input.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. /*
  32. * EV_ABS events which should not be cached are listed here.
  33. */
  34. static unsigned int input_abs_bypass_init_data[] __initdata = {
  35. ABS_MT_TOUCH_MAJOR,
  36. ABS_MT_TOUCH_MINOR,
  37. ABS_MT_WIDTH_MAJOR,
  38. ABS_MT_WIDTH_MINOR,
  39. ABS_MT_ORIENTATION,
  40. ABS_MT_POSITION_X,
  41. ABS_MT_POSITION_Y,
  42. ABS_MT_TOOL_TYPE,
  43. ABS_MT_BLOB_ID,
  44. ABS_MT_TRACKING_ID,
  45. ABS_MT_PRESSURE,
  46. 0
  47. };
  48. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  49. static LIST_HEAD(input_dev_list);
  50. static LIST_HEAD(input_handler_list);
  51. /*
  52. * input_mutex protects access to both input_dev_list and input_handler_list.
  53. * This also causes input_[un]register_device and input_[un]register_handler
  54. * be mutually exclusive which simplifies locking in drivers implementing
  55. * input handlers.
  56. */
  57. static DEFINE_MUTEX(input_mutex);
  58. static struct input_handler *input_table[8];
  59. static inline int is_event_supported(unsigned int code,
  60. unsigned long *bm, unsigned int max)
  61. {
  62. return code <= max && test_bit(code, bm);
  63. }
  64. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  65. {
  66. if (fuzz) {
  67. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  68. return old_val;
  69. if (value > old_val - fuzz && value < old_val + fuzz)
  70. return (old_val * 3 + value) / 4;
  71. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  72. return (old_val + value) / 2;
  73. }
  74. return value;
  75. }
  76. /*
  77. * Pass event first through all filters and then, if event has not been
  78. * filtered out, through all open handles. This function is called with
  79. * dev->event_lock held and interrupts disabled.
  80. */
  81. static void input_pass_event(struct input_dev *dev,
  82. unsigned int type, unsigned int code, int value)
  83. {
  84. struct input_handler *handler;
  85. struct input_handle *handle;
  86. rcu_read_lock();
  87. handle = rcu_dereference(dev->grab);
  88. if (handle)
  89. handle->handler->event(handle, type, code, value);
  90. else {
  91. bool filtered = false;
  92. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  93. if (!handle->open)
  94. continue;
  95. handler = handle->handler;
  96. if (!handler->filter) {
  97. if (filtered)
  98. break;
  99. handler->event(handle, type, code, value);
  100. } else if (handler->filter(handle, type, code, value))
  101. filtered = true;
  102. }
  103. }
  104. rcu_read_unlock();
  105. }
  106. /*
  107. * Generate software autorepeat event. Note that we take
  108. * dev->event_lock here to avoid racing with input_event
  109. * which may cause keys get "stuck".
  110. */
  111. static void input_repeat_key(unsigned long data)
  112. {
  113. struct input_dev *dev = (void *) data;
  114. unsigned long flags;
  115. spin_lock_irqsave(&dev->event_lock, flags);
  116. if (test_bit(dev->repeat_key, dev->key) &&
  117. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  118. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  119. if (dev->sync) {
  120. /*
  121. * Only send SYN_REPORT if we are not in a middle
  122. * of driver parsing a new hardware packet.
  123. * Otherwise assume that the driver will send
  124. * SYN_REPORT once it's done.
  125. */
  126. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  127. }
  128. if (dev->rep[REP_PERIOD])
  129. mod_timer(&dev->timer, jiffies +
  130. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  131. }
  132. spin_unlock_irqrestore(&dev->event_lock, flags);
  133. }
  134. static void input_start_autorepeat(struct input_dev *dev, int code)
  135. {
  136. if (test_bit(EV_REP, dev->evbit) &&
  137. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  138. dev->timer.data) {
  139. dev->repeat_key = code;
  140. mod_timer(&dev->timer,
  141. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  142. }
  143. }
  144. static void input_stop_autorepeat(struct input_dev *dev)
  145. {
  146. del_timer(&dev->timer);
  147. }
  148. #define INPUT_IGNORE_EVENT 0
  149. #define INPUT_PASS_TO_HANDLERS 1
  150. #define INPUT_PASS_TO_DEVICE 2
  151. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  152. static void input_handle_event(struct input_dev *dev,
  153. unsigned int type, unsigned int code, int value)
  154. {
  155. int disposition = INPUT_IGNORE_EVENT;
  156. switch (type) {
  157. case EV_SYN:
  158. switch (code) {
  159. case SYN_CONFIG:
  160. disposition = INPUT_PASS_TO_ALL;
  161. break;
  162. case SYN_REPORT:
  163. if (!dev->sync) {
  164. dev->sync = 1;
  165. disposition = INPUT_PASS_TO_HANDLERS;
  166. }
  167. break;
  168. case SYN_MT_REPORT:
  169. dev->sync = 0;
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. break;
  172. }
  173. break;
  174. case EV_KEY:
  175. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  176. !!test_bit(code, dev->key) != value) {
  177. if (value != 2) {
  178. __change_bit(code, dev->key);
  179. if (value)
  180. input_start_autorepeat(dev, code);
  181. else
  182. input_stop_autorepeat(dev);
  183. }
  184. disposition = INPUT_PASS_TO_HANDLERS;
  185. }
  186. break;
  187. case EV_SW:
  188. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  189. !!test_bit(code, dev->sw) != value) {
  190. __change_bit(code, dev->sw);
  191. disposition = INPUT_PASS_TO_HANDLERS;
  192. }
  193. break;
  194. case EV_ABS:
  195. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  196. if (test_bit(code, input_abs_bypass)) {
  197. disposition = INPUT_PASS_TO_HANDLERS;
  198. break;
  199. }
  200. value = input_defuzz_abs_event(value,
  201. dev->abs[code], dev->absfuzz[code]);
  202. if (dev->abs[code] != value) {
  203. dev->abs[code] = value;
  204. disposition = INPUT_PASS_TO_HANDLERS;
  205. }
  206. }
  207. break;
  208. case EV_REL:
  209. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  210. disposition = INPUT_PASS_TO_HANDLERS;
  211. break;
  212. case EV_MSC:
  213. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  214. disposition = INPUT_PASS_TO_ALL;
  215. break;
  216. case EV_LED:
  217. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  218. !!test_bit(code, dev->led) != value) {
  219. __change_bit(code, dev->led);
  220. disposition = INPUT_PASS_TO_ALL;
  221. }
  222. break;
  223. case EV_SND:
  224. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  225. if (!!test_bit(code, dev->snd) != !!value)
  226. __change_bit(code, dev->snd);
  227. disposition = INPUT_PASS_TO_ALL;
  228. }
  229. break;
  230. case EV_REP:
  231. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  232. dev->rep[code] = value;
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_FF:
  237. if (value >= 0)
  238. disposition = INPUT_PASS_TO_ALL;
  239. break;
  240. case EV_PWR:
  241. disposition = INPUT_PASS_TO_ALL;
  242. break;
  243. }
  244. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  245. dev->sync = 0;
  246. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  247. dev->event(dev, type, code, value);
  248. if (disposition & INPUT_PASS_TO_HANDLERS)
  249. input_pass_event(dev, type, code, value);
  250. }
  251. /**
  252. * input_event() - report new input event
  253. * @dev: device that generated the event
  254. * @type: type of the event
  255. * @code: event code
  256. * @value: value of the event
  257. *
  258. * This function should be used by drivers implementing various input
  259. * devices to report input events. See also input_inject_event().
