e1000_ethtool.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  69. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  70. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  71. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  72. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  73. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  74. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  75. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  76. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  77. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  78. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  79. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  80. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  81. };
  82. #define E1000_STATS_LEN \
  83. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  84. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  85. "Register test (offline)", "Eeprom test (offline)",
  86. "Interrupt test (offline)", "Loopback test (offline)",
  87. "Link test (on/offline)"
  88. };
  89. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  90. static int
  91. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  92. {
  93. struct e1000_adapter *adapter = netdev_priv(netdev);
  94. struct e1000_hw *hw = &adapter->hw;
  95. if(hw->media_type == e1000_media_type_copper) {
  96. ecmd->supported = (SUPPORTED_10baseT_Half |
  97. SUPPORTED_10baseT_Full |
  98. SUPPORTED_100baseT_Half |
  99. SUPPORTED_100baseT_Full |
  100. SUPPORTED_1000baseT_Full|
  101. SUPPORTED_Autoneg |
  102. SUPPORTED_TP);
  103. ecmd->advertising = ADVERTISED_TP;
  104. if(hw->autoneg == 1) {
  105. ecmd->advertising |= ADVERTISED_Autoneg;
  106. /* the e1000 autoneg seems to match ethtool nicely */
  107. ecmd->advertising |= hw->autoneg_advertised;
  108. }
  109. ecmd->port = PORT_TP;
  110. ecmd->phy_address = hw->phy_addr;
  111. if(hw->mac_type == e1000_82543)
  112. ecmd->transceiver = XCVR_EXTERNAL;
  113. else
  114. ecmd->transceiver = XCVR_INTERNAL;
  115. } else {
  116. ecmd->supported = (SUPPORTED_1000baseT_Full |
  117. SUPPORTED_FIBRE |
  118. SUPPORTED_Autoneg);
  119. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  120. ADVERTISED_FIBRE |
  121. ADVERTISED_Autoneg);
  122. ecmd->port = PORT_FIBRE;
  123. if(hw->mac_type >= e1000_82545)
  124. ecmd->transceiver = XCVR_INTERNAL;
  125. else
  126. ecmd->transceiver = XCVR_EXTERNAL;
  127. }
  128. if(netif_carrier_ok(adapter->netdev)) {
  129. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  130. &adapter->link_duplex);
  131. ecmd->speed = adapter->link_speed;
  132. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  133. * and HALF_DUPLEX != DUPLEX_HALF */
  134. if(adapter->link_duplex == FULL_DUPLEX)
  135. ecmd->duplex = DUPLEX_FULL;
  136. else
  137. ecmd->duplex = DUPLEX_HALF;
  138. } else {
  139. ecmd->speed = -1;
  140. ecmd->duplex = -1;
  141. }
  142. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  143. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  144. return 0;
  145. }
  146. static int
  147. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  148. {
  149. struct e1000_adapter *adapter = netdev_priv(netdev);
  150. struct e1000_hw *hw = &adapter->hw;
  151. if(ecmd->autoneg == AUTONEG_ENABLE) {
  152. hw->autoneg = 1;
  153. if(hw->media_type == e1000_media_type_fiber)
  154. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  155. ADVERTISED_FIBRE |
  156. ADVERTISED_Autoneg;
  157. else
  158. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  159. ADVERTISED_10baseT_Full |
  160. ADVERTISED_100baseT_Half |
  161. ADVERTISED_100baseT_Full |
  162. ADVERTISED_1000baseT_Full|
  163. ADVERTISED_Autoneg |
  164. ADVERTISED_TP;
  165. ecmd->advertising = hw->autoneg_advertised;
  166. } else
  167. if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  168. return -EINVAL;
  169. /* reset the link */
  170. if(netif_running(adapter->netdev)) {
  171. e1000_down(adapter);
  172. e1000_reset(adapter);
  173. e1000_up(adapter);
  174. } else
  175. e1000_reset(adapter);
  176. return 0;
  177. }
  178. static void
  179. e1000_get_pauseparam(struct net_device *netdev,
  180. struct ethtool_pauseparam *pause)
  181. {
  182. struct e1000_adapter *adapter = netdev_priv(netdev);
  183. struct e1000_hw *hw = &adapter->hw;
  184. pause->autoneg =
  185. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  186. if(hw->fc == e1000_fc_rx_pause)
  187. pause->rx_pause = 1;
  188. else if(hw->fc == e1000_fc_tx_pause)
  189. pause->tx_pause = 1;
  190. else if(hw->fc == e1000_fc_full) {
  191. pause->rx_pause = 1;
  192. pause->tx_pause = 1;
  193. }
  194. }
  195. static int
  196. e1000_set_pauseparam(struct net_device *netdev,
  197. struct ethtool_pauseparam *pause)
  198. {
  199. struct e1000_adapter *adapter = netdev_priv(netdev);
  200. struct e1000_hw *hw = &adapter->hw;
  201. adapter->fc_autoneg = pause->autoneg;
  202. if(pause->rx_pause && pause->tx_pause)
  203. hw->fc = e1000_fc_full;
  204. else if(pause->rx_pause && !pause->tx_pause)
  205. hw->fc = e1000_fc_rx_pause;
  206. else if(!pause->rx_pause && pause->tx_pause)
  207. hw->fc = e1000_fc_tx_pause;
  208. else if(!pause->rx_pause && !pause->tx_pause)
  209. hw->fc = e1000_fc_none;
  210. hw->original_fc = hw->fc;
  211. if(adapter->fc_autoneg == AUTONEG_ENABLE) {
  212. if(netif_running(adapter->netdev)) {
  213. e1000_down(adapter);
  214. e1000_up(adapter);
  215. } else
  216. e1000_reset(adapter);
  217. }
  218. else
  219. return ((hw->media_type == e1000_media_type_fiber) ?
