sh_eth.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/version.h>
  23. #include <linux/init.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/delay.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/mdio-bitbang.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/phy.h>
  31. #include <linux/cache.h>
  32. #include <linux/io.h>
  33. #include "sh_eth.h"
  34. /* CPU <-> EDMAC endian convert */
  35. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  36. {
  37. switch (mdp->edmac_endian) {
  38. case EDMAC_LITTLE_ENDIAN:
  39. return cpu_to_le32(x);
  40. case EDMAC_BIG_ENDIAN:
  41. return cpu_to_be32(x);
  42. }
  43. return x;
  44. }
  45. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  46. {
  47. switch (mdp->edmac_endian) {
  48. case EDMAC_LITTLE_ENDIAN:
  49. return le32_to_cpu(x);
  50. case EDMAC_BIG_ENDIAN:
  51. return be32_to_cpu(x);
  52. }
  53. return x;
  54. }
  55. /*
  56. * Program the hardware MAC address from dev->dev_addr.
  57. */
  58. static void update_mac_address(struct net_device *ndev)
  59. {
  60. u32 ioaddr = ndev->base_addr;
  61. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  62. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  63. ioaddr + MAHR);
  64. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  65. ioaddr + MALR);
  66. }
  67. /*
  68. * Get MAC address from SuperH MAC address register
  69. *
  70. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  71. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  72. * When you want use this device, you must set MAC address in bootloader.
  73. *
  74. */
  75. static void read_mac_address(struct net_device *ndev)
  76. {
  77. u32 ioaddr = ndev->base_addr;
  78. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  79. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  80. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  81. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  82. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  83. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  84. }
  85. struct bb_info {
  86. struct mdiobb_ctrl ctrl;
  87. u32 addr;
  88. u32 mmd_msk;/* MMD */
  89. u32 mdo_msk;
  90. u32 mdi_msk;
  91. u32 mdc_msk;
  92. };
  93. /* PHY bit set */
  94. static void bb_set(u32 addr, u32 msk)
  95. {
  96. ctrl_outl(ctrl_inl(addr) | msk, addr);
  97. }
  98. /* PHY bit clear */
  99. static void bb_clr(u32 addr, u32 msk)
  100. {
  101. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  102. }
  103. /* PHY bit read */
  104. static int bb_read(u32 addr, u32 msk)
  105. {
  106. return (ctrl_inl(addr) & msk) != 0;
  107. }
  108. /* Data I/O pin control */
  109. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  110. {
  111. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  112. if (bit)
  113. bb_set(bitbang->addr, bitbang->mmd_msk);
  114. else
  115. bb_clr(bitbang->addr, bitbang->mmd_msk);
  116. }
  117. /* Set bit data*/
  118. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  119. {
  120. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  121. if (bit)
  122. bb_set(bitbang->addr, bitbang->mdo_msk);
  123. else
  124. bb_clr(bitbang->addr, bitbang->mdo_msk);
  125. }
  126. /* Get bit data*/
  127. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  128. {
  129. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  130. return bb_read(bitbang->addr, bitbang->mdi_msk);
  131. }
  132. /* MDC pin control */
  133. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  134. {
  135. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  136. if (bit)
  137. bb_set(bitbang->addr, bitbang->mdc_msk);
  138. else
  139. bb_clr(bitbang->addr, bitbang->mdc_msk);
  140. }
  141. /* mdio bus control struct */
  142. static struct mdiobb_ops bb_ops = {
  143. .owner = THIS_MODULE,
  144. .set_mdc = sh_mdc_ctrl,
  145. .set_mdio_dir = sh_mmd_ctrl,
  146. .set_mdio_data = sh_set_mdio,
  147. .get_mdio_data = sh_get_mdio,
  148. };
  149. /* Chip Reset */
  150. static void sh_eth_reset(struct net_device *ndev)
  151. {
  152. u32 ioaddr = ndev->base_addr;
  153. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  154. int cnt = 100;
  155. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  156. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  157. while (cnt > 0) {
  158. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  159. break;
  160. mdelay(1);
  161. cnt--;
  162. }
  163. if (cnt < 0)