  260. *
  261. * NOTE: input_event() may be safely used right after input device was
  262. * allocated with input_allocate_device(), even before it is registered
  263. * with input_register_device(), but the event will not reach any of the
  264. * input handlers. Such early invocation of input_event() may be used
  265. * to 'seed' initial state of a switch or initial position of absolute
  266. * axis, etc.
  267. */
  268. void input_event(struct input_dev *dev,
  269. unsigned int type, unsigned int code, int value)
  270. {
  271. unsigned long flags;
  272. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  273. spin_lock_irqsave(&dev->event_lock, flags);
  274. add_input_randomness(type, code, value);
  275. input_handle_event(dev, type, code, value);
  276. spin_unlock_irqrestore(&dev->event_lock, flags);
  277. }
  278. }
  279. EXPORT_SYMBOL(input_event);
  280. /**
  281. * input_inject_event() - send input event from input handler
  282. * @handle: input handle to send event through
  283. * @type: type of the event
  284. * @code: event code
  285. * @value: value of the event
  286. *
  287. * Similar to input_event() but will ignore event if device is
  288. * "grabbed" and handle injecting event is not the one that owns
  289. * the device.
  290. */
  291. void input_inject_event(struct input_handle *handle,
  292. unsigned int type, unsigned int code, int value)
  293. {
  294. struct input_dev *dev = handle->dev;
  295. struct input_handle *grab;
  296. unsigned long flags;
  297. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  298. spin_lock_irqsave(&dev->event_lock, flags);
  299. rcu_read_lock();
  300. grab = rcu_dereference(dev->grab);
  301. if (!grab || grab == handle)
  302. input_handle_event(dev, type, code, value);
  303. rcu_read_unlock();
  304. spin_unlock_irqrestore(&dev->event_lock, flags);
  305. }
  306. }
  307. EXPORT_SYMBOL(input_inject_event);
  308. /**
  309. * input_grab_device - grabs device for exclusive use
  310. * @handle: input handle that wants to own the device
  311. *
  312. * When a device is grabbed by an input handle all events generated by
  313. * the device are delivered only to this handle. Also events injected
  314. * by other input handles are ignored while device is grabbed.
  315. */
  316. int input_grab_device(struct input_handle *handle)
  317. {
  318. struct input_dev *dev = handle->dev;
  319. int retval;
  320. retval = mutex_lock_interruptible(&dev->mutex);
  321. if (retval)
  322. return retval;
  323. if (dev->grab) {
  324. retval = -EBUSY;
  325. goto out;
  326. }
  327. rcu_assign_pointer(dev->grab, handle);
  328. synchronize_rcu();
  329. out:
  330. mutex_unlock(&dev->mutex);
  331. return retval;
  332. }
  333. EXPORT_SYMBOL(input_grab_device);
  334. static void __input_release_device(struct input_handle *handle)
  335. {
  336. struct input_dev *dev = handle->dev;
  337. if (dev->grab == handle) {
  338. rcu_assign_pointer(dev->grab, NULL);
  339. /* Make sure input_pass_event() notices that grab is gone */
  340. synchronize_rcu();
  341. list_for_each_entry(handle, &dev->h_list, d_node)
  342. if (handle->open && handle->handler->start)
  343. handle->handler->start(handle);
  344. }
  345. }
  346. /**
  347. * input_release_device - release previously grabbed device
  348. * @handle: input handle that owns the device
  349. *
  350. * Releases previously grabbed device so that other input handles can
  351. * start receiving input events. Upon release all handlers attached
  352. * to the device have their start() method called so they have a change
  353. * to synchronize device state with the rest of the system.
  354. */
  355. void input_release_device(struct input_handle *handle)
  356. {
  357. struct input_dev *dev = handle->dev;
  358. mutex_lock(&dev->mutex);
  359. __input_release_device(handle);
  360. mutex_unlock(&dev->mutex);
  361. }
  362. EXPORT_SYMBOL(input_release_device);
  363. /**
  364. * input_open_device - open input device
  365. * @handle: handle through which device is being accessed
  366. *
  367. * This function should be called by input handlers when they
  368. * want to start receive events from given input device.
  369. */
  370. int input_open_device(struct input_handle *handle)
  371. {
  372. struct input_dev *dev = handle->dev;
  373. int retval;
  374. retval = mutex_lock_interruptible(&dev->mutex);
  375. if (retval)
  376. return retval;
  377. if (dev->going_away) {
  378. retval = -ENODEV;
  379. goto out;
  380. }
  381. handle->open++;
  382. if (!dev->users++ && dev->open)
  383. retval = dev->open(dev);
  384. if (retval) {
  385. dev->users--;
  386. if (!--handle->open) {
  387. /*
  388. * Make sure we are not delivering any more events
  389. * through this handle
  390. */
  391. synchronize_rcu();
  392. }
  393. }
  394. out:
  395. mutex_unlock(&dev->mutex);
  396. return retval;
  397. }
  398. EXPORT_SYMBOL(input_open_device);
  399. int input_flush_device(struct input_handle *handle, struct file *file)
  400. {
  401. struct input_dev *dev = handle->dev;
  402. int retval;
  403. retval = mutex_lock_interruptible(&dev->mutex);
  404. if (retval)
  405. return retval;
  406. if (dev->flush)
  407. retval = dev->flush(dev, file);
  408. mutex_unlock(&dev->mutex);
  409. return retval;
  410. }
  411. EXPORT_SYMBOL(input_flush_device);
  412. /**
  413. * input_close_device - close input device
  414. * @handle: handle through which device is being accessed
  415. *
  416. * This function should be called by input handlers when they
  417. * want to stop receive events from given input device.
  418. */
  419. void input_close_device(struct input_handle *handle)
  420. {
  421. struct input_dev *dev = handle->dev;
  422. mutex_lock(&dev->mutex);
  423. __input_release_device(handle);
  424. if (!--dev->users && dev->close)
  425. dev->close(dev);
  426. if (!--handle->open) {
  427. /*
  428. * synchronize_rcu() makes sure that input_pass_event()
  429. * completed and that no more input events are delivered
  430. * through this handle
  431. */
  432. synchronize_rcu();
  433. }
  434. mutex_unlock(&dev->mutex);
  435. }
  436. EXPORT_SYMBOL(input_close_device);
  437. /*
  438. * Simulate keyup events for all keys that are marked as pressed.
  439. * The function must be called with dev->event_lock held.