  220. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  221. return 0;
  222. }
  223. static uint32_t
  224. e1000_get_rx_csum(struct net_device *netdev)
  225. {
  226. struct e1000_adapter *adapter = netdev_priv(netdev);
  227. return adapter->rx_csum;
  228. }
  229. static int
  230. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  231. {
  232. struct e1000_adapter *adapter = netdev_priv(netdev);
  233. adapter->rx_csum = data;
  234. if(netif_running(netdev)) {
  235. e1000_down(adapter);
  236. e1000_up(adapter);
  237. } else
  238. e1000_reset(adapter);
  239. return 0;
  240. }
  241. static uint32_t
  242. e1000_get_tx_csum(struct net_device *netdev)
  243. {
  244. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  245. }
  246. static int
  247. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  248. {
  249. struct e1000_adapter *adapter = netdev_priv(netdev);
  250. if(adapter->hw.mac_type < e1000_82543) {
  251. if (!data)
  252. return -EINVAL;
  253. return 0;
  254. }
  255. if (data)
  256. netdev->features |= NETIF_F_HW_CSUM;
  257. else
  258. netdev->features &= ~NETIF_F_HW_CSUM;
  259. return 0;
  260. }
  261. #ifdef NETIF_F_TSO
  262. static int
  263. e1000_set_tso(struct net_device *netdev, uint32_t data)
  264. {
  265. struct e1000_adapter *adapter = netdev_priv(netdev);
  266. if((adapter->hw.mac_type < e1000_82544) ||
  267. (adapter->hw.mac_type == e1000_82547))
  268. return data ? -EINVAL : 0;
  269. if (data)
  270. netdev->features |= NETIF_F_TSO;
  271. else
  272. netdev->features &= ~NETIF_F_TSO;
  273. return 0;
  274. }
  275. #endif /* NETIF_F_TSO */
  276. static uint32_t
  277. e1000_get_msglevel(struct net_device *netdev)
  278. {
  279. struct e1000_adapter *adapter = netdev_priv(netdev);
  280. return adapter->msg_enable;
  281. }
  282. static void
  283. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  284. {
  285. struct e1000_adapter *adapter = netdev_priv(netdev);
  286. adapter->msg_enable = data;
  287. }
  288. static int
  289. e1000_get_regs_len(struct net_device *netdev)
  290. {
  291. #define E1000_REGS_LEN 32
  292. return E1000_REGS_LEN * sizeof(uint32_t);
  293. }
  294. static void
  295. e1000_get_regs(struct net_device *netdev,
  296. struct ethtool_regs *regs, void *p)
  297. {
  298. struct e1000_adapter *adapter = netdev_priv(netdev);
  299. struct e1000_hw *hw = &adapter->hw;
  300. uint32_t *regs_buff = p;
  301. uint16_t phy_data;
  302. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  303. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  304. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  305. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  306. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  307. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  308. regs_buff[4] = E1000_READ_REG(hw, RDH);
  309. regs_buff[5] = E1000_READ_REG(hw, RDT);
  310. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  311. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  312. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  313. regs_buff[9] = E1000_READ_REG(hw, TDH);
  314. regs_buff[10] = E1000_READ_REG(hw, TDT);
  315. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  316. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  317. if(hw->phy_type == e1000_phy_igp) {
  318. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  319. IGP01E1000_PHY_AGC_A);
  320. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  321. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  322. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  323. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  324. IGP01E1000_PHY_AGC_B);
  325. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  326. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  327. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  328. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  329. IGP01E1000_PHY_AGC_C);
  330. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  331. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  332. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  333. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  334. IGP01E1000_PHY_AGC_D);
  335. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  336. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  337. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  338. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  339. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  340. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  341. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  342. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  343. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  344. IGP01E1000_PHY_PCS_INIT_REG);
  345. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  346. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  347. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  348. regs_buff[20] = 0; /* polarity correction enabled (always) */
  349. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  350. regs_buff[23] = regs_buff[18]; /* mdix mode */
  351. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  352. } else {
  353. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  354. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  355. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  356. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  357. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  358. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  359. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  360. regs_buff[18] = regs_buff[13]; /* cable polarity */
  361. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  362. regs_buff[20] = regs_buff[17]; /* polarity correction */
  363. /* phy receive errors */
  364. regs_buff[22] = adapter->phy_stats.receive_errors;
  365. regs_buff[23] = regs_buff[13]; /* mdix mode */
  366. }
  367. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  368. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  369. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  370. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  371. if(hw->mac_type >= e1000_82540 &&
  372. hw->media_type == e1000_media_type_copper) {
  373. regs_buff[26] = E1000_READ_REG(hw, MANC);
  374. }
  375. }
  376. static int
  377. e1000_get_eeprom_len(struct net_device *netdev)
  378. {
  379. struct e1000_adapter *adapter = netdev_priv(netdev);
  380. return adapter->hw.eeprom.word_size * 2;
  381. }
  382. static int
  383. e1000_get_eeprom(struct net_device *netdev,
  384. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  385. {
  386. struct e1000_adapter *adapter = netdev_priv(netdev);
  387. struct e1000_hw *hw = &adapter->hw;
  388. uint16_t *eeprom_buff;
  389. int first_word, last_word;
  390. int ret_val = 0;
  391. uint16_t i;
  392. if(eeprom->len == 0)
  393. return -EINVAL;
  394. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  395. first_word = eeprom->offset >> 1;
  396. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  397. eeprom_buff = kmalloc(sizeof(uint16_t) *
  398. (last_word - first_word + 1), GFP_KERNEL);
  399. if(!eeprom_buff)
  400. return -ENOMEM;
  401. if(hw->eeprom.type == e1000_eeprom_spi)
  402. ret_val = e1000_read_eeprom(hw, first_word,
  403. last_word - first_word + 1,
  404. eeprom_buff);
  405. else {
  406. for (i = 0; i < last_word - first_word + 1; i++)
  407. if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  408. &eeprom_buff[i])))
  409. break;
  410. }
  411. /* Device's eeprom is always little-endian, word addressable */
  412. for (i = 0; i < last_word - first_word + 1; i++)
  413. le16_to_cpus(&eeprom_buff[i]);
  414. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  415. eeprom->len);
  416. kfree(eeprom_buff);
  417. return ret_val;
  418. }
  419. static int
  420. e1000_set_eeprom(struct net_device *netdev,
  421. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  422. {
  423. struct e1000_adapter *adapter = netdev_priv(netdev);