  164. printk(KERN_ERR "Device reset fail\n");
  165. /* Table Init */
  166. ctrl_outl(0x0, ioaddr + TDLAR);
  167. ctrl_outl(0x0, ioaddr + TDFAR);
  168. ctrl_outl(0x0, ioaddr + TDFXR);
  169. ctrl_outl(0x0, ioaddr + TDFFR);
  170. ctrl_outl(0x0, ioaddr + RDLAR);
  171. ctrl_outl(0x0, ioaddr + RDFAR);
  172. ctrl_outl(0x0, ioaddr + RDFXR);
  173. ctrl_outl(0x0, ioaddr + RDFFR);
  174. #else
  175. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  176. mdelay(3);
  177. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  178. #endif
  179. }
  180. /* free skb and descriptor buffer */
  181. static void sh_eth_ring_free(struct net_device *ndev)
  182. {
  183. struct sh_eth_private *mdp = netdev_priv(ndev);
  184. int i;
  185. /* Free Rx skb ringbuffer */
  186. if (mdp->rx_skbuff) {
  187. for (i = 0; i < RX_RING_SIZE; i++) {
  188. if (mdp->rx_skbuff[i])
  189. dev_kfree_skb(mdp->rx_skbuff[i]);
  190. }
  191. }
  192. kfree(mdp->rx_skbuff);
  193. /* Free Tx skb ringbuffer */
  194. if (mdp->tx_skbuff) {
  195. for (i = 0; i < TX_RING_SIZE; i++) {
  196. if (mdp->tx_skbuff[i])
  197. dev_kfree_skb(mdp->tx_skbuff[i]);
  198. }
  199. }
  200. kfree(mdp->tx_skbuff);
  201. }
  202. /* format skb and descriptor buffer */
  203. static void sh_eth_ring_format(struct net_device *ndev)
  204. {
  205. u32 ioaddr = ndev->base_addr, reserve = 0;
  206. struct sh_eth_private *mdp = netdev_priv(ndev);
  207. int i;
  208. struct sk_buff *skb;
  209. struct sh_eth_rxdesc *rxdesc = NULL;
  210. struct sh_eth_txdesc *txdesc = NULL;
  211. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  212. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  213. mdp->cur_rx = mdp->cur_tx = 0;
  214. mdp->dirty_rx = mdp->dirty_tx = 0;
  215. memset(mdp->rx_ring, 0, rx_ringsize);
  216. /* build Rx ring buffer */
  217. for (i = 0; i < RX_RING_SIZE; i++) {
  218. /* skb */
  219. mdp->rx_skbuff[i] = NULL;
  220. skb = dev_alloc_skb(mdp->rx_buf_sz);
  221. mdp->rx_skbuff[i] = skb;
  222. if (skb == NULL)
  223. break;
  224. skb->dev = ndev; /* Mark as being used by this device. */
  225. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  226. reserve = SH7763_SKB_ALIGN
  227. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  228. if (reserve)
  229. skb_reserve(skb, reserve);
  230. #else
  231. skb_reserve(skb, RX_OFFSET);
  232. #endif
  233. /* RX descriptor */
  234. rxdesc = &mdp->rx_ring[i];
  235. rxdesc->addr = (u32)skb->data & ~0x3UL;
  236. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  237. /* The size of the buffer is 16 byte boundary. */
  238. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  239. /* Rx descriptor address set */
  240. if (i == 0) {
  241. ctrl_outl((u32)rxdesc, ioaddr + RDLAR);
  242. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  243. ctrl_outl((u32)rxdesc, ioaddr + RDFAR);
  244. #endif
  245. }
  246. }
  247. /* Rx descriptor address set */
  248. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  249. ctrl_outl((u32)rxdesc, ioaddr + RDFXR);
  250. ctrl_outl(0x1, ioaddr + RDFFR);
  251. #endif
  252. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  253. /* Mark the last entry as wrapping the ring. */
  254. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  255. memset(mdp->tx_ring, 0, tx_ringsize);
  256. /* build Tx ring buffer */
  257. for (i = 0; i < TX_RING_SIZE; i++) {
  258. mdp->tx_skbuff[i] = NULL;
  259. txdesc = &mdp->tx_ring[i];
  260. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  261. txdesc->buffer_length = 0;
  262. if (i == 0) {
  263. /* Tx descriptor address set */
  264. ctrl_outl((u32)txdesc, ioaddr + TDLAR);
  265. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  266. ctrl_outl((u32)txdesc, ioaddr + TDFAR);
  267. #endif
  268. }
  269. }
  270. /* Tx descriptor address set */
  271. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  272. ctrl_outl((u32)txdesc, ioaddr + TDFXR);
  273. ctrl_outl(0x1, ioaddr + TDFFR);
  274. #endif
  275. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  276. }
  277. /* Get skb and descriptor buffer */
  278. static int sh_eth_ring_init(struct net_device *ndev)
  279. {
  280. struct sh_eth_private *mdp = netdev_priv(ndev);
  281. int rx_ringsize, tx_ringsize, ret = 0;
  282. /*
  283. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  284. * card needs room to do 8 byte alignment, +2 so we can reserve
  285. * the first 2 bytes, and +16 gets room for the status word from the
  286. * card.
