64 flags;
  2822. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2823. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2824. backup_super_roots(root->fs_info);
  2825. sb = root->fs_info->super_for_commit;
  2826. dev_item = &sb->dev_item;
  2827. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2828. head = &root->fs_info->fs_devices->devices;
  2829. if (do_barriers) {
  2830. ret = barrier_all_devices(root->fs_info);
  2831. if (ret) {
  2832. mutex_unlock(
  2833. &root->fs_info->fs_devices->device_list_mutex);
  2834. btrfs_error(root->fs_info, ret,
  2835. "errors while submitting device barriers.");
  2836. return ret;
  2837. }
  2838. }
  2839. list_for_each_entry_rcu(dev, head, dev_list) {
  2840. if (!dev->bdev) {
  2841. total_errors++;
  2842. continue;
  2843. }
  2844. if (!dev->in_fs_metadata || !dev->writeable)
  2845. continue;
  2846. btrfs_set_stack_device_generation(dev_item, 0);
  2847. btrfs_set_stack_device_type(dev_item, dev->type);
  2848. btrfs_set_stack_device_id(dev_item, dev->devid);
  2849. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2850. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2851. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2852. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2853. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2854. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2855. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2856. flags = btrfs_super_flags(sb);
  2857. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2858. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2859. if (ret)
  2860. total_errors++;
  2861. }
  2862. if (total_errors > max_errors) {
  2863. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2864. total_errors);
  2865. /* This shouldn't happen. FUA is masked off if unsupported */
  2866. BUG();
  2867. }
  2868. total_errors = 0;
  2869. list_for_each_entry_rcu(dev, head, dev_list) {
  2870. if (!dev->bdev)
  2871. continue;
  2872. if (!dev->in_fs_metadata || !dev->writeable)
  2873. continue;
  2874. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2875. if (ret)
  2876. total_errors++;
  2877. }
  2878. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2879. if (total_errors > max_errors) {
  2880. btrfs_error(root->fs_info, -EIO,
  2881. "%d errors while writing supers", total_errors);
  2882. return -EIO;
  2883. }
  2884. return 0;
  2885. }
  2886. int write_ctree_super(struct btrfs_trans_handle *trans,
  2887. struct btrfs_root *root, int max_mirrors)
  2888. {
  2889. int ret;
  2890. ret = write_all_supers(root, max_mirrors);
  2891. return ret;
  2892. }
  2893. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2894. {
  2895. spin_lock(&fs_info->fs_roots_radix_lock);
  2896. radix_tree_delete(&fs_info->fs_roots_radix,
  2897. (unsigned long)root->root_key.objectid);
  2898. spin_unlock(&fs_info->fs_roots_radix_lock);
  2899. if (btrfs_root_refs(&root->root_item) == 0)
  2900. synchronize_srcu(&fs_info->subvol_srcu);
  2901. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2902. btrfs_free_log(NULL, root);
  2903. btrfs_free_log_root_tree(NULL, fs_info);
  2904. }
  2905. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2906. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2907. free_fs_root(root);
  2908. }
  2909. static void free_fs_root(struct btrfs_root *root)
  2910. {
  2911. iput(root->cache_inode);
  2912. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2913. if (root->anon_dev)
  2914. free_anon_bdev(root->anon_dev);
  2915. free_extent_buffer(root->node);
  2916. free_extent_buffer(root->commit_root);
  2917. kfree(root->free_ino_ctl);
  2918. kfree(root->free_ino_pinned);
  2919. kfree(root->name);
  2920. kfree(root);
  2921. }
  2922. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2923. {
  2924. u64 root_objectid = 0;
  2925. struct btrfs_root *gang[8];
  2926. int i;
  2927. int ret;
  2928. while (1) {