  424. struct e1000_hw *hw = &adapter->hw;
  425. uint16_t *eeprom_buff;
  426. void *ptr;
  427. int max_len, first_word, last_word, ret_val = 0;
  428. uint16_t i;
  429. if(eeprom->len == 0)
  430. return -EOPNOTSUPP;
  431. if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  432. return -EFAULT;
  433. max_len = hw->eeprom.word_size * 2;
  434. first_word = eeprom->offset >> 1;
  435. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  436. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  437. if(!eeprom_buff)
  438. return -ENOMEM;
  439. ptr = (void *)eeprom_buff;
  440. if(eeprom->offset & 1) {
  441. /* need read/modify/write of first changed EEPROM word */
  442. /* only the second byte of the word is being modified */
  443. ret_val = e1000_read_eeprom(hw, first_word, 1,
  444. &eeprom_buff[0]);
  445. ptr++;
  446. }
  447. if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  448. /* need read/modify/write of last changed EEPROM word */
  449. /* only the first byte of the word is being modified */
  450. ret_val = e1000_read_eeprom(hw, last_word, 1,
  451. &eeprom_buff[last_word - first_word]);
  452. }
  453. /* Device's eeprom is always little-endian, word addressable */
  454. for (i = 0; i < last_word - first_word + 1; i++)
  455. le16_to_cpus(&eeprom_buff[i]);
  456. memcpy(ptr, bytes, eeprom->len);
  457. for (i = 0; i < last_word - first_word + 1; i++)
  458. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  459. ret_val = e1000_write_eeprom(hw, first_word,
  460. last_word - first_word + 1, eeprom_buff);
  461. /* Update the checksum over the first part of the EEPROM if needed
  462. * and flush shadow RAM for 82573 conrollers */
  463. if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  464. (hw->mac_type == e1000_82573)))
  465. e1000_update_eeprom_checksum(hw);
  466. kfree(eeprom_buff);
  467. return ret_val;
  468. }
  469. static void
  470. e1000_get_drvinfo(struct net_device *netdev,
  471. struct ethtool_drvinfo *drvinfo)
  472. {
  473. struct e1000_adapter *adapter = netdev_priv(netdev);
  474. char firmware_version[32];
  475. uint16_t eeprom_data;
  476. strncpy(drvinfo->driver, e1000_driver_name, 32);
  477. strncpy(drvinfo->version, e1000_driver_version, 32);
  478. /* EEPROM image version # is reported as firware version # for
  479. * 8257{1|2|3} controllers */
  480. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  481. switch (adapter->hw.mac_type) {
  482. case e1000_82571:
  483. case e1000_82572:
  484. case e1000_82573:
  485. sprintf(firmware_version, "%d.%d-%d",
  486. (eeprom_data & 0xF000) >> 12,
  487. (eeprom_data & 0x0FF0) >> 4,
  488. eeprom_data & 0x000F);
  489. break;
  490. default:
  491. sprintf(firmware_version, "n/a");
  492. }
  493. strncpy(drvinfo->fw_version, firmware_version, 32);
  494. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  495. drvinfo->n_stats = E1000_STATS_LEN;
  496. drvinfo->testinfo_len = E1000_TEST_LEN;
  497. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  498. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  499. }
  500. static void
  501. e1000_get_ringparam(struct net_device *netdev,
  502. struct ethtool_ringparam *ring)
  503. {
  504. struct e1000_adapter *adapter = netdev_priv(netdev);
  505. e1000_mac_type mac_type = adapter->hw.mac_type;
  506. struct e1000_tx_ring *txdr = adapter->tx_ring;
  507. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  508. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  509. E1000_MAX_82544_RXD;
  510. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  511. E1000_MAX_82544_TXD;
  512. ring->rx_mini_max_pending = 0;
  513. ring->rx_jumbo_max_pending = 0;
  514. ring->rx_pending = rxdr->count;
  515. ring->tx_pending = txdr->count;
  516. ring->rx_mini_pending = 0;
  517. ring->rx_jumbo_pending = 0;
  518. }
  519. static int
  520. e1000_set_ringparam(struct net_device *netdev,
  521. struct ethtool_ringparam *ring)
  522. {
  523. struct e1000_adapter *adapter = netdev_priv(netdev);
  524. e1000_mac_type mac_type = adapter->hw.mac_type;
  525. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  526. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  527. int i, err, tx_ring_size, rx_ring_size;
  528. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
  529. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
  530. if (netif_running(adapter->netdev))
  531. e1000_down(adapter);
  532. tx_old = adapter->tx_ring;
  533. rx_old = adapter->rx_ring;
  534. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  535. if (!adapter->tx_ring) {
  536. err = -ENOMEM;
  537. goto err_setup_rx;
  538. }
  539. memset(adapter->tx_ring, 0, tx_ring_size);
  540. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  541. if (!adapter->rx_ring) {
  542. kfree(adapter->tx_ring);
  543. err = -ENOMEM;
  544. goto err_setup_rx;
  545. }
  546. memset(adapter->rx_ring, 0, rx_ring_size);
  547. txdr = adapter->tx_ring;
  548. rxdr = adapter->rx_ring;
  549. if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  550. return -EINVAL;
  551. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  552. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  553. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  554. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  555. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  556. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  557. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  558. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  559. for (i = 0; i < adapter->num_queues; i++) {
  560. txdr[i].count = txdr->count;
  561. rxdr[i].count = rxdr->count;
  562. }
  563. if(netif_running(adapter->netdev)) {
  564. /* Try to get new resources before deleting old */
  565. if ((err = e1000_setup_all_rx_resources(adapter)))
  566. goto err_setup_rx;
  567. if ((err = e1000_setup_all_tx_resources(adapter)))
  568. goto err_setup_tx;
  569. /* save the new, restore the old in order to free it,
  570. * then restore the new back again */
  571. rx_new = adapter->rx_ring;
  572. tx_new = adapter->tx_ring;
  573. adapter->rx_ring = rx_old;
  574. adapter->tx_ring = tx_old;
  575. e1000_free_all_rx_resources(adapter);
  576. e1000_free_all_tx_resources(adapter);
  577. kfree(tx_old);
  578. kfree(rx_old);
  579. adapter->rx_ring = rx_new;
  580. adapter->tx_ring = tx_new;
  581. if((err = e1000_up(adapter)))
  582. return err;
  583. }
  584. return 0;
  585. err_setup_tx:
  586. e1000_free_all_rx_resources(adapter);
  587. err_setup_rx:
  588. adapter->rx_ring = rx_old;
  589. adapter->tx_ring = tx_old;
  590. e1000_up(adapter);
  591. return err;
  592. }
  593. #define REG_PATTERN_TEST(R, M, W) \
  594. { \
  595. uint32_t pat, value; \
  596. uint32_t test[] = \
  597. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  598. for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  599. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  600. value = E1000_READ_REG(&adapter->hw, R); \
  601. if(value != (test[pat] & W & M)) { \
  602. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  603. "0x%08X expected 0x%08X\n", \
  604. E1000_##R, value, (test[pat] & W & M)); \
  605. *data = (adapter->hw.mac_type < e1000_82543) ? \
  606. E1000_82542_##R : E1000_##R; \
  607. return 1; \
  608. } \
  609. } \
  610. }
  611. #define REG_SET_AND_CHECK(R, M, W) \
  612. { \
  613. uint32_t value; \
  614. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  615. value = E1000_READ_REG(&adapter->hw, R); \
  616. if((W & M) != (value & M)) { \
  617. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  618. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  619. *data = (adapter->hw.mac_type < e1000_82543) ? \
  620. E1000_82542_##R : E1000_##R; \
  621. return 1; \
  622. } \
  623. }
  624. static int
  625. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  626. {
  627. uint32_t value, before, after;
  628. uint32_t i, toggle;
  629. /* The status register is Read Only, so a write should fail.