  287. */
  288. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  289. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  290. /* Allocate RX and TX skb rings */
  291. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  292. GFP_KERNEL);
  293. if (!mdp->rx_skbuff) {
  294. printk(KERN_ERR "%s: Cannot allocate Rx skb\n", ndev->name);
  295. ret = -ENOMEM;
  296. return ret;
  297. }
  298. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  299. GFP_KERNEL);
  300. if (!mdp->tx_skbuff) {
  301. printk(KERN_ERR "%s: Cannot allocate Tx skb\n", ndev->name);
  302. ret = -ENOMEM;
  303. goto skb_ring_free;
  304. }
  305. /* Allocate all Rx descriptors. */
  306. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  307. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  308. GFP_KERNEL);
  309. if (!mdp->rx_ring) {
  310. printk(KERN_ERR "%s: Cannot allocate Rx Ring (size %d bytes)\n",
  311. ndev->name, rx_ringsize);
  312. ret = -ENOMEM;
  313. goto desc_ring_free;
  314. }
  315. mdp->dirty_rx = 0;
  316. /* Allocate all Tx descriptors. */
  317. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  318. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  319. GFP_KERNEL);
  320. if (!mdp->tx_ring) {
  321. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  322. ndev->name, tx_ringsize);
  323. ret = -ENOMEM;
  324. goto desc_ring_free;
  325. }
  326. return ret;
  327. desc_ring_free:
  328. /* free DMA buffer */
  329. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  330. skb_ring_free:
  331. /* Free Rx and Tx skb ring buffer */
  332. sh_eth_ring_free(ndev);
  333. return ret;
  334. }
  335. static int sh_eth_dev_init(struct net_device *ndev)
  336. {
  337. int ret = 0;
  338. struct sh_eth_private *mdp = netdev_priv(ndev);
  339. u32 ioaddr = ndev->base_addr;
  340. u_int32_t rx_int_var, tx_int_var;
  341. u32 val;
  342. /* Soft Reset */
  343. sh_eth_reset(ndev);
  344. /* Descriptor format */
  345. sh_eth_ring_format(ndev);
  346. ctrl_outl(RPADIR_INIT, ioaddr + RPADIR);
  347. /* all sh_eth int mask */
  348. ctrl_outl(0, ioaddr + EESIPR);
  349. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  350. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  351. #else
  352. ctrl_outl(0, ioaddr + EDMR); /* Endian change */
  353. #endif
  354. /* FIFO size set */
  355. ctrl_outl((FIFO_SIZE_T | FIFO_SIZE_R), ioaddr + FDR);
  356. ctrl_outl(0, ioaddr + TFTR);
  357. /* Frame recv control */
  358. ctrl_outl(0, ioaddr + RMCR);
  359. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  360. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  361. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  362. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  363. /* Burst sycle set */
  364. ctrl_outl(0x800, ioaddr + BCULR);
  365. #endif
  366. ctrl_outl((FIFO_F_D_RFF | FIFO_F_D_RFD), ioaddr + FCFTR);
  367. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  368. ctrl_outl(0, ioaddr + TRIMD);
  369. #endif
  370. /* Recv frame limit set register */
  371. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  372. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  373. ctrl_outl((DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff), ioaddr + EESIPR);
  374. /* PAUSE Prohibition */
  375. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  376. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  377. ctrl_outl(val, ioaddr + ECMR);
  378. /* E-MAC Status Register clear */
  379. ctrl_outl(ECSR_INIT, ioaddr + ECSR);
  380. /* E-MAC Interrupt Enable register */
  381. ctrl_outl(ECSIPR_INIT, ioaddr + ECSIPR);
  382. /* Set MAC address */
  383. update_mac_address(ndev);
  384. /* mask reset */
  385. #if defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  386. ctrl_outl(APR_AP, ioaddr + APR);
  387. ctrl_outl(MPR_MP, ioaddr + MPR);
  388. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  389. #endif
  390. #if defined(CONFIG_CPU_SUBTYPE_SH7710)
  391. ctrl_outl(BCFR_UNLIMITED, ioaddr + BCFR);
  392. #endif
  393. /* Setting the Rx mode will start the Rx process. */
  394. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  395. netif_start_queue(ndev);
  396. return ret;
  397. }
  398. /* free Tx skb function */
  399. static int sh_eth_txfree(struct net_device *ndev)
  400. {
  401. struct sh_eth_private *mdp = netdev_priv(ndev);
  402. struct sh_eth_txdesc *txdesc;
  403. int freeNum = 0;
  404. int entry = 0;
  405. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  406. entry = mdp->dirty_tx % TX_RING_SIZE;
  407. txdesc = &mdp->tx_ring[entry];
  408. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  409. break;
  410. /* Free the original skb. */
  411. if (mdp->tx_skbuff[entry]) {
  412. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  413. mdp->tx_skbuff[entry] = NULL;
  414. freeNum++;
  415. }
  416. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  417. if (entry >= TX_RING_SIZE - 1)