  2929. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2930. (void **)gang, root_objectid,
  2931. ARRAY_SIZE(gang));
  2932. if (!ret)
  2933. break;
  2934. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2935. for (i = 0; i < ret; i++) {
  2936. int err;
  2937. root_objectid = gang[i]->root_key.objectid;
  2938. err = btrfs_orphan_cleanup(gang[i]);
  2939. if (err)
  2940. return err;
  2941. }
  2942. root_objectid++;
  2943. }
  2944. return 0;
  2945. }
  2946. int btrfs_commit_super(struct btrfs_root *root)
  2947. {
  2948. struct btrfs_trans_handle *trans;
  2949. int ret;
  2950. mutex_lock(&root->fs_info->cleaner_mutex);
  2951. btrfs_run_delayed_iputs(root);
  2952. mutex_unlock(&root->fs_info->cleaner_mutex);
  2953. wake_up_process(root->fs_info->cleaner_kthread);
  2954. /* wait until ongoing cleanup work done */
  2955. down_write(&root->fs_info->cleanup_work_sem);
  2956. up_write(&root->fs_info->cleanup_work_sem);
  2957. trans = btrfs_join_transaction(root);
  2958. if (IS_ERR(trans))
  2959. return PTR_ERR(trans);
  2960. ret = btrfs_commit_transaction(trans, root);
  2961. if (ret)
  2962. return ret;
  2963. /* run commit again to drop the original snapshot */
  2964. trans = btrfs_join_transaction(root);
  2965. if (IS_ERR(trans))
  2966. return PTR_ERR(trans);
  2967. ret = btrfs_commit_transaction(trans, root);
  2968. if (ret)
  2969. return ret;
  2970. ret = btrfs_write_and_wait_transaction(NULL, root);
  2971. if (ret) {
  2972. btrfs_error(root->fs_info, ret,
  2973. "Failed to sync btree inode to disk.");
  2974. return ret;
  2975. }
  2976. ret = write_ctree_super(NULL, root, 0);
  2977. return ret;
  2978. }
  2979. int close_ctree(struct btrfs_root *root)
  2980. {
  2981. struct btrfs_fs_info *fs_info = root->fs_info;
  2982. int ret;
  2983. fs_info->closing = 1;
  2984. smp_mb();
  2985. /* pause restriper - we want to resume on mount */
  2986. btrfs_pause_balance(fs_info);
  2987. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2988. btrfs_scrub_cancel(fs_info);
  2989. /* wait for any defraggers to finish */
  2990. wait_event(fs_info->transaction_wait,
  2991. (atomic_read(&fs_info->defrag_running) == 0));
  2992. /* clear out the rbtree of defraggable inodes */
  2993. btrfs_cleanup_defrag_inodes(fs_info);
  2994. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2995. ret = btrfs_commit_super(root);
  2996. if (ret)
  2997. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2998. }
  2999. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3000. btrfs_error_commit_super(root);
  3001. btrfs_put_block_group_cache(fs_info);
  3002. kthread_stop(fs_info->transaction_kthread);
  3003. kthread_stop(fs_info->cleaner_kthread);
  3004. fs_info->closing = 2;
  3005. smp_mb();
  3006. btrfs_free_qgroup_config(root->fs_info);
  3007. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3008. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3009. percpu_counter_sum(&fs_info->delalloc_bytes));
  3010. }
  3011. free_root_pointers(fs_info, 1);
  3012. btrfs_free_block_groups(fs_info);
  3013. del_fs_roots(fs_info);
  3014. iput(fs_info->btree_inode);
  3015. btrfs_stop_all_workers(fs_info);
  3016. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3017. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3018. btrfsic_unmount(root, fs_info->fs_devices);
  3019. #endif
  3020. btrfs_close_devices(fs_info->fs_devices);
  3021. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3022. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3023. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3024. bdi_destroy(&fs_info->bdi);
  3025. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3026. btrfs_free_stripe_hash_table(fs_info);
  3027. return 0;
  3028. }
  3029. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3030. int atomic)
  3031. {
  3032. int ret;
  3033. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3034. ret = extent_buffer_uptodate(buf);