  630. * Some bits that get toggled are ignored.
  631. */
  632. switch (adapter->hw.mac_type) {
  633. /* there are several bits on newer hardware that are r/w */
  634. case e1000_82571:
  635. case e1000_82572:
  636. toggle = 0x7FFFF3FF;
  637. break;
  638. case e1000_82573:
  639. toggle = 0x7FFFF033;
  640. break;
  641. default:
  642. toggle = 0xFFFFF833;
  643. break;
  644. }
  645. before = E1000_READ_REG(&adapter->hw, STATUS);
  646. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  647. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  648. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  649. if(value != after) {
  650. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  651. "0x%08X expected: 0x%08X\n", after, value);
  652. *data = 1;
  653. return 1;
  654. }
  655. /* restore previous status */
  656. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  657. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  658. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  659. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  660. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  661. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  662. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  663. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  664. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  665. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  666. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  667. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  668. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  669. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  670. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  671. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  672. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  673. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  674. if(adapter->hw.mac_type >= e1000_82543) {
  675. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  676. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  677. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  678. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  679. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  680. for(i = 0; i < E1000_RAR_ENTRIES; i++) {
  681. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  682. 0xFFFFFFFF);
  683. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  684. 0xFFFFFFFF);
  685. }
  686. } else {
  687. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  688. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  689. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  690. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  691. }
  692. for(i = 0; i < E1000_MC_TBL_SIZE; i++)
  693. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  694. *data = 0;
  695. return 0;
  696. }
  697. static int
  698. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  699. {
  700. uint16_t temp;
  701. uint16_t checksum = 0;
  702. uint16_t i;
  703. *data = 0;
  704. /* Read and add up the contents of the EEPROM */
  705. for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  706. if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  707. *data = 1;
  708. break;
  709. }
  710. checksum += temp;
  711. }
  712. /* If Checksum is not Correct return error else test passed */
  713. if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  714. *data = 2;
  715. return *data;
  716. }
  717. static irqreturn_t
  718. e1000_test_intr(int irq,
  719. void *data,
  720. struct pt_regs *regs)
  721. {
  722. struct net_device *netdev = (struct net_device *) data;
  723. struct e1000_adapter *adapter = netdev_priv(netdev);
  724. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  725. return IRQ_HANDLED;
  726. }
  727. static int
  728. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  729. {
  730. struct net_device *netdev = adapter->netdev;
  731. uint32_t mask, i=0, shared_int = TRUE;
  732. uint32_t irq = adapter->pdev->irq;
  733. *data = 0;
  734. /* Hook up test interrupt handler just for this test */
  735. if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  736. shared_int = FALSE;
  737. } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  738. netdev->name, netdev)){
  739. *data = 1;
  740. return -1;
  741. }
  742. /* Disable all the interrupts */
  743. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  744. msec_delay(10);
  745. /* Test each interrupt */
  746. for(; i < 10; i++) {
  747. /* Interrupt to test */
  748. mask = 1 << i;
  749. if(!shared_int) {
  750. /* Disable the interrupt to be reported in
  751. * the cause register and then force the same
  752. * interrupt and see if one gets posted. If
  753. * an interrupt was posted to the bus, the
  754. * test failed.
  755. */
  756. adapter->test_icr = 0;
  757. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  758. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  759. msec_delay(10);
  760. if(adapter->test_icr & mask) {
  761. *data = 3;
  762. break;
  763. }
  764. }
  765. /* Enable the interrupt to be reported in
  766. * the cause register and then force the same
  767. * interrupt and see if one gets posted. If
  768. * an interrupt was not posted to the bus, the
  769. * test failed.
  770. */
  771. adapter->test_icr = 0;
  772. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  773. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  774. msec_delay(10);
  775. if(!(adapter->test_icr & mask)) {
  776. *data = 4;
  777. break;
  778. }
  779. if(!shared_int) {
  780. /* Disable the other interrupts to be reported in
  781. * the cause register and then force the other
  782. * interrupts and see if any get posted. If
  783. * an interrupt was posted to the bus, the
  784. * test failed.
  785. */
  786. adapter->test_icr = 0;
  787. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  788. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  789. msec_delay(10);
  790. if(adapter->test_icr) {
  791. *data = 5;
  792. break;
  793. }
  794. }
  795. }
  796. /* Disable all the interrupts */
  797. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  798. msec_delay(10);
  799. /* Unhook test interrupt handler */
  800. free_irq(irq, netdev);
  801. return *data;
  802. }
  803. static void
  804. e1000_free_desc_rings(struct e1000_adapter *adapter)
  805. {
  806. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  807. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  808. struct pci_dev *pdev = adapter->pdev;
  809. int i;
  810. if(txdr->desc && txdr->buffer_info) {
  811. for(i = 0; i < txdr->count; i++) {
  812. if(txdr->buffer_info[i].dma)
  813. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  814. txdr->buffer_info[i].length,
  815. PCI_DMA_TODEVICE);
  816. if(txdr->buffer_info[i].skb)
  817. dev_kfree_skb(txdr->buffer_info[i].skb);
  818. }
  819. }
  820. if(rxdr->desc && rxdr->buffer_info) {
  821. for(i = 0; i < rxdr->count; i++) {
  822. if(rxdr->buffer_info[i].dma)
  823. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  824. rxdr->buffer_info[i].length,
  825. PCI_DMA_FROMDEVICE);
  826. if(rxdr->buffer_info[i].skb)
  827. dev_kfree_skb(rxdr->buffer_info[i].skb);
  828. }
  829. }
  830. if(txdr->desc) {
  831. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  832. txdr->desc = NULL;
  833. }
  834. if(rxdr->desc) {
  835. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  836. rxdr->desc = NULL;
  837. }
  838. kfree(txdr->buffer_info);
  839. txdr->buffer_info = NULL;
  840. kfree(rxdr->buffer_info);
  841. rxdr->buffer_info = NULL;
  842. return;
  843. }
  844. static int
  845. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  846. {
  847. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  848. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  849. struct pci_dev *pdev = adapter->pdev;
  850. uint32_t rctl;
  851. int size, i, ret_val;
  852. /* Setup Tx descriptor ring and Tx buffers */
  853. if(!txdr->count)
  854. txdr->count = E1000_DEFAULT_TXD;
  855. size = txdr->count * sizeof(struct e1000_buffer);
  856. if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  857. ret_val = 1;
  858. goto err_nomem;
  859. }
  860. memset(txdr->buffer_info, 0, size);
  861. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  862. E1000_ROUNDUP(txdr->size, 4096);
  863. if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  864. ret_val = 2;
  865. goto err_nomem;
  866. }
  867. memset(txdr->desc, 0, txdr->size);
  868. txdr->next_to_use = txdr->next_to_clean = 0;
  869. E1000_WRITE_REG(&adapter->hw, TDBAL,
  870. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  871. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  872. E1000_WRITE_REG(&adapter->hw, TDLEN,
  873. txdr->count * sizeof(struct e1000_tx_desc));