  418. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  419. mdp->stats.tx_packets++;
  420. mdp->stats.tx_bytes += txdesc->buffer_length;
  421. }
  422. return freeNum;
  423. }
  424. /* Packet receive function */
  425. static int sh_eth_rx(struct net_device *ndev)
  426. {
  427. struct sh_eth_private *mdp = netdev_priv(ndev);
  428. struct sh_eth_rxdesc *rxdesc;
  429. int entry = mdp->cur_rx % RX_RING_SIZE;
  430. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  431. struct sk_buff *skb;
  432. u16 pkt_len = 0;
  433. u32 desc_status, reserve = 0;
  434. rxdesc = &mdp->rx_ring[entry];
  435. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  436. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  437. pkt_len = rxdesc->frame_length;
  438. if (--boguscnt < 0)
  439. break;
  440. if (!(desc_status & RDFEND))
  441. mdp->stats.rx_length_errors++;
  442. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  443. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  444. mdp->stats.rx_errors++;
  445. if (desc_status & RD_RFS1)
  446. mdp->stats.rx_crc_errors++;
  447. if (desc_status & RD_RFS2)
  448. mdp->stats.rx_frame_errors++;
  449. if (desc_status & RD_RFS3)
  450. mdp->stats.rx_length_errors++;
  451. if (desc_status & RD_RFS4)
  452. mdp->stats.rx_length_errors++;
  453. if (desc_status & RD_RFS6)
  454. mdp->stats.rx_missed_errors++;
  455. if (desc_status & RD_RFS10)
  456. mdp->stats.rx_over_errors++;
  457. } else {
  458. swaps((char *)(rxdesc->addr & ~0x3), pkt_len + 2);
  459. skb = mdp->rx_skbuff[entry];
  460. mdp->rx_skbuff[entry] = NULL;
  461. skb_put(skb, pkt_len);
  462. skb->protocol = eth_type_trans(skb, ndev);
  463. netif_rx(skb);
  464. ndev->last_rx = jiffies;
  465. mdp->stats.rx_packets++;
  466. mdp->stats.rx_bytes += pkt_len;
  467. }
  468. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  469. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  470. }
  471. /* Refill the Rx ring buffers. */
  472. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  473. entry = mdp->dirty_rx % RX_RING_SIZE;
  474. rxdesc = &mdp->rx_ring[entry];
  475. /* The size of the buffer is 16 byte boundary. */
  476. rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;
  477. if (mdp->rx_skbuff[entry] == NULL) {
  478. skb = dev_alloc_skb(mdp->rx_buf_sz);
  479. mdp->rx_skbuff[entry] = skb;
  480. if (skb == NULL)
  481. break; /* Better luck next round. */
  482. skb->dev = ndev;
  483. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  484. reserve = SH7763_SKB_ALIGN
  485. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  486. if (reserve)
  487. skb_reserve(skb, reserve);
  488. #else
  489. skb_reserve(skb, RX_OFFSET);
  490. #endif
  491. skb->ip_summed = CHECKSUM_NONE;
  492. rxdesc->addr = (u32)skb->data & ~0x3UL;
  493. }
  494. if (entry >= RX_RING_SIZE - 1)
  495. rxdesc->status |=
  496. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  497. else
  498. rxdesc->status |=
  499. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  500. }
  501. /* Restart Rx engine if stopped. */
  502. /* If we don't need to check status, don't. -KDU */
  503. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  504. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  505. return 0;
  506. }
  507. /* error control function */
  508. static void sh_eth_error(struct net_device *ndev, int intr_status)
  509. {
  510. struct sh_eth_private *mdp = netdev_priv(ndev);
  511. u32 ioaddr = ndev->base_addr;
  512. u32 felic_stat;
  513. if (intr_status & EESR_ECI) {
  514. felic_stat = ctrl_inl(ioaddr + ECSR);
  515. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  516. if (felic_stat & ECSR_ICD)
  517. mdp->stats.tx_carrier_errors++;
  518. if (felic_stat & ECSR_LCHNG) {
  519. /* Link Changed */
  520. u32 link_stat = (ctrl_inl(ioaddr + PSR));
  521. if (!(link_stat & PHY_ST_LINK)) {
  522. /* Link Down : disable tx and rx */
  523. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  524. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  525. } else {
  526. /* Link Up */
  527. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  528. ~DMAC_M_ECI, ioaddr + EESIPR);
  529. /*clear int */
  530. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  531. ioaddr + ECSR);
  532. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  533. DMAC_M_ECI, ioaddr + EESIPR);
  534. /* enable tx and rx */
  535. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  536. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  537. }
  538. }
  539. }
  540. if (intr_status & EESR_TWB) {
  541. /* Write buck end. unused write back interrupt */
  542. if (intr_status & EESR_TABT) /* Transmit Abort int */
  543. mdp->stats.tx_aborted_errors++;
  544. }
  545. if (intr_status & EESR_RABT) {
  546. /* Receive Abort int */
  547. if (intr_status & EESR_RFRMER) {
  548. /* Receive Frame Overflow int */
  549. mdp->stats.rx_frame_errors++;