  440. */
  441. static void input_dev_release_keys(struct input_dev *dev)
  442. {
  443. int code;
  444. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  445. for (code = 0; code <= KEY_MAX; code++) {
  446. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  447. __test_and_clear_bit(code, dev->key)) {
  448. input_pass_event(dev, EV_KEY, code, 0);
  449. }
  450. }
  451. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  452. }
  453. }
  454. /*
  455. * Prepare device for unregistering
  456. */
  457. static void input_disconnect_device(struct input_dev *dev)
  458. {
  459. struct input_handle *handle;
  460. /*
  461. * Mark device as going away. Note that we take dev->mutex here
  462. * not to protect access to dev->going_away but rather to ensure
  463. * that there are no threads in the middle of input_open_device()
  464. */
  465. mutex_lock(&dev->mutex);
  466. dev->going_away = true;
  467. mutex_unlock(&dev->mutex);
  468. spin_lock_irq(&dev->event_lock);
  469. /*
  470. * Simulate keyup events for all pressed keys so that handlers
  471. * are not left with "stuck" keys. The driver may continue
  472. * generate events even after we done here but they will not
  473. * reach any handlers.
  474. */
  475. input_dev_release_keys(dev);
  476. list_for_each_entry(handle, &dev->h_list, d_node)
  477. handle->open = 0;
  478. spin_unlock_irq(&dev->event_lock);
  479. }
  480. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  481. {
  482. switch (dev->keycodesize) {
  483. case 1:
  484. return ((u8 *)dev->keycode)[scancode];
  485. case 2:
  486. return ((u16 *)dev->keycode)[scancode];
  487. default:
  488. return ((u32 *)dev->keycode)[scancode];
  489. }
  490. }
  491. static int input_default_getkeycode(struct input_dev *dev,
  492. unsigned int scancode,
  493. unsigned int *keycode)
  494. {
  495. if (!dev->keycodesize)
  496. return -EINVAL;
  497. if (scancode >= dev->keycodemax)
  498. return -EINVAL;
  499. *keycode = input_fetch_keycode(dev, scancode);
  500. return 0;
  501. }
  502. static int input_default_setkeycode(struct input_dev *dev,
  503. unsigned int scancode,
  504. unsigned int keycode)
  505. {
  506. int old_keycode;
  507. int i;
  508. if (scancode >= dev->keycodemax)
  509. return -EINVAL;
  510. if (!dev->keycodesize)
  511. return -EINVAL;
  512. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  513. return -EINVAL;
  514. switch (dev->keycodesize) {
  515. case 1: {
  516. u8 *k = (u8 *)dev->keycode;
  517. old_keycode = k[scancode];
  518. k[scancode] = keycode;
  519. break;
  520. }
  521. case 2: {
  522. u16 *k = (u16 *)dev->keycode;
  523. old_keycode = k[scancode];
  524. k[scancode] = keycode;
  525. break;
  526. }
  527. default: {
  528. u32 *k = (u32 *)dev->keycode;
  529. old_keycode = k[scancode];
  530. k[scancode] = keycode;
  531. break;
  532. }
  533. }
  534. __clear_bit(old_keycode, dev->keybit);
  535. __set_bit(keycode, dev->keybit);
  536. for (i = 0; i < dev->keycodemax; i++) {
  537. if (input_fetch_keycode(dev, i) == old_keycode) {
  538. __set_bit(old_keycode, dev->keybit);
  539. break; /* Setting the bit twice is useless, so break */
  540. }
  541. }
  542. return 0;
  543. }
  544. /**
  545. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  546. * @dev: input device which keymap is being queried
  547. * @scancode: scancode (or its equivalent for device in question) for which
  548. * keycode is needed
  549. * @keycode: result
  550. *
  551. * This function should be called by anyone interested in retrieving current
  552. * keymap. Presently keyboard and evdev handlers use it.
  553. */
  554. int input_get_keycode(struct input_dev *dev,
  555. unsigned int scancode, unsigned int *keycode)
  556. {
  557. unsigned long flags;
  558. int retval;
  559. spin_lock_irqsave(&dev->event_lock, flags);
  560. retval = dev->getkeycode(dev, scancode, keycode);
  561. spin_unlock_irqrestore(&dev->event_lock, flags);
  562. return retval;
  563. }
  564. EXPORT_SYMBOL(input_get_keycode);
  565. /**
  566. * input_get_keycode - assign new keycode to a given scancode
  567. * @dev: input device which keymap is being updated
  568. * @scancode: scancode (or its equivalent for device in question)
  569. * @keycode: new keycode to be assigned to the scancode
  570. *
  571. * This function should be called by anyone needing to update current
  572. * keymap. Presently keyboard and evdev handlers use it.
  573. */
  574. int input_set_keycode(struct input_dev *dev,
  575. unsigned int scancode, unsigned int keycode)
  576. {
  577. unsigned long flags;
  578. unsigned int old_keycode;
  579. int retval;
  580. if (keycode > KEY_MAX)
  581. return -EINVAL;
  582. spin_lock_irqsave(&dev->event_lock, flags);
  583. retval = dev->getkeycode(dev, scancode, &old_keycode);
  584. if (retval)
  585. goto out;
  586. retval = dev->setkeycode(dev, scancode, keycode);
  587. if (retval)
  588. goto out;
  589. /* Make sure KEY_RESERVED did not get enabled. */
  590. __clear_bit(KEY_RESERVED, dev->keybit);
  591. /*
  592. * Simulate keyup event if keycode is not present
  593. * in the keymap anymore
  594. */
  595. if (test_bit(EV_KEY, dev->evbit) &&
  596. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  597. __test_and_clear_bit(old_keycode, dev->key)) {
  598. input_pass_event(dev, EV_KEY, old_keycode, 0);
  599. if (dev->sync)
  600. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  601. }
  602. out:
  603. spin_unlock_irqrestore(&dev->event_lock, flags);
  604. return retval;
  605. }
  606. EXPORT_SYMBOL(input_set_keycode);
  607. #define MATCH_BIT(bit, max) \
  608. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  609. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  610. break; \
  611. if (i != BITS_TO_LONGS(max)) \
  612. continue;
  613. static const struct input_device_id *input_match_device(struct input_handler *handler,
  614. struct input_dev *dev)
  615. {
  616. const struct input_device_id *id;
  617. int i;
  618. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  619. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  620. if (id->bustype != dev->id.bustype)
  621. continue;
  622. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  623. if (id->vendor != dev->id.vendor)
  624. continue;
  625. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  626. if (id->product != dev->id.product)
  627. continue;
  628. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  629. if (id->version != dev->id.version)
  630. continue;
  631. MATCH_BIT(evbit, EV_MAX);
  632. MATCH_BIT(keybit, KEY_MAX);
  633. MATCH_BIT(relbit, REL_MAX);
  634. MATCH_BIT(absbit, ABS_MAX);
  635. MATCH_BIT(mscbit, MSC_MAX);
  636. MATCH_BIT(ledbit, LED_MAX);
  637. MATCH_BIT(sndbit, SND_MAX);
  638. MATCH_BIT(ffbit, FF_MAX);
  639. MATCH_BIT(swbit, SW_MAX);
  640. if (!handler->match || handler->match(handler, dev))
  641. return id;
  642. }
  643. return NULL;
  644. }
  645. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  646. {
  647. const struct input_device_id *id;
  648. int error;
  649. id = input_match_device(handler, dev);
  650. if (!id)
  651. return -ENODEV;
  652. error = handler->connect(handler, dev, id);
  653. if (error && error != -ENODEV)
  654. printk(KERN_ERR
  655. "input: failed to attach handler %s to device %s, "
  656. "error: %d\n",
  657. handler->name, kobject_name(&dev->dev.kobj), error);
  658. return error;
  659. }
  660. #ifdef CONFIG_COMPAT
  661. static int input_bits_to_string(char *buf, int buf_size,
  662. unsigned long bits, bool skip_empty)
  663. {
  664. int len = 0;
  665. if (INPUT_COMPAT_TEST) {
  666. u32 dword = bits >> 32;
  667. if (dword || !skip_empty)
  668. len += snprintf(buf, buf_size, "%x ", dword);
  669. dword = bits & 0xffffffffUL;
  670. if (dword || !skip_empty || len)
  671. len += snprintf(buf + len, max(buf_size - len, 0),
  672. "%x", dword);
  673. } else {
  674. if (bits || !skip_empty)
  675. len += snprintf(buf, buf_size, "%lx", bits);
  676. }
  677. return len;
  678. }
  679. #else /* !CONFIG_COMPAT */
  680. static int input_bits_to_string(char *buf, int buf_size,
  681. unsigned long bits, bool skip_empty)
  682. {
  683. return bits || !skip_empty ?