  874. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  875. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  876. E1000_WRITE_REG(&adapter->hw, TCTL,
  877. E1000_TCTL_PSP | E1000_TCTL_EN |
  878. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  879. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  880. for(i = 0; i < txdr->count; i++) {
  881. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  882. struct sk_buff *skb;
  883. unsigned int size = 1024;
  884. if(!(skb = alloc_skb(size, GFP_KERNEL))) {
  885. ret_val = 3;
  886. goto err_nomem;
  887. }
  888. skb_put(skb, size);
  889. txdr->buffer_info[i].skb = skb;
  890. txdr->buffer_info[i].length = skb->len;
  891. txdr->buffer_info[i].dma =
  892. pci_map_single(pdev, skb->data, skb->len,
  893. PCI_DMA_TODEVICE);
  894. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  895. tx_desc->lower.data = cpu_to_le32(skb->len);
  896. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  897. E1000_TXD_CMD_IFCS |
  898. E1000_TXD_CMD_RPS);
  899. tx_desc->upper.data = 0;
  900. }
  901. /* Setup Rx descriptor ring and Rx buffers */
  902. if(!rxdr->count)
  903. rxdr->count = E1000_DEFAULT_RXD;
  904. size = rxdr->count * sizeof(struct e1000_buffer);
  905. if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  906. ret_val = 4;
  907. goto err_nomem;
  908. }
  909. memset(rxdr->buffer_info, 0, size);
  910. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  911. if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  912. ret_val = 5;
  913. goto err_nomem;
  914. }
  915. memset(rxdr->desc, 0, rxdr->size);
  916. rxdr->next_to_use = rxdr->next_to_clean = 0;
  917. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  918. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  919. E1000_WRITE_REG(&adapter->hw, RDBAL,
  920. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  921. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  922. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  923. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  924. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  925. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  926. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  927. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  928. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  929. for(i = 0; i < rxdr->count; i++) {
  930. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  931. struct sk_buff *skb;
  932. if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  933. GFP_KERNEL))) {
  934. ret_val = 6;
  935. goto err_nomem;
  936. }
  937. skb_reserve(skb, NET_IP_ALIGN);
  938. rxdr->buffer_info[i].skb = skb;
  939. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  940. rxdr->buffer_info[i].dma =
  941. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  942. PCI_DMA_FROMDEVICE);
  943. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  944. memset(skb->data, 0x00, skb->len);
  945. }
  946. return 0;
  947. err_nomem:
  948. e1000_free_desc_rings(adapter);
  949. return ret_val;
  950. }
  951. static void
  952. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  953. {
  954. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  955. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  956. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  957. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  958. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  959. }
  960. static void
  961. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  962. {
  963. uint16_t phy_reg;
  964. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  965. * Extended PHY Specific Control Register to 25MHz clock. This
  966. * value defaults back to a 2.5MHz clock when the PHY is reset.
  967. */
  968. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  969. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  970. e1000_write_phy_reg(&adapter->hw,
  971. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  972. /* In addition, because of the s/w reset above, we need to enable
  973. * CRS on TX. This must be set for both full and half duplex
  974. * operation.
  975. */
  976. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  977. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  978. e1000_write_phy_reg(&adapter->hw,
  979. M88E1000_PHY_SPEC_CTRL, phy_reg);
  980. }
  981. static int
  982. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  983. {
  984. uint32_t ctrl_reg;
  985. uint16_t phy_reg;
  986. /* Setup the Device Control Register for PHY loopback test. */
  987. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  988. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  989. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  990. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  991. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  992. E1000_CTRL_FD); /* Force Duplex to FULL */
  993. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  994. /* Read the PHY Specific Control Register (0x10) */
  995. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  996. /* Clear Auto-Crossover bits in PHY Specific Control Register
  997. * (bits 6:5).
  998. */
  999. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1000. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1001. /* Perform software reset on the PHY */
  1002. e1000_phy_reset(&adapter->hw);
  1003. /* Have to setup TX_CLK and TX_CRS after software reset */
  1004. e1000_phy_reset_clk_and_crs(adapter);
  1005. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1006. /* Wait for reset to complete. */
  1007. udelay(500);
  1008. /* Have to setup TX_CLK and TX_CRS after software reset */
  1009. e1000_phy_reset_clk_and_crs(adapter);
  1010. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1011. e1000_phy_disable_receiver(adapter);
  1012. /* Set the loopback bit in the PHY control register. */
  1013. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1014. phy_reg |= MII_CR_LOOPBACK;
  1015. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1016. /* Setup TX_CLK and TX_CRS one more time. */
  1017. e1000_phy_reset_clk_and_crs(adapter);
  1018. /* Check Phy Configuration */
  1019. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1020. if(phy_reg != 0x4100)
  1021. return 9;
  1022. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1023. if(phy_reg != 0x0070)
  1024. return 10;
  1025. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1026. if(phy_reg != 0x001A)
  1027. return 11;
  1028. return 0;
  1029. }
  1030. static int
  1031. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1032. {
  1033. uint32_t ctrl_reg = 0;
  1034. uint32_t stat_reg = 0;
  1035. adapter->hw.autoneg = FALSE;
  1036. if(adapter->hw.phy_type == e1000_phy_m88) {
  1037. /* Auto-MDI/MDIX Off */
  1038. e1000_write_phy_reg(&adapter->hw,
  1039. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1040. /* reset to update Auto-MDI/MDIX */
  1041. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1042. /* autoneg off */
  1043. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1044. }
  1045. /* force 1000, set loopback */
  1046. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1047. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1048. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1049. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1050. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1051. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1052. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1053. E1000_CTRL_FD); /* Force Duplex to FULL */
  1054. if(adapter->hw.media_type == e1000_media_type_copper &&
  1055. adapter->hw.phy_type == e1000_phy_m88) {
  1056. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1057. } else {
  1058. /* Set the ILOS bit on the fiber Nic is half
  1059. * duplex link is detected. */
  1060. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1061. if((stat_reg & E1000_STATUS_FD) == 0)
  1062. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1063. }
  1064. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1065. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1066. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1067. */
  1068. if(adapter->hw.phy_type == e1000_phy_m88)
  1069. e1000_phy_disable_receiver(adapter);
  1070. udelay(500);
  1071. return 0;
  1072. }
  1073. static int
  1074. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1075. {
  1076. uint16_t phy_reg = 0;
  1077. uint16_t count = 0;
  1078. switch (adapter->hw.mac_type) {
  1079. case e1000_82543:
  1080. if(adapter->hw.media_type == e1000_media_type_copper) {
  1081. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1082. * Some PHY registers get corrupted at random, so
  1083. * attempt this 10 times.