  550. printk(KERN_ERR "Receive Frame Overflow\n");
  551. }
  552. }
  553. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  554. if (intr_status & EESR_ADE) {
  555. if (intr_status & EESR_TDE) {
  556. if (intr_status & EESR_TFE)
  557. mdp->stats.tx_fifo_errors++;
  558. }
  559. }
  560. #endif
  561. if (intr_status & EESR_RDE) {
  562. /* Receive Descriptor Empty int */
  563. mdp->stats.rx_over_errors++;
  564. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  565. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  566. printk(KERN_ERR "Receive Descriptor Empty\n");
  567. }
  568. if (intr_status & EESR_RFE) {
  569. /* Receive FIFO Overflow int */
  570. mdp->stats.rx_fifo_errors++;
  571. printk(KERN_ERR "Receive FIFO Overflow\n");
  572. }
  573. if (intr_status & (EESR_TWB | EESR_TABT |
  574. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  575. EESR_ADE |
  576. #endif
  577. EESR_TDE | EESR_TFE)) {
  578. /* Tx error */
  579. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  580. /* dmesg */
  581. printk(KERN_ERR "%s:TX error. status=%8.8x cur_tx=%8.8x ",
  582. ndev->name, intr_status, mdp->cur_tx);
  583. printk(KERN_ERR "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  584. mdp->dirty_tx, (u32) ndev->state, edtrr);
  585. /* dirty buffer free */
  586. sh_eth_txfree(ndev);
  587. /* SH7712 BUG */
  588. if (edtrr ^ EDTRR_TRNS) {
  589. /* tx dma start */
  590. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  591. }
  592. /* wakeup */
  593. netif_wake_queue(ndev);
  594. }
  595. }
  596. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  597. {
  598. struct net_device *ndev = netdev;
  599. struct sh_eth_private *mdp = netdev_priv(ndev);
  600. u32 ioaddr, boguscnt = RX_RING_SIZE;
  601. u32 intr_status = 0;
  602. ioaddr = ndev->base_addr;
  603. spin_lock(&mdp->lock);
  604. /* Get interrpt stat */
  605. intr_status = ctrl_inl(ioaddr + EESR);
  606. /* Clear interrupt */
  607. ctrl_outl(intr_status, ioaddr + EESR);
  608. if (intr_status & (EESR_FRC | /* Frame recv*/
  609. EESR_RMAF | /* Multi cast address recv*/
  610. EESR_RRF | /* Bit frame recv */
  611. EESR_RTLF | /* Long frame recv*/
  612. EESR_RTSF | /* short frame recv */
  613. EESR_PRE | /* PHY-LSI recv error */
  614. EESR_CERF)){ /* recv frame CRC error */
  615. sh_eth_rx(ndev);
  616. }
  617. /* Tx Check */
  618. if (intr_status & TX_CHECK) {
  619. sh_eth_txfree(ndev);
  620. netif_wake_queue(ndev);
  621. }
  622. if (intr_status & EESR_ERR_CHECK)
  623. sh_eth_error(ndev, intr_status);
  624. if (--boguscnt < 0) {
  625. printk(KERN_WARNING
  626. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  627. ndev->name, intr_status);
  628. }
  629. spin_unlock(&mdp->lock);
  630. return IRQ_HANDLED;
  631. }
  632. static void sh_eth_timer(unsigned long data)
  633. {
  634. struct net_device *ndev = (struct net_device *)data;
  635. struct sh_eth_private *mdp = netdev_priv(ndev);
  636. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  637. }
  638. /* PHY state control function */
  639. static void sh_eth_adjust_link(struct net_device *ndev)
  640. {
  641. struct sh_eth_private *mdp = netdev_priv(ndev);
  642. struct phy_device *phydev = mdp->phydev;
  643. u32 ioaddr = ndev->base_addr;
  644. int new_state = 0;
  645. if (phydev->link != PHY_DOWN) {
  646. if (phydev->duplex != mdp->duplex) {
  647. new_state = 1;
  648. mdp->duplex = phydev->duplex;
  649. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  650. if (mdp->duplex) { /* FULL */
  651. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM,
  652. ioaddr + ECMR);
  653. } else { /* Half */
  654. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM,
  655. ioaddr + ECMR);
  656. }
  657. #endif
  658. }
  659. if (phydev->speed != mdp->speed) {
  660. new_state = 1;
  661. mdp->speed = phydev->speed;
  662. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  663. switch (mdp->speed) {
  664. case 10: /* 10BASE */
  665. ctrl_outl(GECMR_10, ioaddr + GECMR); break;
  666. case 100:/* 100BASE */
  667. ctrl_outl(GECMR_100, ioaddr + GECMR); break;
  668. case 1000: /* 1000BASE */
  669. ctrl_outl(GECMR_1000, ioaddr + GECMR); break;
  670. default:
  671. break;
  672. }
  673. #endif
  674. }
  675. if (mdp->link == PHY_DOWN) {
  676. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  677. | ECMR_DM, ioaddr + ECMR);
  678. new_state = 1;
  679. mdp->link = phydev->link;
  680. }
  681. } else if (mdp->link) {
  682. new_state = 1;
  683. mdp->link = PHY_DOWN;
  684. mdp->speed = 0;
  685. mdp->duplex = -1;
  686. }
  687. if (new_state)
  688. phy_print_status(phydev);
  689. }
  690. /* PHY init function */
  691. static int sh_eth_phy_init(struct net_device *ndev)
  692. {
  693. struct sh_eth_private *mdp = netdev_priv(ndev);
  694. char phy_id[BUS_ID_SIZE];
  695. struct phy_device *phydev = NULL;
  696. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT,