  684. snprintf(buf, buf_size, "%lx", bits) : 0;
  685. }
  686. #endif
  687. #ifdef CONFIG_PROC_FS
  688. static struct proc_dir_entry *proc_bus_input_dir;
  689. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  690. static int input_devices_state;
  691. static inline void input_wakeup_procfs_readers(void)
  692. {
  693. input_devices_state++;
  694. wake_up(&input_devices_poll_wait);
  695. }
  696. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  697. {
  698. poll_wait(file, &input_devices_poll_wait, wait);
  699. if (file->f_version != input_devices_state) {
  700. file->f_version = input_devices_state;
  701. return POLLIN | POLLRDNORM;
  702. }
  703. return 0;
  704. }
  705. union input_seq_state {
  706. struct {
  707. unsigned short pos;
  708. bool mutex_acquired;
  709. };
  710. void *p;
  711. };
  712. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  713. {
  714. union input_seq_state *state = (union input_seq_state *)&seq->private;
  715. int error;
  716. /* We need to fit into seq->private pointer */
  717. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  718. error = mutex_lock_interruptible(&input_mutex);
  719. if (error) {
  720. state->mutex_acquired = false;
  721. return ERR_PTR(error);
  722. }
  723. state->mutex_acquired = true;
  724. return seq_list_start(&input_dev_list, *pos);
  725. }
  726. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  727. {
  728. return seq_list_next(v, &input_dev_list, pos);
  729. }
  730. static void input_seq_stop(struct seq_file *seq, void *v)
  731. {
  732. union input_seq_state *state = (union input_seq_state *)&seq->private;
  733. if (state->mutex_acquired)
  734. mutex_unlock(&input_mutex);
  735. }
  736. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  737. unsigned long *bitmap, int max)
  738. {
  739. int i;
  740. bool skip_empty = true;
  741. char buf[18];
  742. seq_printf(seq, "B: %s=", name);
  743. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  744. if (input_bits_to_string(buf, sizeof(buf),
  745. bitmap[i], skip_empty)) {
  746. skip_empty = false;
  747. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  748. }
  749. }
  750. /*
  751. * If no output was produced print a single 0.
  752. */
  753. if (skip_empty)
  754. seq_puts(seq, "0");
  755. seq_putc(seq, '\n');
  756. }
  757. static int input_devices_seq_show(struct seq_file *seq, void *v)
  758. {
  759. struct input_dev *dev = container_of(v, struct input_dev, node);
  760. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  761. struct input_handle *handle;
  762. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  763. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  764. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  765. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  766. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  767. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  768. seq_printf(seq, "H: Handlers=");
  769. list_for_each_entry(handle, &dev->h_list, d_node)
  770. seq_printf(seq, "%s ", handle->name);
  771. seq_putc(seq, '\n');
  772. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  773. if (test_bit(EV_KEY, dev->evbit))
  774. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  775. if (test_bit(EV_REL, dev->evbit))
  776. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  777. if (test_bit(EV_ABS, dev->evbit))
  778. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  779. if (test_bit(EV_MSC, dev->evbit))
  780. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  781. if (test_bit(EV_LED, dev->evbit))
  782. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  783. if (test_bit(EV_SND, dev->evbit))
  784. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  785. if (test_bit(EV_FF, dev->evbit))
  786. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  787. if (test_bit(EV_SW, dev->evbit))
  788. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  789. seq_putc(seq, '\n');
  790. kfree(path);
  791. return 0;
  792. }
  793. static const struct seq_operations input_devices_seq_ops = {
  794. .start = input_devices_seq_start,
  795. .next = input_devices_seq_next,
  796. .stop = input_seq_stop,
  797. .show = input_devices_seq_show,
  798. };
  799. static int input_proc_devices_open(struct inode *inode, struct file *file)
  800. {
  801. return seq_open(file, &input_devices_seq_ops);
  802. }
  803. static const struct file_operations input_devices_fileops = {
  804. .owner = THIS_MODULE,
  805. .open = input_proc_devices_open,
  806. .poll = input_proc_devices_poll,
  807. .read = seq_read,
  808. .llseek = seq_lseek,
  809. .release = seq_release,
  810. };
  811. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  812. {
  813. union input_seq_state *state = (union input_seq_state *)&seq->private;
  814. int error;
  815. /* We need to fit into seq->private pointer */
  816. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  817. error = mutex_lock_interruptible(&input_mutex);
  818. if (error) {
  819. state->mutex_acquired = false;
  820. return ERR_PTR(error);
  821. }
  822. state->mutex_acquired = true;
  823. state->pos = *pos;
  824. return seq_list_start(&input_handler_list, *pos);
  825. }
  826. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  827. {
  828. union input_seq_state *state = (union input_seq_state *)&seq->private;
  829. state->pos = *pos + 1;
  830. return seq_list_next(v, &input_handler_list, pos);
  831. }
  832. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  833. {
  834. struct input_handler *handler = container_of(v, struct input_handler, node);
  835. union input_seq_state *state = (union input_seq_state *)&seq->private;
  836. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  837. if (handler->filter)
  838. seq_puts(seq, " (filter)");
  839. if (handler->fops)
  840. seq_printf(seq, " Minor=%d", handler->minor);
  841. seq_putc(seq, '\n');
  842. return 0;
  843. }
  844. static const struct seq_operations input_handlers_seq_ops = {
  845. .start = input_handlers_seq_start,
  846. .next = input_handlers_seq_next,
  847. .stop = input_seq_stop,
  848. .show = input_handlers_seq_show,
  849. };
  850. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  851. {
  852. return seq_open(file, &input_handlers_seq_ops);
  853. }
  854. static const struct file_operations input_handlers_fileops = {
  855. .owner = THIS_MODULE,
  856. .open = input_proc_handlers_open,
  857. .read = seq_read,
  858. .llseek = seq_lseek,
  859. .release = seq_release,
  860. };
  861. static int __init input_proc_init(void)
  862. {
  863. struct proc_dir_entry *entry;
  864. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  865. if (!proc_bus_input_dir)
  866. return -ENOMEM;
  867. entry = proc_create("devices", 0, proc_bus_input_dir,
  868. &input_devices_fileops);
  869. if (!entry)
  870. goto fail1;
  871. entry = proc_create("handlers", 0, proc_bus_input_dir,