  3035. if (!ret)
  3036. return ret;
  3037. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3038. parent_transid, atomic);
  3039. if (ret == -EAGAIN)
  3040. return ret;
  3041. return !ret;
  3042. }
  3043. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3044. {
  3045. return set_extent_buffer_uptodate(buf);
  3046. }
  3047. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3048. {
  3049. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3050. u64 transid = btrfs_header_generation(buf);
  3051. int was_dirty;
  3052. btrfs_assert_tree_locked(buf);
  3053. if (transid != root->fs_info->generation)
  3054. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3055. "found %llu running %llu\n",
  3056. (unsigned long long)buf->start,
  3057. (unsigned long long)transid,
  3058. (unsigned long long)root->fs_info->generation);
  3059. was_dirty = set_extent_buffer_dirty(buf);
  3060. if (!was_dirty)
  3061. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3062. buf->len,
  3063. root->fs_info->dirty_metadata_batch);
  3064. }
  3065. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3066. int flush_delayed)
  3067. {
  3068. /*
  3069. * looks as though older kernels can get into trouble with
  3070. * this code, they end up stuck in balance_dirty_pages forever
  3071. */
  3072. int ret;
  3073. if (current->flags & PF_MEMALLOC)
  3074. return;
  3075. if (flush_delayed)
  3076. btrfs_balance_delayed_items(root);
  3077. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3078. BTRFS_DIRTY_METADATA_THRESH);
  3079. if (ret > 0) {
  3080. balance_dirty_pages_ratelimited(
  3081. root->fs_info->btree_inode->i_mapping);
  3082. }
  3083. return;
  3084. }
  3085. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3086. {
  3087. __btrfs_btree_balance_dirty(root, 1);
  3088. }
  3089. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3090. {
  3091. __btrfs_btree_balance_dirty(root, 0);
  3092. }
  3093. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3094. {
  3095. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3096. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3097. }
  3098. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3099. int read_only)
  3100. {
  3101. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3102. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3103. return -EINVAL;
  3104. }
  3105. if (read_only)
  3106. return 0;
  3107. return 0;
  3108. }
  3109. void btrfs_error_commit_super(struct btrfs_root *root)
  3110. {
  3111. mutex_lock(&root->fs_info->cleaner_mutex);
  3112. btrfs_run_delayed_iputs(root);
  3113. mutex_unlock(&root->fs_info->cleaner_mutex);
  3114. down_write(&root->fs_info->cleanup_work_sem);
  3115. up_write(&root->fs_info->cleanup_work_sem);
  3116. /* cleanup FS via transaction */
  3117. btrfs_cleanup_transaction(root);
  3118. }
  3119. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3120. struct btrfs_root *root)
  3121. {
  3122. struct btrfs_inode *btrfs_inode;
  3123. struct list_head splice;
  3124. INIT_LIST_HEAD(&splice);
  3125. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3126. spin_lock(&root->fs_info->ordered_extent_lock);
  3127. list_splice_init(&t->ordered_operations, &splice);
  3128. while (!list_empty(&splice)) {
  3129. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3130. ordered_operations);
  3131. list_del_init(&btrfs_inode->ordered_operations);
  3132. btrfs_invalidate_inodes(btrfs_inode->root);
  3133. }
  3134. spin_unlock(&root->fs_info->ordered_extent_lock);
  3135. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3136. }
  3137. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3138. {
  3139. struct btrfs_ordered_extent *ordered;
  3140. spin_lock(&root->fs_info->ordered_extent_lock);
  3141. /*
  3142. * This will just short circuit the ordered completion stuff which will
  3143. * make sure the ordered extent gets properly cleaned up.