  697. mdp->mii_bus->id , mdp->phy_id);
  698. mdp->link = PHY_DOWN;
  699. mdp->speed = 0;
  700. mdp->duplex = -1;
  701. /* Try connect to PHY */
  702. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  703. 0, PHY_INTERFACE_MODE_MII);
  704. if (IS_ERR(phydev)) {
  705. dev_err(&ndev->dev, "phy_connect failed\n");
  706. return PTR_ERR(phydev);
  707. }
  708. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  709. phydev->addr, phydev->drv->name);
  710. mdp->phydev = phydev;
  711. return 0;
  712. }
  713. /* PHY control start function */
  714. static int sh_eth_phy_start(struct net_device *ndev)
  715. {
  716. struct sh_eth_private *mdp = netdev_priv(ndev);
  717. int ret;
  718. ret = sh_eth_phy_init(ndev);
  719. if (ret)
  720. return ret;
  721. /* reset phy - this also wakes it from PDOWN */
  722. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  723. phy_start(mdp->phydev);
  724. return 0;
  725. }
  726. /* network device open function */
  727. static int sh_eth_open(struct net_device *ndev)
  728. {
  729. int ret = 0;
  730. struct sh_eth_private *mdp = netdev_priv(ndev);
  731. ret = request_irq(ndev->irq, &sh_eth_interrupt, 0, ndev->name, ndev);
  732. if (ret) {
  733. printk(KERN_ERR "Can not assign IRQ number to %s\n", CARDNAME);
  734. return ret;
  735. }
  736. /* Descriptor set */
  737. ret = sh_eth_ring_init(ndev);
  738. if (ret)
  739. goto out_free_irq;
  740. /* device init */
  741. ret = sh_eth_dev_init(ndev);
  742. if (ret)
  743. goto out_free_irq;
  744. /* PHY control start*/
  745. ret = sh_eth_phy_start(ndev);
  746. if (ret)
  747. goto out_free_irq;
  748. /* Set the timer to check for link beat. */
  749. init_timer(&mdp->timer);
  750. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  751. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  752. return ret;
  753. out_free_irq:
  754. free_irq(ndev->irq, ndev);
  755. return ret;
  756. }
  757. /* Timeout function */
  758. static void sh_eth_tx_timeout(struct net_device *ndev)
  759. {
  760. struct sh_eth_private *mdp = netdev_priv(ndev);
  761. u32 ioaddr = ndev->base_addr;
  762. struct sh_eth_rxdesc *rxdesc;
  763. int i;
  764. netif_stop_queue(ndev);
  765. /* worning message out. */
  766. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  767. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  768. /* tx_errors count up */
  769. mdp->stats.tx_errors++;
  770. /* timer off */
  771. del_timer_sync(&mdp->timer);
  772. /* Free all the skbuffs in the Rx queue. */
  773. for (i = 0; i < RX_RING_SIZE; i++) {
  774. rxdesc = &mdp->rx_ring[i];
  775. rxdesc->status = 0;
  776. rxdesc->addr = 0xBADF00D0;
  777. if (mdp->rx_skbuff[i])
  778. dev_kfree_skb(mdp->rx_skbuff[i]);
  779. mdp->rx_skbuff[i] = NULL;
  780. }
  781. for (i = 0; i < TX_RING_SIZE; i++) {
  782. if (mdp->tx_skbuff[i])
  783. dev_kfree_skb(mdp->tx_skbuff[i]);
  784. mdp->tx_skbuff[i] = NULL;
  785. }
  786. /* device init */
  787. sh_eth_dev_init(ndev);
  788. /* timer on */
  789. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  790. add_timer(&mdp->timer);
  791. }
  792. /* Packet transmit function */
  793. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  794. {
  795. struct sh_eth_private *mdp = netdev_priv(ndev);
  796. struct sh_eth_txdesc *txdesc;
  797. u32 entry;
  798. int flags;
  799. spin_lock_irqsave(&mdp->lock, flags);
  800. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  801. if (!sh_eth_txfree(ndev)) {
  802. netif_stop_queue(ndev);
  803. spin_unlock_irqrestore(&mdp->lock, flags);
  804. return 1;
  805. }
  806. }
  807. spin_unlock_irqrestore(&mdp->lock, flags);
  808. entry = mdp->cur_tx % TX_RING_SIZE;
  809. mdp->tx_skbuff[entry] = skb;
  810. txdesc = &mdp->tx_ring[entry];
  811. txdesc->addr = (u32)(skb->data);
  812. /* soft swap. */
  813. swaps((char *)(txdesc->addr & ~0x3), skb->len + 2);
  814. /* write back */
  815. __flush_purge_region(skb->data, skb->len);
  816. if (skb->len < ETHERSMALL)
  817. txdesc->buffer_length = ETHERSMALL;
  818. else
  819. txdesc->buffer_length = skb->len;
  820. if (entry >= TX_RING_SIZE - 1)
  821. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  822. else
  823. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  824. mdp->cur_tx++;
  825. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  826. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  827. ndev->trans_start = jiffies;
  828. return 0;
  829. }
  830. /* device close function */
  831. static int sh_eth_close(struct net_device *ndev)
  832. {
  833. struct sh_eth_private *mdp = netdev_priv(ndev);
  834. u32 ioaddr = ndev->base_addr;
  835. int ringsize;
  836. netif_stop_queue(ndev);
  837. /* Disable interrupts by clearing the interrupt mask. */
  838. ctrl_outl(0x0000, ioaddr + EESIPR);
  839. /* Stop the chip's Tx and Rx processes. */
  840. ctrl_outl(0, ioaddr + EDTRR);