  872. &input_handlers_fileops);
  873. if (!entry)
  874. goto fail2;
  875. return 0;
  876. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  877. fail1: remove_proc_entry("bus/input", NULL);
  878. return -ENOMEM;
  879. }
  880. static void input_proc_exit(void)
  881. {
  882. remove_proc_entry("devices", proc_bus_input_dir);
  883. remove_proc_entry("handlers", proc_bus_input_dir);
  884. remove_proc_entry("bus/input", NULL);
  885. }
  886. #else /* !CONFIG_PROC_FS */
  887. static inline void input_wakeup_procfs_readers(void) { }
  888. static inline int input_proc_init(void) { return 0; }
  889. static inline void input_proc_exit(void) { }
  890. #endif
  891. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  892. static ssize_t input_dev_show_##name(struct device *dev, \
  893. struct device_attribute *attr, \
  894. char *buf) \
  895. { \
  896. struct input_dev *input_dev = to_input_dev(dev); \
  897. \
  898. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  899. input_dev->name ? input_dev->name : ""); \
  900. } \
  901. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  902. INPUT_DEV_STRING_ATTR_SHOW(name);
  903. INPUT_DEV_STRING_ATTR_SHOW(phys);
  904. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  905. static int input_print_modalias_bits(char *buf, int size,
  906. char name, unsigned long *bm,
  907. unsigned int min_bit, unsigned int max_bit)
  908. {
  909. int len = 0, i;
  910. len += snprintf(buf, max(size, 0), "%c", name);
  911. for (i = min_bit; i < max_bit; i++)
  912. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  913. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  914. return len;
  915. }
  916. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  917. int add_cr)
  918. {
  919. int len;
  920. len = snprintf(buf, max(size, 0),
  921. "input:b%04Xv%04Xp%04Xe%04X-",
  922. id->id.bustype, id->id.vendor,
  923. id->id.product, id->id.version);
  924. len += input_print_modalias_bits(buf + len, size - len,
  925. 'e', id->evbit, 0, EV_MAX);
  926. len += input_print_modalias_bits(buf + len, size - len,
  927. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  928. len += input_print_modalias_bits(buf + len, size - len,
  929. 'r', id->relbit, 0, REL_MAX);
  930. len += input_print_modalias_bits(buf + len, size - len,
  931. 'a', id->absbit, 0, ABS_MAX);
  932. len += input_print_modalias_bits(buf + len, size - len,
  933. 'm', id->mscbit, 0, MSC_MAX);
  934. len += input_print_modalias_bits(buf + len, size - len,
  935. 'l', id->ledbit, 0, LED_MAX);
  936. len += input_print_modalias_bits(buf + len, size - len,
  937. 's', id->sndbit, 0, SND_MAX);
  938. len += input_print_modalias_bits(buf + len, size - len,
  939. 'f', id->ffbit, 0, FF_MAX);
  940. len += input_print_modalias_bits(buf + len, size - len,
  941. 'w', id->swbit, 0, SW_MAX);
  942. if (add_cr)
  943. len += snprintf(buf + len, max(size - len, 0), "\n");
  944. return len;
  945. }
  946. static ssize_t input_dev_show_modalias(struct device *dev,
  947. struct device_attribute *attr,
  948. char *buf)
  949. {
  950. struct input_dev *id = to_input_dev(dev);
  951. ssize_t len;
  952. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  953. return min_t(int, len, PAGE_SIZE);
  954. }
  955. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  956. static struct attribute *input_dev_attrs[] = {
  957. &dev_attr_name.attr,
  958. &dev_attr_phys.attr,
  959. &dev_attr_uniq.attr,
  960. &dev_attr_modalias.attr,
  961. NULL
  962. };
  963. static struct attribute_group input_dev_attr_group = {
  964. .attrs = input_dev_attrs,
  965. };
  966. #define INPUT_DEV_ID_ATTR(name) \
  967. static ssize_t input_dev_show_id_##name(struct device *dev, \
  968. struct device_attribute *attr, \
  969. char *buf) \
  970. { \
  971. struct input_dev *input_dev = to_input_dev(dev); \
  972. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  973. } \
  974. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  975. INPUT_DEV_ID_ATTR(bustype);
  976. INPUT_DEV_ID_ATTR(vendor);
  977. INPUT_DEV_ID_ATTR(product);
  978. INPUT_DEV_ID_ATTR(version);
  979. static struct attribute *input_dev_id_attrs[] = {
  980. &dev_attr_bustype.attr,
  981. &dev_attr_vendor.attr,
  982. &dev_attr_product.attr,
  983. &dev_attr_version.attr,
  984. NULL
  985. };
  986. static struct attribute_group input_dev_id_attr_group = {
  987. .name = "id",
  988. .attrs = input_dev_id_attrs,
  989. };
  990. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  991. int max, int add_cr)
  992. {
  993. int i;
  994. int len = 0;
  995. bool skip_empty = true;
  996. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  997. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  998. bitmap[i], skip_empty);
  999. if (len) {
  1000. skip_empty = false;
  1001. if (i > 0)
  1002. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1003. }
  1004. }
  1005. /*
  1006. * If no output was produced print a single 0.
  1007. */
  1008. if (len == 0)
  1009. len = snprintf(buf, buf_size, "%d", 0);
  1010. if (add_cr)
  1011. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1012. return len;
  1013. }
  1014. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1015. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1016. struct device_attribute *attr, \
  1017. char *buf) \
  1018. { \
  1019. struct input_dev *input_dev = to_input_dev(dev); \
  1020. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1021. input_dev->bm##bit, ev##_MAX, \
  1022. true); \
  1023. return min_t(int, len, PAGE_SIZE); \
  1024. } \
  1025. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1026. INPUT_DEV_CAP_ATTR(EV, ev);
  1027. INPUT_DEV_CAP_ATTR(KEY, key);
  1028. INPUT_DEV_CAP_ATTR(REL, rel);
  1029. INPUT_DEV_CAP_ATTR(ABS, abs);
  1030. INPUT_DEV_CAP_ATTR(MSC, msc);
  1031. INPUT_DEV_CAP_ATTR(LED, led);
  1032. INPUT_DEV_CAP_ATTR(SND, snd);
  1033. INPUT_DEV_CAP_ATTR(FF, ff);
  1034. INPUT_DEV_CAP_ATTR(SW, sw);
  1035. static struct attribute *input_dev_caps_attrs[] = {
  1036. &dev_attr_ev.attr,
  1037. &dev_attr_key.attr,
  1038. &dev_attr_rel.attr,
  1039. &dev_attr_abs.attr,
  1040. &dev_attr_msc.attr,
  1041. &dev_attr_led.attr,
  1042. &dev_attr_snd.attr,
  1043. &dev_attr_ff.attr,
  1044. &dev_attr_sw.attr,
  1045. NULL
  1046. };
  1047. static struct attribute_group input_dev_caps_attr_group = {
  1048. .name = "capabilities",
  1049. .attrs = input_dev_caps_attrs,
  1050. };
  1051. static const struct attribute_group *input_dev_attr_groups[] = {
  1052. &input_dev_attr_group,
  1053. &input_dev_id_attr_group,
  1054. &input_dev_caps_attr_group,
  1055. NULL
  1056. };
  1057. static void input_dev_release(struct device *device)
  1058. {
  1059. struct input_dev *dev = to_input_dev(device);
  1060. input_ff_destroy(dev);
  1061. kfree(dev);
  1062. module_put(THIS_MODULE);
  1063. }
  1064. /*
  1065. * Input uevent interface - loading event handlers based on
  1066. * device bitfields.