  3144. */
  3145. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3146. root_extent_list)
  3147. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3148. spin_unlock(&root->fs_info->ordered_extent_lock);
  3149. }
  3150. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3151. struct btrfs_root *root)
  3152. {
  3153. struct rb_node *node;
  3154. struct btrfs_delayed_ref_root *delayed_refs;
  3155. struct btrfs_delayed_ref_node *ref;
  3156. int ret = 0;
  3157. delayed_refs = &trans->delayed_refs;
  3158. spin_lock(&delayed_refs->lock);
  3159. if (delayed_refs->num_entries == 0) {
  3160. spin_unlock(&delayed_refs->lock);
  3161. printk(KERN_INFO "delayed_refs has NO entry\n");
  3162. return ret;
  3163. }
  3164. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3165. struct btrfs_delayed_ref_head *head = NULL;
  3166. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3167. atomic_set(&ref->refs, 1);
  3168. if (btrfs_delayed_ref_is_head(ref)) {
  3169. head = btrfs_delayed_node_to_head(ref);
  3170. if (!mutex_trylock(&head->mutex)) {
  3171. atomic_inc(&ref->refs);
  3172. spin_unlock(&delayed_refs->lock);
  3173. /* Need to wait for the delayed ref to run */
  3174. mutex_lock(&head->mutex);
  3175. mutex_unlock(&head->mutex);
  3176. btrfs_put_delayed_ref(ref);
  3177. spin_lock(&delayed_refs->lock);
  3178. continue;
  3179. }
  3180. btrfs_free_delayed_extent_op(head->extent_op);
  3181. delayed_refs->num_heads--;
  3182. if (list_empty(&head->cluster))
  3183. delayed_refs->num_heads_ready--;
  3184. list_del_init(&head->cluster);
  3185. }
  3186. ref->in_tree = 0;
  3187. rb_erase(&ref->rb_node, &delayed_refs->root);
  3188. delayed_refs->num_entries--;
  3189. if (head)
  3190. mutex_unlock(&head->mutex);
  3191. spin_unlock(&delayed_refs->lock);
  3192. btrfs_put_delayed_ref(ref);
  3193. cond_resched();
  3194. spin_lock(&delayed_refs->lock);
  3195. }
  3196. spin_unlock(&delayed_refs->lock);
  3197. return ret;
  3198. }
  3199. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3200. {
  3201. struct btrfs_pending_snapshot *snapshot;
  3202. struct list_head splice;
  3203. INIT_LIST_HEAD(&splice);
  3204. list_splice_init(&t->pending_snapshots, &splice);
  3205. while (!list_empty(&splice)) {
  3206. snapshot = list_entry(splice.next,
  3207. struct btrfs_pending_snapshot,
  3208. list);
  3209. snapshot->error = -ECANCELED;
  3210. list_del_init(&snapshot->list);
  3211. }
  3212. }
  3213. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3214. {
  3215. struct btrfs_inode *btrfs_inode;
  3216. struct list_head splice;
  3217. INIT_LIST_HEAD(&splice);
  3218. spin_lock(&root->fs_info->delalloc_lock);
  3219. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3220. while (!list_empty(&splice)) {
  3221. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3222. delalloc_inodes);
  3223. list_del_init(&btrfs_inode->delalloc_inodes);
  3224. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3225. &btrfs_inode->runtime_flags);
  3226. btrfs_invalidate_inodes(btrfs_inode->root);
  3227. }
  3228. spin_unlock(&root->fs_info->delalloc_lock);
  3229. }
  3230. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3231. struct extent_io_tree *dirty_pages,
  3232. int mark)
  3233. {
  3234. int ret;
  3235. struct extent_buffer *eb;
  3236. u64 start = 0;
  3237. u64 end;
  3238. while (1) {
  3239. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3240. mark, NULL);
  3241. if (ret)
  3242. break;
  3243. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3244. while (start <= end) {
  3245. eb = btrfs_find_tree_block(root, start,
  3246. root->leafsize);
  3247. start += eb->len;
  3248. if (!eb)
  3249. continue;
  3250. wait_on_extent_buffer_writeback(eb);
  3251. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3252. &eb->bflags))
  3253. clear_extent_buffer_dirty(eb);
  3254. free_extent_buffer_stale(eb);
  3255. }
  3256. }
  3257. return ret;
  3258. }
  3259. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3260. struct extent_io_tree *pinned_extents)
  3261. {
  3262. struct extent_io_tree *unpin;
  3263. u64 start;
  3264. u64 end;
  3265. int ret;
  3266. bool loop = true;
  3267. unpin = pinned_extents;
  3268. again:
  3269. while (1) {
  3270. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3271. EXTENT_DIRTY, NULL);
  3272. if (ret)
  3273. break;
  3274. /* opt_discard */
  3275. if (btrfs_test_opt(root, DISCARD))
  3276. ret = btrfs_error_discard_extent(root, start,
  3277. end + 1 - start,
  3278. NULL);
  3279. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3280. btrfs_error_unpin_extent_range(root, start, end);
  3281. cond_resched();
  3282. }
  3283. if (loop) {
  3284. if (unpin == &root->fs_info->freed_extents[0])
  3285. unpin = &root->fs_info->freed_extents[1];
  3286. else
  3287. unpin = &root->fs_info->freed_extents[0];
  3288. loop = false;
  3289. goto again;
  3290. }
  3291. return 0;
  3292. }
  3293. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3294. struct btrfs_root *root)
  3295. {
  3296. btrfs_destroy_delayed_refs(cur_trans, root);
  3297. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3298. cur_trans->dirty_pages.dirty_bytes);
  3299. /* FIXME: cleanup wait for commit */
  3300. cur_trans->in_commit = 1;
  3301. cur_trans->blocked = 1;
  3302. wake_up(&root->fs_info->transaction_blocked_wait);
  3303. btrfs_evict_pending_snapshots(cur_trans);
  3304. cur_trans->blocked = 0;
  3305. wake_up(&root->fs_info->transaction_wait);
  3306. cur_trans->commit_done = 1;
  3307. wake_up(&cur_trans->commit_wait);
  3308. btrfs_destroy_delayed_inodes(root);
  3309. btrfs_assert_delayed_root_empty(root);
  3310. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3311. EXTENT_DIRTY);
  3312. btrfs_destroy_pinned_extent(root,
  3313. root->fs_info->pinned_extents);
  3314. /*
  3315. memset(cur_trans, 0, sizeof(*cur_trans));
  3316. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3317. */
  3318. }
  3319. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3320. {
  3321. struct btrfs_transaction *t;
  3322. LIST_HEAD(list);
  3323. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3324. spin_lock(&root->fs_info->trans_lock);
  3325. list_splice_init(&root->fs_info->trans_list, &list);
  3326. root->fs_info->trans_no_join = 1;
  3327. spin_unlock(&root->fs_info->trans_lock);
  3328. while (!list_empty(&list)) {
  3329. t = list_entry(list.next, struct btrfs_transaction, list);
  3330. btrfs_destroy_ordered_operations(t, root);
  3331. btrfs_destroy_ordered_extents(root);
  3332. btrfs_destroy_delayed_refs(t, root);
  3333. btrfs_block_rsv_release(root,
  3334. &root->fs_info->trans_block_rsv,
  3335. t->dirty_pages.dirty_bytes);
  3336. /* FIXME: cleanup wait for commit */
  3337. t->in_commit = 1;
  3338. t->blocked = 1;
  3339. smp_mb();
  3340. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3341. wake_up(&root->fs_info->transaction_blocked_wait);
  3342. btrfs_evict_pending_snapshots(t);
  3343. t->blocked = 0;
  3344. smp_mb();
  3345. if (waitqueue_active(&root->fs_info->transaction_wait))
  3346. wake_up(&root->fs_info->transaction_wait);
  3347. t->commit_done = 1;
  3348. smp_mb();
  3349. if (waitqueue_active(&t->commit_wait))
  3350. wake_up(&t->commit_wait);
  3351. btrfs_destroy_delayed_inodes(root);
  3352. btrfs_assert_delayed_root_empty(root);
  3353. btrfs_destroy_delalloc_inodes(root);
  3354. spin_lock(&root->fs_info->trans_lock);
  3355. root->fs_info->running_transaction = NULL;
  3356. spin_unlock(&root->fs_info->trans_lock);
  3357. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3358. EXTENT_DIRTY);
  3359. btrfs_destroy_pinned_extent(root,
  3360. root->fs_info->pinned_extents);
  3361. atomic_set(&t->use_count, 0);
  3362. list_del_init(&t->list);
  3363. memset(t, 0, sizeof(*t));
  3364. kmem_cache_free(btrfs_transaction_cachep, t);
  3365. }
  3366. spin_lock(&root->fs_info->trans_lock);
  3367. root->fs_info->trans_no_join = 0;
  3368. spin_unlock(&root->fs_info->trans_lock);
  3369. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3370. return 0;
  3371. }
  3372. static struct extent_io_ops btree_extent_io_ops = {
  3373. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3374. .readpage_io_failed_hook = btree_io_failed_hook,
  3375. .submit_bio_hook = btree_submit_bio_hook,
  3376. /* note we're sharing with inode.c for the merge bio hook */
  3377. .merge_bio_hook = btrfs_merge_bio_hook,
  3378. };