  841. ctrl_outl(0, ioaddr + EDRRR);
  842. /* PHY Disconnect */
  843. if (mdp->phydev) {
  844. phy_stop(mdp->phydev);
  845. phy_disconnect(mdp->phydev);
  846. }
  847. free_irq(ndev->irq, ndev);
  848. del_timer_sync(&mdp->timer);
  849. /* Free all the skbuffs in the Rx queue. */
  850. sh_eth_ring_free(ndev);
  851. /* free DMA buffer */
  852. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  853. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  854. /* free DMA buffer */
  855. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  856. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  857. return 0;
  858. }
  859. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  860. {
  861. struct sh_eth_private *mdp = netdev_priv(ndev);
  862. u32 ioaddr = ndev->base_addr;
  863. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  864. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  865. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  866. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  867. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  868. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  869. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  870. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  871. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  872. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  873. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  874. #else
  875. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  876. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  877. #endif
  878. return &mdp->stats;
  879. }
  880. /* ioctl to device funciotn*/
  881. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  882. int cmd)
  883. {
  884. struct sh_eth_private *mdp = netdev_priv(ndev);
  885. struct phy_device *phydev = mdp->phydev;
  886. if (!netif_running(ndev))
  887. return -EINVAL;
  888. if (!phydev)
  889. return -ENODEV;
  890. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  891. }
  892. /* Multicast reception directions set */
  893. static void sh_eth_set_multicast_list(struct net_device *ndev)
  894. {
  895. u32 ioaddr = ndev->base_addr;
  896. if (ndev->flags & IFF_PROMISC) {
  897. /* Set promiscuous. */
  898. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  899. ioaddr + ECMR);
  900. } else {
  901. /* Normal, unicast/broadcast-only mode. */
  902. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  903. ioaddr + ECMR);
  904. }
  905. }
  906. /* SuperH's TSU register init function */
  907. static void sh_eth_tsu_init(u32 ioaddr)
  908. {
  909. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  910. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  911. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  912. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  913. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  914. ctrl_outl(0, ioaddr + TSU_PRISL0);
  915. ctrl_outl(0, ioaddr + TSU_PRISL1);
  916. ctrl_outl(0, ioaddr + TSU_FWSL0);
  917. ctrl_outl(0, ioaddr + TSU_FWSL1);
  918. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  919. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  920. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  921. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  922. #else
  923. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  924. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  925. #endif
  926. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  927. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  928. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  929. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  930. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  931. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  932. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  933. }
  934. /* MDIO bus release function */
  935. static int sh_mdio_release(struct net_device *ndev)
  936. {
  937. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  938. /* unregister mdio bus */
  939. mdiobus_unregister(bus);
  940. /* remove mdio bus info from net_device */
  941. dev_set_drvdata(&ndev->dev, NULL);
  942. /* free bitbang info */
  943. free_mdio_bitbang(bus);
  944. return 0;
  945. }
  946. /* MDIO bus init function */
  947. static int sh_mdio_init(struct net_device *ndev, int id)
  948. {
  949. int ret, i;
  950. struct bb_info *bitbang;
  951. struct sh_eth_private *mdp = netdev_priv(ndev);
  952. /* create bit control struct for PHY */
  953. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  954. if (!bitbang) {
  955. ret = -ENOMEM;
  956. goto out;
  957. }
  958. /* bitbang init */
  959. bitbang->addr = ndev->base_addr + PIR;
  960. bitbang->mdi_msk = 0x08;
  961. bitbang->mdo_msk = 0x04;
  962. bitbang->mmd_msk = 0x02;/* MMD */
  963. bitbang->mdc_msk = 0x01;
  964. bitbang->ctrl.ops = &bb_ops;
  965. /* MII contorller setting */