  1067. */
  1068. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1069. const char *name, unsigned long *bitmap, int max)
  1070. {
  1071. int len;
  1072. if (add_uevent_var(env, "%s=", name))
  1073. return -ENOMEM;
  1074. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1075. sizeof(env->buf) - env->buflen,
  1076. bitmap, max, false);
  1077. if (len >= (sizeof(env->buf) - env->buflen))
  1078. return -ENOMEM;
  1079. env->buflen += len;
  1080. return 0;
  1081. }
  1082. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1083. struct input_dev *dev)
  1084. {
  1085. int len;
  1086. if (add_uevent_var(env, "MODALIAS="))
  1087. return -ENOMEM;
  1088. len = input_print_modalias(&env->buf[env->buflen - 1],
  1089. sizeof(env->buf) - env->buflen,
  1090. dev, 0);
  1091. if (len >= (sizeof(env->buf) - env->buflen))
  1092. return -ENOMEM;
  1093. env->buflen += len;
  1094. return 0;
  1095. }
  1096. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1097. do { \
  1098. int err = add_uevent_var(env, fmt, val); \
  1099. if (err) \
  1100. return err; \
  1101. } while (0)
  1102. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1103. do { \
  1104. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1105. if (err) \
  1106. return err; \
  1107. } while (0)
  1108. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1109. do { \
  1110. int err = input_add_uevent_modalias_var(env, dev); \
  1111. if (err) \
  1112. return err; \
  1113. } while (0)
  1114. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1115. {
  1116. struct input_dev *dev = to_input_dev(device);
  1117. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1118. dev->id.bustype, dev->id.vendor,
  1119. dev->id.product, dev->id.version);
  1120. if (dev->name)
  1121. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1122. if (dev->phys)
  1123. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1124. if (dev->uniq)
  1125. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1126. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1127. if (test_bit(EV_KEY, dev->evbit))
  1128. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1129. if (test_bit(EV_REL, dev->evbit))
  1130. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1131. if (test_bit(EV_ABS, dev->evbit))
  1132. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1133. if (test_bit(EV_MSC, dev->evbit))
  1134. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1135. if (test_bit(EV_LED, dev->evbit))
  1136. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1137. if (test_bit(EV_SND, dev->evbit))
  1138. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1139. if (test_bit(EV_FF, dev->evbit))
  1140. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1141. if (test_bit(EV_SW, dev->evbit))
  1142. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1143. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1144. return 0;
  1145. }
  1146. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1147. do { \
  1148. int i; \
  1149. bool active; \
  1150. \
  1151. if (!test_bit(EV_##type, dev->evbit)) \
  1152. break; \
  1153. \
  1154. for (i = 0; i < type##_MAX; i++) { \
  1155. if (!test_bit(i, dev->bits##bit)) \
  1156. continue; \
  1157. \
  1158. active = test_bit(i, dev->bits); \
  1159. if (!active && !on) \
  1160. continue; \
  1161. \
  1162. dev->event(dev, EV_##type, i, on ? active : 0); \
  1163. } \
  1164. } while (0)
  1165. #ifdef CONFIG_PM
  1166. static void input_dev_reset(struct input_dev *dev, bool activate)
  1167. {
  1168. if (!dev->event)
  1169. return;
  1170. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1171. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1172. if (activate && test_bit(EV_REP, dev->evbit)) {
  1173. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1174. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1175. }
  1176. }
  1177. static int input_dev_suspend(struct device *dev)
  1178. {
  1179. struct input_dev *input_dev = to_input_dev(dev);
  1180. mutex_lock(&input_dev->mutex);
  1181. input_dev_reset(input_dev, false);
  1182. mutex_unlock(&input_dev->mutex);
  1183. return 0;
  1184. }
  1185. static int input_dev_resume(struct device *dev)
  1186. {
  1187. struct input_dev *input_dev = to_input_dev(dev);
  1188. mutex_lock(&input_dev->mutex);
  1189. input_dev_reset(input_dev, true);
  1190. /*
  1191. * Keys that have been pressed at suspend time are unlikely
  1192. * to be still pressed when we resume.
  1193. */
  1194. spin_lock_irq(&input_dev->event_lock);
  1195. input_dev_release_keys(input_dev);
  1196. spin_unlock_irq(&input_dev->event_lock);
  1197. mutex_unlock(&input_dev->mutex);
  1198. return 0;
  1199. }
  1200. static const struct dev_pm_ops input_dev_pm_ops = {
  1201. .suspend = input_dev_suspend,
  1202. .resume = input_dev_resume,
  1203. .poweroff = input_dev_suspend,
  1204. .restore = input_dev_resume,
  1205. };
  1206. #endif /* CONFIG_PM */
  1207. static struct device_type input_dev_type = {
  1208. .groups = input_dev_attr_groups,
  1209. .release = input_dev_release,
  1210. .uevent = input_dev_uevent,
  1211. #ifdef CONFIG_PM
  1212. .pm = &input_dev_pm_ops,
  1213. #endif
  1214. };
  1215. static char *input_devnode(struct device *dev, mode_t *mode)
  1216. {
  1217. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1218. }
  1219. struct class input_class = {
  1220. .name = "input",
  1221. .devnode = input_devnode,
  1222. };
  1223. EXPORT_SYMBOL_GPL(input_class);
  1224. /**
  1225. * input_allocate_device - allocate memory for new input device
  1226. *
  1227. * Returns prepared struct input_dev or NULL.
  1228. *
  1229. * NOTE: Use input_free_device() to free devices that have not been
  1230. * registered; input_unregister_device() should be used for already
  1231. * registered devices.