  1084. */
  1085. while(e1000_nonintegrated_phy_loopback(adapter) &&
  1086. count++ < 10);
  1087. if(count < 11)
  1088. return 0;
  1089. }
  1090. break;
  1091. case e1000_82544:
  1092. case e1000_82540:
  1093. case e1000_82545:
  1094. case e1000_82545_rev_3:
  1095. case e1000_82546:
  1096. case e1000_82546_rev_3:
  1097. case e1000_82541:
  1098. case e1000_82541_rev_2:
  1099. case e1000_82547:
  1100. case e1000_82547_rev_2:
  1101. case e1000_82571:
  1102. case e1000_82572:
  1103. case e1000_82573:
  1104. return e1000_integrated_phy_loopback(adapter);
  1105. break;
  1106. default:
  1107. /* Default PHY loopback work is to read the MII
  1108. * control register and assert bit 14 (loopback mode).
  1109. */
  1110. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1111. phy_reg |= MII_CR_LOOPBACK;
  1112. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1113. return 0;
  1114. break;
  1115. }
  1116. return 8;
  1117. }
  1118. static int
  1119. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1120. {
  1121. uint32_t rctl;
  1122. struct e1000_hw *hw = &adapter->hw;
  1123. if (hw->media_type == e1000_media_type_fiber ||
  1124. hw->media_type == e1000_media_type_internal_serdes) {
  1125. switch (hw->mac_type) {
  1126. case e1000_82545:
  1127. case e1000_82546:
  1128. case e1000_82545_rev_3:
  1129. case e1000_82546_rev_3:
  1130. return e1000_set_phy_loopback(adapter);
  1131. break;
  1132. case e1000_82571:
  1133. case e1000_82572:
  1134. #define E1000_SERDES_LB_ON 0x410
  1135. e1000_set_phy_loopback(adapter);
  1136. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1137. msec_delay(10);
  1138. return 0;
  1139. break;
  1140. default:
  1141. rctl = E1000_READ_REG(hw, RCTL);
  1142. rctl |= E1000_RCTL_LBM_TCVR;
  1143. E1000_WRITE_REG(hw, RCTL, rctl);
  1144. return 0;
  1145. }
  1146. } else if (hw->media_type == e1000_media_type_copper)
  1147. return e1000_set_phy_loopback(adapter);
  1148. return 7;
  1149. }
  1150. static void
  1151. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1152. {
  1153. uint32_t rctl;
  1154. uint16_t phy_reg;
  1155. struct e1000_hw *hw = &adapter->hw;
  1156. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1157. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1158. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1159. switch (hw->mac_type) {
  1160. case e1000_82571:
  1161. case e1000_82572:
  1162. if (hw->media_type == e1000_media_type_fiber ||
  1163. hw->media_type == e1000_media_type_internal_serdes){
  1164. #define E1000_SERDES_LB_OFF 0x400
  1165. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1166. msec_delay(10);
  1167. break;
  1168. }
  1169. /* fall thru for Cu adapters */
  1170. case e1000_82545:
  1171. case e1000_82546:
  1172. case e1000_82545_rev_3:
  1173. case e1000_82546_rev_3:
  1174. default:
  1175. hw->autoneg = TRUE;
  1176. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1177. if (phy_reg & MII_CR_LOOPBACK) {
  1178. phy_reg &= ~MII_CR_LOOPBACK;
  1179. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1180. e1000_phy_reset(hw);
  1181. }
  1182. break;
  1183. }
  1184. }
  1185. static void
  1186. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1187. {
  1188. memset(skb->data, 0xFF, frame_size);
  1189. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1190. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1191. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1192. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1193. }
  1194. static int
  1195. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1196. {
  1197. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1198. if(*(skb->data + 3) == 0xFF) {
  1199. if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1200. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1201. return 0;
  1202. }
  1203. }
  1204. return 13;
  1205. }
  1206. static int
  1207. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1208. {
  1209. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1210. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1211. struct pci_dev *pdev = adapter->pdev;
  1212. int i, j, k, l, lc, good_cnt, ret_val=0;
  1213. unsigned long time;
  1214. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1215. /* Calculate the loop count based on the largest descriptor ring
  1216. * The idea is to wrap the largest ring a number of times using 64
  1217. * send/receive pairs during each loop
  1218. */
  1219. if(rxdr->count <= txdr->count)
  1220. lc = ((txdr->count / 64) * 2) + 1;
  1221. else
  1222. lc = ((rxdr->count / 64) * 2) + 1;
  1223. k = l = 0;
  1224. for(j = 0; j <= lc; j++) { /* loop count loop */
  1225. for(i = 0; i < 64; i++) { /* send the packets */
  1226. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1227. 1024);
  1228. pci_dma_sync_single_for_device(pdev,
  1229. txdr->buffer_info[k].dma,
  1230. txdr->buffer_info[k].length,
  1231. PCI_DMA_TODEVICE);
  1232. if(unlikely(++k == txdr->count)) k = 0;
  1233. }
  1234. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1235. msec_delay(200);
  1236. time = jiffies; /* set the start time for the receive */
  1237. good_cnt = 0;
  1238. do { /* receive the sent packets */
  1239. pci_dma_sync_single_for_cpu(pdev,
  1240. rxdr->buffer_info[l].dma,
  1241. rxdr->buffer_info[l].length,
  1242. PCI_DMA_FROMDEVICE);
  1243. ret_val = e1000_check_lbtest_frame(
  1244. rxdr->buffer_info[l].skb,
  1245. 1024);
  1246. if(!ret_val)
  1247. good_cnt++;
  1248. if(unlikely(++l == rxdr->count)) l = 0;
  1249. /* time + 20 msecs (200 msecs on 2.4) is more than
  1250. * enough time to complete the receives, if it's
  1251. * exceeded, break and error off
  1252. */
  1253. } while (good_cnt < 64 && jiffies < (time + 20));