  966. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  967. if (!mdp->mii_bus) {
  968. ret = -ENOMEM;
  969. goto out_free_bitbang;
  970. }
  971. /* Hook up MII support for ethtool */
  972. mdp->mii_bus->name = "sh_mii";
  973. mdp->mii_bus->dev = &ndev->dev;
  974. mdp->mii_bus->id[0] = id;
  975. /* PHY IRQ */
  976. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  977. if (!mdp->mii_bus->irq) {
  978. ret = -ENOMEM;
  979. goto out_free_bus;
  980. }
  981. for (i = 0; i < PHY_MAX_ADDR; i++)
  982. mdp->mii_bus->irq[i] = PHY_POLL;
  983. /* regist mdio bus */
  984. ret = mdiobus_register(mdp->mii_bus);
  985. if (ret)
  986. goto out_free_irq;
  987. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  988. return 0;
  989. out_free_irq:
  990. kfree(mdp->mii_bus->irq);
  991. out_free_bus:
  992. kfree(mdp->mii_bus);
  993. out_free_bitbang:
  994. kfree(bitbang);
  995. out:
  996. return ret;
  997. }
  998. static int sh_eth_drv_probe(struct platform_device *pdev)
  999. {
  1000. int ret, i, devno = 0;
  1001. struct resource *res;
  1002. struct net_device *ndev = NULL;
  1003. struct sh_eth_private *mdp;
  1004. struct sh_eth_plat_data *pd;
  1005. /* get base addr */
  1006. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1007. if (unlikely(res == NULL)) {
  1008. dev_err(&pdev->dev, "invalid resource\n");
  1009. ret = -EINVAL;
  1010. goto out;
  1011. }
  1012. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1013. if (!ndev) {
  1014. printk(KERN_ERR "%s: could not allocate device.\n", CARDNAME);
  1015. ret = -ENOMEM;
  1016. goto out;
  1017. }
  1018. /* The sh Ether-specific entries in the device structure. */
  1019. ndev->base_addr = res->start;
  1020. devno = pdev->id;
  1021. if (devno < 0)
  1022. devno = 0;
  1023. ndev->dma = -1;
  1024. ndev->irq = platform_get_irq(pdev, 0);
  1025. if (ndev->irq < 0) {
  1026. ret = -ENODEV;
  1027. goto out_release;
  1028. }
  1029. SET_NETDEV_DEV(ndev, &pdev->dev);
  1030. /* Fill in the fields of the device structure with ethernet values. */
  1031. ether_setup(ndev);
  1032. mdp = netdev_priv(ndev);
  1033. spin_lock_init(&mdp->lock);
  1034. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1035. /* get PHY ID */
  1036. mdp->phy_id = pd->phy;
  1037. /* EDMAC endian */
  1038. mdp->edmac_endian = pd->edmac_endian;
  1039. /* set function */
  1040. ndev->open = sh_eth_open;
  1041. ndev->hard_start_xmit = sh_eth_start_xmit;
  1042. ndev->stop = sh_eth_close;
  1043. ndev->get_stats = sh_eth_get_stats;
  1044. ndev->set_multicast_list = sh_eth_set_multicast_list;
  1045. ndev->do_ioctl = sh_eth_do_ioctl;
  1046. ndev->tx_timeout = sh_eth_tx_timeout;
  1047. ndev->watchdog_timeo = TX_TIMEOUT;
  1048. mdp->post_rx = POST_RX >> (devno << 1);
  1049. mdp->post_fw = POST_FW >> (devno << 1);
  1050. /* read and set MAC address */
  1051. read_mac_address(ndev);
  1052. /* First device only init */
  1053. if (!devno) {
  1054. #if defined(ARSTR)
  1055. /* reset device */
  1056. ctrl_outl(ARSTR_ARSTR, ARSTR);
  1057. mdelay(1);
  1058. #endif
  1059. #if defined(SH_TSU_ADDR)
  1060. /* TSU init (Init only)*/
  1061. sh_eth_tsu_init(SH_TSU_ADDR);
  1062. #endif
  1063. }
  1064. /* network device register */
  1065. ret = register_netdev(ndev);
  1066. if (ret)
  1067. goto out_release;
  1068. /* mdio bus init */
  1069. ret = sh_mdio_init(ndev, pdev->id);
  1070. if (ret)
  1071. goto out_unregister;
  1072. /* pritnt device infomation */
  1073. printk(KERN_INFO "%s: %s at 0x%x, ",
  1074. ndev->name, CARDNAME, (u32) ndev->base_addr);
  1075. for (i = 0; i < 5; i++)
  1076. printk("%02X:", ndev->dev_addr[i]);
  1077. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1078. platform_set_drvdata(pdev, ndev);
  1079. return ret;
  1080. out_unregister:
  1081. unregister_netdev(ndev);
  1082. out_release:
  1083. /* net_dev free */
  1084. if (ndev)
  1085. free_netdev(ndev);
  1086. out:
  1087. return ret;
  1088. }
  1089. static int sh_eth_drv_remove(struct platform_device *pdev)
  1090. {
  1091. struct net_device *ndev = platform_get_drvdata(pdev);
  1092. sh_mdio_release(ndev);
  1093. unregister_netdev(ndev);
  1094. flush_scheduled_work();
  1095. free_netdev(ndev);
  1096. platform_set_drvdata(pdev, NULL);
  1097. return 0;
  1098. }
  1099. static struct platform_driver sh_eth_driver = {
  1100. .probe = sh_eth_drv_probe,
  1101. .remove = sh_eth_drv_remove,
  1102. .driver = {
  1103. .name = CARDNAME,
  1104. },
  1105. };
  1106. static int __init sh_eth_init(void)
  1107. {
  1108. return platform_driver_register(&sh_eth_driver);
  1109. }
  1110. static void __exit sh_eth_cleanup(void)
  1111. {
  1112. platform_driver_unregister(&sh_eth_driver);
  1113. }
  1114. module_init(sh_eth_init);
  1115. module_exit(sh_eth_cleanup);
  1116. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1117. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1118. MODULE_LICENSE("GPL v2");