  1232. */
  1233. struct input_dev *input_allocate_device(void)
  1234. {
  1235. struct input_dev *dev;
  1236. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1237. if (dev) {
  1238. dev->dev.type = &input_dev_type;
  1239. dev->dev.class = &input_class;
  1240. device_initialize(&dev->dev);
  1241. mutex_init(&dev->mutex);
  1242. spin_lock_init(&dev->event_lock);
  1243. INIT_LIST_HEAD(&dev->h_list);
  1244. INIT_LIST_HEAD(&dev->node);
  1245. __module_get(THIS_MODULE);
  1246. }
  1247. return dev;
  1248. }
  1249. EXPORT_SYMBOL(input_allocate_device);
  1250. /**
  1251. * input_free_device - free memory occupied by input_dev structure
  1252. * @dev: input device to free
  1253. *
  1254. * This function should only be used if input_register_device()
  1255. * was not called yet or if it failed. Once device was registered
  1256. * use input_unregister_device() and memory will be freed once last
  1257. * reference to the device is dropped.
  1258. *
  1259. * Device should be allocated by input_allocate_device().
  1260. *
  1261. * NOTE: If there are references to the input device then memory
  1262. * will not be freed until last reference is dropped.
  1263. */
  1264. void input_free_device(struct input_dev *dev)
  1265. {
  1266. if (dev)
  1267. input_put_device(dev);
  1268. }
  1269. EXPORT_SYMBOL(input_free_device);
  1270. /**
  1271. * input_set_capability - mark device as capable of a certain event
  1272. * @dev: device that is capable of emitting or accepting event
  1273. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1274. * @code: event code
  1275. *
  1276. * In addition to setting up corresponding bit in appropriate capability
  1277. * bitmap the function also adjusts dev->evbit.
  1278. */
  1279. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1280. {
  1281. switch (type) {
  1282. case EV_KEY:
  1283. __set_bit(code, dev->keybit);
  1284. break;
  1285. case EV_REL:
  1286. __set_bit(code, dev->relbit);
  1287. break;
  1288. case EV_ABS:
  1289. __set_bit(code, dev->absbit);
  1290. break;
  1291. case EV_MSC:
  1292. __set_bit(code, dev->mscbit);
  1293. break;
  1294. case EV_SW:
  1295. __set_bit(code, dev->swbit);
  1296. break;
  1297. case EV_LED:
  1298. __set_bit(code, dev->ledbit);
  1299. break;
  1300. case EV_SND:
  1301. __set_bit(code, dev->sndbit);
  1302. break;
  1303. case EV_FF:
  1304. __set_bit(code, dev->ffbit);
  1305. break;
  1306. case EV_PWR:
  1307. /* do nothing */
  1308. break;
  1309. default:
  1310. printk(KERN_ERR
  1311. "input_set_capability: unknown type %u (code %u)\n",
  1312. type, code);
  1313. dump_stack();
  1314. return;
  1315. }
  1316. __set_bit(type, dev->evbit);
  1317. }
  1318. EXPORT_SYMBOL(input_set_capability);
  1319. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1320. do { \
  1321. if (!test_bit(EV_##type, dev->evbit)) \
  1322. memset(dev->bits##bit, 0, \
  1323. sizeof(dev->bits##bit)); \
  1324. } while (0)
  1325. static void input_cleanse_bitmasks(struct input_dev *dev)
  1326. {
  1327. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1328. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1329. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1330. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1331. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1332. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1333. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1334. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1335. }
  1336. /**
  1337. * input_register_device - register device with input core
  1338. * @dev: device to be registered
  1339. *
  1340. * This function registers device with input core. The device must be
  1341. * allocated with input_allocate_device() and all it's capabilities
  1342. * set up before registering.
  1343. * If function fails the device must be freed with input_free_device().
  1344. * Once device has been successfully registered it can be unregistered
  1345. * with input_unregister_device(); input_free_device() should not be
  1346. * called in this case.
  1347. */
  1348. int input_register_device(struct input_dev *dev)
  1349. {
  1350. static atomic_t input_no = ATOMIC_INIT(0);
  1351. struct input_handler *handler;
  1352. const char *path;
  1353. int error;
  1354. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1355. __set_bit(EV_SYN, dev->evbit);
  1356. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1357. __clear_bit(KEY_RESERVED, dev->keybit);
  1358. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1359. input_cleanse_bitmasks(dev);
  1360. /*
  1361. * If delay and period are pre-set by the driver, then autorepeating
  1362. * is handled by the driver itself and we don't do it in input.c.
  1363. */
  1364. init_timer(&dev->timer);
  1365. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1366. dev->timer.data = (long) dev;
  1367. dev->timer.function = input_repeat_key;
  1368. dev->rep[REP_DELAY] = 250;
  1369. dev->rep[REP_PERIOD] = 33;
  1370. }
  1371. if (!dev->getkeycode)
  1372. dev->getkeycode = input_default_getkeycode;
  1373. if (!dev->setkeycode)
  1374. dev->setkeycode = input_default_setkeycode;
  1375. dev_set_name(&dev->dev, "input%ld",
  1376. (unsigned long) atomic_inc_return(&input_no) - 1);
  1377. error = device_add(&dev->dev);
  1378. if (error)
  1379. return error;
  1380. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1381. printk(KERN_INFO "input: %s as %s\n",
  1382. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1383. kfree(path);
  1384. error = mutex_lock_interruptible(&input_mutex);
  1385. if (error) {
  1386. device_del(&dev->dev);
  1387. return error;
  1388. }
  1389. list_add_tail(&dev->node, &input_dev_list);
  1390. list_for_each_entry(handler, &input_handler_list, node)
  1391. input_attach_handler(dev, handler);
  1392. input_wakeup_procfs_readers();
  1393. mutex_unlock(&input_mutex);
  1394. return 0;
  1395. }
  1396. EXPORT_SYMBOL(input_register_device);
  1397. /**
  1398. * input_unregister_device - unregister previously registered device
  1399. * @dev: device to be unregistered
  1400. *
  1401. * This function unregisters an input device. Once device is unregistered
  1402. * the caller should not try to access it as it may get freed at any moment.
  1403. */
  1404. void input_unregister_device(struct input_dev *dev)
  1405. {
  1406. struct input_handle *handle, *next;
  1407. input_disconnect_device(dev);
  1408. mutex_lock(&input_mutex);
  1409. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1410. handle->handler->disconnect(handle);
  1411. WARN_ON(!list_empty(&dev->h_list));
  1412. del_timer_sync(&dev->timer);
  1413. list_del_init(&dev->node);
  1414. input_wakeup_procfs_readers();
  1415. mutex_unlock(&input_mutex);
  1416. device_unregister(&dev->dev);
  1417. }
  1418. EXPORT_SYMBOL(input_unregister_device);
  1419. /**
  1420. * input_register_handler - register a new input handler
  1421. * @handler: handler to be registered
  1422. *
  1423. * This function registers a new input handler (interface) for input
  1424. * devices in the system and attaches it to all input devices that
  1425. * are compatible with the handler.