  1254. if(good_cnt != 64) {
  1255. ret_val = 13; /* ret_val is the same as mis-compare */
  1256. break;
  1257. }
  1258. if(jiffies >= (time + 2)) {
  1259. ret_val = 14; /* error code for time out error */
  1260. break;
  1261. }
  1262. } /* end loop count loop */
  1263. return ret_val;
  1264. }
  1265. static int
  1266. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1267. {
  1268. if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
  1269. if((*data = e1000_setup_loopback_test(adapter)))
  1270. goto err_loopback_setup;
  1271. *data = e1000_run_loopback_test(adapter);
  1272. e1000_loopback_cleanup(adapter);
  1273. err_loopback_setup:
  1274. e1000_free_desc_rings(adapter);
  1275. err_loopback:
  1276. return *data;
  1277. }
  1278. static int
  1279. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1280. {
  1281. *data = 0;
  1282. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1283. int i = 0;
  1284. adapter->hw.serdes_link_down = TRUE;
  1285. /* On some blade server designs, link establishment
  1286. * could take as long as 2-3 minutes */
  1287. do {
  1288. e1000_check_for_link(&adapter->hw);
  1289. if (adapter->hw.serdes_link_down == FALSE)
  1290. return *data;
  1291. msec_delay(20);
  1292. } while (i++ < 3750);
  1293. *data = 1;
  1294. } else {
  1295. e1000_check_for_link(&adapter->hw);
  1296. if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1297. msec_delay(4000);
  1298. if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1299. *data = 1;
  1300. }
  1301. }
  1302. return *data;
  1303. }
  1304. static int
  1305. e1000_diag_test_count(struct net_device *netdev)
  1306. {
  1307. return E1000_TEST_LEN;
  1308. }
  1309. static void
  1310. e1000_diag_test(struct net_device *netdev,
  1311. struct ethtool_test *eth_test, uint64_t *data)
  1312. {
  1313. struct e1000_adapter *adapter = netdev_priv(netdev);
  1314. boolean_t if_running = netif_running(netdev);
  1315. if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1316. /* Offline tests */
  1317. /* save speed, duplex, autoneg settings */
  1318. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1319. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1320. uint8_t autoneg = adapter->hw.autoneg;
  1321. /* Link test performed before hardware reset so autoneg doesn't
  1322. * interfere with test result */
  1323. if(e1000_link_test(adapter, &data[4]))
  1324. eth_test->flags |= ETH_TEST_FL_FAILED;
  1325. if(if_running)
  1326. e1000_down(adapter);
  1327. else
  1328. e1000_reset(adapter);
  1329. if(e1000_reg_test(adapter, &data[0]))
  1330. eth_test->flags |= ETH_TEST_FL_FAILED;
  1331. e1000_reset(adapter);
  1332. if(e1000_eeprom_test(adapter, &data[1]))
  1333. eth_test->flags |= ETH_TEST_FL_FAILED;
  1334. e1000_reset(adapter);
  1335. if(e1000_intr_test(adapter, &data[2]))
  1336. eth_test->flags |= ETH_TEST_FL_FAILED;
  1337. e1000_reset(adapter);
  1338. if(e1000_loopback_test(adapter, &data[3]))
  1339. eth_test->flags |= ETH_TEST_FL_FAILED;
  1340. /* restore speed, duplex, autoneg settings */
  1341. adapter->hw.autoneg_advertised = autoneg_advertised;
  1342. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1343. adapter->hw.autoneg = autoneg;
  1344. e1000_reset(adapter);
  1345. if(if_running)
  1346. e1000_up(adapter);
  1347. } else {
  1348. /* Online tests */
  1349. if(e1000_link_test(adapter, &data[4]))
  1350. eth_test->flags |= ETH_TEST_FL_FAILED;
  1351. /* Offline tests aren't run; pass by default */
  1352. data[0] = 0;
  1353. data[1] = 0;
  1354. data[2] = 0;
  1355. data[3] = 0;
  1356. }
  1357. msleep_interruptible(4 * 1000);
  1358. }
  1359. static void
  1360. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1361. {
  1362. struct e1000_adapter *adapter = netdev_priv(netdev);
  1363. struct e1000_hw *hw = &adapter->hw;
  1364. switch(adapter->hw.device_id) {
  1365. case E1000_DEV_ID_82542:
  1366. case E1000_DEV_ID_82543GC_FIBER:
  1367. case E1000_DEV_ID_82543GC_COPPER:
  1368. case E1000_DEV_ID_82544EI_FIBER:
  1369. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1370. case E1000_DEV_ID_82545EM_FIBER:
  1371. case E1000_DEV_ID_82545EM_COPPER:
  1372. wol->supported = 0;
  1373. wol->wolopts = 0;
  1374. return;
  1375. case E1000_DEV_ID_82546EB_FIBER:
  1376. case E1000_DEV_ID_82546GB_FIBER:
  1377. /* Wake events only supported on port A for dual fiber */
  1378. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1379. wol->supported = 0;
  1380. wol->wolopts = 0;
  1381. return;
  1382. }
  1383. /* Fall Through */
  1384. default:
  1385. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1386. WAKE_BCAST | WAKE_MAGIC;
  1387. wol->wolopts = 0;
  1388. if(adapter->wol & E1000_WUFC_EX)
  1389. wol->wolopts |= WAKE_UCAST;
  1390. if(adapter->wol & E1000_WUFC_MC)
  1391. wol->wolopts |= WAKE_MCAST;
  1392. if(adapter->wol & E1000_WUFC_BC)
  1393. wol->wolopts |= WAKE_BCAST;
  1394. if(adapter->wol & E1000_WUFC_MAG)
  1395. wol->wolopts |= WAKE_MAGIC;
  1396. return;
  1397. }
  1398. }
  1399. static int
  1400. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1401. {
  1402. struct e1000_adapter *adapter = netdev_priv(netdev);
  1403. struct e1000_hw *hw = &adapter->hw;
  1404. switch(adapter->hw.device_id) {
  1405. case E1000_DEV_ID_82542:
  1406. case E1000_DEV_ID_82543GC_FIBER:
  1407. case E1000_DEV_ID_82543GC_COPPER:
  1408. case E1000_DEV_ID_82544EI_FIBER:
  1409. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1410. case E1000_DEV_ID_82545EM_FIBER:
  1411. case E1000_DEV_ID_82545EM_COPPER:
  1412. return wol->wolopts ? -EOPNOTSUPP : 0;
  1413. case E1000_DEV_ID_82546EB_FIBER:
  1414. case E1000_DEV_ID_82546GB_FIBER:
  1415. /* Wake events only supported on port A for dual fiber */
  1416. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1417. return wol->wolopts ? -EOPNOTSUPP : 0;
  1418. /* Fall Through */
  1419. default:
  1420. if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1421. return -EOPNOTSUPP;
  1422. adapter->wol = 0;
  1423. if(wol->wolopts & WAKE_UCAST)
  1424. adapter->wol |= E1000_WUFC_EX;
  1425. if(wol->wolopts & WAKE_MCAST)
  1426. adapter->wol |= E1000_WUFC_MC;
  1427. if(wol->wolopts & WAKE_BCAST)
  1428. adapter->wol |= E1000_WUFC_BC;
  1429. if(wol->wolopts & WAKE_MAGIC)
  1430. adapter->wol |= E1000_WUFC_MAG;
  1431. }
  1432. return 0;
  1433. }
  1434. /* toggle LED 4 times per second = 2 "blinks" per second */
  1435. #define E1000_ID_INTERVAL (HZ/4)
  1436. /* bit defines for adapter->led_status */
  1437. #define E1000_LED_ON 0
  1438. static void
  1439. e1000_led_blink_callback(unsigned long data)
  1440. {
  1441. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1442. if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1443. e1000_led_off(&adapter->hw);
  1444. else
  1445. e1000_led_on(&adapter->hw);
  1446. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1447. }
  1448. static int
  1449. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1450. {
  1451. struct e1000_adapter *adapter = netdev_priv(netdev);
  1452. if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1453. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1454. if(adapter->hw.mac_type < e1000_82571) {
  1455. if(!adapter->blink_timer.function) {
  1456. init_timer(&adapter->blink_timer);
  1457. adapter->blink_timer.function = e1000_led_blink_callback;
  1458. adapter->blink_timer.data = (unsigned long) adapter;
  1459. }
  1460. e1000_setup_led(&adapter->hw);
  1461. mod_timer(&adapter->blink_timer, jiffies);
  1462. msleep_interruptible(data * 1000);
  1463. del_timer_sync(&adapter->blink_timer);
  1464. }
  1465. else if(adapter->hw.mac_type < e1000_82573) {
  1466. E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
  1467. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1468. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1469. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1470. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1471. msleep_interruptible(data * 1000);
  1472. }
  1473. else {
  1474. E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
  1475. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1476. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1477. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1478. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1479. msleep_interruptible(data * 1000);
  1480. }
  1481. e1000_led_off(&adapter->hw);
  1482. clear_bit(E1000_LED_ON, &adapter->led_status);
  1483. e1000_cleanup_led(&adapter->hw);
  1484. return 0;
  1485. }
  1486. static int
  1487. e1000_nway_reset(struct net_device *netdev)
  1488. {
  1489. struct e1000_adapter *adapter = netdev_priv(netdev);
  1490. if(netif_running(netdev)) {
  1491. e1000_down(adapter);
  1492. e1000_up(adapter);
  1493. }
  1494. return 0;
  1495. }
  1496. static int
  1497. e1000_get_stats_count(struct net_device *netdev)
  1498. {
  1499. return E1000_STATS_LEN;
  1500. }
  1501. static void
  1502. e1000_get_ethtool_stats(struct net_device *netdev,
  1503. struct ethtool_stats *stats, uint64_t *data)
  1504. {
  1505. struct e1000_adapter *adapter = netdev_priv(netdev);
  1506. int i;
  1507. e1000_update_stats(adapter);
  1508. for(i = 0; i < E1000_STATS_LEN; i++) {
  1509. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1510. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1511. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1512. }
  1513. }
  1514. static void
  1515. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1516. {
  1517. int i;
  1518. switch(stringset) {
  1519. case ETH_SS_TEST:
  1520. memcpy(data, *e1000_gstrings_test,
  1521. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1522. break;
  1523. case ETH_SS_STATS:
  1524. for (i=0; i < E1000_STATS_LEN; i++) {
  1525. memcpy(data + i * ETH_GSTRING_LEN,
  1526. e1000_gstrings_stats[i].stat_string,
  1527. ETH_GSTRING_LEN);
  1528. }
  1529. break;
  1530. }
  1531. }
  1532. static struct ethtool_ops e1000_ethtool_ops = {
  1533. .get_settings = e1000_get_settings,
  1534. .set_settings = e1000_set_settings,
  1535. .get_drvinfo = e1000_get_drvinfo,
  1536. .get_regs_len = e1000_get_regs_len,
  1537. .get_regs = e1000_get_regs,
  1538. .get_wol = e1000_get_wol,
  1539. .set_wol = e1000_set_wol,
  1540. .get_msglevel = e1000_get_msglevel,
  1541. .set_msglevel = e1000_set_msglevel,
  1542. .nway_reset = e1000_nway_reset,
  1543. .get_link = ethtool_op_get_link,
  1544. .get_eeprom_len = e1000_get_eeprom_len,
  1545. .get_eeprom = e1000_get_eeprom,
  1546. .set_eeprom = e1000_set_eeprom,
  1547. .get_ringparam = e1000_get_ringparam,
  1548. .set_ringparam = e1000_set_ringparam,
  1549. .get_pauseparam = e1000_get_pauseparam,
  1550. .set_pauseparam = e1000_set_pauseparam,
  1551. .get_rx_csum = e1000_get_rx_csum,
  1552. .set_rx_csum = e1000_set_rx_csum,
  1553. .get_tx_csum = e1000_get_tx_csum,
  1554. .set_tx_csum = e1000_set_tx_csum,
  1555. .get_sg = ethtool_op_get_sg,
  1556. .set_sg = ethtool_op_set_sg,
  1557. #ifdef NETIF_F_TSO
  1558. .get_tso = ethtool_op_get_tso,
  1559. .set_tso = e1000_set_tso,
  1560. #endif
  1561. .self_test_count = e1000_diag_test_count,
  1562. .self_test = e1000_diag_test,
  1563. .get_strings = e1000_get_strings,
  1564. .phys_id = e1000_phys_id,
  1565. .get_stats_count = e1000_get_stats_count,
  1566. .get_ethtool_stats = e1000_get_ethtool_stats,
  1567. .get_perm_addr = ethtool_op_get_perm_addr,
  1568. };
  1569. void e1000_set_ethtool_ops(struct net_device *netdev)
  1570. {
  1571. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1572. }