  1426. */
  1427. int input_register_handler(struct input_handler *handler)
  1428. {
  1429. struct input_dev *dev;
  1430. int retval;
  1431. retval = mutex_lock_interruptible(&input_mutex);
  1432. if (retval)
  1433. return retval;
  1434. INIT_LIST_HEAD(&handler->h_list);
  1435. if (handler->fops != NULL) {
  1436. if (input_table[handler->minor >> 5]) {
  1437. retval = -EBUSY;
  1438. goto out;
  1439. }
  1440. input_table[handler->minor >> 5] = handler;
  1441. }
  1442. list_add_tail(&handler->node, &input_handler_list);
  1443. list_for_each_entry(dev, &input_dev_list, node)
  1444. input_attach_handler(dev, handler);
  1445. input_wakeup_procfs_readers();
  1446. out:
  1447. mutex_unlock(&input_mutex);
  1448. return retval;
  1449. }
  1450. EXPORT_SYMBOL(input_register_handler);
  1451. /**
  1452. * input_unregister_handler - unregisters an input handler
  1453. * @handler: handler to be unregistered
  1454. *
  1455. * This function disconnects a handler from its input devices and
  1456. * removes it from lists of known handlers.
  1457. */
  1458. void input_unregister_handler(struct input_handler *handler)
  1459. {
  1460. struct input_handle *handle, *next;
  1461. mutex_lock(&input_mutex);
  1462. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1463. handler->disconnect(handle);
  1464. WARN_ON(!list_empty(&handler->h_list));
  1465. list_del_init(&handler->node);
  1466. if (handler->fops != NULL)
  1467. input_table[handler->minor >> 5] = NULL;
  1468. input_wakeup_procfs_readers();
  1469. mutex_unlock(&input_mutex);
  1470. }
  1471. EXPORT_SYMBOL(input_unregister_handler);
  1472. /**
  1473. * input_handler_for_each_handle - handle iterator
  1474. * @handler: input handler to iterate
  1475. * @data: data for the callback
  1476. * @fn: function to be called for each handle
  1477. *
  1478. * Iterate over @bus's list of devices, and call @fn for each, passing
  1479. * it @data and stop when @fn returns a non-zero value. The function is
  1480. * using RCU to traverse the list and therefore may be usind in atonic
  1481. * contexts. The @fn callback is invoked from RCU critical section and
  1482. * thus must not sleep.
  1483. */
  1484. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1485. int (*fn)(struct input_handle *, void *))
  1486. {
  1487. struct input_handle *handle;
  1488. int retval = 0;
  1489. rcu_read_lock();
  1490. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1491. retval = fn(handle, data);
  1492. if (retval)
  1493. break;
  1494. }
  1495. rcu_read_unlock();
  1496. return retval;
  1497. }
  1498. EXPORT_SYMBOL(input_handler_for_each_handle);
  1499. /**
  1500. * input_register_handle - register a new input handle
  1501. * @handle: handle to register
  1502. *
  1503. * This function puts a new input handle onto device's
  1504. * and handler's lists so that events can flow through
  1505. * it once it is opened using input_open_device().
  1506. *
  1507. * This function is supposed to be called from handler's
  1508. * connect() method.
  1509. */
  1510. int input_register_handle(struct input_handle *handle)
  1511. {
  1512. struct input_handler *handler = handle->handler;
  1513. struct input_dev *dev = handle->dev;
  1514. int error;
  1515. /*
  1516. * We take dev->mutex here to prevent race with
  1517. * input_release_device().
  1518. */
  1519. error = mutex_lock_interruptible(&dev->mutex);
  1520. if (error)
  1521. return error;
  1522. /*
  1523. * Filters go to the head of the list, normal handlers
  1524. * to the tail.
  1525. */
  1526. if (handler->filter)
  1527. list_add_rcu(&handle->d_node, &dev->h_list);
  1528. else
  1529. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1530. mutex_unlock(&dev->mutex);
  1531. /*
  1532. * Since we are supposed to be called from ->connect()
  1533. * which is mutually exclusive with ->disconnect()
  1534. * we can't be racing with input_unregister_handle()
  1535. * and so separate lock is not needed here.
  1536. */
  1537. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1538. if (handler->start)
  1539. handler->start(handle);
  1540. return 0;
  1541. }
  1542. EXPORT_SYMBOL(input_register_handle);
  1543. /**
  1544. * input_unregister_handle - unregister an input handle
  1545. * @handle: handle to unregister
  1546. *
  1547. * This function removes input handle from device's
  1548. * and handler's lists.
  1549. *
  1550. * This function is supposed to be called from handler's
  1551. * disconnect() method.
  1552. */
  1553. void input_unregister_handle(struct input_handle *handle)
  1554. {
  1555. struct input_dev *dev = handle->dev;
  1556. list_del_rcu(&handle->h_node);
  1557. /*
  1558. * Take dev->mutex to prevent race with input_release_device().
  1559. */
  1560. mutex_lock(&dev->mutex);
  1561. list_del_rcu(&handle->d_node);
  1562. mutex_unlock(&dev->mutex);
  1563. synchronize_rcu();
  1564. }
  1565. EXPORT_SYMBOL(input_unregister_handle);
  1566. static int input_open_file(struct inode *inode, struct file *file)
  1567. {
  1568. struct input_handler *handler;
  1569. const struct file_operations *old_fops, *new_fops = NULL;
  1570. int err;
  1571. err = mutex_lock_interruptible(&input_mutex);
  1572. if (err)
  1573. return err;
  1574. /* No load-on-demand here? */
  1575. handler = input_table[iminor(inode) >> 5];
  1576. if (handler)
  1577. new_fops = fops_get(handler->fops);
  1578. mutex_unlock(&input_mutex);
  1579. /*
  1580. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1581. * not "no device". Oh, well...
  1582. */
  1583. if (!new_fops || !new_fops->open) {
  1584. fops_put(new_fops);
  1585. err = -ENODEV;
  1586. goto out;
  1587. }
  1588. old_fops = file->f_op;
  1589. file->f_op = new_fops;
  1590. err = new_fops->open(inode, file);
  1591. if (err) {
  1592. fops_put(file->f_op);
  1593. file->f_op = fops_get(old_fops);
  1594. }
  1595. fops_put(old_fops);
  1596. out:
  1597. return err;
  1598. }
  1599. static const struct file_operations input_fops = {
  1600. .owner = THIS_MODULE,
  1601. .open = input_open_file,
  1602. };
  1603. static void __init input_init_abs_bypass(void)
  1604. {
  1605. const unsigned int *p;
  1606. for (p = input_abs_bypass_init_data; *p; p++)
  1607. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1608. }
  1609. static int __init input_init(void)
  1610. {
  1611. int err;
  1612. input_init_abs_bypass();
  1613. err = class_register(&input_class);
  1614. if (err) {
  1615. printk(KERN_ERR "input: unable to register input_dev class\n");
  1616. return err;
  1617. }
  1618. err = input_proc_init();
  1619. if (err)
  1620. goto fail1;
  1621. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1622. if (err) {
  1623. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1624. goto fail2;
  1625. }
  1626. return 0;
  1627. fail2: input_proc_exit();
  1628. fail1: class_unregister(&input_class);
  1629. return err;
  1630. }
  1631. static void __exit input_exit(void)
  1632. {
  1633. input_proc_exit();
  1634. unregister_chrdev(INPUT_MAJOR, "input");
  1635. class_unregister(&input_class);
  1636. }
  1637. subsys_initcall(input_init);
  1638. module_exit(input_exit);